JP2004316718A - Electric operated valve - Google Patents

Electric operated valve Download PDF

Info

Publication number
JP2004316718A
JP2004316718A JP2003109226A JP2003109226A JP2004316718A JP 2004316718 A JP2004316718 A JP 2004316718A JP 2003109226 A JP2003109226 A JP 2003109226A JP 2003109226 A JP2003109226 A JP 2003109226A JP 2004316718 A JP2004316718 A JP 2004316718A
Authority
JP
Japan
Prior art keywords
valve
main valve
main
sub
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003109226A
Other languages
Japanese (ja)
Other versions
JP4230806B2 (en
JP2004316718A5 (en
Inventor
Hidekazu Sasada
英一 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2003109226A priority Critical patent/JP4230806B2/en
Publication of JP2004316718A publication Critical patent/JP2004316718A/en
Publication of JP2004316718A5 publication Critical patent/JP2004316718A5/ja
Application granted granted Critical
Publication of JP4230806B2 publication Critical patent/JP4230806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric operated valve miniaturized in the whole of shape and accurately controlling opening/closing of a main valve. <P>SOLUTION: A main valve main body 60 and an auxiliary valve main body 20 are integrally structured with each other, and the main valve main body 60 is provided with a main valve element 63 for controlling flow rate of the refrigerant, and the auxiliary valve main body 20 is provided with an auxiliary valve element 23 for controlling opening/closing of the main valve element 63. The auxiliary valve main body 20 is provided with a can 40 having a built-in rotor 30 for operating the auxiliary valve element 23, and a stator 50 fitted on the can 40 to rotate the rotor 30. The main valve main body 60 controls passing flow rate of the refrigerant with the main valve element 63 to be brought in contact and separated with/from a main valve seat 62 inside a main valve chamber 61. Namely, opening of the main valve element 63 to be similarly opened/closed in response to opening/closing of the auxiliary valve element 23 is increased/decreased by increasing/decreasing the back pressure of the main valve element 63 with the auxiliary valve element 23. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機、冷凍機等に組み込まれて使用される電動弁に係り、特に小型化が可能で、小さい駆動力で正確に開閉可能なパイロット弁付きの電動弁に関する。
【0002】
【従来の技術】
従来、この種の空気調和機、冷凍機等に組み込まれて使用される電動弁は、冷媒等の流体の流量を制御する機器であり、通常、弁室および弁座を備えた弁本体と、鍔状部を介して前記弁本体の上部に固着された有底円筒状のキャンとを備えており、該キャンの内側にはロータが内蔵され、前記キャンの外部には中央部に挿通孔を有するステータが外嵌されているものである。
【0003】
図9は前記した公知の特許文献1に示された電動弁の縦断面図を示しており、電動弁1の弁本体2は、弁室2cと、ガイドブッシュ固定部2dと、キャン固着部2eとを備え、弁室2cには冷媒等の流体が出入する流体流入管2a、流体流出管2bが設けられるとともに、その内部には弁軸3の先端に形成された弁体3aであるニードル弁が接離する弁座2fが配設されている。
【0004】
前記ガイドブッシュ固定部2dは、弁室の上方に位置し、弁本体2とガイドブッシュ4とを固定する。該ガイドブッシュ4の内周には雌ねじ部4aが形成され、該雌ねじ部4aには弁軸ホルダ5の外周に形成された雄ねじ部5aが螺合され、雌ねじ部と雄ねじ部とによりねじ送り機構が構成されている。そして、この弁軸ホルダ5内には、下端部に弁体3aを形成している弁軸3が摺動可能に嵌挿されており、該弁軸3は弁軸ホルダ5内に縮装された圧縮コイルばね3bによって常時下方に付勢されている。
【0005】
キャン固着部2eは弁本体2の上端に位置し、内周面をかしめ固定されるとともに下端面を溶接により接合されているリング状金属板で構成され、その外周部にてキャン6の鍔状部と溶接され弁本体2にキャン6を固定している。弁軸3とロータ7との結合は、弁軸3に弁軸ホルダ5と一体成形されるスリーブ5dを外嵌させるとともに、これを永久磁石付きのロータ7に内嵌させることによって行われている。弁軸3の上端にはプッシュナット3cが圧入固定され、その鍔部が弁軸3に若干の上下動を許容してロータ7に結合している。また、弁軸3およびロータ7の上方移動の最上限は、ロータ7の上部に設けられているばね7bとキャン6の内面との接触によって行われる。弁軸ホルダ5に固定される下ストッパ4bとスリーブ5dに形成される上ストッパ5bとによりストッパ機構が構成される。
【0006】
キャン6の内部にはロータ7が内蔵され、キャン6の外部にはステータ8が外嵌されている。ステータ8の内部には上下にステータコイル8aおよびヨーク8bが格納されており、ステータコイル8aはリード線8cおよびステータ8の外周に設けられたコネクタ8dを通じて通電される。ステータコイル8aの通電によりヨーク8bが励磁されてロータ7を回転させ、ねじ送り機構により弁軸ホルダ5と弁軸3を摺動させることにより弁体3aを開閉作動させて冷媒流量の制御を行っている。ステータ8にはコネクタのカバー8eが接着されている。
【0007】
ステータ8の下方に金属製のリング状の取付板9を固定し、この取付板9と一体に形成された回り止め片9aを、弁本体2から水平方向に突出する流体流入管2aに係合させるとともに、弁本体2とキャン6とのリング状溶接部の一辺に係合孔9bを係合させ、リング状溶接部の他辺には取付板9と一体に形成された押圧片9cを押圧させてステータ8を固定している。
【0008】
【特許文献1】特願2001−50415号公報
【0009】
【発明が解決しようとする課題】
しかしながら、従来技術に係る前記電動弁は、弁体を開閉するための大きな開閉力を要し、そのために、ステ−タ等からなる弁体駆動部が大形になり易いという問題があった。
【0010】
したがって、本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、全体形状の小形化と、主弁の開閉度を正確にコントロールできる電動弁を提供することにある。
【0011】
【課題を解決するための手段】
前記目的を達成すべく、本発明に係る電動弁は、下記の構成を具備する。即ち、
請求項1記載の電動弁は、主弁本体と副弁本体とを一体に構成し、前記副弁本体に形成された副弁座に副弁体を接離させることにより、主弁本体に設けられた主弁体の流量を制御させることを特徴とする電動弁。
かかる特徴により、副弁体を主弁体のパイロット弁とすることで、小流量の副弁体の開閉により、大流量の主弁体を開閉する電動弁とすることができる。
【0012】
請求項2記載の電動弁は、主弁体と該主弁体の流量を制御する副弁体とを具備し、該副弁体の流路断面積の変化に、主弁体の流路断面積の変化を正比例させることを特徴とする。
かかる特徴により、副弁体の流量制御により、主弁体の流量を容易に制御することができる。
【0013】
請求項3記載の電動弁は、請求項1又は請求項2記載の電動弁において、主弁本体と副弁本体とを一体に構成し、前記主弁本体は主弁室内の主弁座に接離して冷媒の流量を制御する主弁体を具備し、前記副弁本体は副弁室内の副弁座に接離して冷媒の流量を制御する副弁体を具備し、前記主弁体の開度の増減は、副弁体による主弁体の背圧の増減によって行われることを特徴とする。
かかる特徴により、簡単な構成で主弁体の流量を制御することができる。
請求項4記載の電動弁は、請求項3記載の電動弁において、上記副弁本体は、前記副弁体を作動させるステッピングモータを備えていることを特徴とする。
かかる特徴により、ステッピングモータの回転に対して主弁体の流量を容易に制御することができる。
【0014】
請求項5記載の電動弁は、請求項1乃至請求項4記載のいずれかの電動弁において、上記主弁体の上部に被ガイド部を形成させ、上記副弁本体の下部にガイド部を形成させ、上記被ガイド部の上下動を上記ガイド部により案内させることを特徴とする。
かかる特徴により、簡単な構成で主弁体の横ぶれを防止することができる。
【0015】
請求項6記載の電動弁は、請求項3記載の電動弁において、上記主弁体に径大部を形成すると共に、該径大部にテーパ部を形成し、該テーパ部と上記主弁室内壁との隙間を上記主弁室から上記副弁室への流路として形成し、前記主弁体の上動により前記流路の面積が増大するように構成されることを特徴とする。
請求項7記載の電動弁は、請求項3記載の電動弁において、上記主弁体に径大部を形成すると共に、該径大部に対応する上記主弁室内壁部分にテーパ部を形成し、該テーパ部と上記主弁体の径大部外周面との隙間を上記主弁室から上記副弁室への流路として形成し、前記主弁体の上動により前記流路の面積が増大するように構成されることを特徴とする。
請求項8記載の電動弁は、請求項3記載の電動弁において、上記主弁体に径大部を形成すると共に、該径大部に略一定幅のスリットテーパ部を形成し、該スリットテーパ部と上記主弁室内壁との隙間を上記主弁室から上記副弁室への流路として形成し、前記主弁体の上動により前記流路の面積が増大するように構成されることを特徴とする。
請求項9記載の電動弁は、請求項3記載の電動弁において、上記主弁体に径大部を形成すると共に、該径大部に一定深さの定深さスリット部を形成し、該定深さスリット部と上記主弁室内壁との隙間を上記主弁室から上記副弁室への流路として形成し、前記主弁体の上動により前記流路の面積が増大するように構成されることを特徴とする。
かかる請求項6乃至請求項9のいずれかの特徴により、副弁体の流量制御が確実になり、その結果、主弁体における流量制御が正確となる。
請求項10記載の電動弁は、請求項1乃至請求項9記載のいずれかの電動弁において、上記主弁体の流量を上記副弁体の流量に相似的に変化させることを特徴とする。
かかる特徴により、上記主弁体と上記副弁体との開閉度を相似形とすることが可能となる。
【0016】
【実施形態1】
実施形態1に係る電動弁10は、主弁室61内の弁座62に接離する主弁体63により冷媒の通過流量を制御する主弁本体60と、主弁本体60に設けられた副弁本体20に固着され副弁体23を作動させるロータ30を内蔵するキャン40と、該キャン40に外嵌されロータ30を回転駆動するステータ50と主弁本体60のパイロット弁として副弁室21内の副弁座22に接離して主弁体63の開閉度を制御する副弁体23と、を備えている。前記主弁体63の開度の増減は、副弁体23による主弁体63の背圧の増減によって行われる。なお、ロータ30とステータ50によりステッピングモータを構成している。
【0017】
キャン40は、ステンレス等の非磁性の金属から形成される有底円筒状をしており、副弁本体20の上部に固着されたステンレス製の鍔状板41に溶接等により固着され、内部は気密状態に保たれている。ステータ50は磁性材より構成されるヨーク51と、このヨーク51にボビン52を介して巻回される上下のステータコイル53とから構成され、キャン40に外嵌する嵌合穴50aが形成されている。なお、ステータ50は中心に下面開口の嵌合穴50aを有し、この嵌合穴にキャン40が嵌合し、キャン40に固定される。
【0018】
副弁体23は黄銅製の弁軸24の下端に形成されている。副弁体23を副弁座22に接離させる駆動機構は、副弁本体20よりロータ30方向に延出して固定され、固定ねじ部25が形成される筒状のガイドブッシュ26と、該ガイドブッシュ26の固定ねじ部25に螺合する移動ねじ部31を有する弁軸ホルダ32とから構成されるねじ送り機構であり、前記ねじ送り機構をロータ30内の軸方向全長の略中央部に配置している。
【0019】
固定ねじ部25はガイドブッシュ26の外周に雄ねじで構成され、移動ねじ部31は弁軸ホルダ32の内周に雌ねじで構成されている。なお、ガイドブッシュ26および弁軸ホルダ32は、ともに黄銅製の円筒状材から形成されている。
【0020】
弁軸ホルダ32はガイドブッシュ26の外側に位置する下方開口の円筒状をしており、前記のように内面に移動ねじ部31が形成してあり、弁軸ホルダ32の中心に弁軸24の上部縮径部が嵌合してプッシュナット33により連結されている。副弁体23を下端に形成した弁軸24は黄銅より構成され、弁軸ホルダ32の中心に上下動可能に嵌挿されており、弁軸ホルダ32内に縮装された圧縮コイルばね34によって常時下方に付勢されている。ガイドブッシュ26の側面には副弁室21とキャン40内の均圧を図る均圧孔32aが形成してある。
【0021】
弁軸24の上端に圧入固定されたプッシュナット33の外周に円筒状の圧縮コイルばねで構成される復帰ばね35を取付け、ガイドブッシュ26の固定ねじ部25と弁軸ホルダ32の移動ねじ部31との螺合が外れたときに、復帰ばね35がキャン40の内面に当接して固定ねじ部25と移動ねじ部31との螺合を復帰させるように付勢する。復帰ばね35はプッシュナット33の外周に緩く嵌合して載置した状態で取付けてもよく、またプッシュナット33の外周に弾接するように取付けてもよい。
【0022】
副弁本体20は黄銅等の金属から構成され、キャン40との接合は、副弁本体20に溶接等により固着された鍔状板41の段差部にキャンの端部を突き合わせ溶接することにより行っている。なお、突き合わせ溶接に限らず、キャン40の端部を外周に平坦に折り曲げて鍔状部として形成し、この鍔状部と鍔状板41とをいわゆる拝み溶接により固定するようにしてもよい。
副弁本体20の上部にはガイドブッシュ26が連結・固定されており、その下部には副弁室21が形成され、該副弁室21内に、弁軸24の下部が配置される。また、前記副弁室21の底部は副弁座22を構成している。また、副弁本体20の下部外周部には雄ねじ部20aが形成されると共に、副弁本体20の下部は下方に延設されガイド部20bが形成される。また、該ガイド部20b内空間と前記副弁室21とは連通流入孔21aにより連通しており、副弁座22の下部には下部副弁室21bが形成され、該下部副弁室21bは後述の連通流出孔60dに連通している。
【0023】
弁軸ホルダ32とロータ30とは支持リング36を介して結合されており、支持リング36は実施形態1ではロータ30の成形時にインサートされた黄銅製の金属リングで構成されている。支持リング36の内周孔部に弁軸ホルダ32の上部突部が嵌合し、上記突部の外周をかしめ固定してロータ30、支持リング36および弁軸ホルダ32を結合している。副弁本体20、弁軸24、ガイドブッシュ26、弁軸ホルダ32、支持リング36は、前記したように全て黄銅より構成し、リサイクルを考慮した構成としている。
さらに、それぞれの部品は圧入・かしめで結合されているので、たとえば、弁軸ホルダ32と支持リング36のかしめを除去することでロータを再利用することができる。なお、黄銅以外の金属、例えば、ステンレスを用いることができるのは勿論である。
【0024】
ガイドブッシュ26にはストッパ機構の一方を構成する下ストッパ体(固定ストッパ)27が固着されており、下ストッパ体27はリング状のプラスチックより構成され、その上方には板状の下ストッパ片27aが突設されている。また、弁軸ホルダ32にはストッパ機構の他方を構成する上ストッパ体(移動ストッパ)37が固着されており、上ストッパ体37もリング状のプラスチックより構成され、下方に向けて板状の上ストッパ片37aが突設され、前記下ストッパ片27aと係合可能である。
【0025】
下ストッパ体27はガイドブッシュ26の外周に形成された螺旋溝部分26aに射出成形により固着され、上ストッパ体37は弁軸ホルダ32の外周に形成された螺旋溝部分32bに射出成形により固着されている。なお、下ストッパ体27、上ストッパ体37の固着は射出成形に限らず、接着や圧入等により固着してもよいのは勿論である。
【0026】
主弁本体60は、概略円柱状に形成され、その上部には副弁本体20を装着するための取付凹部60gが形成され、該取付凹部60gの外周の上部には雌ねじ部60cが形成される。また、上記取付凹部60gの下部には、副弁本体20側のガイド部20bが嵌合されると共に、更にその下部には主弁室61が形成される。そして、この主弁室61の下部側方には流入孔60eが形成され、また、この下部には下部主弁室61b及び該下部主弁室61bに連通する流出孔60fが形成される。そして、流入孔60eには、流体流入管60aが装着され、流出孔60fには流体流出管60bが装着される。
更に、主弁本体60には主弁室61と並行して連通流出孔60dが形成される。該連通流出孔60dは、副弁座22と流出孔60fとを連通するものである。上記主弁本体60の主弁室61内部分には、径大部63bが配置される。
【0027】
上記主弁室61内における主弁体63の上下動により、流体流入管60aから流体流出管60bに流れる冷媒量を無段階に調節することができる。即ち、主弁体63は弁座62に離接する主弁座当接部63aと、径大部63bと、被ガイド部63dとからなる。前記径大部63bの下部には段部63fが形成されると共に、外周にはテーパ部63cが形成され、また、被ガイド部63dには連通孔63eが穿設される。なお、被ガイド部63dは、ガイド部20bの内面に上下に摺動可能に配置される。また、被ガイド部63d内で径大部63bの上面と副弁本体20の下面との間には主弁体63を閉方向に弾圧するコイルばね64が配置される。上記被ガイド部63dをガイド部20bにより案内させる構成は、必ずしも必要でないが、主弁体63の振動(横移動)を防止することができる。
【0028】
また、主弁体63のテーパ部63cと主弁本体60の主弁室61内壁との隙間で形成される流路断面積A’は、副弁体23の上下動に伴って形成される流路断面積aの変化に比例するように主弁体63は上下動する(A’=k’a(k’:定数))。上記流路断面積A’は、テーパ部63cのテーパ角度が一定なので主弁体63のリフト量Lに略比例するとみなすことが出来る。したがって、
式 L=ka(k:定数)、または、A’=k”L(k”:定数)となる。
そして、副弁体23の副弁座当接部23aの形状と主弁体63の主弁座当接部63aの形状とは互いに略相似形に形成されると共に、弁軸24の上下動と主弁体63の上下動とは、相似的な位置となるように設計されることが望ましい。そして、その相似的な位置となるようにするためには、コイルばね64のばね定数(弾発力)とテーパ部63cの角度を考慮すればよい。
【0029】
上記ステータ50から、ステータコイル53に接続された複数のリード端子54が突出しており、このリード端子に複数のリード線55が接続されたコネクタ56が連結されている。そして、コネクタ56を覆うカバー57がステータ50に溶着され、カバー57内はシリコーン樹脂又はエポキシ樹脂等の充填材58で充填されている。
【0030】
前記の如く構成された電動弁10の動作について説明する。
(開→閉)
ステッピングモータを構成するステータコイル53に一方向の通電を行い励磁すると、副弁本体20に固着されたガイドブッシュ26に対しロータ30および弁軸ホルダ32が回転され、ガイドブッシュ26の固定ねじ部25と弁軸ホルダ32の移動ねじ部31とのねじ送り機構により、例えば弁軸ホルダ32が下方に移動して副弁体23が副弁座22に着座圧接して弁口は閉じられる。
【0031】
弁口が閉じられた時点では、上ストッパ体37は未だ下ストッパ体27に当接しておらず、副弁体23が弁口を閉じたままロータ30および弁軸ホルダ32はさらに回転下降する。このときは弁軸24に対して弁軸ホルダ32が下降するため、圧縮コイルばね34が圧縮されることにより弁軸ホルダ32の下降力は吸収される。その後ロータ30がさらに回転して弁軸ホルダ32が下降されると、上ストッパ体37の上ストッパ片37aが下ストッパ体27の下ストッパ片27aに当接し、ステータコイル53に対する通電が続行されても弁軸ホルダ32の下降は強制的に停止される。
【0032】
上ストッパ体37と下ストッパ体27とから構成されるストッパ機構は、ロータ30の軸方向の全長内に配置されているので、ストッパ機構が機能しているときでもロータ30や弁軸ホルダ32が大きく傾いたりすることが少なく作動が安定し、つぎにロータ30を逆転するときでも円滑に行うことができる。
上記副弁座当接部23aの閉動作により、上記主弁本体60の閉動作が行われる。即ち、副弁座当接部23aの閉動作分(減少分)に応じて、副弁本体20を流れる量が減少し、その結果、連通流入孔21aを流れる量が減少し、上部主弁室61aの冷媒圧が上昇し、主弁体63を下方、即ち、主弁体63を閉方向に動作させる。
【0033】
(閉→開)
ステータコイル53に他方向の通電を行い励磁すると、副弁本体20に固着されたガイドブッシュ26に対しロータ30および弁軸ホルダ32が前記と逆方向に回転され、ガイドブッシュ26の固定ねじ部25と弁軸ホルダ32の移動ねじ部31とのねじ送り機構により、今度は弁軸ホルダ32が上方に移動して弁軸24の下端の副弁体23が副弁座22から離れて弁口が開かれ、冷媒は弁口を通過することができる。そして、ロータ30の回転量により冷媒の通過量を制御することができ、ロータの回転量はパルス数にて規制されるため正確な制御を行うことができる。
【0034】
このようにロータ30が回転し、ガイドブッシュ26の固定ねじ部25と弁軸ホルダ32の移動ねじ部31とのねじ送り機構によりロータ30、弁軸ホルダ32および弁軸24が軸方向に摺動するが、ねじ送り機構がロータ30内の特に中央部に位置し、ロータ30の支持および駆動がロータ30の全長内で行われているため、回転時にロータ30が振れることが少なく安定して回転させることができる。
【0035】
そして、上記副弁座当接部23aの開動作により、上記主弁本体60の開動作が行われる。即ち、副弁座当接部23aの開動作分(増加分)に応じて、副弁本体20を流れる量が比例的に増大し、その結果、連通流入孔21aを流れる量が増大し、上部主弁室61aの冷媒圧が下降し、主弁体63を上方、即ち、主弁体63を開方向に動作させる。また、上記実施形態1の電動弁10において、流体流入管60aから流入する冷媒圧が急激に高くなっても、その冷媒圧は段部63f及びテーパ部63cに作用し、主弁体63を瞬間的にコイルばね64の弾発力及び上部主弁室61aの冷媒圧の力に抗して上動させることで、「開」とすることができ、電動弁10及び冷凍サイクルの損傷を避けることができる。
【0036】
【実施形態2】
次に、本発明の実施形態2について図4を用いて説明する。図4はその電動弁(閉状態)を示す縦断面図である。実施形態2の特徴は、上部主弁室61aの側壁面で、主弁体63の均一外径で円柱状に形成された径大部63bの外周部が対応する部分に、上部ほど径大となるテーパ部61cが形成されるようにしたもので、実施形態1のテーパ部63cが形成される場合と同様の効果が期待できる。
【0037】
即ち、上記径大部63bの周部と主弁本体60の主弁室61内壁を構成するテーパ部61cとの隙間で形成される流路断面積A’は、副弁体23の上下動に伴って形成される流路断面積aの変化に比例するように主弁体63は上下動する(A’=k’a(k’:定数))。上記流路断面積A’は、テーパ部61cのテーパ角度が一定なので、主弁体63のリフト量Lに略比例するとみなすことが出来、実施形態1と同様に、式 L=ka(k:定数)、または、A’=k”L(k”:定数)となる。
【0038】
なお、実施形態2における上記以外の部分の構成は、実施形態1の場合と同一であることから、実施形態1を示す図1乃至図3に付した符号と同一符号を図4に付すことによってその説明を省略する。
【0039】
【実施形態3】
次に、本発明の実施形態3について図5及び図6を用いて説明する。図5は本発明に係る実施形態3の電動弁(閉状態)を示す縦断面図、図6は同実施形態3の要部(主弁体63)を示す縦断面図(A)、及び、正面図(B)である。
実施形態3の特徴は、実施形態1のテーパ部63cの形状に代えて、径大部63b外周の数箇所、例えば、2箇所に一定幅で下部位置ほど深くなるスリットテーパ部63gを形成したもので、実施形態1の場合のテーパ部63cを設けた場合と同様の効果が期待できる。
【0040】
即ち、主弁体63の径大部63b外周部(スリットテーパ部63gを含む)と主弁本体60の主弁室61内壁との隙間で形成される流路断面積A’は、副弁体23の上下動に伴って形成される流路断面積aの変化に比例するように主弁体63は上下動する(A’=k’a(k’:定数)。上記流路断面積A’は、スリットテーパ部63gのテーパ角度が一定なので、主弁体63のリフト量Lに略比例するとみなすことが出来、実施形態1と同様に、式 L=ka(k:定数)、または、A’=k”L(k”:定数)となる。
【0041】
また、この実施形態3は、主弁体63の径大部63bの外周部(スリットテーパ部63g以外の部分)が主弁室61内壁に摺接して支持・案内されるから、主弁体63の上下動時の安定性が高い(左右の振れが少ない)という副次的効果がある。
なお、実施形態3における上記以外の構成は実施形態1の場合と同一であることから、実施形態1を示す図1乃至図3に付した符号と同一符号を図6,7に付すことによってその説明を省略する。
【0042】
【実施形態4】
次に、本発明の実施形態4について図7及び図8を用いて説明する。図7は本発明に係る実施形態4の電動弁(閉状態)を示す縦断面図、図8は同実施形態4の要部を示す縦断面図(A)、及び、正面図(B)である。
実施形態4の特徴は、実施形態1のテーパ部63cの形状に代えて、径大部63bの数箇所、例えば、2箇所に一定深さで下部位ほど幅広となる一定深さの定深さスリット部63hを形成したもので、実施形態3の場合のスリットテーパ部63gを設けた場合と同様の効果が期待できる。
【0043】
即ち、主弁体63の径大部63b外周部(定深さスリット部63hを含む)と主弁本体60の主弁室61内壁との隙間で形成される流路断面積A’は、副弁体23の上下動に伴って形成される流路断面積aの変化に比例するように主弁体63は上下動する(A’=k’a(k’:定数)。上記流路断面積A’は、定深さスリット部63hの幅広となる角度が一定なので、主弁体63のリフト量Lに略比例するとみなすことが出来、実施形態1と同様に、式 L=ka(k:定数)、または、A’=k”L(k”:定数)となる。
【0044】
また、この実施形態4は、実施形態3と同様に、主弁体63の径大部63bの外周部が主弁室61内壁に支持・案内されるから、主弁体63の上下動時の安定性が高い(左右の振れが少ない)という副次的効果がある。
なお、実施形態4における上記以外の構成は実施形態1の場合と同一であることから、実施形態1を示す図1乃至図3に付した符号と同一符号を図7,8に付すことによってその説明を省略する。
【0045】
なお、この発明は、冷凍サイクルにおいて設けられるエバポレータとエバポレータとの間の管路に用いてドライ運転用の流量制御弁としても使用できる。
【0046】
【発明の効果】
以上の説明から理解できるように、本発明の電動弁は、主弁体の流量をパイロット弁の流量に正比例させることで、正確な制御が可能になる。また、小さな駆動部(ステッピングモータ)で、大流量の流量制御弁の正確な開閉に用いることができる。また、冷媒圧のショック高圧に対しても主弁体を逃がす(上動させる)ことで、流量の急変動に対応させることができる。
【図面の簡単な説明】
【図1】本発明に係る実施形態1の電動弁(閉状態)を示す縦断面図。
【図2】同実施形態1の電動弁の開閉の途中段階を示す縦断面図。
【図3】同実施形態1の電動弁(開状態)を示す縦断面図。
【図4】本発明に係る実施形態2の電動弁(閉状態)を示す縦断面図。
【図5】本発明に係る実施形態3の電動弁(閉状態)を示す縦断面図。
【図6】同実施形態3の要部を示す縦断面図(A)、及び、正面図(B)。
【図7】本発明に係る実施形態4の電動弁(閉状態)を示す縦断面図。
【図8】同実施形態4の要部を示す縦断面図(A)、及び、正面図(B)。
【図9】従来技術に係る電動弁の縦断面図。
【符号の説明】
1・・電動弁(公知例) 2・・弁本体 2a・・流体流入管
2b・・流体流出管 2c・・弁室 2d・・ガイドブッシュ固定部
2e・・キャン固着部 2f・・弁座 3・・弁軸 3a・・弁体
3b・・圧縮コイルばね 3c・・プッシュナット
4・・ガイドブッシュ 4a・・雌ねじ部 4b・・下ストッパ
5・・弁軸ホルダ 5a・・雄ねじ部 5b・・上ストッパ
5d・・スリーブ 6・・キャン 7・・ロータ 7b・・ばね
8・・ステータ 8a・・ステータコイル 8b・・ヨーク
8c・・リード線 8d・・コネクタ 8e・・カバー
9・・取付板 9a・・回り止め片 9b・・係合孔 9c・・押圧片
10・・電動弁(本発明)
20・・副弁本体 20a・・雄ねじ部 20b・・ガイド部
21・・副弁室 21a・・連通流入孔 21b・・下部副弁室
22・・副弁座 23・・副弁体 23a・・副弁座当接部
24・・弁軸 25・・固定ねじ部 26・・ガイドブッシュ
26a・・螺旋溝部分 27・・下ストッパ体(固定ストッパ)
27a・・下ストッパ片 30・・ロータ 31・・移動ねじ部
32・・弁軸ホルダ 32a・・均圧孔
32b・・螺旋溝部分 33・・プッシュナット 34・・圧縮コイルばね
35・・復帰ばね 36・・支持リング 37・・上ストッパ体(移動ストッパ)
37a・・上ストッパ片 40・・キャン 41・・鍔状板
50・・ステータ 50a・・嵌合穴 51・・ヨーク 52・・ボビン
53・・ステータコイル 54・・リード端子 55・・リード線
56・・コネクタ 57・・カバー 58・・充填材
60・・主弁本体 60a・・流体流入管 60b・・流体流出管
60c・・雌ねじ部 60d・・連通流出孔
60e・・流入孔 60f・・流出孔 60g・・取付凹部
61・・主弁室 61a・・上部主弁室 61b・・下部主弁室
61c・・テーパ部(実施形態2)
62・・弁座 63・・主弁体 63a・・主弁座当接部
63b・・径大部
63c・・テーパ部(実施形態1) 63d・・被ガイド部 63e・・連通孔
63f・・段部 63g・・スリットテーパ部(実施形態3)
63h・・定深さスリット部(実施形態4) 64・・コイルばね
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor-operated valve that is used by being incorporated in an air conditioner, a refrigerator, and the like, and particularly to a motor-operated valve with a pilot valve that can be miniaturized and can be opened and closed accurately with a small driving force.
[0002]
[Prior art]
Conventionally, this type of air conditioner, an electric valve used by being incorporated in a refrigerator or the like is a device that controls the flow rate of a fluid such as a refrigerant, and usually includes a valve body having a valve chamber and a valve seat, A bottomed cylindrical can fixed to the upper part of the valve body via a flange portion, a rotor is built inside the can, and an insertion hole is provided at the center outside the can. Having an externally fitted stator.
[0003]
FIG. 9 is a longitudinal sectional view of the motor-operated valve disclosed in the above-mentioned known patent document 1. The valve body 2 of the motor-operated valve 1 includes a valve chamber 2c, a guide bush fixing portion 2d, and a can fixing portion 2e. The valve chamber 2c is provided with a fluid inflow pipe 2a and a fluid outflow pipe 2b through which a fluid such as a refrigerant flows in and out, and a needle valve as a valve body 3a formed at the tip of the valve shaft 3 inside thereof. A valve seat 2f is provided to contact and separate.
[0004]
The guide bush fixing portion 2 d is located above the valve chamber and fixes the valve body 2 and the guide bush 4. A female screw portion 4a is formed on the inner periphery of the guide bush 4, and a male screw portion 5a formed on the outer periphery of the valve shaft holder 5 is screwed to the female screw portion 4a, and a screw feed mechanism is formed by the female screw portion and the male screw portion. Is configured. In the valve shaft holder 5, a valve shaft 3 forming a valve body 3a at a lower end portion is slidably fitted. The valve shaft 3 is contracted into the valve shaft holder 5. The compression coil spring 3b is constantly biased downward.
[0005]
The can fixed portion 2 e is located at the upper end of the valve body 2, is formed by a ring-shaped metal plate which is fixed by caulking the inner peripheral surface and is joined at the lower end surface by welding. The can 6 is fixed to the valve body 2 by being welded to the portion. The connection between the valve shaft 3 and the rotor 7 is performed by externally fitting the sleeve 5d integrally formed with the valve shaft holder 5 to the valve shaft 3 and internally fitting the sleeve 5d to the rotor 7 with the permanent magnet. . A push nut 3 c is press-fitted and fixed to the upper end of the valve shaft 3, and its flange is coupled to the rotor 7 while allowing the valve shaft 3 to slightly move up and down. The upper limit of the upward movement of the valve shaft 3 and the rotor 7 is determined by the contact between the spring 7 b provided above the rotor 7 and the inner surface of the can 6. The lower stopper 4b fixed to the valve shaft holder 5 and the upper stopper 5b formed on the sleeve 5d constitute a stopper mechanism.
[0006]
A rotor 7 is built in the can 6, and a stator 8 is fitted outside the can 6. A stator coil 8a and a yoke 8b are stored inside and below the stator 8, and the stator coil 8a is energized through a lead wire 8c and a connector 8d provided on the outer periphery of the stator 8. The energization of the stator coil 8a excites the yoke 8b, rotates the rotor 7, and slides the valve shaft holder 5 and the valve shaft 3 by the screw feed mechanism to open and close the valve body 3a to control the refrigerant flow rate. ing. A connector cover 8e is adhered to the stator 8.
[0007]
A metal ring-shaped mounting plate 9 is fixed below the stator 8, and a detent piece 9 a formed integrally with the mounting plate 9 is engaged with a fluid inflow pipe 2 a projecting horizontally from the valve body 2. At the same time, an engagement hole 9b is engaged with one side of a ring-shaped welded portion between the valve body 2 and the can 6, and a pressing piece 9c formed integrally with the mounting plate 9 is pressed on the other side of the ring-shaped welded portion. Thus, the stator 8 is fixed.
[0008]
[Patent Document 1] Japanese Patent Application No. 2001-50415
[0009]
[Problems to be solved by the invention]
However, the electric valve according to the related art requires a large opening / closing force for opening / closing the valve body, and therefore, there is a problem that a valve body driving unit including a stator or the like tends to be large.
[0010]
Therefore, the present invention has been made in view of such a problem, and an object of the present invention is to provide a motor-operated valve that can reduce the overall shape and accurately control the opening / closing degree of a main valve. is there.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a motor-operated valve according to the present invention has the following configuration. That is,
The electric valve according to claim 1, wherein the main valve main body and the sub-valve main body are integrally formed, and the sub-valve body is brought into contact with and separated from a sub-valve seat formed in the sub-valve main body, thereby being provided on the main valve main body. An electric valve characterized by controlling a flow rate of a main valve body.
With such a feature, by using the sub-valve as the pilot valve of the main valve, a small-flow sub-valve can be opened and closed to open and close the large-flow main valve.
[0012]
The motor-operated valve according to claim 2 includes a main valve body and a sub-valve element for controlling a flow rate of the main valve body. It is characterized in that the change in the area is made directly proportional.
With this feature, the flow rate of the main valve body can be easily controlled by controlling the flow rate of the sub-valve body.
[0013]
According to a third aspect of the present invention, in the electric valve according to the first or second aspect, the main valve body and the sub-valve body are integrally formed, and the main valve body contacts a main valve seat in the main valve chamber. A main valve body that separates and controls the flow rate of the refrigerant; the sub-valve body includes a sub-valve body that controls the flow rate of the refrigerant by coming into contact with and separating from a sub-valve seat in the sub-valve chamber; The increase and decrease of the degree is performed by increasing and decreasing the back pressure of the main valve body by the sub-valve element.
With this feature, the flow rate of the main valve body can be controlled with a simple configuration.
An electric valve according to a fourth aspect is the electric valve according to the third aspect, wherein the sub-valve main body includes a stepping motor that operates the sub-valve element.
With such a feature, it is possible to easily control the flow rate of the main valve body with respect to the rotation of the stepping motor.
[0014]
According to a fifth aspect of the present invention, in the electric valve according to any one of the first to fourth aspects, a guided portion is formed at an upper portion of the main valve body, and a guide portion is formed at a lower portion of the sub-valve body. And the up-and-down movement of the guided portion is guided by the guide portion.
With such a feature, the main valve body can be prevented from running sideways with a simple configuration.
[0015]
According to a sixth aspect of the present invention, in the electric valve according to the third aspect, a large diameter portion is formed in the main valve body, a tapered portion is formed in the large diameter portion, and the tapered portion and the main valve chamber are formed. A gap with a wall is formed as a flow path from the main valve chamber to the sub-valve chamber, and the upward movement of the main valve body increases the area of the flow path.
A motor-operated valve according to claim 7 is the motor-operated valve according to claim 3, wherein a large-diameter portion is formed in the main valve body, and a tapered portion is formed in the main valve chamber inner wall portion corresponding to the large-diameter portion. The gap between the tapered portion and the outer peripheral surface of the large-diameter portion of the main valve body is formed as a flow path from the main valve chamber to the sub-valve chamber, and the area of the flow path is increased by the upward movement of the main valve body. It is characterized by being configured to increase.
The motor-operated valve according to claim 8 is the motor-operated valve according to claim 3, wherein the main valve body has a large-diameter portion, and the large-diameter portion has a slit taper portion having a substantially constant width. A gap between the portion and the main valve chamber wall is formed as a flow path from the main valve chamber to the sub-valve chamber, and the area of the flow path is increased by the upward movement of the main valve body. It is characterized by.
The motor-operated valve according to claim 9 is the motor-operated valve according to claim 3, wherein a large-diameter portion is formed in the main valve body, and a constant-depth slit portion having a constant depth is formed in the large-diameter portion. A gap between the constant depth slit portion and the main valve chamber wall is formed as a flow path from the main valve chamber to the sub-valve chamber, and the upward movement of the main valve body increases the area of the flow path. It is characterized by comprising.
According to the features of any one of the sixth to ninth aspects, the flow control of the sub-valve is ensured, and as a result, the flow control of the main valve is accurate.
An electric valve according to a tenth aspect is the electric valve according to any one of the first to ninth aspects, wherein the flow rate of the main valve body is changed similarly to the flow rate of the sub-valve body.
With such a feature, the opening and closing degrees of the main valve body and the sub-valve body can be made similar.
[0016]
Embodiment 1
The motor-operated valve 10 according to the first embodiment includes a main valve main body 60 that controls a flow rate of a refrigerant by a main valve body 63 that comes into contact with and separates from a valve seat 62 in a main valve chamber 61, and a sub valve provided in the main valve main body 60. A can 40 having a built-in rotor 30 that is fixed to the valve body 20 and operates the sub-valve element 23; a stator 50 that is fitted on the can 40 and that drives the rotor 30 to rotate; And a sub-valve 23 that controls the degree of opening and closing of the main valve body 63 by coming into contact with and separating from the sub-valve seat 22 therein. The opening degree of the main valve body 63 is increased or decreased by the back pressure of the main valve body 63 by the auxiliary valve body 23. In addition, the rotor 30 and the stator 50 constitute a stepping motor.
[0017]
The can 40 has a bottomed cylindrical shape formed of a non-magnetic metal such as stainless steel, and is fixed to a stainless steel flange plate 41 fixed to the upper part of the sub-valve main body 20 by welding or the like. It is kept airtight. The stator 50 is composed of a yoke 51 made of a magnetic material, and upper and lower stator coils 53 wound around the yoke 51 via a bobbin 52, and is formed with a fitting hole 50a that fits outside the can 40. I have. The stator 50 has a fitting hole 50a having a lower surface opening at the center, and the can 40 is fitted into the fitting hole and fixed to the can 40.
[0018]
The sub-valve 23 is formed at the lower end of a brass valve shaft 24. A drive mechanism for moving the sub-valve element 23 toward and away from the sub-valve seat 22 extends from the sub-valve body 20 in the direction of the rotor 30, is fixed, and has a cylindrical guide bush 26 in which a fixing screw portion 25 is formed; And a valve shaft holder 32 having a moving screw portion 31 to be screwed into the fixed screw portion 25 of the bush 26. The screw feeding mechanism is disposed at a substantially central portion of the rotor 30 in the entire axial direction. are doing.
[0019]
The fixing screw part 25 is formed by a male screw on the outer periphery of the guide bush 26, and the moving screw part 31 is formed by a female screw on the inner circumference of the valve shaft holder 32. The guide bush 26 and the valve shaft holder 32 are both formed of a cylindrical material made of brass.
[0020]
The valve shaft holder 32 has a cylindrical shape with a lower opening located outside the guide bush 26, and has the moving screw portion 31 formed on the inner surface as described above. The upper reduced diameter portion is fitted and connected by a push nut 33. The valve shaft 24 having the sub-valve body 23 formed at the lower end is made of brass, is fitted in the center of the valve shaft holder 32 so as to be vertically movable, and is compressed by a compression coil spring 34 compressed in the valve shaft holder 32. It is always biased downward. A pressure equalizing hole 32 a for equalizing the pressure in the sub-valve chamber 21 and the can 40 is formed on a side surface of the guide bush 26.
[0021]
A return spring 35 composed of a cylindrical compression coil spring is attached to the outer periphery of a push nut 33 press-fitted and fixed to the upper end of the valve shaft 24, and the fixed screw portion 25 of the guide bush 26 and the moving screw portion 31 of the valve shaft holder 32. Is released, the return spring 35 abuts against the inner surface of the can 40 and urges the fixed screw portion 25 and the movable screw portion 31 to return the screw engagement. The return spring 35 may be mounted in a state of being loosely fitted and mounted on the outer periphery of the push nut 33, or may be mounted so as to elastically contact the outer periphery of the push nut 33.
[0022]
The sub-valve body 20 is made of a metal such as brass, and is joined to the can 40 by butt-welding the end of the can to a step portion of a flange-shaped plate 41 fixed to the sub-valve body 20 by welding or the like. ing. Instead of butt welding, the end of the can 40 may be flatly bent to the outer periphery to form a flange, and the flange and the flange plate 41 may be fixed by so-called welding.
A guide bush 26 is connected and fixed to an upper portion of the sub-valve main body 20, and a sub-valve chamber 21 is formed at a lower portion of the guide bush 26. In the sub-valve chamber 21, a lower portion of a valve shaft 24 is disposed. The bottom of the sub-valve chamber 21 constitutes a sub-valve seat 22. A male screw portion 20a is formed on the outer peripheral portion of the lower portion of the sub-valve main body 20, and a lower portion of the sub-valve main body 20 extends downward to form a guide portion 20b. The space inside the guide portion 20b and the sub-valve chamber 21 communicate with each other through a communication inflow hole 21a. A lower sub-valve chamber 21b is formed below the sub-valve seat 22, and the lower sub-valve chamber 21b is It communicates with a communication outlet 60d described later.
[0023]
The valve shaft holder 32 and the rotor 30 are connected via a support ring 36. In the first embodiment, the support ring 36 is formed by a brass metal ring inserted when the rotor 30 is formed. The upper protrusion of the valve shaft holder 32 is fitted into the inner peripheral hole of the support ring 36, and the outer periphery of the protrusion is caulked and fixed to connect the rotor 30, the support ring 36 and the valve shaft holder 32. The sub-valve body 20, the valve shaft 24, the guide bush 26, the valve shaft holder 32, and the support ring 36 are all made of brass as described above, and have a structure considering recycling.
Further, since the components are press-fitted and caulked, the rotor can be reused, for example, by removing the caulking of the valve shaft holder 32 and the support ring 36. Of course, metals other than brass, for example, stainless steel can be used.
[0024]
A lower stopper body (fixed stopper) 27, which constitutes one of the stopper mechanisms, is fixed to the guide bush 26. The lower stopper body 27 is made of a ring-shaped plastic, and a plate-like lower stopper piece 27a is provided above the lower stopper body 27. Is protruding. An upper stopper body (movement stopper) 37, which constitutes the other of the stopper mechanisms, is fixed to the valve shaft holder 32. The upper stopper body 37 is also made of a ring-shaped plastic, and has a plate-shaped upper surface. A stopper piece 37a is protruded, and is engageable with the lower stopper piece 27a.
[0025]
The lower stopper body 27 is fixed to the spiral groove portion 26a formed on the outer periphery of the guide bush 26 by injection molding, and the upper stopper body 37 is fixed to the spiral groove portion 32b formed on the outer periphery of the valve shaft holder 32 by injection molding. ing. The fixing of the lower stopper body 27 and the upper stopper body 37 is not limited to injection molding.
[0026]
The main valve main body 60 is formed in a substantially columnar shape, and has a mounting recess 60g for mounting the sub-valve main body 20 formed on an upper portion thereof, and a female screw portion 60c formed on an outer peripheral upper portion of the mounting recess 60g. . A guide portion 20b on the side of the sub-valve body 20 is fitted into a lower portion of the mounting recess 60g, and a main valve chamber 61 is formed further below the guide portion 20b. An inflow hole 60e is formed at the lower side of the main valve chamber 61, and a lower main valve chamber 61b and an outflow hole 60f communicating with the lower main valve chamber 61b are formed below this. The fluid inlet pipe 60a is attached to the inlet hole 60e, and the fluid outlet pipe 60b is attached to the outlet hole 60f.
Further, a communication outflow hole 60 d is formed in the main valve main body 60 in parallel with the main valve chamber 61. The communication outlet hole 60d communicates between the sub-valve seat 22 and the outlet hole 60f. A large-diameter portion 63b is disposed in the main valve chamber 61 of the main valve body 60.
[0027]
The amount of refrigerant flowing from the fluid inflow pipe 60a to the fluid outflow pipe 60b can be continuously adjusted by the vertical movement of the main valve body 63 in the main valve chamber 61. That is, the main valve body 63 includes a main valve seat contact portion 63a that comes into contact with and separates from the valve seat 62, a large-diameter portion 63b, and a guided portion 63d. A step 63f is formed below the large diameter portion 63b, a tapered portion 63c is formed on the outer periphery, and a communication hole 63e is formed in the guided portion 63d. The guided portion 63d is disposed on the inner surface of the guide portion 20b so as to be slidable up and down. A coil spring 64 that resiliently presses the main valve body 63 in the closing direction is disposed between the upper surface of the large-diameter portion 63b and the lower surface of the sub-valve body 20 in the guided portion 63d. The configuration in which the guided portion 63d is guided by the guide portion 20b is not always necessary, but can prevent vibration (lateral movement) of the main valve body 63.
[0028]
In addition, a flow passage cross-sectional area A ′ formed by a gap between the tapered portion 63c of the main valve body 63 and the inner wall of the main valve chamber 61 of the main valve body 60 has a flow area formed by the vertical movement of the sub-valve body 23. The main valve body 63 moves up and down in proportion to the change in the road cross-sectional area a (A ′ = k′a (k ′: constant)). The flow path cross-sectional area A ′ can be considered to be substantially proportional to the lift amount L of the main valve body 63 since the taper angle of the tapered portion 63c is constant. Therefore,
Expression L = ka (k: constant) or A ′ = k ″ L (k ”: constant).
The shape of the sub-valve seat contact portion 23a of the sub-valve body 23 and the shape of the main valve seat contact portion 63a of the main valve body 63 are substantially similar to each other. The vertical movement of the main valve body 63 is desirably designed to be at a similar position. Then, in order to achieve the similar position, the spring constant (resilient force) of the coil spring 64 and the angle of the tapered portion 63c may be considered.
[0029]
A plurality of lead terminals 54 connected to the stator coil 53 protrude from the stator 50, and a connector 56 to which a plurality of lead wires 55 are connected is connected to the lead terminals. Then, a cover 57 covering the connector 56 is welded to the stator 50, and the inside of the cover 57 is filled with a filler 58 such as a silicone resin or an epoxy resin.
[0030]
The operation of the electric valve 10 configured as described above will be described.
(Open → Close)
When the stator coil 53 constituting the stepping motor is energized in one direction by excitation, the rotor 30 and the valve shaft holder 32 rotate with respect to the guide bush 26 fixed to the sub-valve main body 20, and the fixing screw portion 25 of the guide bush 26 is rotated. For example, the valve shaft holder 32 is moved downward by the screw feed mechanism of the valve shaft holder 32 and the moving screw portion 31 of the valve shaft holder 32, and the sub-valve 23 is seated and pressed against the sub-valve seat 22 to close the valve port.
[0031]
When the valve port is closed, the upper stopper body 37 has not yet contacted the lower stopper body 27, and the rotor 30 and the valve shaft holder 32 further rotate down while the sub-valve body 23 closes the valve port. At this time, since the valve shaft holder 32 is lowered with respect to the valve shaft 24, the compression force of the compression coil spring 34 absorbs the lowering force of the valve shaft holder 32. Thereafter, when the rotor 30 further rotates and the valve shaft holder 32 is lowered, the upper stopper piece 37a of the upper stopper body 37 abuts on the lower stopper piece 27a of the lower stopper body 27, and the energization of the stator coil 53 is continued. The lowering of the valve shaft holder 32 is also forcibly stopped.
[0032]
Since the stopper mechanism constituted by the upper stopper body 37 and the lower stopper body 27 is disposed within the entire length of the rotor 30 in the axial direction, the rotor 30 and the valve shaft holder 32 can be operated even when the stopper mechanism is functioning. The operation is stable with little inclination and the operation can be performed smoothly even when the rotor 30 is next rotated in the reverse direction.
The closing operation of the sub valve seat contact portion 23a causes the closing operation of the main valve body 60 to be performed. That is, in accordance with the closing operation (decrease) of the sub-valve seat contact portion 23a, the amount flowing through the sub-valve main body 20 decreases, and as a result, the amount flowing through the communication inflow hole 21a decreases, and the upper main valve chamber is reduced. The refrigerant pressure of 61a rises and moves the main valve body 63 downward, that is, moves the main valve body 63 in the closing direction.
[0033]
(Closed → open)
When the stator coil 53 is energized in the other direction to be excited, the rotor 30 and the valve shaft holder 32 rotate in the opposite direction to the guide bush 26 fixed to the sub-valve main body 20, and the fixing screw portion 25 of the guide bush 26 is rotated. The screw feed mechanism between the valve shaft holder 32 and the moving screw portion 31 of the valve shaft holder 32 causes the valve shaft holder 32 to move upward, the sub-valve element 23 at the lower end of the valve shaft 24 is separated from the sub-valve seat 22, and the valve port is opened. When opened, the refrigerant can pass through the valve port. The amount of refrigerant passing through can be controlled by the amount of rotation of the rotor 30. Since the amount of rotation of the rotor is regulated by the number of pulses, accurate control can be performed.
[0034]
Thus, the rotor 30 rotates, and the rotor 30, the valve shaft holder 32 and the valve shaft 24 slide in the axial direction by the screw feed mechanism of the fixing screw portion 25 of the guide bush 26 and the moving screw portion 31 of the valve shaft holder 32. However, since the screw feed mechanism is located particularly in the center of the rotor 30 and the rotor 30 is supported and driven within the entire length of the rotor 30, the rotor 30 is less likely to swing during rotation and is stably rotated. Can be done.
[0035]
Then, the opening operation of the main valve main body 60 is performed by the opening operation of the sub valve seat contact portion 23a. That is, in accordance with the opening operation (increase) of the sub-valve seat contact portion 23a, the amount flowing through the sub-valve main body 20 increases proportionally. As a result, the amount flowing through the communication inflow hole 21a increases. The refrigerant pressure in the main valve chamber 61a decreases, and the main valve body 63 is moved upward, that is, the main valve body 63 is operated in the opening direction. In the motor-operated valve 10 of the first embodiment, even if the pressure of the refrigerant flowing from the fluid inflow pipe 60a suddenly increases, the refrigerant pressure acts on the stepped portion 63f and the tapered portion 63c, causing the main valve body 63 to momentarily move. By moving upward against the resilient force of the coil spring 64 and the force of the refrigerant pressure in the upper main valve chamber 61a, it is possible to "open" and avoid damage to the electric valve 10 and the refrigeration cycle. Can be.
[0036]
Embodiment 2
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a longitudinal sectional view showing the electric valve (closed state). The feature of the second embodiment is that the diameter of the upper main valve chamber 61a is larger on the side wall surface where the outer peripheral portion of the large-diameter portion 63b formed in a columnar shape with a uniform outer diameter of the main valve body 63 corresponds. Since the tapered portion 61c is formed, the same effect as when the tapered portion 63c of the first embodiment is formed can be expected.
[0037]
That is, the flow path cross-sectional area A ′ formed by the gap between the peripheral portion of the large-diameter portion 63b and the tapered portion 61c that forms the inner wall of the main valve chamber 61 of the main valve main body 60 changes with the vertical movement of the sub-valve element 23. The main valve body 63 moves up and down so as to be proportional to the change in the flow path cross-sectional area a (A ′ = k′a (k ′: constant)). Since the taper angle of the tapered portion 61c is constant, the flow path cross-sectional area A 'can be considered to be substantially proportional to the lift amount L of the main valve body 63. As in the first embodiment, the equation L = ka (k: A ′) or A ′ = k ″ L (k ″: constant).
[0038]
Since the configuration of the other parts in the second embodiment is the same as that in the first embodiment, the same reference numerals as in FIGS. 1 to 3 showing the first embodiment are assigned to FIG. The description is omitted.
[0039]
Embodiment 3
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a longitudinal sectional view showing a motor-operated valve (closed state) of Embodiment 3 according to the present invention, FIG. 6 is a longitudinal sectional view (A) showing a main part (main valve body 63) of Embodiment 3, and It is a front view (B).
The feature of the third embodiment is that, instead of the shape of the tapered portion 63c of the first embodiment, a slit tapered portion 63g is formed at several locations on the outer periphery of the large-diameter portion 63b, for example, at two locations with a constant width and becoming deeper toward the lower position. Thus, the same effect as in the case of providing the tapered portion 63c in the first embodiment can be expected.
[0040]
That is, the flow path cross-sectional area A ′ formed by the gap between the outer peripheral portion (including the slit tapered portion 63g) of the large-diameter portion 63b of the main valve body 63 and the inner wall of the main valve chamber 61 of the main valve body 60 is equal to the auxiliary valve body. The main valve body 63 moves up and down in proportion to a change in the flow path cross-sectional area a formed with the vertical movement of 23 (A ′ = k′a (k ′: constant). 'Can be regarded as substantially proportional to the lift amount L of the main valve body 63 because the taper angle of the slit taper portion 63g is constant. As in the first embodiment, the equation L = ka (k: constant), or A '= k "L (k": constant).
[0041]
Further, in the third embodiment, the outer peripheral portion (the portion other than the slit tapered portion 63g) of the large-diameter portion 63b of the main valve body 63 is slidably in contact with the inner wall of the main valve chamber 61 to be supported and guided. There is a secondary effect that the stability at the time of vertical movement is high (there is little left and right swing).
Since the configuration of the third embodiment other than the above is the same as that of the first embodiment, the same reference numerals as in FIGS. 1 to 3 showing the first embodiment are assigned to FIGS. Description is omitted.
[0042]
Embodiment 4
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 7 is a longitudinal sectional view showing a motor-operated valve (closed state) of Embodiment 4 according to the present invention, and FIG. 8 is a longitudinal sectional view (A) showing a main part of Embodiment 4 and a front view (B). is there.
The feature of the fourth embodiment is that, instead of the shape of the tapered portion 63c of the first embodiment, a constant depth of a constant depth that becomes wider at a certain depth, for example, at two locations, for example, at a lower portion in the large-diameter portion 63b. Since the slit portion 63h is formed, the same effect as in the case of providing the slit taper portion 63g in the third embodiment can be expected.
[0043]
That is, the flow path cross-sectional area A ′ formed by the gap between the outer peripheral portion (including the constant depth slit portion 63h) of the large-diameter portion 63b of the main valve body 63 and the inner wall of the main valve chamber 61 of the main valve body 60 is The main valve body 63 moves up and down in proportion to a change in the flow path cross-sectional area a formed with the up and down movement of the valve body 23 (A ′ = k′a (k ′: constant). The area A 'can be considered to be substantially proportional to the lift amount L of the main valve body 63 since the angle at which the width of the constant-depth slit portion 63h becomes wide is constant, and as in the first embodiment, the expression L = ka (k : Constant) or A '= k "L (k": constant).
[0044]
In the fourth embodiment, similarly to the third embodiment, the outer peripheral portion of the large-diameter portion 63b of the main valve body 63 is supported and guided by the inner wall of the main valve chamber 61. There is a secondary effect of high stability (small left and right swing).
Since the configuration of the fourth embodiment other than the above is the same as that of the first embodiment, the same reference numerals as those shown in FIGS. 1 to 3 showing the first embodiment are assigned to FIGS. Description is omitted.
[0045]
The present invention can be used as a flow control valve for dry operation by using a pipe between evaporators provided in a refrigeration cycle.
[0046]
【The invention's effect】
As can be understood from the above description, the motor-operated valve of the present invention enables accurate control by making the flow rate of the main valve element directly proportional to the flow rate of the pilot valve. In addition, a small driving unit (stepping motor) can be used to accurately open and close a flow control valve having a large flow rate. In addition, the main valve body is released (moved upward) even when the shock pressure of the refrigerant pressure is high, so that it is possible to cope with a sudden change in the flow rate.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a motor-operated valve (closed state) according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing an intermediate stage of opening and closing of the motor-operated valve according to the first embodiment.
FIG. 3 is a longitudinal sectional view showing the motor-operated valve (open state) of the first embodiment.
FIG. 4 is a longitudinal sectional view showing a motor-operated valve (closed state) according to a second embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing a motor-operated valve (closed state) according to a third embodiment of the present invention.
FIG. 6 is a longitudinal sectional view (A) and a front view (B) showing a main part of the third embodiment.
FIG. 7 is a longitudinal sectional view showing a motor-operated valve (closed state) according to a fourth embodiment of the present invention.
FIG. 8 is a longitudinal sectional view (A) and a front view (B) showing a main part of the fourth embodiment.
FIG. 9 is a longitudinal sectional view of a motor-operated valve according to the related art.
[Explanation of symbols]
1..Electric valve (known example) 2..Valve body 2a..Fluid inflow pipe
2b ... Fluid outflow pipe 2c ... Valve chamber 2d ... Guide bush fixing part
2e ··· Can fixed part 2f ··· Valve seat 3 ··· Valve shaft 3a ··· Valve body
3b ・ ・ Compression coil spring 3c ・ ・ Push nut
4 Guide bush 4a Female thread 4b Lower stopper
5 Valve stem holder 5a Male thread 5b Upper stopper
5d Sleeve 6 Can 7 Rotor 7b Spring
8. Stator 8a Stator coil 8b Yoke
8c Lead wire 8d Connector 8e Cover
9 Mounting plate 9a Rotating piece 9b Engagement hole 9c Pressing piece
10. Electric valve (this invention)
20 ・ ・ Sub valve body 20a ・ ・ Male thread part 20b ・ ・ Guide part
21 .. sub-valve chamber 21a .... communication inflow hole 21b .... lower sub-valve chamber
22..Auxiliary valve seat 23..Auxiliary valve body 23a..Auxiliary valve seat contact part
24 Valve stem 25 Fixed screw 26 Guide bush
26a: spiral groove 27: lower stopper (fixed stopper)
27a ・ ・ Lower stopper piece 30 ・ ・ Rotor 31 ・ ・ Moving screw part
32 ··· Shaft holder 32a ·· Equalizing hole
32b spiral groove part 33 push nut 34 compression coil spring
35 ・ ・ Return spring 36 ・ ・ Support ring 37 ・ ・ Upper stopper (movement stopper)
37a Upper stopper piece 40 Can 41 Flange plate
50 stator 50a fitting hole 51 yoke 52 bobbin
53..Stator coil 54..Lead terminal 55..Lead wire
56 Connector 57 Cover 58 Filler
60 main valve body 60a fluid inflow pipe 60b fluid outflow pipe
60c female screw part 60d communication outlet
60e ・ ・ Inlet hole 60f ・ ・ Outlet hole 60g ・ ・ Mounting recess
61 Main valve chamber 61a Upper main valve chamber 61b Lower main valve chamber
61c taper portion (Embodiment 2)
62 .. Valve seat 63 .. Main valve body 63a .. Main valve seat contact part
63b
63c ··· Tapered portion (Embodiment 1) 63d ··· Guided portion 63e ··· Communication hole
63f Step 63g Slit taper (Embodiment 3)
63h: constant depth slit portion (Embodiment 4) 64: coil spring

Claims (10)

主弁本体と副弁本体とを一体に構成し、前記副弁本体に形成された副弁座に副弁体を接離させることにより、主弁本体に設けられた主弁体の流量を制御させることを特徴とする電動弁。The main valve body and the sub-valve body are integrally formed, and the flow rate of the main valve body provided in the main valve body is controlled by moving the sub-valve body toward and away from the sub-valve seat formed in the sub-valve body. A motor-operated valve characterized by: 主弁体と該主弁体の流量を制御する副弁体とを具備し、該副弁体の流路断面積の変化に、主弁体の流路断面積の変化を正比例させることを特徴とする電動弁。A main valve element and a sub-valve element for controlling a flow rate of the main valve element, wherein a change in a flow path cross-sectional area of the main valve element is directly proportional to a change in a flow path cross-sectional area of the sub-valve element. And electric valve. 主弁本体と副弁本体とを一体に構成し、前記主弁本体は主弁室内の主弁座に接離して冷媒の流量を制御する主弁体を具備し、前記副弁本体は副弁室内の副弁座に接離して冷媒の流量を制御する副弁体を具備し、前記主弁体の開度の増減は、副弁体による主弁体の背圧の増減によって行われることを特徴とする請求項1又は請求項2記載の電動弁。The main valve main body and the sub-valve main body are integrally formed, the main valve main body includes a main valve body for controlling the flow rate of the refrigerant by coming into contact with and separating from a main valve seat in the main valve chamber, and the sub-valve main body is a sub-valve. A sub-valve for controlling the flow rate of the refrigerant by contacting and separating from the sub-valve seat in the room is provided, and the degree of opening of the main valve is increased or decreased by increasing or decreasing the back pressure of the main valve by the sub-valve. The motor-operated valve according to claim 1 or claim 2, wherein 上記副弁本体は、前記副弁体を作動させるステッピングモータを備えていることを特徴とする請求項3記載の電動弁。The electric valve according to claim 3, wherein the sub-valve main body includes a stepping motor that operates the sub-valve. 上記主弁体の上部に被ガイド部を形成させ、上記副弁本体の下部にガイド部を形成させ、上記被ガイド部の上下動を上記ガイド部により案内させることを特徴とする請求項1乃至請求項4記載のいずれかの電動弁。The guided part is formed in the upper part of the main valve body, the guide part is formed in the lower part of the sub-valve body, and the up and down movement of the guided part is guided by the guide part. The motor-operated valve according to claim 4. 上記主弁体に径大部を形成すると共に、該径大部にテーパ部を形成し、該テーパ部と上記主弁室内壁との隙間を上記主弁室から上記副弁室への流路として形成し、前記主弁体の上動により前記流路の面積が増大するように構成されることを特徴とする請求項3記載の電動弁。A large-diameter portion is formed in the main valve body, and a tapered portion is formed in the large-diameter portion, and a gap between the tapered portion and the main valve chamber inner wall flows from the main valve chamber to the sub-valve chamber. 4. The motor-operated valve according to claim 3, wherein an area of the flow passage is increased by upward movement of the main valve body. 5. 上記主弁体に径大部を形成すると共に、該径大部に対応する上記主弁室内壁部分にテーパ部を形成し、該テーパ部と上記主弁体の径大部外周面との隙間を上記主弁室から上記副弁室への流路として形成し、前記主弁体の上動により前記流路の面積が増大するように構成されることを特徴とする請求項3記載の電動弁。A large diameter portion is formed in the main valve body, and a tapered portion is formed in the main valve chamber inner wall portion corresponding to the large diameter portion, and a gap between the tapered portion and an outer peripheral surface of the large diameter portion of the main valve body is formed. 4. The electric motor according to claim 3, wherein a flow path is formed from the main valve chamber to the sub-valve chamber, and the area of the flow path is increased by the upward movement of the main valve body. valve. 上記主弁体に径大部を形成すると共に、該径大部に略一定幅のスリットテーパ部を形成し、該スリットテーパ部と上記主弁室内壁との隙間を上記主弁室から上記副弁室への流路として形成し、前記主弁体の上動により前記流路の面積が増大するように構成されることを特徴とする請求項3記載の電動弁。A large diameter portion is formed in the main valve body, and a slit taper portion having a substantially constant width is formed in the large diameter portion, and a gap between the slit taper portion and the main valve chamber inner wall is formed from the main valve chamber to the sub valve. The motor-operated valve according to claim 3, wherein the motor-operated valve is formed as a flow path to a valve chamber, and is configured such that an area of the flow path increases by upward movement of the main valve body. 上記主弁体に径大部を形成すると共に、該径大部に一定深さの定深さスリット部を形成し、該定深さスリット部と上記主弁室内壁との隙間を上記主弁室から上記副弁室への流路として形成し、前記主弁体の上動により前記流路の面積が増大するように構成されることを特徴とする請求項3記載の電動弁。A large diameter portion is formed in the main valve body, a constant depth slit portion having a constant depth is formed in the large diameter portion, and a gap between the constant depth slit portion and the main valve chamber inner wall is formed by the main valve. 4. The motor-operated valve according to claim 3, wherein the valve is formed as a flow path from the chamber to the auxiliary valve chamber, and the area of the flow path is increased by the upward movement of the main valve body. 5. 上記主弁体の流量を上記副弁体の流量に相似的に変化させることを特徴とする請求項1乃至請求項9記載のいずれかの電動弁。The motor-operated valve according to any one of claims 1 to 9, wherein a flow rate of the main valve body is changed similarly to a flow rate of the sub-valve body.
JP2003109226A 2003-04-14 2003-04-14 Motorized valve Expired - Lifetime JP4230806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003109226A JP4230806B2 (en) 2003-04-14 2003-04-14 Motorized valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109226A JP4230806B2 (en) 2003-04-14 2003-04-14 Motorized valve

Publications (3)

Publication Number Publication Date
JP2004316718A true JP2004316718A (en) 2004-11-11
JP2004316718A5 JP2004316718A5 (en) 2006-05-25
JP4230806B2 JP4230806B2 (en) 2009-02-25

Family

ID=33470459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109226A Expired - Lifetime JP4230806B2 (en) 2003-04-14 2003-04-14 Motorized valve

Country Status (1)

Country Link
JP (1) JP4230806B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115204A (en) * 2007-11-06 2009-05-28 Fuji Koki Corp Method of manufacturing valve device and valve assembly
JP2014074516A (en) * 2012-10-03 2014-04-24 Denso Corp Refrigeration cycle device and pilot type opening/closing valve
KR20150077297A (en) * 2013-12-27 2015-07-07 가부시키가이샤 사기노미야세이사쿠쇼 On-off valve
JP2017160928A (en) * 2016-03-07 2017-09-14 株式会社鷺宮製作所 Motor valve and process of manufacture motor valve
JP2019090543A (en) * 2019-03-19 2019-06-13 株式会社不二工機 Motor valve
JP2020525729A (en) * 2017-06-30 2020-08-27 ジャージャン サンフア オートモーティヴ コンポーネンツ カンパニー リミテッド Motorized valve
JP2021505829A (en) * 2018-03-23 2021-02-18 浙江三花智能控制股▲ふん▼有限公司 Electronic expansion valve
CN112815134A (en) * 2019-11-18 2021-05-18 株式会社鹭宫制作所 Electric valve and refrigeration cycle system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671073A1 (en) 2018-12-20 2020-06-24 Danfoss A/S Electric expansion valve

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639369A (en) * 1979-09-08 1981-04-15 Shin Meiwa Ind Co Ltd Expansion valve device
JPS5666567A (en) * 1979-11-01 1981-06-05 Hitachi Constr Mach Co Ltd Flow rate control valve
JPS5881285A (en) * 1981-11-11 1983-05-16 F M Valve Seisakusho:Kk Water leakage monitoring device
JPS58157070U (en) * 1982-04-15 1983-10-20 株式会社アオイ valve device
JPS59147176A (en) * 1983-02-14 1984-08-23 ヘリオン−ヴエルケ コマンデツトゲゼルシヤフト Flow control valve
JPS60196475A (en) * 1984-03-16 1985-10-04 Komatsu Ltd Poppet type flow control valve
JPS61186072U (en) * 1985-05-13 1986-11-20
JPS62292984A (en) * 1986-06-12 1987-12-19 Komatsu Ltd Flow-rate control valve
JPS6383475A (en) * 1986-09-24 1988-04-14 Hitachi Constr Mach Co Ltd Flow control valve
JPH0231003A (en) * 1981-09-28 1990-02-01 Bo Andersson Seat valve device
JPH09196194A (en) * 1996-01-19 1997-07-29 Fuji Koki:Kk Electric flow control valve
JP2000071852A (en) * 1998-09-01 2000-03-07 Kyokuto Kaihatsu Kogyo Co Ltd Cargo receiving table elevating device for cargo handling vehicle
JP2000088128A (en) * 1998-09-18 2000-03-31 Mitsubishi Electric Corp On-off valve for refrigerating cycle device
JP2001050415A (en) * 1999-06-02 2001-02-23 Fuji Koki Corp Electrically driven valve
JP2001108125A (en) * 1999-08-02 2001-04-20 Shin Caterpillar Mitsubishi Ltd Valve device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639369A (en) * 1979-09-08 1981-04-15 Shin Meiwa Ind Co Ltd Expansion valve device
JPS5666567A (en) * 1979-11-01 1981-06-05 Hitachi Constr Mach Co Ltd Flow rate control valve
JPH0231003A (en) * 1981-09-28 1990-02-01 Bo Andersson Seat valve device
JPS5881285A (en) * 1981-11-11 1983-05-16 F M Valve Seisakusho:Kk Water leakage monitoring device
JPS58157070U (en) * 1982-04-15 1983-10-20 株式会社アオイ valve device
JPS59147176A (en) * 1983-02-14 1984-08-23 ヘリオン−ヴエルケ コマンデツトゲゼルシヤフト Flow control valve
JPS60196475A (en) * 1984-03-16 1985-10-04 Komatsu Ltd Poppet type flow control valve
JPS61186072U (en) * 1985-05-13 1986-11-20
JPS62292984A (en) * 1986-06-12 1987-12-19 Komatsu Ltd Flow-rate control valve
JPS6383475A (en) * 1986-09-24 1988-04-14 Hitachi Constr Mach Co Ltd Flow control valve
JPH09196194A (en) * 1996-01-19 1997-07-29 Fuji Koki:Kk Electric flow control valve
JP2000071852A (en) * 1998-09-01 2000-03-07 Kyokuto Kaihatsu Kogyo Co Ltd Cargo receiving table elevating device for cargo handling vehicle
JP2000088128A (en) * 1998-09-18 2000-03-31 Mitsubishi Electric Corp On-off valve for refrigerating cycle device
JP2001050415A (en) * 1999-06-02 2001-02-23 Fuji Koki Corp Electrically driven valve
JP2001108125A (en) * 1999-08-02 2001-04-20 Shin Caterpillar Mitsubishi Ltd Valve device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115204A (en) * 2007-11-06 2009-05-28 Fuji Koki Corp Method of manufacturing valve device and valve assembly
JP2014074516A (en) * 2012-10-03 2014-04-24 Denso Corp Refrigeration cycle device and pilot type opening/closing valve
KR20150077297A (en) * 2013-12-27 2015-07-07 가부시키가이샤 사기노미야세이사쿠쇼 On-off valve
KR101644940B1 (en) * 2013-12-27 2016-08-02 가부시키가이샤 사기노미야세이사쿠쇼 On-off valve
CN109578662A (en) * 2016-03-07 2019-04-05 株式会社鹭宫制作所 Motor-driven valve and its manufacturing method
CN107166073A (en) * 2016-03-07 2017-09-15 株式会社鹭宫制作所 Motor-driven valve and its manufacture method
CN107166073B (en) * 2016-03-07 2019-01-18 株式会社鹭宫制作所 Motor-driven valve and its manufacturing method
CN109373042A (en) * 2016-03-07 2019-02-22 株式会社鹭宫制作所 Motor-driven valve and its manufacturing method
JP2017160928A (en) * 2016-03-07 2017-09-14 株式会社鷺宮製作所 Motor valve and process of manufacture motor valve
CN109630735A (en) * 2016-03-07 2019-04-16 株式会社鹭宫制作所 Motor-driven valve and its manufacturing method
CN109373042B (en) * 2016-03-07 2020-10-09 株式会社鹭宫制作所 Electrically operated valve and method for manufacturing the same
JP2020525729A (en) * 2017-06-30 2020-08-27 ジャージャン サンフア オートモーティヴ コンポーネンツ カンパニー リミテッド Motorized valve
US11156296B2 (en) 2017-06-30 2021-10-26 Zhejiang Sanhua Automotive Components Co., Ltd. Flow control valve
JP7221883B2 (en) 2017-06-30 2023-02-14 ジャージャン サンフア オートモーティヴ コンポーネンツ カンパニー リミテッド electric valve
EP3647635B1 (en) * 2017-06-30 2023-07-05 Zhejiang Sanhua Automotive Components Co., Ltd. Electric valve
JP2021505829A (en) * 2018-03-23 2021-02-18 浙江三花智能控制股▲ふん▼有限公司 Electronic expansion valve
JP2019090543A (en) * 2019-03-19 2019-06-13 株式会社不二工機 Motor valve
CN112815134A (en) * 2019-11-18 2021-05-18 株式会社鹭宫制作所 Electric valve and refrigeration cycle system

Also Published As

Publication number Publication date
JP4230806B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US7165755B2 (en) Motor-operated valve
JP2898906B2 (en) Electric flow control valve
JP2001050415A (en) Electrically driven valve
CN107542966B (en) Electric valve
KR101257519B1 (en) Electric motor valve
JP6772210B2 (en) Solenoid valve
JP2004316718A (en) Electric operated valve
JP2007024186A (en) Two-stage control valve
JP2020041596A (en) Motor-operated valve
JP4416528B2 (en) Flow control valve
JP2005221115A5 (en)
JPH08170753A (en) Electric flow rate control valve
JP4490063B2 (en) Motorized valve
JPH08159320A (en) Motor-driven flow control valve
JPH08159321A (en) Motor-driven flow control valve
JPH0624282U (en) Electric flow control valve
JP7133880B2 (en) electric valve
JPH1030744A (en) Electric flow control valve
JP2007010015A (en) Electric flow rate control valve
JPH09217853A (en) Motor-driven valve
JP4113386B2 (en) Motorized valve
JP5342951B2 (en) Motorized valve
JP4633943B2 (en) Electric switching valve
JPH10274352A (en) Electric flow control valve
JP2023139735A (en) Motor valve and method for assembling motor valve

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Ref document number: 4230806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term