JP6919855B2 - Human body model dosimetry member, its manufacturing method and human body model dosimetry tool - Google Patents

Human body model dosimetry member, its manufacturing method and human body model dosimetry tool Download PDF

Info

Publication number
JP6919855B2
JP6919855B2 JP2017159220A JP2017159220A JP6919855B2 JP 6919855 B2 JP6919855 B2 JP 6919855B2 JP 2017159220 A JP2017159220 A JP 2017159220A JP 2017159220 A JP2017159220 A JP 2017159220A JP 6919855 B2 JP6919855 B2 JP 6919855B2
Authority
JP
Japan
Prior art keywords
human body
bulk density
dosimetry
body model
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017159220A
Other languages
Japanese (ja)
Other versions
JP2019039675A (en
Inventor
浄光 眞正
浄光 眞正
裕介 古場
裕介 古場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICALSCIENCE AND TECHNOLOGY
Tokyo Metropolitan Public University Corp
Original Assignee
NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICALSCIENCE AND TECHNOLOGY
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICALSCIENCE AND TECHNOLOGY, Tokyo Metropolitan Public University Corp filed Critical NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICALSCIENCE AND TECHNOLOGY
Priority to JP2017159220A priority Critical patent/JP6919855B2/en
Publication of JP2019039675A publication Critical patent/JP2019039675A/en
Application granted granted Critical
Publication of JP6919855B2 publication Critical patent/JP6919855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、人体模型線量測定用部材及びその製造方法に関する。 The present invention relates to a member for measuring a human model dose and a method for manufacturing the same.

電離箱や半導体検出器などの電気回路等を必要とする検出器では、測定システム上、各臓器に等価な人体模型することは不可能であるため、人体模型ファントムそのものが線量計として機能するような新しいシステムを構築できる線量計は、ガラス線量計、光刺激ルミネセンス線量計、輝尽性蛍光体を利用した線量計、ゲル線量計、熱蛍光線量計である。
ガラス線量計は、ラジオフォトルミネセンスという現象を利用しているが、この現象を示す有効な組成は、銀活性リン酸塩ガラスのみである。この銀活性リン酸塩ガラスは、密度制御や成形も困難を伴うという問題がある。
また、光刺激蛍光線量計や輝尽性蛍光体を利用した線量計も同様に有効な組成は、AlにCを添加したものやBaFBrにEuを添加した蛍光体などである。しかし、これらの蛍光体は、光フェーディングの影響を大きく受けるため、人体模型ファントム線量計としては、利用が難しいという問題がある。
ゲル線量計は、組織等価物質で構成されており、添加物を制御することで各臓器に等価な線量計を作成可能であるが、繰り返し利用することができず、また、廃棄物も多量に出ること、合成時に雰囲気をコントロールする必要があり、性能を一定にすることが困難で、コストも高いという問題がある。特に、測定に大型のMRIや光CT装置などの高額な装置も必要となるので、手軽に利用することができないという問題もある。
With detectors that require electric circuits such as ionization chambers and semiconductor detectors, it is impossible to model human bodies equivalent to each organ on the measurement system, so the human body model phantom itself functions as a dosimeter. Dosimeters that can construct new systems are glass dosimeters, photostimulated luminescent dosimeters, dosimeters using brilliant phosphors, gel dosimeters, and thermoluminescent dosimeters.
Glass dosimeters utilize a phenomenon called radiophotoluminescence, but the only effective composition that exhibits this phenomenon is silver-activated phosphate glass. This silver-active phosphate glass has a problem that density control and molding are also difficult.
Similarly, effective compositions of a light-stimulated fluorescence dosimeter and a dosimeter using a luminescent phosphor are Al 2 O 3 with C added and BaFBr with Eu added. However, since these phosphors are greatly affected by optical fading, there is a problem that they are difficult to use as a human model phantom dosimeter.
The gel dosimeter is composed of tissue-equivalent substances, and it is possible to create a dosimeter equivalent to each organ by controlling the additives, but it cannot be used repeatedly and a large amount of waste is generated. There is a problem that it is necessary to control the atmosphere at the time of output and synthesis, it is difficult to keep the performance constant, and the cost is high. In particular, since expensive equipment such as a large-scale MRI or optical CT device is required for measurement, there is also a problem that it cannot be easily used.

要するに、従来提案されている人体模型型のファントムに利用できる成分は、いずれも密度制御や成形も困難を伴う、光フェーディングの影響を大きく受ける、繰り返し利用することができず、廃棄物も多量に出ること、性能を一定にすることが困難で、コストも高く、手軽に利用することができないため、これらの問題を解消した人体模型線量測定に関する技術の開発が要望されているのが現状である。
したがって、本発明の目的は、密度制御や成形が容易で、光フェーディングの影響を受けず、繰り返し利用可能で、製造上性能を一定にすることが容易な人体模型線量測定用部材、その製造方法及び人体模型線量測定具を提供することにある。
In short, all of the components that can be used in the conventionally proposed anatomical phantoms are difficult to control and mold, are greatly affected by optical fading, cannot be used repeatedly, and generate a large amount of waste. It is difficult to keep the performance constant, the cost is high, and it is not easy to use. Therefore, the current situation is that there is a demand for the development of technology related to human model dosimetry that solves these problems. be.
Therefore, an object of the present invention is to manufacture a human model dosimetry member, which is easy to control and mold in density, is not affected by optical fading, can be used repeatedly, and can easily maintain constant manufacturing performance. The purpose is to provide a method and a mannequin dosimetry tool.

本発明者らは上記課題を解消するために鋭意検討した結果、熱蛍光特性を示すアルミナがその密度によって実効原子番号とは異なる挙動を示すことを知見し、更に検討を重ねた結果所定条件で嵩密度を制御することで、人体の部位ごとに等価とすることができることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の各発明を提供するものである。
1.Alを主成分とする熱蛍光材料からなる人体模型線量測定用部材であって、
上記熱蛍光材料の嵩密度を下記式(1)にしたがって人体の構成部位のうち所望の構成部位の電子密度と所定の関係を有する電子密度となるように嵩密度を調整してなることを特徴とする人体模型線量測定用部材。

Figure 0006919855
2.上記熱蛍光材料は、Crを熱蛍光材料全体中 1 重量%以下の配合割合で含有することを特徴とする1記載の人体模型線量測定用部材。
3.Alを主成分とする熱蛍光材料からなる人体模型線量測定用部材の製造方法であって、上記熱蛍光材料の構成成分を圧縮して熱蛍光材料の前駆体を製造する際の圧縮度を調整することにより、上記熱蛍光材料の嵩密度を所望の嵩密度とする、嵩密度調整工程を具備することを特徴とする人体模型線量測定用部材の製造方法。
4.人体模型と、該人体模型の所定部位に配設された線量測定用部材とを具備し、
上記線量測定用部材が、配設される人体模型の相当する人体の構成部位の電子密度と所定の関係を有する電子密度となるように嵩密度を調整してなる、1又は2記載の人体模型線量測定用部材である、人体模型線量測定具。 As a result of diligent studies to solve the above problems, the present inventors have found that alumina exhibiting thermal fluorescence characteristics behaves differently from the effective atomic number depending on its density, and as a result of further studies, under predetermined conditions. We have found that by controlling the bulk density, it is possible to make each part of the human body equivalent, and have completed the present invention.
That is, the present invention provides the following inventions.
1. 1. A human body model dosimetry member made of a thermofluorescent material containing Al 2 O 3 as a main component.
The bulk density of the thermofluorescent material is adjusted according to the following formula (1) so as to have an electron density having a predetermined relationship with the electron density of a desired constituent part among the constituent parts of the human body. Human body model Dosimetry member.

Figure 0006919855
2. The human body model dosimetry member according to 1, wherein the thermofluorescent material contains Cr in a blending ratio of 1% by weight or less in the entire thermofluorescent material.
3. 3. A method for manufacturing a human model dosimetry member made of a thermofluorescent material containing Al 2 O 3 as a main component, which is used to compress the components of the thermofluorescent material to produce a precursor of the thermofluorescent material. A method for manufacturing a member for measuring a human model dose, which comprises a bulk density adjusting step in which the bulk density of the thermofluorescent material is set to a desired bulk density by adjusting the degree.
4. A human body model and a dosimetry member arranged at a predetermined part of the human body model are provided.
The human body model according to 1 or 2, wherein the dose measuring member is adjusted in bulk density so as to have an electron density having a predetermined relationship with the electron density of a constituent part of the human body corresponding to the human body model to be arranged. A human model dose measuring tool that is a member for measuring dose.

本発明の人体模型線量測定用部材は、密度制御や成形が容易で、光フェーディングの影響を受けず、繰り返し利用可能で、製造上性能を一定にすることが容易なものである。また、レアメタルなどを用いることなく安価な材料により構成できるという利点もある。
また、本発明の人体模型線量測定用部材の製造方法によれば、上記の本発明の人体模型線量測定用部材を性能上安定して、簡易且つ簡便に得ることができる。
また、本発明の人体模型線量測定具は、人体等価の模型線量計として種々放射線測量分野において有用である。
The member for measuring the dose of a human model of the present invention is easy to control the density and mold, is not affected by optical fading, can be used repeatedly, and can easily have a constant manufacturing performance. In addition, there is an advantage that it can be constructed of inexpensive materials without using rare metals or the like.
Further, according to the method for manufacturing the human body model dosimetry member of the present invention, the above-mentioned human body model dosimetry member of the present invention can be obtained with stable performance, easily and easily.
Further, the human body model dosimetry tool of the present invention is useful in various radiation surveying fields as a human body equivalent model dosimeter.

図1(a)は本発明の人体模型線量測定具の1実施形態を示す斜視図であり、(b)はその一部拡大図である。FIG. 1A is a perspective view showing one embodiment of the human model dosimetry tool of the present invention, and FIG. 1B is a partially enlarged view thereof. 図2は本発明の人体模型線量測定具を用いた線量測定の1形態を示す概要説明図である。FIG. 2 is a schematic explanatory view showing one form of dosimetry using the human model dosimetry tool of the present invention. 図3は嵩密度50%の本発明の人体模型線量測定用部材の熱蛍光測定結果を示す写真(図面代用写真)である。FIG. 3 is a photograph (drawing substitute photograph) showing the thermal fluorescence measurement result of the human body model dosimetry member of the present invention having a bulk density of 50%. 図4は嵩密度90%の本発明の人体模型線量測定用部材の熱蛍光測定結果を示す写真(図面代用写真)である。FIG. 4 is a photograph (drawing substitute photograph) showing the thermal fluorescence measurement result of the human body model dosimetry member of the present invention having a bulk density of 90%. 図5は嵩密度80%の本発明の人体模型線量測定用部材の熱蛍光測定結果を示す写真(図面代用写真)である。FIG. 5 is a photograph (drawing substitute photograph) showing the thermal fluorescence measurement result of the human body model dosimetry member of the present invention having a bulk density of 80%. 図6は嵩密度70%の本発明の人体模型線量測定用部材の熱蛍光測定結果を示す写真(図面代用写真)である。FIG. 6 is a photograph (drawing substitute photograph) showing the thermal fluorescence measurement result of the human body model dosimetry member of the present invention having a bulk density of 70%. 図7は嵩密度60%の本発明の人体模型線量測定用部材の熱蛍光測定結果を示す写真(図面代用写真)である。FIG. 7 is a photograph (drawing substitute photograph) showing the thermal fluorescence measurement result of the human body model dosimetry member of the present invention having a bulk density of 60%. 図8は嵩密度と熱蛍光特性との関係を示すグラフである。FIG. 8 is a graph showing the relationship between bulk density and thermal fluorescence characteristics. 図9(a)はスラブ状人体模型の1例を示す写真(図面代用写真)であり、(b)はその熱蛍光分布を示す写真(図面代用写真)である。FIG. 9A is a photograph showing an example of a slab-shaped human body model (drawing substitute photograph), and FIG. 9B is a photograph showing the thermal fluorescence distribution (drawing substitute photograph).

以下、本発明についてさらに詳細に説明する。
本発明の人体模型線量測定用部材は、Alを主成分とする熱蛍光材料(以下、「TLD」又は「アルミナTLD」という場合もある」からなる人体模型線量測定用部材であって、上記熱蛍光材料の嵩密度(以下、「Bulk Density」と称する場合もある)を後述する式にしたがって人体の構成部位のうち所望の構成部位の相対電子密度に準じた量に調整してなることを特徴とする。
以下、詳述する。
Hereinafter, the present invention will be described in more detail.
The human body model dosimetry member of the present invention is a human body model dosimetry member made of a thermofluorescent material containing Al 2 O 3 as a main component (hereinafter, may be referred to as "TLD" or "alumina TLD"). , The bulk density of the thermofluorescent material (hereinafter, may be referred to as "Bulk Density") is adjusted to an amount according to the relative electron density of the desired constituent part among the constituent parts of the human body according to the formula described later. It is characterized by that.
The details will be described below.

<熱蛍光材料>
(主成分)
上記熱蛍光材料は、その 主成分としてAlを有する。Alの結晶構造などは特に制限されない。
(副成分)
本発明においては、上記主成分に本発明の趣旨を逸脱しない範囲で種々副成分を加えることができる。特に発光成分を用いるのが好ましく、本発明においては、Cr、Ti、Mn、をはじめとする希土類元素や遷移金属元素等を好ましく用いることができる。
(量比)
上記発光成分を用いる場合、その使用量は、熱蛍光材料全体中 1 重量%以下の配合割合で含有するのが好ましく、0.02〜0.1重量%の配合量で含有するのがさらに好ましい。特にこの量比関係は発光成分としてCrを用いる場合に好ましい範囲である。また、上記発光成分は分散されて配合されているのが好ましい。
なお、上記副成分として、上記発光材料に加えて、SiO2やMgOなどの該発光成分以外の成分も用いる場合であっても上記主成分は熱蛍光材料全体中80重量%以上の配合量で含有するのが好ましい。
(形態)
上記熱蛍光材料の形状は特に制限されず、種々形状とすることができるが、基本的に板状であるのが好ましい。また、板状であればその平面形状は特に制限されないが、用いられる人体部位、例えば肝臓に変えて用いる場合には肝臓の断面形状を平面形状として有するのが、使用態様から好ましい。
また、板状体とする場合の厚みは、0.5 〜 5mmとするのが、好ましい。
<Thermal fluorescent material>
(Principal component)
The thermofluorescent material has Al 2 O 3 as its main component. The crystal structure of Al 2 O 3 is not particularly limited.
(Sub-ingredient)
In the present invention, various sub-ingredients can be added to the main component without departing from the spirit of the present invention. In particular, it is preferable to use a luminescent component, and in the present invention, rare earth elements such as Cr, Ti, and Mn, transition metal elements, and the like can be preferably used.
(Quantity ratio)
When the above-mentioned luminescent component is used, the amount used is preferably 1% by weight or less in the whole thermofluorescent material, and more preferably 0.02 to 0.1% by weight. .. In particular, this quantity ratio relationship is in a preferable range when Cr is used as the light emitting component. Further, it is preferable that the luminescent component is dispersed and blended.
Even when a component other than the light emitting component such as SiO 2 or MgO is used as the sub component in addition to the light emitting material, the main component is 80% by weight or more in the total amount of the thermofluorescent material. It is preferable to contain it.
(form)
The shape of the thermofluorescent material is not particularly limited and may be various shapes, but basically it is preferably plate-shaped. Further, if it is a plate shape, its planar shape is not particularly limited, but it is preferable to have a cross-sectional shape of the liver as a planar shape when it is used in place of the human body part to be used, for example, the liver.
The thickness of the plate-shaped body is preferably 0.5 to 5 mm.

(嵩密度)
本発明における上記熱蛍光材料は、その嵩密度が、下記式にしたがって人体の構成部位のうち所望の構成部位の電子密度と所定の関係を有する電子密度を有するように調整されている。要するに、下記式から明らかなように、熱蛍光材料の目的とする所望の人体の構成部位の電子密度に対する相対電子密度が下記式を満たすように嵩密度を調整することにより、当該所望の人体の構成部位の相対阻止能と同等の阻止能を有することとなり、人体等価な線量計部材として用いることが可能となる。要するに、下記式が後述する相対電子密度と等価となるように、εを調整してなるものが本発明の人体模型線量測定用部材である。なお、「等価」であるとは、相対電子密度の値が人体の構成部位の相対電子密度と全く同じであることを必須とするものではなく、±0.1以内であれば通常等価と言える。
(The bulk density)
The bulk density of the thermofluorescent material in the present invention is adjusted so as to have an electron density having a predetermined relationship with the electron density of a desired constituent part among the constituent parts of the human body according to the following formula. In short, as is clear from the following formula, the bulk density of the desired human body is adjusted so that the relative electron density with respect to the electron density of the desired constituent part of the human body of the thermofluorescent material satisfies the following formula. It has the same blocking ability as the relative blocking ability of the constituent parts, and can be used as a dose meter member equivalent to the human body. In short, the member for measuring the dose of the human model of the present invention is formed by adjusting ε so that the following equation becomes equivalent to the relative electron density described later. Note that "equivalent" does not necessarily mean that the value of the relative electron density is exactly the same as the relative electron density of the constituent parts of the human body, and it can be said that it is usually equivalent if it is within ± 0.1. ..

Figure 0006919855
Figure 0006919855

(上記式を見出した知見について)
このような式によって嵩密度を調整するのが、人体模型線量測定用部材において好適であることは、以下のようにして見出したものである。
すなわち、放射線治療などで用いられる0.1MeV以上の光子と物質の相互作用ではコンプトン散乱が支配的となる。コンプトン散乱の反応断面積は電子密度に依存することから、これらの光子に対して電子密度が等価である物質は相互作用、付与線量などが等価であると見なすことができる。水に対する電子密度の比を相対電子密度(Relative Electron Density)ρe/ρe,wとすると以下のように示される。
(About the findings that found the above formula)
It was found as follows that it is suitable for the human body model dosimetry member to adjust the bulk density by such an equation.
That is, Compton scattering is dominant in the interaction between a photon and a substance of 0.1 MeV or more used in radiotherapy. Since the reaction cross section of Compton scattering depends on the electron density, it can be considered that the substances having the same electron density with respect to these photons have the same interaction, applied dose, and the like. If the ratio of the electron density to water is the relative electron density (Relative Electron Density) ρ e / ρ e, w , it is shown as follows.

Figure 0006919855
Figure 0006919855

様々な人体構成物質の組成はICRU44(ICRU44 Appendix Body Tissue Composition)に示されており、ρe/ρe,w=0.26〜2.5程度であり、肺のような低密度物質を除くとρe/ρe,w=0.9〜2.5程度である。
アルミナ(Al2O3)を主成分とするTLD(以降アルミナTLD)の相対電子密度ρe,TLD/ρe,wは以下の式で近似される。
The composition of various human body constituents is shown in ICRU44 (ICRU44 Appendix Body Tissue Composition), which is about ρ e / ρ e, w = 0.26 to 2.5, excluding low-density substances such as lungs. And ρ e / ρ e, w = about 0.9 to 2.5.
The relative electron densities of TLDs containing alumina (Al 2 O 3 ) as the main component (hereinafter referred to as alumina TLDs) ρ e, TLD / ρ e, w are approximated by the following equations.

Figure 0006919855
Figure 0006919855

上式より、アルミナTLDの相対電子密度に物質密度に比例することが分かる。嵩密度を調整しない際のアルミナTLDの密度をρTLD,0=3.70g/cmとするとρe,TLD/ρe,w=3.27となり人体組成物質の相対電子密度より大きい。
嵩密度の調整比をε(≦1)とすると嵩密度を調整したアルミナTLDの相対電子密度は以下で示される。
From the above equation, it can be seen that the relative electron density of the alumina TLD is proportional to the material density. If the density of alumina TLD when the bulk density is not adjusted is ρ TLD, 0 = 3.70 g / cm 3 , then ρ e, TLD / ρ e, w = 3.27, which is larger than the relative electron density of the human body composition substance.
Assuming that the bulk density adjustment ratio is ε (≦ 1), the relative electron density of the alumina TLD with the bulk density adjusted is shown below.

Figure 0006919855
Figure 0006919855

よって上記式によれば、嵩密度25〜75%のアルミナTLDが相対電子密度を0.9〜2.5程度に調整することができ、光子に対して人体等価な物質として機能することがわかり、上記式にしたがって嵩密度を調整することで人体の部位(内臓の各器官、骨等)に応じた線量測定用の部材となりえることがわかる。 Therefore, according to the above formula, it can be seen that the alumina TLD with a bulk density of 25 to 75% can adjust the relative electron density to about 0.9 to 2.5 and functions as a substance equivalent to the human body with respect to photons. , It can be seen that by adjusting the bulk density according to the above formula, it can be a member for dose measurement according to a part of the human body (each organ of internal organs, bone, etc.).

一方、荷電粒子と物質の相互作用は阻止能と呼ばれる単位距離あたりの損失エネルギー量で定義される。粒子線治療などで利用されるエネルギー領域の阻止能はBethe-Blochの式で良く表される。ある物質の阻止能と水の阻止能との比を相対阻止能S/Sとすると以下の式で表すことができる。 On the other hand, the interaction between charged particles and matter is defined by the amount of energy lost per unit distance called stopping power. The stopping power of the energy region used in particle therapy is well expressed by the Bethe-Bloch formula. It can be that the ratio of the stopping power and the stopping power of the water of a substance relative stopping power S / S W expressed by the following equation.

Figure 0006919855
Figure 0006919855

様々な人体構成物質の組成はICRU44に示されており、S/S=0.26〜1.8程度であり、肺のような低密度物質を除くとS/Sw=0.9〜1.8程度である。
アルミナ(Al2O3)を主成分とするTLD(以下、「アルミナTLD」という場合もある)の相対阻止能 STLD/Sは以下の式で近似される。
The composition of the various body constituents are shown in ICRU44, it is about S / S W = 0.26~1.8, excluding low-density materials such as pulmonary S / Sw = 0.9 to 1 It is about 8.8.
TLD mainly composed of alumina (Al 2 O 3) (hereinafter, sometimes referred to as "alumina TLD") relative stopping power S TLD / S W of is approximated by the following equation.

Figure 0006919855
Figure 0006919855

ここで

Figure 0006919855
である。上式を計算すると以下のようになる。 here
Figure 0006919855
Is. The above formula is calculated as follows.

Figure 0006919855
Figure 0006919855

この式より、アルミナTLDの相対阻止能が物質密度に比例することが分かる(すなわち数9に示す値は後述の表1における相対阻止能に対応する)。嵩密度を調整しない際のアルミナTLDの密度をρTLD,0=3.70g/cmとするとSTLD/Sw=3.06となり人体組成物質の相対電子密度より大きい。
対して、嵩密度の調整比をε(≦1)とすると嵩密度を調整したアルミナTLDの相対電子密度は以下で示される。
From this equation, it can be seen that the relative stopping power of the alumina TLD is proportional to the material density (that is, the values shown in Equation 9 correspond to the relative stopping power in Table 1 described later). The relative electron density greater than S TLD / S w = 3.06 next body composition material when the density of the alumina TLD when not adjusted bulk density and ρ TLD, 0 = 3.70g / cm 3.
On the other hand, assuming that the bulk density adjustment ratio is ε (≦ 1), the relative electron density of the alumina TLD whose bulk density is adjusted is shown below.

Figure 0006919855
この式より嵩密度の調整により相対阻止能を調整することができることも明らかである。これにより、嵩密度30〜60%のアルミナTLDは相対阻止能を0.9〜1.8程度に調整することができ、荷電粒子に対して人体等価な物質として機能する線量測定用部材となり得ることがわかる。
表1にアルミナTLDと人体構成物質の相対電子密度、相対阻止能の例を示す。
Figure 0006919855
From this equation, it is also clear that the relative stopping power can be adjusted by adjusting the bulk density. As a result, the alumina TLD with a bulk density of 30 to 60% can adjust the relative stopping power to about 0.9 to 1.8, and can be a dosimetry member that functions as a substance equivalent to the human body with respect to charged particles. You can see that.
Table 1 shows examples of relative electron densities and relative stopping powers of alumina TLDs and human body constituents.

Figure 0006919855
Figure 0006919855

(製造方法)
本発明の人体模型線量測定用部材は、上記熱蛍光材料の嵩密度を、構成成分を混合し圧縮する過程で圧縮率を調整するか、構成成分にバインダーをその種類や添加量を調整して添加することにより、調整する嵩密度調整工程を行うことにより得ることができる。
以下、圧縮率を調整する方法について詳述する。
上記嵩密度調整工程は、上記熱蛍光材料の原材料であるアルミナ粉体及びクロム粉体等の他の成分を混合し、圧縮する際の圧縮率を変更することで実施することができる。また、嵩密度の調整は、用いるアルミナ粉体及びクロム粉体の平均粒子径を調整することでも可能である。
具体的には、通常アルミナ系のセラミックの構成成分としてアルミナ粉体及びクロム粉体を用い、圧縮率を適宜調整することで嵩密度を調整できる。この際圧縮率を低くすれば嵩密度の低い熱蛍光材料が得られ、高くすれば嵩密度の高い熱蛍光材料が得られる。
ここで「圧縮率」は、単に容器に粉体を投入した状態(初期状態)の体積を100%としたときに、容器の1方向から加圧して容器内部の粉体の集合体を圧縮した場合の体積を初期状態の体積を比較し、その減少率をもって圧縮率とした。
また、圧縮方法などは通常のセラミック材の製造方法と同様であり、また、この工程の他の工程は通常のセラミック材料と同様に行うことができる。
(Production method)
In the human model dosimetry member of the present invention, the bulk density of the thermofluorescent material is adjusted by adjusting the compressibility in the process of mixing and compressing the constituent components, or by adjusting the type and amount of binder added to the constituent components. It can be obtained by performing a bulk density adjusting step for adjusting the addition.
Hereinafter, the method of adjusting the compression ratio will be described in detail.
The bulk density adjusting step can be carried out by mixing other components such as alumina powder and chromium powder, which are raw materials for the thermofluorescent material, and changing the compression ratio at the time of compression. The bulk density can also be adjusted by adjusting the average particle size of the alumina powder and chromium powder used.
Specifically, alumina powder and chromium powder are usually used as constituents of alumina-based ceramics, and the bulk density can be adjusted by appropriately adjusting the compressibility. At this time, if the compressibility is lowered, a thermofluorescent material having a low bulk density can be obtained, and if it is increased, a thermofluorescent material having a high bulk density can be obtained.
Here, the "compressibility" refers to the compression of the powder aggregate inside the container by applying pressure from one direction of the container when the volume in the state where the powder is simply charged into the container (initial state) is 100%. The volume of the case was compared with the volume in the initial state, and the reduction rate was used as the compression rate.
Further, the compression method and the like are the same as those for producing a normal ceramic material, and other steps of this step can be performed in the same manner as for a normal ceramic material.

(使用方法・作用効果)
本発明の人体模型線量測定用部材は、上述のように嵩密度が調整された熱蛍光材料を用いるので、通常の熱蛍光材料からなる線量計と同様に、所望の測定箇所に人体模型線量測定用部材を設置し、所定の計測時間被ばくさせた後、回収し、特開2014−28913号公報〔0029〕〜〔0031〕等に記載の装置等を用いて、同公報〔0032〕〜〔0039〕等に記載の検出方法により、熱蛍光を検出し、検出した熱蛍光を検量線と対比する等して線量の測定を行うことにより用いることができる。
本発明の人体模型線量測定用部材によれば、人体の各構成部位に等価な材料とすることができるので、人体ファントムに線量計を多数配置させて測定する場合のように、空間分解能が十分でなく、また設置した線量計自身の散乱や吸収によって放射線場が乱れるため、本来の人体内部の線量分布とは異なってしまうなどの問題点が生じない。
また、通常のガラス線量計、光刺激ルミネセンス線量計、輝尽性蛍光体を利用した線量計、ゲル線量計、従来の熱蛍光線量計等のように、密度制御や成形が容易で、光フェーディングの影響をあまり受けず、繰り返し利用可能であり、廃棄物も少量であり、性能を一定にすることが容易である。また、材料として高価な材料を用いていないので、低コストに得ることが可能なものであり、手軽に用いることが可能である。
また、本発明の人体模型線量測定具に用いることもできる。
すなわち、図1(a)及び(b)に示すように、人体模型10と、人体模型10の所定部位に配設された線量測定用部材20とを具備する人体模型線量測定具1において、上記線量測定用部材20として上述の本発明の人体模型線量測定用部材を用いる。この際、線量測定用部材20は、そのすべてを本発明の人体模型線量測定用部材により構成することができ、図1(b)に示すように、骨に相当する部位、脂肪に相当する部位、軟組織に相当する部位に分けて、それぞれの部位に等価である本発明の人体模型線量測定用部材(図中では単に「部材」と表す)を用いて構成することができる。
そして、本発明の人体模型線量測定具1を用いて線量の測定を行うには、図2に示すようにまず本発明の人体模型線量測定具1に所定の放射線照射を行う。次いでこの人体模型線量測定具から本発明の人体模型線量測定用部材20を取り出し、ヒーターにて加熱しながら波長弁別型CCDカメラなどを用いて熱蛍光を測定する。そして各波長ごとの光量分 布を算出することで測定を行うことができる。本実施形態の人体模型線量測定用部材のように、部材内で対応する人体の部位に応じって嵩密度のみが異なるように設定されている場合は、それぞれ嵩密度が異なるので、その異なる部位ごとに線量応答曲線から線量分布を求めることができる。発光成分が異なる場合は、波長ごとに線量応答曲線を作成し、線量分布を求めることができる。
(Usage / action / effect)
Since the member for measuring the dose of the human body model of the present invention uses the thermofluorescent material whose bulk density is adjusted as described above, the human body model dose is measured at a desired measurement location in the same manner as a dosimeter made of a normal thermofluorescent material. After installing the members and exposing them to a predetermined measurement time, they are collected and collected using the devices described in JP-A-2014-288913 and the like, and the same publications [0032] to [0039]. ] And the like, it can be used by detecting thermal fluorescence and measuring the dose by comparing the detected thermal fluorescence with the calibration curve.
According to the human body model dosimetry member of the present invention, the material can be used as an equivalent material for each component of the human body, so that the spatial resolution is sufficient as in the case of arranging a large number of dosimeters on the human body phantom for measurement. In addition, since the radiation field is disturbed by the scattering and absorption of the installed dosimeter itself, there is no problem that the dose distribution is different from the original dose distribution inside the human body.
In addition, like ordinary glass dosimeters, photostimulated luminescence dosimeters, dosimeters using brilliant phosphors, gel dosimeters, conventional thermoluminescent dosimeters, etc., density control and molding are easy, and light It is not significantly affected by fading, can be used repeatedly, has a small amount of waste, and is easy to maintain constant performance. Further, since no expensive material is used as the material, it can be obtained at low cost and can be easily used.
It can also be used in the human model dosimetry tool of the present invention.
That is, as shown in FIGS. 1A and 1B, in the human body model dosimetry tool 1 including the human body model 10 and the dosimetry member 20 arranged at a predetermined portion of the human body model 10. As the dosimetry member 20, the above-mentioned human model dose measurement member of the present invention is used. At this time, all of the dosimetry member 20 can be composed of the human body model dosimetry member of the present invention, and as shown in FIG. 1 (b), a portion corresponding to bone and a portion corresponding to fat. , It can be divided into parts corresponding to soft tissues, and can be configured by using the human body model dosimetry member of the present invention (simply referred to as "member" in the figure) equivalent to each part.
Then, in order to measure the dose using the human model dosimetry tool 1 of the present invention, as shown in FIG. 2, the human model dosimetry tool 1 of the present invention is first irradiated with a predetermined radiation. Next, the human body model dosimetry member 20 of the present invention is taken out from this human body model dosimetry tool, and thermal fluorescence is measured using a wavelength discrimination type CCD camera or the like while heating with a heater. Then, the measurement can be performed by calculating the amount of light distribution for each wavelength. When only the bulk density is set to be different depending on the corresponding part of the human body in the member like the human body model dosimetry member of the present embodiment, the bulk density is different for each, so the different parts. The dose distribution can be obtained from the dose response curve for each case. When the luminescent components are different, a dose response curve can be created for each wavelength and the dose distribution can be obtained.

以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれらになんら制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

〔実施例〕
下記表に示す組成で、嵩密度を50%、密度1.85g/cm(人体の下顎骨相当の相対電子密度及び相対阻止能を得られる部材を想定)として板状の部材を作成した。素子を作成する過程において、板状化、密度制御について検討すると共に、得られた部材について熱蛍光特性、潮解性について検討した。その結果を表2に示す。
各項目は以下のように判定した。
板状化;
通常のセラミックと同様に板状に成形したときに、以下の基準で目視により判定した。
◎:ゆがみがなくフラットな板状である。
○:若干のゆがみはあるが略フラットである。
△:少しゆがみがみられる。
×:ゆがみが多い。
密度制御;
上記嵩密度に密度を制御した場合に所望の嵩密度に密度制御できたかを以下の基準で判定した。
◎:所望の嵩密度で密度制御できた
○:ほぼ所望の嵩密度に密度制御できた
△:多少の所望の嵩密度からはずれてしまった。
×:密度制御できなかった。
熱蛍光特性;
熱蛍光を測定した結果を以下の基準で判定した。
◎:高解像度で熱蛍光が検出できた。
○:熱蛍光が検出できた。
△:熱蛍光の検出がほぼできた
×:熱蛍光の検出があまりできなかった。
潮解性;
水に浸漬したときの状態を見て以下の基準で判定した。
◎:24時間浸漬した結果潮解は見られなかった。
○:24時間浸漬した結果若干の潮解が見られた。
△:24時間浸漬した結果潮解が見られた。
×:10時間の浸漬で潮解が見られた。
〔Example〕
A plate-shaped member was prepared with the composition shown in the table below, with a bulk density of 50% and a density of 1.85 g / cm 3 (assuming a member capable of obtaining a relative electron density and a relative stopping power equivalent to the mandible of the human body). In the process of producing the element, plate formation and density control were examined, and the thermal fluorescence characteristics and deliquescent property of the obtained member were examined. The results are shown in Table 2.
Each item was judged as follows.
Plate-shaped;
When it was formed into a plate shape in the same manner as ordinary ceramics, it was visually judged according to the following criteria.
⊚: Flat plate shape without distortion.
◯: There is some distortion, but it is almost flat.
Δ: Slight distortion is seen.
×: There is a lot of distortion.
Density control;
When the density was controlled to the bulk density, it was determined by the following criteria whether the density could be controlled to a desired bulk density.
⊚: Density could be controlled with a desired bulk density ◯: Density could be controlled with almost a desired bulk density Δ: Some deviation from the desired bulk density.
X: Density could not be controlled.
Thermal fluorescence characteristics;
The result of measuring the thermal fluorescence was judged according to the following criteria.
⊚: Thermal fluorescence could be detected with high resolution.
◯: Thermal fluorescence could be detected.
Δ: Thermal fluorescence was almost detected ×: Thermal fluorescence could not be detected very much.
Deliquescent;
Judgment was made according to the following criteria by observing the state when immersed in water.
⊚: No deliquescent was observed as a result of immersion for 24 hours.
◯: As a result of soaking for 24 hours, some deliquescent was observed.
Δ: Deliquescent was observed as a result of immersion for 24 hours.
X: Deliquescent was observed after immersion for 10 hours.

Figure 0006919855
Figure 0006919855

表2に示す結果から明らかなように、Al23にCrを添加してなる本発明の人体模型線量測定用部材がすべての項目について優れていることが明らかである。
また、得られたアルミナTLDの相対阻止能は、表1に示すとおりであり、人体の下顎の骨に相当するものであった。
このアルミナTLDを4枚重ねて、6MVのX線を2Gy照射し、熱蛍光特性を測定したところ、最上層のアルミナTLDも最下層のアルミナTLDもほぼ同じ人体シミュレーションの結果と同じ熱蛍光特性を示した。このことから人体模型用の線量計部材として有用であることがわかる。
また、嵩密度を90%、80%、70%、60%として、Al23にCrを添加してなる本発明の人体模型線量測定用部材を作製した。得られたアルミナTLDについて同様に4枚重ねて、2Gy照射し、熱蛍光特性を測定したところ、最上層のアルミナTLDも最下 層のアルミナTLDもほぼ同じ人体シミュレーションの結果と同じ熱蛍光特性を示した。
これらの結果を図3〜7に示す。
なお、ここでは嵩密度50%までの例しか挙げていないがより嵩密度の低いもの、例えば表1に示す嵩密度40〜10%のものも作成可能である。
また、これらの嵩密度が異なるアルミナTLDに対する相対熱蛍光強度を常法にしたがい測定した。その結果を図8に示す。図8から明らかなように、Bulk Densityの低下に伴い相対熱蛍光強度も減少する。しかし、線量測定に対してはいずれのBulk Densityでも十分な強度を示した。
また、嵩密度50%のアルミンTLDを用いて図9(a)に示すスラブ状人体模型(人体の骨盤部の断面)を作製した。そして上述の条件で2Gy照射し熱蛍光を測定した。熱蛍光画像を図9(b)に示す。人体の骨盤部の断面の熱蛍光画像に近似するものが得られていることがわかる。これにより、嵩密度の異なる人体模型線量測定用部材を作成し、各部材についてそれぞれ線量応答曲線を作成すれば、線量分布に変換できることがわかる。


As is clear from the results shown in Table 2, it is clear that the human body model dosimetry member of the present invention, which is obtained by adding Cr to Al 2 O 3, is excellent in all items.
The relative stopping power of the obtained alumina TLD is as shown in Table 1, which corresponds to the mandibular bone of the human body.
When four alumina TLDs were stacked and irradiated with 6 MV X-rays for 2 Gy and the thermal fluorescence characteristics were measured, the alumina TLDs in the uppermost layer and the alumina TLDs in the lowermost layer had almost the same thermal fluorescence characteristics as the results of the human body simulation. Indicated. From this, it can be seen that it is useful as a dosimeter member for a human body model.
Further, the human body model dosimetry member of the present invention was prepared by adding Cr to Al 2 O 3 with the bulk density set to 90%, 80%, 70%, and 60%. The obtained alumina TLDs were similarly stacked on top of each other and irradiated with 2 Gy, and the thermal fluorescence characteristics were measured. Indicated.
These results are shown in FIGS. 3-7.
Although only examples with a bulk density of up to 50% are given here, those having a lower bulk density, for example, those having a bulk density of 40 to 10% shown in Table 1 can also be produced.
In addition, the relative thermal fluorescence intensities for alumina TLDs having different bulk densities were measured according to a conventional method. The result is shown in FIG. As is clear from FIG. 8, the relative thermal fluorescence intensity also decreases as the Bulk Density decreases. However, all Bulk Densities showed sufficient strength for dosimetry.
Further, an Armin TLD having a bulk density of 50% was used to prepare a slab-shaped human body model (cross section of the pelvis portion of the human body) shown in FIG. 9 (a). Then, 2 Gy irradiation was performed under the above conditions, and thermal fluorescence was measured. The thermofluorescent image is shown in FIG. 9 (b). It can be seen that an image similar to a thermofluorescent image of a cross section of the pelvis of the human body has been obtained. From this, it can be seen that if the members for human body model dosimetry having different bulk densities are created and the dose response curves are created for each member, the dose distribution can be converted.


Claims (4)

Alを主成分とする熱蛍光材料からなる人体模型線量測定用部材であって、
上記熱蛍光材料の嵩密度の調整比を、下記式(1)を満足し、人体の構成部位のうち所望の構成部位の水に対する相対電子密度ρ e /ρ e,w と上記熱蛍光体の水に対する相対電子密度ρ e,TLD /ρ e,w とが等価となるように調整してなることを特徴とする人体模型線量測定用部材。
Figure 0006919855
A human body model dosimetry member made of a thermofluorescent material containing Al 2 O 3 as a main component.
The adjustment ratio of the bulk density of the thermofluorescent material satisfies the following formula (1), and the relative electron densities ρ e / ρ e, w of the desired constituent parts of the human body with respect to water and the above thermal phosphors A member for measuring a human body model dose, characterized in that the relative electron densities ρ e and TLD / ρ e, w with respect to water are adjusted to be equivalent.
Figure 0006919855
上記熱蛍光材料は、Crを熱蛍光材料全体中 1 重量%以下の配合割合で含有することを特徴とする請求項1記載の人体模型線量測定用部材。 The member for measuring a human model dose according to claim 1, wherein the thermofluorescent material contains Cr in a blending ratio of 1% by weight or less in the entire thermofluorescent material. 請求項1記載の人体模型線量測定用部材の製造方法であって、
上記熱蛍光材料の構成成分を圧縮して熱蛍光材料の前駆体を製造する際の圧縮度を調整することにより、上記熱蛍光材料の嵩密度を所望の嵩密度とする、嵩密度調整工程を具備することを特徴とする人体模型線量測定用部材の製造方法。
The method for manufacturing a member for measuring a human model dose according to claim 1.
A bulk density adjusting step is performed in which the bulk density of the thermofluorescent material is set to a desired bulk density by adjusting the degree of compression when the components of the thermofluorescent material are compressed to produce a precursor of the thermofluorescent material. A method for manufacturing a member for measuring a human model dose, which is characterized by being provided.
人体模型と、該人体模型の所定部位に配設された線量測定用部材とを具備し、
上記線量測定用部材が、配設される人体模型の相当する人体の構成部位の電子密度と所定の関係を有する電子密度となるように嵩密度を調整してなる、請求項1又は2記載の人体模型線量測定用部材である、
人体模型線量測定具。



A human body model and a dosimetry member arranged at a predetermined part of the human body model are provided.
The first or second claim, wherein the dose measuring member is adjusted in bulk density so as to have an electron density having a predetermined relationship with the electron density of a constituent part of the human body corresponding to the arranged human body model. A member for measuring the dose of a human model,
Human model dosimetry tool.



JP2017159220A 2017-08-22 2017-08-22 Human body model dosimetry member, its manufacturing method and human body model dosimetry tool Active JP6919855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017159220A JP6919855B2 (en) 2017-08-22 2017-08-22 Human body model dosimetry member, its manufacturing method and human body model dosimetry tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159220A JP6919855B2 (en) 2017-08-22 2017-08-22 Human body model dosimetry member, its manufacturing method and human body model dosimetry tool

Publications (2)

Publication Number Publication Date
JP2019039675A JP2019039675A (en) 2019-03-14
JP6919855B2 true JP6919855B2 (en) 2021-08-18

Family

ID=65725569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159220A Active JP6919855B2 (en) 2017-08-22 2017-08-22 Human body model dosimetry member, its manufacturing method and human body model dosimetry tool

Country Status (1)

Country Link
JP (1) JP6919855B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102293379B1 (en) * 2019-06-24 2021-08-26 한국수력원자력 주식회사 Holder for holding dosimeter and method for measuring dose of radiation using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100785A (en) * 1976-02-19 1977-08-24 Taisei Porimaa Kk Compensating plate for treating radiation or phantom for measuring absorption ray
KR100421231B1 (en) * 2001-05-03 2004-03-10 한국원자력연구소 CaSO4 based thermoluminescent detectors bonded with P-compound and its fabricating method
EP1712932A1 (en) * 2005-04-13 2006-10-18 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Dosimeter with phosphor substance in the cover layer of an electronic chip
US8704182B2 (en) * 2008-12-01 2014-04-22 Rikkyo Gakuin Thermoluminescent layered product, thermoluminescent plate, method of producing thermoluminescent layered product, method of producing thermoluminescent plate and method of acquiring three-dimensional dose distribution of radiation
JP4457219B1 (en) * 2009-10-23 2010-04-28 学校法人立教学院 Thermoluminescent laminate, thermoluminescent plate, method for producing thermoluminescent laminate, method for producing thermoluminescent plate, and method for obtaining three-dimensional dose distribution of radiation
JP2010192581A (en) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology Electromagnetic wave radiator and electromagnetic wave absorber
JP5692883B1 (en) * 2014-02-28 2015-04-01 公立大学法人首都大学東京 Thermophosphor and thermoluminescent radiation detection device

Also Published As

Publication number Publication date
JP2019039675A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
Shrimpton et al. The tissue-equivalence of the Alderson Rando anthropomorphic phantom for x-rays of diagnostic qualities
Crosbie et al. A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films of different sensitivity
Seferis et al. Light emission efficiency and imaging performance of Lu2O3: Eu nanophosphor under X-ray radiography conditions: Comparison with Gd2O2S: Eu
US8658990B2 (en) Radiation dosimeters for quantifying the dose of radiation applied during radiation therapy
Scarboro et al. Energy response of optically stimulated luminescent dosimeters for non-reference measurement locations in a 6 MV photon beam
Michail et al. Evaluation of the Red Emitting ${\rm Gd} _ {2}{\rm O} _ {2}{\rm S}\!\!:\!\!{\rm Eu} $ Powder Scintillator for Use in Indirect X-Ray Digital Mammography Detectors
DeWerd et al. The use of TLDs for brachytherapy dosimetry
Valais et al. Luminescence efficiency of Gd/sub 2/SiO/sub 5: Ce scintillator under X-ray excitation
Kandarakis et al. X-ray luminescence of ZnSCdS: Au, Cu phosphor using X-ray beams for medical applications
JP6919855B2 (en) Human body model dosimetry member, its manufacturing method and human body model dosimetry tool
Kandarakis et al. Evaluation of ZnS: Cu phosphor as X-ray to light converter under mammographic conditions
Muñoz et al. Evolution of the CaF2: Tm (TLD-300) glow curve as an indicator of beam quality for low-energy photon beams
Chopra et al. TL dosimetry of nanocrystalline Li2B4O7: Cu exposed to 150 MeV proton, 4 MeV and 9 MeV electron beam
JP3853614B2 (en) Manufacturing method of CaSO4 series TL device mixed with phosphorus compound
Langmead et al. A TLD system based on lithium borate for the measurement of doses to patients undergoing medical irradiation
Michail et al. Evaluation of the imaging performance of LSO powder scintillator for use in X-ray mammography
DeWerd et al. The effect of spectra on calibration and measurement with mammographic ionization chambers
Michail et al. Light Emission Efficiency of ${\rm Gd} _ {2}{\rm O} _ {2}{\rm S}\!\!\!:\!\!\!{\rm Eu} $(GOS: Eu) Powder Screens Under X-Ray Mammography Conditions
Healy et al. Output factor measurements for a kilovoltage X-ray therapy unit
Cavouras et al. Light emission efficiency and imaging performance of Y 3 Al 5 O 12: Ce (YAG: Ce) powder screens under diagnostic radiology conditions
Kim et al. Fabrication and characterization of pixelated Gd2O2S: Tb scintillator screens for digital X-ray imaging applications
EP2612893B1 (en) Thermofluorescent material and process for producing same
Kandarakis et al. A theoretical model evaluating the angular distribution of luminescence emission in X-ray scintillating screens
De Saint-Hubert et al. New optically stimulated luminescence dosimetry film optimized for energy dependence guided by Monte Carlo simulations
Seferis et al. Detective quantum efficiency (DQE) of high X-ray absorption Lu 2 O 3: Eu thin screens: the role of shape and size of nano-and micro-grains

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210713

R150 Certificate of patent or registration of utility model

Ref document number: 6919855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150