JP2004317136A - Biologically equivalent thermal fluorophore two-dimensional element and its manufacturing method - Google Patents

Biologically equivalent thermal fluorophore two-dimensional element and its manufacturing method Download PDF

Info

Publication number
JP2004317136A
JP2004317136A JP2003107356A JP2003107356A JP2004317136A JP 2004317136 A JP2004317136 A JP 2004317136A JP 2003107356 A JP2003107356 A JP 2003107356A JP 2003107356 A JP2003107356 A JP 2003107356A JP 2004317136 A JP2004317136 A JP 2004317136A
Authority
JP
Japan
Prior art keywords
resin
thermoluminescent
bioequivalent
heat
dimensional element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003107356A
Other languages
Japanese (ja)
Other versions
JP4233087B2 (en
Inventor
Nobuteru Nariyama
展照 成山
Yuzo Ishikawa
雄三 石川
Naoto Ozasa
尚登 小笹
Naomitsu Odano
直光 小田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nemoto and Co Ltd
Japan Atomic Energy Agency
National Maritime Research Institute
Original Assignee
Nemoto and Co Ltd
Japan Atomic Energy Research Institute
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemoto and Co Ltd, Japan Atomic Energy Research Institute, National Maritime Research Institute filed Critical Nemoto and Co Ltd
Priority to JP2003107356A priority Critical patent/JP4233087B2/en
Publication of JP2004317136A publication Critical patent/JP2004317136A/en
Application granted granted Critical
Publication of JP4233087B2 publication Critical patent/JP4233087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biologically equivalent thermal fluorophore two-dimensional element capable of suppressing the decrease of relative sensitivity for radiation and capable of accurately and easily measuring dose distribution at the time of being exposed locally, and its manufacturing method. <P>SOLUTION: In the manufacturing method of a biologically equivalent thermal fluorophore two-dimensional element, 5 to 70 wt.% of heat-resistant resin (for example, tetrafluoroethylene-ethylene copolymered resin) is added to a unit weight of LiF as a binder and used as a principal material to mold a sheet form. Then, it is heated and cured at a temperature equal to or lower than 260°C. As it is heated and cured at a temperature equal to or lower than 260°C, decline of relative sensitivity for radiation can be suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生体等価型熱蛍光体二次元素子及びその製造方法に係わり、特に、放射線に対する相対感度の低下を抑制でき、局所被曝時の線量分布を精度良くかつ簡便に行える生体等価型熱蛍光体二次元素子及びその製造方法に関する。
【0002】
【従来の技術】
従来、放射線作業従事者等の個人被曝線量を計測する場合、均等全身被曝を想定し、胸部あるいは腹部に熱蛍光線量計(TLD)等の個人被曝線量計を装着して評価し、必要に応じて指先などに別の線量計を装着していた。しかし、近年の原子力利用技術の高度化に伴い、放射線源が多様化し、従来とは異なる形態、種類の放射線被曝を受けることが予想されるようになった。
【0003】
たとえば、再処理施設、高レベル放射性廃棄物貯蔵施設等の核燃料サイクル施設あるいは放射線利用の加速器施設においては、全身に均一に被曝するよりも身体部位により被曝線量が異なる場合が一般的である。しかも、被曝を受ける場所を事前に特定することは困難である。こうしたタイプの被曝を受けた場合、従来の一点型個人被曝線量計では的確な被曝評価は行えない。
【0004】
そこで、被曝線量計を一点型ではなくシート化(二次元素子化)することにより、局所被曝時の線量分布を精度良くかつ簡便に行うことができ、放射線源の多様化に応じた応答性の多様性と広いエネルギー測定域を有するものとし、被曝線量評価の精度を格段に向上させ、従事者等の被曝低減化に寄与することができる技術を開発することが求められている。
【0005】
【発明が解決しようとする課題】
上述したような技術としては、実効原子番号が人体と等価なフッ化リチウム(LiF)を母結晶とする熱蛍光体をシート化することにより、生体等価型熱蛍光体二次元素子を作製することが考えられる。すなわち、LiFにPTFE(四フッ化エチレン樹脂)を混合し、これをロール状に成型した後、360〜400℃で焼成し、切削(かつら剥ぎ)してキュア(加熱成型)することにより、生体等価型でシート化した熱蛍光体を作製するものである。
【0006】
上記のようにして作製された生体等価型熱蛍光体二次元素子に局所的にSr90の放射線を60分間、1Gyで照射し、局所被曝下での線量分布を測定した。この測定結果である線量分布を表す写真及びグラフを図4に示す。この測定結果によれば、放射線に対する相対感度が0.1まで低下してしまうことがわかる。相対感度が低下する原因には、PTFEを用いた場合に必須となる360〜400℃の焼成工程にあり、この工程の熱によって相対感度が低下してしまうことを確認した。
【0007】
本発明は上記のような事情を考慮してなされたものであり、その目的は、放射線に対する相対感度の低下を抑制でき、局所被曝時の線量分布を精度良くかつ簡便に行える生体等価型熱蛍光体二次元素子及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る生体等価型熱蛍光体二次元素子は、LiFの単位重量に対し、260℃以下の温度で加熱硬化する耐熱性樹脂をバインダーとして5〜70重量%添加したものを主体として成型されたものである。
尚、前記耐熱性樹脂が加熱硬化する温度は240〜260℃であることが好ましい。
【0009】
上記生体等価型熱蛍光体二次元素子によれば、260℃以下の温度で加熱硬化する耐熱性樹脂を用い、加熱処理する温度を260℃以下とする。これにより、放射線に対する相対感度の低下を抑制できる。従って、局所被曝時の線量分布を精度良くかつ簡便に行える生体等価型熱蛍光体二次元素子を得ることが可能となる。
【0010】
また、本発明に係る生体等価型熱蛍光体二次元素子において、前記樹脂は四フッ化エチレン−エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン樹脂のうちのいずれかであることも可能である。
【0011】
本発明に係る生体等価型熱蛍光体二次元素子の製造方法は、LiFの単位重量に対し、バインダーとして耐熱性樹脂を5〜70重量%添加したものを主体としてシート形状に成型し、次いで260℃以下の温度で加熱硬化させることを特徴とする。
【0012】
ここで260℃以下の温度で加熱硬化させることができる耐熱性樹脂を用いるのは、260℃より高い温度で加熱硬化させると、そのときの熱によって生体等価型熱蛍光体二次元素子の相対感度が低下してしまうからである。言い換えると、相対感度が低下しないように260℃以下の温度で加熱硬化させることができる耐熱性樹脂を用いている。
【0013】
また、樹脂の添加量は、5重量%以下にするとバインダーとして機能せず、逆に70重量%以上にすると、加熱後の発光量が減少するので、5〜70重量%とすることが必要とされるものである。また、樹脂は、熱蛍光を透過させるように透光性を有することが望ましく、かつ測定時に熱を加える関係から耐熱性のものが望ましい。
【0014】
人体の被曝線量を測定するためには、生体組織等価性の点から、人体生体組織の実効原子番号である7.8に近似している8.2という実効原子番号を有するフッ化リチウム(LiF)を母体とする熱蛍光体を用いることによって、フィルタ処理をしなくてもそのまま使用できることとなる。
【0015】
上記生体等価型熱蛍光体二次元素子の製造方法によれば、LiFに対し、耐熱性樹脂を添加したものを主体としてシート形状に成型し、この成型品を260℃以下の温度で加熱硬化させるため、放射線に対する相対感度の低下を抑制できる。従って、局所被曝時の線量分布を精度良くかつ簡便に行える生体等価型熱蛍光体二次元素子を得ることが可能となる。
【0016】
本発明に係る生体等価型熱蛍光体二次元素子の製造方法は、LiFの単位重量に対し、バインダーとして耐熱性樹脂を5〜70重量%添加したものを主体として加圧成型し、次いで260℃以下の温度で加熱硬化させた後、スライスして形成することを特徴とする。
【0017】
また、本発明に係る生体等価型熱蛍光体二次元素子の製造方法において、前記樹脂は四フッ化エチレン−エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン樹脂のうちのいずれかであることも可能である。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
(実施の形態1)
本発明に係る実施の形態1による生体等価型熱蛍光体二次元素子の製造方法について説明する。生体等価型熱蛍光体二次元素子は、実効原子番号が人体と等価なフッ化リチウム(LiF)を母結晶とする熱蛍光体をシート化することにより製造されるものである。
【0019】
まず、LiFに、モールディングパウダーとしての耐熱性樹脂(例えば四フッ化エチレン−エチレン共重合樹脂)を、Vタンブラー等によるドライブレンダーによって混合する。この混合時間は、ブレンダーの種類によって異なってくるものの、Vタンブラーを用いた場合には、15〜30分程度の混合時間で足りる。
【0020】
尚、この混合も、水性懸濁状態の耐熱性樹脂とLiFとを攪拌によってブレンドした後、脱水し、ブレンドした原材料を得ることも可能である。
【0021】
次いで、ブレンドした原材料を、均一になるように金型内部に収納し、成型圧力及び成型時間を調整しながら予備圧縮成型を行い、シート形状(二次元素子形状)の予備成型品を形成する。成型圧力は、成型品の厚さ、耐熱性樹脂の種類、粒度等によって異なるものの、おおむね100〜400Kg/cmの範囲である。さらに成型時間は、成型品の厚さが増加するにつれて長時間とすることが必要とされるが、少なくとも耐熱性樹脂単独での成型時間、またはその時間よりも若干長い時間とすることが望ましい。
【0022】
その後、この予備成型品を、240〜260℃に調整された炉の中で、成型品の形状、耐熱性樹脂の種類、粒度に応じて調整した時間だけ焼成する。この後は、充分に小さい冷却速度にて室温まで冷却した後、更に、2日又は3日以上室温で放置する。このようにして生体等価型熱蛍光体二次元素子が製造される。
【0023】
上記実施の形態1によれば、LiFを母体とする熱蛍光体と耐熱性樹脂を混合した後、この混合物をシート形状に予備成型し、この成型品を加熱処理する温度を240〜260℃としている。このため、放射線に対する相対感度の低下を抑制できる。従って、局所被曝時の線量分布を精度良くかつ簡便に行える生体等価型熱蛍光体二次元素子を得ることが可能となる。
【0024】
(実施の形態2)
本発明に係る実施の形態2による生体等価型熱蛍光体二次元素子の製造方法について説明する。耐熱性樹脂をバインダーとし、圧縮成型によって成型シートを製造する方法である。
【0025】
まず、実施の形態1と同様のブレンドした原材料を用意する。
【0026】
次いで、ブレンドした原材料を、均一になるように金型内部に収納し、成型圧力及び成型時間を調整しながら予備圧縮成型を行う。成型圧力は、成型品の厚さ、耐熱性樹脂の種類、粒度等によって異なるものの、おおむね100〜400Kg/cmの範囲である。さらに成型時間は、成型品の厚さが増加するにつれて長時間とすることが必要とされるが、少なくとも耐熱性樹脂単独での成型時間、またはその時間よりも若干長い時間とすることが望ましい。
【0027】
その後、この予備成型品を、240〜260℃に調整された炉の中で、成型品の形状、耐熱性樹脂の種類、粒度に応じて調整した時間だけ焼成する。この後は、充分に小さい冷却速度にて室温まで冷却した後、更に、2日又は3日以上室温で放置し、その後、この成型品を、スライサーによって所定厚にスライスしてシート形状にするものである。
【0028】
上記実施の形態2においても実施の形態1と同様の効果を得ることができる。
【0029】
尚、本発明は上記実施の形態に限定されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。
【0030】
【実施例】
以下、図面を参照して本発明の実施例について説明する。
(実施例1)
図1(A)〜(C)は、本発明に係る実施例1による生体等価型熱蛍光体二次元素子の製造方法を説明する断面図である。図2は、図1(A)に示す金型を上から視た平面図である。生体等価型熱蛍光体二次元素子は、実効原子番号が人体と等価なフッ化リチウム(LiF)を母結晶とする熱蛍光体をシート化することにより製造するものである。
【0031】
まず、図1(A)及び図2に示す金型2を準備する。この金型2は、平面形状が略四角形を有しており、深さ200μm程度の溝(窪み)1を有する鉄板からなる。この金型2の表面(少なくとも溝1の内表面)はフッ素樹脂でコーティングされており、このフッ素樹脂によって生体等価型熱蛍光体二次元素子が溝1の内表面に付着しないようになっている。
【0032】
次に、熱蛍光体は、粉末状のLiFに対して、付活剤としてMg、Cu、Pを微量混合し、これを温度700〜1000℃で、30分〜1時間熱処理を施し、その後80メッシュ以下150メッシュ以上の粒子を選別して、水あるいは希釈塩酸で洗浄後、乾燥させたものを0.4kg用意する。
【0033】
また、バインダーとしての四フッ化エチレン−エチレン共重合樹脂は、モールディングパウダーとしての市販品フルオンETFE Z−885A:旭硝子(株)製を0.6kg用意する。次いで、これら両者をVタンブラーへ入れて、20分間混合する。これにより、LiFを母体とする熱蛍光体と四フッ化エチレン−エチレン共重合樹脂が4:6の混合比で混合される。
【0034】
その後、図1(B)に示すように、金型2の溝1内に上記の混合物3を塗布する。次いで、図1(C)に示すように、金型2の溝1の上に蓋部4を載せ、この蓋部4を250Kg/cmの圧力で30秒間加圧し、シート形状(二次元素子形状)の予備成型品3aを形成する。次いで、この予備成型品3aを金型2とともに熱風加熱炉に移す。
【0035】
その後、金型2を収納した加熱炉を徐々に加熱し、250℃に到達後、30分〜1時間保持し、室温まで徐冷する。このようにして得られた成型品を金型2から剥離することにより、生体等価型熱蛍光体二次元素子を得た。このようにして得た熱蛍光体シートは十分に使用に耐えるものであった。
【0036】
このようにして製造された生体等価型熱蛍光体二次元素子は、熱蛍光体の母結晶としてLiFを用い、粒径が数〜100μmであり、実効原子番号が8.14であり、発光波長が390nmであり、グローピーク温度が210℃であり、測定線量範囲が10−5〜10Svであり、エネルギー特性(レスポンス)が約1.3(40keV/60Co)であり、フェーディング特性が5%/3ヶ月以内であり、環境温湿度が5%以内であり、光励起がほとんど無く、光クエンチングがほとんど無いものである。
【0037】
上記生体等価型熱蛍光体二次元素子に局所的にSr90の放射線を60分間、0.5Gyで照射し、局所被曝下での線量分布を測定した。この測定結果である線量分布を表す写真及びグラフを図3に示す。この測定結果によれば、相対感度が1であり、図4に示す従来の生体等価型熱蛍光体二次元素子の相対感度0.1に比べて相対感度の低下を抑制できることが確認された。
【0038】
上記実施例1では、LiFを母体とする熱蛍光体と四フッ化エチレン−エチレン共重合樹脂を混合した後、この混合物をシート形状に予備成型し、この成型品を加熱処理する温度を250℃としている。このため、放射線に対する相対感度の低下を抑制できる。従って、局所被曝時の線量分布を精度良くかつ簡便に行える生体等価型熱蛍光体二次元素子を得ることが可能となる。
【0039】
(実施例2)
本発明に係る実施例2による生体等価型熱蛍光体二次元素子の製造方法について説明する。
熱蛍光体としてLiFを母体とするものを用い、耐熱性樹脂として四フッ化エチレン−エチレン共重合樹脂を用い、かつ両者を4:6の混合比で混合し、平面形状が200mm×500mmで0.4mm厚の生体等価型熱蛍光体シートを約100枚製造する場合について説明する。
【0040】
まず、実施例1と同様の熱蛍光体を7.2kg用意する。また、実施例1と同様のバインダーとしての四フッ化エチレン−エチレン共重合樹脂を10.8kg用意する。次いで、これら両者をVタンブラーへ入れて、20分間混合する。
【0041】
その後、上記混合物を金型の内部に収納し、250Kg/cmの圧力で30秒間加圧し、予備成型品を形成する。次いで、この予備成型品が十分な強度がないために、注意深く熱風加熱炉に移す。
【0042】
その後、予備成型品を収納した加熱炉を徐々に加熱し、250℃に到達後、30分〜1時間保持し、室温まで徐冷する。このようにして得られた成型品をスライサーで0.4mmの厚さにスライスして生体等価型熱蛍光体シートを得た。このようにして得た熱蛍光体シートは十分に使用に耐えるものであった。
【0043】
上記実施例2においても実施例1と同様の性能を有する生体等価型熱蛍光体二次元素子を得ることができる。
すなわち、LiFを母体とする熱蛍光体と四フッ化エチレン−エチレン共重合樹脂を混合した後、この混合物をシート形状に予備成型し、この成型品を加熱処理する温度を250℃としている。このため、放射線に対する相対感度の低下を抑制できる。従って、局所被曝時の線量分布を精度良くかつ簡便に行える生体等価型熱蛍光体二次元素子を得ることができる。
【0044】
尚、本発明は上記実施例に限定されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。例えば、上記実施例では、耐熱性樹脂として四フッ化エチレン−エチレン共重合樹脂を用いているが、260℃以下の温度で加熱硬化する耐熱性樹脂であれば、他の耐熱性樹脂を用いることも可能であり、例えば、フッ化ビニリデン樹脂、三フッ化塩化エチレン樹脂、四フッ化エチレン樹脂、パーフルオロ−アルコキシ樹脂、四フッ化エチレン−六フッ化プロピレン共重合樹脂などを用いることも可能である。
【0045】
【発明の効果】
以上説明したように本発明によれば、放射線に対する相対感度の低下を抑制でき、局所被曝時の線量分布を精度良くかつ簡便に行える生体等価型熱蛍光体二次元素子及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】(A)〜(C)は、本発明に係る実施例1による生体等価型熱蛍光体二次元素子の製造方法を説明する断面図である。
【図2】図1(A)に示す金型を上から視た平面図である。
【図3】本発明に係る実施例1による生体等価型熱蛍光体二次元素子に局所的に放射線を照射し、局所被曝下での線量分布を示す写真及びグラフである。
【図4】従来の生体等価型熱蛍光体二次元素子に局所的に放射線を照射し、局所被曝下での線量分布を示す写真及びグラフである。
【符号の説明】
1…溝(窪み)
2…金型
3…混合物(LiFを母体とする熱蛍光体と四フッ化エチレン−エチレン共重合樹脂の混合物)
3a…予備成型品
4…蓋部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bioequivalent thermoluminescent two-dimensional element and a method of manufacturing the same, and in particular, a bioequivalent thermofluorescent device capable of suppressing a decrease in relative sensitivity to radiation and accurately and easily performing a dose distribution at the time of local exposure. The present invention relates to a two-dimensional body element and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, when measuring individual exposure doses of radiation workers, etc., it is assumed that the whole body is exposed, and a personal exposure dose meter such as a thermofluorescence dosimeter (TLD) is attached to the chest or abdomen to evaluate the dose. Another dosimeter was attached to the fingertip. However, with the recent advancement of nuclear power utilization technology, radiation sources have been diversified, and it has been expected that the radiation exposure will be different from the conventional forms and types.
[0003]
For example, in a nuclear fuel cycle facility such as a reprocessing facility, a high-level radioactive waste storage facility, or an accelerator facility using radiation, the exposure dose is generally different depending on the body part, rather than uniformly over the whole body. Moreover, it is difficult to specify in advance the location to be exposed. When receiving this type of exposure, a conventional single-point personal dosimeter cannot perform accurate exposure evaluation.
[0004]
Therefore, by making the dosimeter not a single point type but a sheet (two-dimensional element), the dose distribution at the time of local exposure can be performed accurately and easily, and the responsiveness according to the diversification of radiation sources There is a need to develop a technology that has diversity and a wide energy measurement range, significantly improves the accuracy of exposure dose evaluation, and contributes to reducing the exposure of workers and the like.
[0005]
[Problems to be solved by the invention]
As a technique as described above, a bioequivalent thermoluminescent two-dimensional element is manufactured by sheeting a thermoluminescent material having lithium fluoride (LiF) as a mother crystal, whose effective atomic number is equivalent to that of a human body. Can be considered. That is, LiF is mixed with PTFE (tetrafluoroethylene resin), molded into a roll, fired at 360 to 400 ° C., cut (wig stripped), and cured (heat molded) to obtain a living body. This is to produce a thermoluminescent phosphor sheeted in an equivalent type.
[0006]
The bioequivalent thermoluminescent two-dimensional element manufactured as described above was locally irradiated with Sr90 radiation at 1 Gy for 60 minutes, and the dose distribution under local exposure was measured. FIG. 4 shows a photograph and a graph showing the dose distribution as the measurement result. The measurement results show that the relative sensitivity to radiation is reduced to 0.1. The cause of the decrease in the relative sensitivity is a firing step at 360 to 400 ° C., which is essential when PTFE is used, and it has been confirmed that the relative sensitivity decreases due to heat in this step.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a bioequivalent thermofluorescence capable of suppressing a decrease in relative sensitivity to radiation and accurately and easily performing a dose distribution at the time of local exposure. An object of the present invention is to provide a two-dimensional body element and a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the bioequivalent thermoluminescent two-dimensional element according to the present invention is characterized in that a heat-resistant resin which is cured by heating at a temperature of 260 ° C. or less is added in an amount of 5 to 70% by weight based on the unit weight of LiF. It is molded with the main component.
The temperature at which the heat-resistant resin is cured by heating is preferably 240 to 260 ° C.
[0009]
According to the bioequivalent thermoluminescent two-dimensional element, a heat-resistant resin that is cured by heating at a temperature of 260 ° C. or less is used, and the temperature of the heat treatment is set to 260 ° C. or less. Thereby, a decrease in relative sensitivity to radiation can be suppressed. Therefore, it becomes possible to obtain a bioequivalent-type thermoluminescent two-dimensional element capable of accurately and easily performing a dose distribution at the time of local exposure.
[0010]
In the bioequivalent thermoluminescent two-dimensional element according to the present invention, the resin may be any one of an ethylene tetrafluoride-ethylene copolymer resin, a vinylidene fluoride resin, and an ethylene trifluoride chloride resin. It is possible.
[0011]
In the method for manufacturing a bioequivalent thermoluminescent two-dimensional element according to the present invention, a sheet is formed by mainly adding a heat-resistant resin as a binder in an amount of 5 to 70% by weight with respect to a unit weight of LiF, and then forming the sheet into a sheet. It is characterized by being cured by heating at a temperature of not more than ℃.
[0012]
Here, the use of a heat-resistant resin that can be cured by heating at a temperature of 260 ° C. or less is performed when the resin is cured by heating at a temperature higher than 260 ° C., and the heat at that time causes the relative sensitivity of the bioequivalent thermoluminescent two-dimensional element. Is to be reduced. In other words, a heat-resistant resin that can be cured by heating at a temperature of 260 ° C. or less so as not to lower the relative sensitivity is used.
[0013]
When the amount of the resin is less than 5% by weight, the resin does not function as a binder. On the other hand, when the amount of the resin is more than 70% by weight, the amount of luminescence after heating is reduced. Is what is done. The resin desirably has a light-transmitting property so as to transmit thermo-fluorescence, and is desirably a heat-resistant resin because heat is applied during measurement.
[0014]
In order to measure the exposure dose to the human body, lithium fluoride (LiF) having an effective atomic number of 8.2 which is close to 7.8, which is the effective atomic number of human biological tissue, is used in terms of biological tissue equivalence. By using a thermoluminescent substance whose parent is ()), it can be used as it is without filtering.
[0015]
According to the method for manufacturing a bioequivalent thermoluminescent two-dimensional element, LiF is molded into a sheet mainly by adding a heat-resistant resin to LiF, and the molded article is heated and cured at a temperature of 260 ° C. or less. Therefore, a decrease in relative sensitivity to radiation can be suppressed. Therefore, it becomes possible to obtain a bioequivalent-type thermoluminescent two-dimensional element capable of accurately and easily performing a dose distribution at the time of local exposure.
[0016]
In the method for producing a bioequivalent thermoluminescent two-dimensional element according to the present invention, pressure molding is performed mainly by adding a heat-resistant resin as a binder in an amount of 5 to 70% by weight with respect to a unit weight of LiF, and then 260 ° C. It is characterized by being formed by slicing after heat curing at the following temperature.
[0017]
Further, in the method for producing a bioequivalent thermoluminescent two-dimensional element according to the present invention, the resin is any one of ethylene tetrafluoride-ethylene copolymer resin, vinylidene fluoride resin, and ethylene trifluoride chloride resin. It is also possible.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Embodiment 1)
A method for manufacturing the bioequivalent thermoluminescent two-dimensional element according to the first embodiment of the present invention will be described. The bioequivalent thermoluminescent two-dimensional element is manufactured by sheeting a thermoluminescent material whose base crystal is lithium fluoride (LiF) whose effective atomic number is equivalent to that of a human body.
[0019]
First, a heat-resistant resin (for example, ethylene tetrafluoride-ethylene copolymer resin) as a molding powder is mixed with LiF by a drive render using a V tumbler or the like. The mixing time varies depending on the type of blender, but when a V tumbler is used, a mixing time of about 15 to 30 minutes is sufficient.
[0020]
In this mixing, it is also possible to obtain a blended raw material by blending the heat-resistant resin in an aqueous suspension state and LiF by stirring, and then dehydrating the blend.
[0021]
Next, the blended raw materials are housed in a mold so as to be uniform, and pre-compression molding is performed while adjusting molding pressure and molding time to form a sheet-shaped (two-dimensional element-shaped) pre-molded product. The molding pressure varies depending on the thickness of the molded product, the type of heat-resistant resin, the particle size, and the like, but is generally in the range of 100 to 400 kg / cm 2 . Further, the molding time is required to be longer as the thickness of the molded article increases, but it is desirable that the molding time is at least the heat-resistant resin alone or a slightly longer time than the molding time.
[0022]
Thereafter, the preformed product is fired in a furnace adjusted to 240 to 260 ° C. for a time adjusted according to the shape of the molded product, the type of heat resistant resin, and the particle size. Thereafter, after cooling to room temperature at a sufficiently low cooling rate, the system is left at room temperature for 2 days or 3 days or more. Thus, a bioequivalent thermoluminescent two-dimensional element is manufactured.
[0023]
According to the first embodiment, after mixing a thermoluminescent material having LiF as a base and a heat-resistant resin, the mixture is preformed into a sheet shape, and the temperature at which this molded product is heat-treated is set to 240 to 260 ° C. I have. For this reason, a decrease in relative sensitivity to radiation can be suppressed. Therefore, it becomes possible to obtain a bioequivalent-type thermoluminescent two-dimensional element capable of accurately and easily performing a dose distribution at the time of local exposure.
[0024]
(Embodiment 2)
A method of manufacturing the bioequivalent thermoluminescent two-dimensional element according to the second embodiment of the present invention will be described. This is a method of manufacturing a molded sheet by compression molding using a heat-resistant resin as a binder.
[0025]
First, the same blended raw material as in the first embodiment is prepared.
[0026]
Next, the blended raw materials are housed in a mold so as to be uniform, and pre-compression molding is performed while adjusting molding pressure and molding time. The molding pressure varies depending on the thickness of the molded product, the type of heat-resistant resin, the particle size, and the like, but is generally in the range of 100 to 400 kg / cm 2 . Further, the molding time is required to be longer as the thickness of the molded article increases, but it is desirable that the molding time is at least the heat-resistant resin alone or a slightly longer time than the molding time.
[0027]
Thereafter, the preformed product is fired in a furnace adjusted to 240 to 260 ° C. for a time adjusted according to the shape of the molded product, the type of heat resistant resin, and the particle size. After that, after cooling to room temperature at a sufficiently low cooling rate, it is further allowed to stand at room temperature for 2 or 3 days or more, and then, the molded product is sliced into a predetermined thickness by a slicer to form a sheet shape. It is.
[0028]
In the second embodiment as well, the same effect as in the first embodiment can be obtained.
[0029]
It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications without departing from the spirit of the present invention.
[0030]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Example 1)
FIGS. 1A to 1C are cross-sectional views illustrating a method of manufacturing a bioequivalent thermoluminescent two-dimensional element according to a first embodiment of the present invention. FIG. 2 is a plan view of the mold shown in FIG. The bioequivalent thermoluminescent two-dimensional element is manufactured by sheeting a thermoluminescent material whose base crystal is lithium fluoride (LiF) whose effective atomic number is equivalent to that of a human body.
[0031]
First, the mold 2 shown in FIGS. 1A and 2 is prepared. The mold 2 has an approximately square planar shape and is made of an iron plate having a groove (recess) 1 having a depth of about 200 μm. The surface of the mold 2 (at least the inner surface of the groove 1) is coated with a fluororesin, so that the bioequivalent thermoluminescent two-dimensional element does not adhere to the inner surface of the groove 1. .
[0032]
Next, in the thermoluminescent material, a slight amount of Mg, Cu, and P as an activator is mixed with powdered LiF, and the mixture is heat-treated at a temperature of 700 to 1000 ° C. for 30 minutes to 1 hour. Particles having a mesh size of 150 mesh or less are selected, washed with water or dilute hydrochloric acid, and dried to prepare 0.4 kg.
[0033]
As a binder, 0.6 kg of commercially available Fluon ETFE Z-885A: Asahi Glass Co., Ltd. as a molding powder is prepared as a binder. Then, both are put in a V tumbler and mixed for 20 minutes. As a result, the thermoluminescent having LiF as a base and the ethylene tetrafluoride-ethylene copolymer resin are mixed at a mixing ratio of 4: 6.
[0034]
Thereafter, as shown in FIG. 1 (B), the mixture 3 is applied to the groove 1 of the mold 2. Next, as shown in FIG. 1 (C), the lid 4 is placed on the groove 1 of the mold 2 and the lid 4 is pressed at a pressure of 250 kg / cm 2 for 30 seconds to form a sheet (two-dimensional element). A preform 3a having the shape (form) is formed. Next, the preformed product 3a is transferred together with the mold 2 to a hot air heating furnace.
[0035]
Thereafter, the heating furnace containing the mold 2 is gradually heated, and after reaching 250 ° C., is kept for 30 minutes to 1 hour and gradually cooled to room temperature. The molded article thus obtained was peeled from the mold 2 to obtain a bioequivalent thermoluminescent two-dimensional element. The thus obtained thermoluminescent sheet was sufficiently usable.
[0036]
The bioequivalent thermoluminescent two-dimensional element manufactured in this manner uses LiF as a mother crystal of the thermoluminescent substance, has a particle size of several to 100 μm, has an effective atomic number of 8.14, and has an emission wavelength. There are 390 nm, glow peak temperature is the 210 ° C., measured dose range is 10 -5 ~10 2 Sv, energy characteristics (response) of about 1.3 (40keV / 60 Co), fading characteristics Is within 5% / 3 months, the environmental temperature and humidity are within 5%, there is almost no light excitation, and there is almost no light quenching.
[0037]
The bioequivalent thermoluminescent two-dimensional element was locally irradiated with Sr90 radiation at 0.5 Gy for 60 minutes, and the dose distribution under local exposure was measured. FIG. 3 shows a photograph and a graph showing the dose distribution as the measurement result. According to the measurement result, the relative sensitivity was 1, and it was confirmed that a decrease in the relative sensitivity could be suppressed as compared with the relative sensitivity of 0.1 of the conventional bioequivalent thermoluminescent two-dimensional element shown in FIG.
[0038]
In Example 1 described above, after mixing a thermoluminescent material having LiF as a base and an ethylene-tetrafluoroethylene-ethylene copolymer resin, the mixture was preformed into a sheet shape, and the temperature at which this molded product was heat-treated was set at 250 ° C. And For this reason, a decrease in relative sensitivity to radiation can be suppressed. Therefore, it becomes possible to obtain a bioequivalent-type thermoluminescent two-dimensional element capable of accurately and easily performing a dose distribution at the time of local exposure.
[0039]
(Example 2)
Second Embodiment A method for manufacturing a bioequivalent thermoluminescent two-dimensional element according to a second embodiment of the present invention will be described.
As a thermoluminescent material, one using LiF as a base material, using a tetrafluoroethylene-ethylene copolymer resin as a heat-resistant resin, and mixing both at a mixing ratio of 4: 6, the plane shape is 200 mm × 500 mm and 0 mm A case where about 100 bioequivalent thermoluminescent sheets having a thickness of 4 mm are manufactured will be described.
[0040]
First, 7.2 kg of the same thermoluminescent material as in Example 1 is prepared. Further, 10.8 kg of a tetrafluoroethylene-ethylene copolymer resin as a binder similar to that in Example 1 is prepared. Then, both are put in a V tumbler and mixed for 20 minutes.
[0041]
Thereafter, the mixture is stored in a mold and pressed at a pressure of 250 kg / cm 2 for 30 seconds to form a preform. The preform is then carefully transferred to a hot air oven due to lack of strength.
[0042]
Thereafter, the heating furnace containing the preform is gradually heated, and after reaching 250 ° C., is held for 30 minutes to 1 hour, and is gradually cooled to room temperature. The molded article thus obtained was sliced with a slicer to a thickness of 0.4 mm to obtain a bioequivalent thermoluminescent sheet. The thus obtained thermoluminescent sheet was sufficiently usable.
[0043]
Also in the second embodiment, a bioequivalent thermoluminescent two-dimensional element having the same performance as that of the first embodiment can be obtained.
That is, after mixing a thermoluminescent material having LiF as a base and an ethylene-tetrafluoroethylene-ethylene copolymer resin, this mixture is preformed into a sheet shape, and the temperature at which this molded product is heat-treated is set to 250 ° C. For this reason, a decrease in relative sensitivity to radiation can be suppressed. Therefore, it is possible to obtain a bioequivalent thermoluminescent two-dimensional element capable of accurately and easily performing a dose distribution at the time of local exposure.
[0044]
It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications without departing from the gist of the present invention. For example, in the above example, ethylene tetrafluoride-ethylene copolymer resin is used as the heat-resistant resin, but any other heat-resistant resin can be used as long as it is a heat-resistant resin that is cured by heating at a temperature of 260 ° C. or lower. It is also possible to use, for example, vinylidene fluoride resin, ethylene chloride trifluoride resin, ethylene tetrafluoride resin, perfluoro-alkoxy resin, ethylene tetrafluoride-propylene hexafluoride copolymer resin, etc. is there.
[0045]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a bioequivalent thermoluminescent two-dimensional element capable of suppressing a decrease in relative sensitivity to radiation, accurately and easily performing a dose distribution at the time of local exposure, and a method of manufacturing the same. be able to.
[Brief description of the drawings]
FIGS. 1A to 1C are cross-sectional views illustrating a method for manufacturing a bioequivalent thermoluminescent two-dimensional element according to a first embodiment of the present invention.
FIG. 2 is a plan view of the mold shown in FIG.
FIG. 3 is a photograph and a graph showing a dose distribution under local exposure by irradiating radiation locally to a bioequivalent thermoluminescent two-dimensional element according to Example 1 of the present invention.
FIG. 4 is a photograph and a graph showing a dose distribution under local exposure by irradiating radiation to a conventional bioequivalent thermoluminescent two-dimensional element locally.
[Explanation of symbols]
1. Groove (dent)
2: Mold 3: Mixture (mixture of thermofluorescent material based on LiF and ethylene tetrafluoride-ethylene copolymer resin)
3a: Preformed product 4: Lid

Claims (5)

LiFの単位重量に対し、260℃以下の温度で加熱硬化する耐熱性樹脂をバインダーとして5〜70重量%添加したものを主体として成型された生体等価型熱蛍光体二次元素子。A bioequivalent thermoluminescent two-dimensional element formed mainly by adding a heat-resistant resin which is cured by heating at a temperature of 260 ° C. or less to a unit weight of LiF as a binder by 5 to 70% by weight. 前記樹脂は四フッ化エチレン−エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン樹脂のうちのいずれかであることを特徴とする請求項1に記載の生体等価型熱蛍光体二次元素子。The two-dimensional bioequivalent thermoluminescent material according to claim 1, wherein the resin is any one of an ethylene tetrafluoride-ethylene copolymer resin, a vinylidene fluoride resin, and an ethylene trifluoride ethylene chloride resin. element. LiFの単位重量に対し、バインダーとして耐熱性樹脂を5〜70重量%添加したものを主体としてシート形状に成型し、次いで260℃以下の温度で加熱硬化させることを特徴とする生体等価型熱蛍光体二次元素子の製造方法。A bioequivalent thermofluorescence characterized by being formed into a sheet shape mainly by adding a heat-resistant resin as a binder in an amount of 5 to 70% by weight with respect to a unit weight of LiF, and then heat-cured at a temperature of 260 ° C. or less. A method for manufacturing a two-dimensional body element. LiFの単位重量に対し、バインダーとして耐熱性樹脂を5〜70重量%添加したものを主体として加圧成型し、次いで260℃以下の温度で加熱硬化させた後、スライスして形成することを特徴とする生体等価型熱蛍光体二次元素子の製造方法。It is characterized in that it is formed by press-molding mainly a material obtained by adding a heat-resistant resin as a binder in an amount of 5 to 70% by weight with respect to a unit weight of LiF, then heat-cured at a temperature of 260 ° C. or lower, and sliced. A method for producing a bioequivalent thermoluminescent two-dimensional element. 前記樹脂は四フッ化エチレン−エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン樹脂のうちのいずれかであることを特徴とする請求項3又は4に記載の生体等価型熱蛍光体二次元素子の製造方法。5. The bioequivalent thermoluminescent material according to claim 3, wherein the resin is any one of ethylene tetrafluoride-ethylene copolymer resin, vinylidene fluoride resin, and ethylene trifluoride chloride resin. A method for manufacturing a two-dimensional element.
JP2003107356A 2003-04-11 2003-04-11 Manufacturing method of bioequivalent thermophosphor two-dimensional element Expired - Fee Related JP4233087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107356A JP4233087B2 (en) 2003-04-11 2003-04-11 Manufacturing method of bioequivalent thermophosphor two-dimensional element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107356A JP4233087B2 (en) 2003-04-11 2003-04-11 Manufacturing method of bioequivalent thermophosphor two-dimensional element

Publications (2)

Publication Number Publication Date
JP2004317136A true JP2004317136A (en) 2004-11-11
JP4233087B2 JP4233087B2 (en) 2009-03-04

Family

ID=33469212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107356A Expired - Fee Related JP4233087B2 (en) 2003-04-11 2003-04-11 Manufacturing method of bioequivalent thermophosphor two-dimensional element

Country Status (1)

Country Link
JP (1) JP4233087B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139435A (en) * 2005-11-15 2007-06-07 Mitsubishi Electric Corp Radiation monitor
JP2008062477A (en) * 2006-09-06 2008-03-21 Olympus Medical Systems Corp Fluorescent object and method for manufacturing the same
WO2012133070A1 (en) 2011-03-31 2012-10-04 学校法人 立教学院 Silver-containing lithium heptaborate photostimulable phosphor, method for producing same, and laminate using said photostimulable phosphor
JP2019158996A (en) * 2018-03-09 2019-09-19 ミネベアミツミ株式会社 Method for manufacturing phosphor sheet
JP2021056206A (en) * 2019-09-27 2021-04-08 東レ株式会社 Scintillator panel and radiation detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139435A (en) * 2005-11-15 2007-06-07 Mitsubishi Electric Corp Radiation monitor
JP2008062477A (en) * 2006-09-06 2008-03-21 Olympus Medical Systems Corp Fluorescent object and method for manufacturing the same
WO2012133070A1 (en) 2011-03-31 2012-10-04 学校法人 立教学院 Silver-containing lithium heptaborate photostimulable phosphor, method for producing same, and laminate using said photostimulable phosphor
JP2019158996A (en) * 2018-03-09 2019-09-19 ミネベアミツミ株式会社 Method for manufacturing phosphor sheet
JP7095937B2 (en) 2018-03-09 2022-07-05 ミネベアミツミ株式会社 Manufacturing method of fluorescent sheet
JP2021056206A (en) * 2019-09-27 2021-04-08 東レ株式会社 Scintillator panel and radiation detector
JP7347292B2 (en) 2019-09-27 2023-09-20 東レ株式会社 radiation detector

Also Published As

Publication number Publication date
JP4233087B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4175558B2 (en) Far-infrared radiation material
Kennedy et al. Experimental and Monte Carlo determination of the TG‐43 dosimetric parameters for the model 9011 THINSeed™ brachytherapy source
JP4457219B1 (en) Thermoluminescent laminate, thermoluminescent plate, method for producing thermoluminescent laminate, method for producing thermoluminescent plate, and method for obtaining three-dimensional dose distribution of radiation
JP2004317136A (en) Biologically equivalent thermal fluorophore two-dimensional element and its manufacturing method
CN101642928A (en) Manufacturing method of anti-radiation marble wood-based panel
JP2011052179A (en) Method for producing thermofluorescent plate like body, method for producing thermofluorescent laminate, thermofluorescent plate like body and thermofluorescent laminate
US3471699A (en) Phosphor-polytetrafluoroethylene thermoluminescent dosimeter
WO2010064594A1 (en) Thermofluorescent stack, thermofluorescent plate, process for producing thermoflorescent stack, process for producing thermofluorescent plate, and method of acquiring three-dimensional radiation dose distribution
CN110526824A (en) Beta scintillator and preparation method thereof based on additive Mn two dimension halogen perovskite
Manjunathaguru et al. Simple parametrization of photon mass energy absorption coefficients of H-, C-, N-and O-based samples of biological interest in the energy range 200–1500 keV
Mainardi et al. Effect of energy density and delay time on the degree of conversion and Knoop microhardness of a dual resin cement
Liao et al. B4C/NRL flexible films for thermal neutron shielding
CN1245636C (en) CaSO4-base thermoluminescence detector adhered with P compound and its making process
Barbina et al. Preliminary results on dosimetric properties op MgB4O7: Dy
CN105837735A (en) Anti-radiation organic lead glass plate and preparation method thereof
US4290909A (en) Process for producing a lithium borate thermoluminescent and fluorescent substance
JPS61269100A (en) Thermal fluorescent sheet
Lakshmanan et al. High-level gamma-ray dosimetry using common TLD phosphors
Algarve Determination of the kinetic parameters of BeO thermoluminescent samples using different methods
KR102094412B1 (en) Thermochemical heat storage material of honeycomb structure and method for manufacturing thereof
CN106495561A (en) A kind of ceramic base 3D printing material and preparation method thereof
EP2692824A1 (en) Manganese-containing lithium triborate thermoluminescent phosphor, and method for producing same
JP6919855B2 (en) Human body model dosimetry member, its manufacturing method and human body model dosimetry tool
Johns Thermoluminescent dosimeter manufacture
RU2516655C2 (en) TRANSPARENT TISSUE-EQUIVALENT DETECTOR OF RADIATION BASED ON Li2B4O7 FOR THERMALLY OR OPTICALLY STIMULATED LUMINESCENT DOSIMETRY AND METHOD OF ITS MANUFACTURING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370