JP2004316459A - 内燃機関の触媒劣化検出装置 - Google Patents

内燃機関の触媒劣化検出装置 Download PDF

Info

Publication number
JP2004316459A
JP2004316459A JP2003107999A JP2003107999A JP2004316459A JP 2004316459 A JP2004316459 A JP 2004316459A JP 2003107999 A JP2003107999 A JP 2003107999A JP 2003107999 A JP2003107999 A JP 2003107999A JP 2004316459 A JP2004316459 A JP 2004316459A
Authority
JP
Japan
Prior art keywords
catalyst
convergence point
exhaust gas
deterioration
deficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003107999A
Other languages
English (en)
Inventor
Toshinari Nagai
俊成 永井
Naoto Kato
直人 加藤
Naoki Baba
直樹 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2003107999A priority Critical patent/JP2004316459A/ja
Publication of JP2004316459A publication Critical patent/JP2004316459A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】本発明は内燃機関の排気通路に配置された触媒の劣化を検出するための触媒劣化検出装置に関し、エミッション特性を損なわずに触媒の劣化を精度良く検出することを目的とする。
【解決手段】内燃機関の排気通路に排気ガスを浄化するための触媒を設ける。触媒の内部を流れる排気ガス中の酸素過不足量を、排気ガスの流れ方向のブロックA〜J毎に推定する。その推定結果に基づいて、排気ガス中の酸素過不足量が判定値以下となる収束点を特定し、各ブロックが収束点となる頻度(ストイキ収束頻度)を計数する。収束点が触媒内の上流側に位置するように空燃比を制御する。その空燃比制御に関わらず、下流側のブロックで高い収束点頻度が認められる場合は触媒の劣化を判定する。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路に配置された触媒の劣化を検出するための触媒劣化検出装置に関する。
【0002】
【従来の技術】
従来、例えば特開2001−329832号公報に開示されるように、内燃機関の排気通路に配置された触媒の劣化を車両上で検出するための装置が知られている。この装置において用いられている触媒は三元触媒であり、排気ガスの空燃比がリッチである場合、つまり、排気ガス中の酸素が不足している場合は、吸蔵している酸素を放出することで未浄化の成分を酸化する。また、排気ガスの空燃比がリーンである場合、つまり、排気ガス中の酸素が過剰である場合は、未浄化の成分を酸化しつつ、余剰の酸素を吸蔵する。この触媒が正常な浄化機能を発揮するためには、その内部に十分な酸素吸蔵容量が確保されていることが必要である。従って、その酸素吸蔵容量が不十分になった場合には、その状態を触媒の劣化として検知することが必要である。
【0003】
上記従来の装置は、触媒に流入する排気ガスの空燃比を強制的にリッチおよびリーンに振動させることにより触媒の酸素吸蔵容量を検出し、その検出値が正常値を下回った場合に触媒の劣化を判断することとしている。より詳細には、上記従来の装置は、触媒の下流にリッチな排気ガスが流出し始めるまで触媒上流の排気ガスをリッチに維持することにより触媒内の全ての酸素を放出させる処理と、触媒の下流にリーンな排気ガスが流出し始めるまで触媒上流の排気ガスをリーンに維持することにより触媒に吸蔵容量一杯に酸素を吸蔵させる処理とを繰り返し実行する。そして、触媒が酸素を吸蔵する過程で触媒に流入した過剰酸素量を積算することにより、或いは、触媒が酸素を放出する過程で触媒に流入した酸素不足量を積算することにより、酸素吸蔵容量を算出する。このような手法によれば、触媒の酸素吸蔵容量を正確に計測することが可能であり、触媒の劣化を精度良く検知することができる。
【0004】
【特許文献1】
特開2001−329832号公報
【特許文献2】
特開平5−133264号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来の装置においては、触媒の酸素吸蔵容量を測定する過程において、触媒の下流にリッチ或いはリーンな排気ガスが吹き抜けるまで触媒上流の空燃比をリッチ或いはリーンに維持することが必要である。このため、上記従来の装置は、触媒の劣化は精度良く検出できるものの、その検出に伴ってエミッション特性を悪化させ易いという特性を有していた。
【0006】
本発明は、上記の点に鑑みてなされたものであり、エミッション特性を何ら損なうことなく触媒の劣化を精度良く検出することのできる内燃機関の触媒劣化検出装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
第1の発明は、上記の目的を達成するため、内燃機関の触媒劣化検出装置であって、
排気通路に配置され、内燃機関から排出される排気ガスを浄化して排出する触媒と、
前記触媒の内部を流れる排気ガス中の酸素過不足量を、排気ガスの流れ方向の位置毎に推定することのできる触媒内酸素過不足量推定手段と、
排気ガス中の酸素過不足量が判定値以下となる触媒内の収束点を検知する収束点検知手段と、
前記収束点が触媒内の上流側に位置するように空燃比を制御する空燃比制御手段と、
前記収束点の位置に基づいて前記触媒の劣化状態を判定する触媒劣化判定手段と、
を備えることを特徴とする。
【0008】
また、第2の発明は、第1の発明において、前記触媒劣化判定手段は、
触媒内の特定位置が前記収束点となる頻度、或いは、触媒内の特定位置以降の領域内に前記収束点が収まる頻度を検出する頻度検出手段と、
前記頻度が、触媒正常時には超えることのない判定値を超えている場合に前記触媒の劣化を判断する頻度判断手段と、
を含むことを特徴とする。
【0009】
また、第3の発明は、第1の発明において、前記触媒劣化判定手段は、
触媒内の特定位置が前記収束点となる頻度、或いは、触媒内の特定位置以前の領域内に前記収束点が収まる頻度を検出する頻度検出手段と、
前記頻度が、触媒正常時には下回ることのない判定値を下回っている場合に前記触媒の劣化を判断する頻度判断手段と、
を含むことを特徴とする。
【0010】
また、第4の発明は、第1の発明において、前記触媒劣化判定手段は、
前記収束点のばらつき程度を検出するばらつき検出手段と、
前記ばらつき程度が、触媒正常時には超えることのない判定値を超えている場合に前記触媒の劣化を判断するばらつき判断手段と、
を含むことを特徴とする。
【0011】
また、第5の発明は、第4の発明において、
前記ばらつき検出手段は、前記収束点の変化距離の積算値を求める変化距離積算値算出手段を含み、
前記ばらつき判断手段は、前記変化距離の積算値、或いはその変換値に基づいて前記触媒が劣化しているか否かを判断することを特徴とする。
【0012】
また、第6の発明は、第1の発明において、
前記収束点の平均位置を検出する平均収束点検出手段と、
前記平均位置に基づいて前記判定値を設定する判定値設定手段と、
を備えることを特徴とする。
【0013】
また、第7の発明は、内燃機関の触媒劣化検出装置であって、
排気通路に配置され、内燃機関から排出される排気ガスを浄化して排出する触媒と、
前記触媒の下流に流出する排気ガス中の酸素過不足量を推定することのできる酸素過不足量推定手段と、
前記触媒の下流において排気ガス中の酸素過不足状態を検出する酸素過不足状態検出センサと、
推定された前記酸素過不足量と、検出された前記酸素過不足状態とが対応しない場合に、前者が後者に一致するように、前記酸素過不足量推定手段による推定手法を補正する推定手法補正手段と、
前記推定手法の補正頻度、或いは、前記推定手法の補正幅に基づいて前記触媒の劣化状態を判定する触媒劣化判定手段と、
を備えることを特徴とする。
【0014】
また、第8の発明は、第7の発明において、
前記触媒の内部を流れる排気ガス中の酸素過不足量を、排気ガスの流れ方向の位置毎に推定することのできる触媒内酸素過不足量推定手段と、
排気ガス中の酸素過不足量が判定値以下となる触媒内の収束点を検知する収束点検知手段とを備え、
前記推定手法補正手段は、前記収束点が前記触媒内に存在しなくなったにも関わらず、検出された前記酸素過不足状態に反転が認められない場合に、推定された前記酸素過不足量と、検出された前記酸素過不足状態とが対応していないと判断することを特徴とする。
【0015】
また、第9の発明は、第7または第8の発明において、
前記触媒の内部を流れる排気ガス中の酸素過不足量を、排気ガスの流れ方向の位置毎に推定することのできる触媒内酸素過不足量推定手段と、
排気ガス中の酸素過不足量が判定値以下となる触媒内の収束点を検知する収束点検知手段とを備え、
前記推定手法補正手段は、前記収束点が前記触媒内に存在しているにも関わらず、検出された前記酸素過不足状態に反転が認められた場合に、推定された前記酸素過不足量と、検出された前記酸素過不足状態とが対応しないと判断することを特徴とする。
【0016】
【発明の実施の形態】
以下、図面を参照してこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
【0017】
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1の構成を説明するための図を示す。図1に示すように、本実施形態は、内燃機関10を備えている。内燃機関10には、吸気通路12および排気通路14が連通している。
吸気通路12には、その内部を流れる空気量、すなわち、内燃機関10に流入する吸入空気量Gaを検知するエアフロメータ16が配置されている。エアフロメータ16の下流には、スロットルバルブ18が配置されている。スロットルバルブ18は、アクセル開度などに基づいてスロットルモータ20により駆動される電子制御式のバルブである。スロットルバルブ18の近傍には、スロットル開度を検出するためのスロットルポジションセンサ22、およびアクセル開度を検出するためのアクセルポジションセンサ24が配置されている。
【0018】
内燃機関10は、複数の気筒を有する多気筒式の機関であり、図1は、そのうちの一気筒の断面を示している。内燃機関10が備える個々の気筒には、吸気通路12に通じる吸気ポート、および排気通路14に通じる排気ポートが設けられている。個々の吸気ポートには、その内部に燃料を噴射するための燃料噴射弁25が配置されている。また、個々の吸気ポートおよび排気ポートには、それぞれ、吸気通路12或いは排気通路14と内燃機関10の燃焼室とを導通または遮断するための吸気弁26および排気弁28が設けられている。
【0019】
内燃機関10は、クランクシャフトの近傍にクランク角センサ29を備えている。クランク角センサ29によれば、クランクシャフトの回転位置や、クランクシャフトの回転速度、つまり、内燃機関10の回転数NE等を検知することができる。
【0020】
内燃機関10の排気通路14には、排気ガスを浄化するための触媒30が配置されている。触媒30は、酸素を含むリーンな排気ガスが供給された場合にはその内部に酸素を吸蔵し、また、酸素不足のリッチな排気ガスが供給された場合にはその内部に吸蔵している酸素を放出することで排気ガスを浄化する三元触媒でである。触媒30の上流および下流には、それぞれの位置で排気空燃比A/Fがリッチであるかリーンであるかを検出するための上流側空燃比センサ32、および下流側空燃比センサ34が配置されている。また、触媒30には、その内部の温度Tempを検出するための触媒温度センサ36が配置されている。
【0021】
図1に示すシステムは、ECU(Electronic Control Unit)40を備えている。ECU40は、内燃機関10の運転状態を制御するユニットである。上述した各種アクチュエータやセンサ等は、ECU40により駆動され、また、ECU40に対して出力信号等を供給している。
【0022】
[空燃比フィードバック制御の基本動作の説明]
本実施形態のシステムにおいて、内燃機関10に対する燃料噴射量は、サイクル毎に燃料噴射弁25が開弁状態とされる時間、つまり、燃料噴射時間TAUにより決定される。ECU40は、触媒30に流入する排気ガスの空燃比、すなわち排気空燃比A/Fが、理論空燃比の近傍でリッチな値とリーンな値を繰り返すようにその燃料噴射時間TAUを制御する。
【0023】
より具体的には、ECU40は、先ず、吸入空気量Gaに基づいて、理論空燃比を実現するための基本の燃料噴射時間TAU0を算出する。そして、ECU40は、そのTAU0にフィードバック補正係数FAFを掛け合わせることにより最終的な燃料噴射時間TAUを決定する。フィードバック補正係数FAFは、上流側空燃比センサ32により検出される排気空燃比A/Fがリッチである間は減少方向に更新される。その結果、燃料噴射時間TAUが縮小され、排気空燃比A/Fはリーン方向に補正される。また、フィードバック補正係数FAFは、排気空燃比A/Fがリーンである間は増加方向に更新される。その結果、燃料噴射時間TAUが伸張され、排気空燃比A/Fがリッチ方向に補正される。このような制御が繰り返し行われることにより、触媒30の上流における排気空燃比A/Fは、理論空燃比を挟んで、その近傍において振動するように変化する。
【0024】
触媒30上流における排気空燃比A/Fが上記の如く理論空燃比の近傍で振動を繰り返す場合、触媒30には、リッチな排気ガスとリーンな排気ガスとが、つまり、酸素不足の排気ガスと酸素過多な排気ガスとが交互に適当な期間だけ供給されることになる。触媒30に流入する排気ガスの空燃比がこのような変化を示すと、触媒30の内部では、酸素の放出と吸蔵とが適当に繰り返されることとなり、その結果、触媒30の排気ガス浄化能力が安定して維持されることとなる。以上説明した通り、本実施形態のシステムでは、上流側空燃比センサ32の出力に基づく空燃比フィードバック制御を行うことで、触媒30に、継続的に所望の排気ガス浄化能力を発揮させることができる。
【0025】
しかしながら、上述した空燃比フィードバック制御によって触媒30の浄化能力を維持することができるのは、あくまで、触媒30の内部において酸素吸蔵能力に余力が存在する場合に限られる。つまり、触媒30の上流において排気空燃比A/Fを振動させ続けたとしても、様々な要因により、触媒30の内部状態は、吸蔵容量一杯に酸素が吸蔵された状態や、全ての吸蔵酸素が放出された状態が形成されることがある。前者の場合に、リーンな排気ガスが触媒30に流入すると、また、後者の場合にリッチな排気ガスが触媒30に流入すると、未浄化の排気ガスが触媒30の下流に吹き抜ける。
【0026】
内燃機関10のエミッション特性を常時良好に維持するためには、そのような未浄化成分の吹き抜けは回避することが望ましい。更に、排気空燃比A/Fの荒れに対する触媒30の余力を確保しておく意味では、触媒30の全域に適量な酸素が吸蔵されている状態、より具体的には、触媒30の全域が、吸蔵可能な最大酸素量のほぼ半分を吸蔵しているような状態が維持されることが望ましい。
【0027】
そこで、本実施形態のシステムでは、触媒30の内部状態を排気ガスの流れ方向の位置毎に推定し、つまり、個々の位置における酸素吸蔵状態や、個々の位置を流れる排気ガス中の酸素過不足量(空燃比)を推定し、その推定結果に基づいて、上述した望ましい状態が形成されるように、空燃比制御の手法に補正を施すこととしている。以下、このような機能を実現するために、ECU40が実行する具体的な処理の内容について説明する。
【0028】
[触媒モデルの説明]
図2は、本実施形態において用いられる触媒モデルを説明するための概念図である。本実施形態において、ECU40は、以下に説明する触媒モデルを用いて触媒30の内部状態を推定する。以下、図2を参照して、その触媒モデルの内容と、そのモデルを用いた状態推定の方法とを具体的に説明する。
【0029】
図2に示すように、本実施形態において用いられる触媒モデルは、触媒30を、仮想的に、排気ガスの流れ方向に並ぶ複数のブロックに分割して取り扱うことを前提としている。ここでは、便宜上それらのブロックを、上流側から下流側に向う順で、Aブロック、Bブロック、・・・Hブロック、Iブロック、Jブロックとし、それぞれのブロックはΔxの幅を有しているものとする。
【0030】
図2に示すCginは、触媒30に流入する排気ガス中の特定成分の量、つまり、内燃機関10から排出されてきた直後の排気ガス中の特定成分の量を意味している。また、図2に示すCgoutは、触媒30から流出する排気ガス中の特定成分の量を意味している。図2に示す触媒モデルの概念図において、触媒30に流入する特定成分の量Cginは、そのままAブロックに流入する特定成分の量Cgin(A)となる。また、Aブロックから排出される排気ガス中の特定成分の量Cgout(A)は、そのままBブロックに流入する特定成分の量Cgin(B)となる。そして、隣接するブロックの間ではこの関係が順次成立し、最下流のブロックJから流出する特定成分の量Cgout(J)は、そのまま触媒30から流出する特定成分の量Cgoutとなる。尚、本明細書において、Cgin(N)およびCgout(N)は、それぞれ第Nブロックに流入する特定成分の量、および第Nブロックから流出する特定成分の量を示しているものとする。
【0031】
上記の関係は、排気ガス中に含まれる種々の成分、例えば、NOx、CO、HC、O2などのそれぞれについて成立する。以下、触媒モデルの説明を進めるにあたり、説明の簡単化のため、その特定成分は酸素であるものとする。そして、Cgin、Cgout、Cgin(N)およびCgout(N)は、排気ガス中に含まれる酸素量を正の値で示し、排気ガス中の酸素不足量を負の値で示す変数とする。このような前提の下、以下の説明においては、CginおよびCgin(N)を「流入酸素過不足量」と称し、また、CgoutおよびCgout(N)を「流出酸素過不足量」と称することとする。
【0032】
本実施形態において、ECU40には、個々のブロックの流入酸素過不足量Cgin(N)に基づいて、そのブロックの流出酸素過不足量Cgout(N)を演算するためのモデルが記憶されている(詳細は後に説明する)。このモデルによれば、CginすなわちCgin(A)に基づいてCgout(A)を求めることができ、また、Cgout(A)すなわちCgin(B)に基づいてCgout(B)を求めることができる。そして、同様の計算を繰り返すことにより、個々のブロックにおける流出酸素過不足量Cgout(N)を順次求めることができ、その計算をJブロックまで行うことで、触媒30の下流における流出酸素過不足量Cgoutを求めることができる。
【0033】
図1に示すシステムによれば、上流側空燃比センサ32により検出される排気空燃比A/F、およびエアフロメータ16により検出される吸入空気量Ga(或いは、そのGaに基づいて算出される燃料噴射量)に基づいて、内燃機関10から流出する排気ガス中の酸素過不足量、つまり、触媒30に流入する排気ガス中の酸素過不足量Cginを求めることができる。従って、ECU40は、上述した触媒モデルを用いた繰り返し計算を行うことにより、AブロックからJブロックまでの全てにつき流出酸素過不足量Cgout(N)を求めることができ、また、触媒30の下流における流出酸素過不足量Cgoutを求めることができる。
【0034】
次に、ECU40が、第N段のブロックにおける流入酸素過不足量Cgin(N)に基づき、そのブロックにおける流出酸素過不足量Cgout(N)を求める具体的手法について説明する。
次式(1)は、ECU40が、時刻t+Δtにおける第N段のブロックの流出酸素過不足量Cgout(t+Δt, N)を推定するために用いる演算式である。
Figure 2004316459
但し、δCgは、δCg(Ga,Temp,φost(t,N))と表されるべき関数、つまり、吸入空気量Ga、触媒温度Temp、および時刻tにおける第N段のブロックの酸素吸蔵率φost(t, N)の関数である。ECU40は、Ga、Temp、およびφostと、δCgとの関係を定めたマップ或いは演算式を記憶しており、そのマップ或いは演算式を用いてδCgを算出する。
【0035】
δCgは、物理的には、触媒30が、単位時間および単位長あたりに吸蔵或いは放出する酸素の量を意味している。δCgの符号は、第N段のブロックが酸素を吸蔵する場合には正に設定され、一方、酸素を放出する場合には負に設定される。具体的には、第N段のブロックに流れ込む排気ガスがリーンであり、そのブロックが酸素を吸蔵する状況下ではδCgの符号は正とされ(δCg>0)、反対に、第N段のブロックに流れ込む排気ガスがリッチであり、そのブロックが酸素を放出する状況下ではδCgの符号は負とされる(δCg<0)。
【0036】
つまり、上記(1)式中、右辺第2項「δCg×Δt×Δx」は、第N段のブロック(幅Δx)において、Δtの時間の間に吸蔵または放出される酸素量に相当している。ここで、上記(1)式中、右辺第1項に含まれる第N−1ブロックの流出酸素過不足量Cgout(t+Δt, N−1)は、そこを流れる排気ガスがリーンである場合、時刻t+Δtに第N−1段のブロックから流出してくる排気ガス中の酸素過多量を意味する。従って、上記(1)式によれば、この場合は、第N−1段のブロックから流出してくる排気ガス中の酸素過多量から第N段のブロックで吸蔵される酸素量δCg×Δt×Δxを減じた値が、第N段における流出酸素過不足量Cgout(t+Δt, N)として、つまり、第N段のブロックから流出する排気ガス中の酸素過多量として算出される。
【0037】
時刻t+Δtにおいて第N−1段のブロックから流出してくる排気ガスがリッチである場合は、上記(1)式の右辺第1項Cgout(t+Δt, N−1)は、第N−1段のブロックから流出する排気ガス中の酸素不足量を意味する。従って、上記(1)式によれば、この場合は、第N−1段のブロックから流出してくる排気ガス中の酸素不足量に第N段のブロックから放出される酸素量δCg×Δt×Δxを加えた値が第N段のブロックにおける流出酸素不足量Cgout(t+Δt, N)として、つまり、第N段のブロックから流出する排気ガス中の酸素不足量として算出される。
【0038】
δCgを決定する3つの因子のうち、吸入空気量Gaと触媒温度Tempは、それぞれエアフロメータ16および触媒温度センサ36により検知することができる。残る1つの因子、すなわち、酸素吸蔵率φost(t,N)は、次式(2)に示す通り、時刻tにおける第N段のブロックの酸素吸蔵量ost(t,N)と、第N段のブロックの酸素吸蔵容量OSC(N)との比である。
φost(t,N)=ost(t,N)/OSC(N) ・・・(2)
【0039】
酸素吸蔵容量OSC(N)は、触媒30の酸素吸蔵量OSCを求めるための公知の手法と同様の手法により求めることができる。例えば、その値OSC(N)は、以下のような手法で求めることができる。すなわち、先ず、第N段のブロックに吸蔵されている全ての酸素が放出されるまで、そのブロックに流入する排気ガスの空燃比をリッチに維持する。全ての酸素が放出されたと判断できたら(第N段のブロックの下流にリッチな排気ガスが流出してきたら)、次にそのブロックに流入する排気ガスの空燃比をリーンに変化させる。以後、第N段のブロックに容量一杯の酸素が吸蔵されるまで(第N段のブロックの下流にリーンな排気ガスが流出してくるまで)、そのブロックに流入する排気ガス中の酸素量を積算する。この手法によれば、酸素量の積算値の最終的な値を、第N段のブロックにおける酸素吸蔵容量OSC(N)として扱うことができる。尚、OSC(N)を求める手法はこれに限定されるものではなく、より単純には、触媒30のOSCを、ブロック数(本実施形態では10)で割った値をOSC(N)としてもよい。
【0040】
上記(2)式に含まれるost (t,N)は、次式(3)に示す関係式により求めることができる。但し、ここでは、説明の便宜上、時刻t+Δtにおける第N段のブロックの酸素吸蔵量ost(t+Δt,N)を求める形式で式(3)を表している。また、次式(3)中、右辺第2項に含まれるKは適合係数である。
ost(t+Δt, N)=ost(t, N)+K×δCg×Δt×Δx ・・・(3)
【0041】
上記(3)式によれば、第N段のブロックに流入する排気ガスがリーンである場合は(従って、δCgは正)、時刻tにおける酸素吸蔵量ost(t, N)に、時間Δtの間に新たに吸蔵された酸素量(厳密には適合係数Kで補正された値)を加えた値が時刻t+Δtにおける酸素吸蔵量ost(t+Δt, N)として算出される。また、第N段のブロックに流入する排気ガスがリッチである場合は(従って、δCgは負)、時刻tにける酸素吸蔵量ost(t, N)から、時間Δtの間に放出された酸素量(厳密には適合係数Kで補正された値)を減じた値が時刻t+Δtにおける酸素吸蔵量ost(t+Δt, N)として算出される。
【0042】
以上説明した通り、ECU40は、上述した触媒モデルを用いることにより、第N段のブロックにおける流出酸素過不足量Cgout(N)、酸素吸蔵率φost(N)、および酸素吸蔵量ost(N)等を求めることができる。そして、ECU40は、個々のブロックに対して上記の処理を繰り返し適用することにより、AブロックからJブロックまで、全てのブロックにつき、それらの値を算出することができる。
【0043】
[本実施形態における空燃比制御の説明]
以上の処理によれば、本実施形態のシステムでは、流出酸素過不足量Cgout(N)の収束点がどこにあるのか、また、その収束点の上流側にどのような酸素過不足量分布が存在しているのかを検知することができる。そして、これらの情報が取得できれば、その収束点が、未浄化成分の吹き抜けを生じさせる程度にまで下流側に移行しているかを判断することができ、更に、その収束点を上流側に移行させるために触媒上流の空燃比A/Fをどのように制御すればよいかを決めることができる。
【0044】
そこで、本実施形態では、収束点が所定の目標位置を超えて下流側に移行してきた場合に、その収束点が上流側に移行するように空燃比制御の手法を補正することで、未浄化成分の吹き抜けを防止することとしている。このため、本実施形態のシステムによれば、原則的には、触媒30の上流側の領域で流出酸素過不足量Cgout(N)を収束させることができ、触媒30の下流に未浄化の成分が吹き抜けるのを有効に防止することができる。
【0045】
[本実施形態における触媒の劣化検出の説明]
以上説明した通り、本実施形態のシステムは、流出酸素過不足量Cgout(N)が触媒30内の上流側の領域において収束するように空燃比制御を行っている。このような空燃比制御によれば、触媒30が正常である場合は、排気ガスの浄化が触媒30の上流側領域において完了し、収束点がその下流側領域に表れる頻度は低くなる。これに対して、このような空燃比制御の実行下であっても、触媒30の劣化が進んでいる場合は、僅かな空燃比ずれの影響で収束点が触媒30の下流側領域に進入し易くなり、収束点がその下流側領域に発生する頻度が高くなる。
【0046】
このため、本実施形態のシステムでは、流出酸素過不足量Cgout(N)の収束点が、触媒内の個々のブロックにどのような頻度で表れるか、つまり、その収束点が、触媒内にどのような分布で表れるかに基づいて、触媒30の劣化状態を推定することができる。より具体的には、所望のエミッション特性が得られなくなる収束点の分布特性を事前に定めておき、そのような分布特性が現実に生じているか否かを見ることにより、触媒30が劣化しているか否かを判断することができる。
【0047】
図3は、触媒30の劣化時に、流出酸素過不足量Cgout(N)の収束点が、触媒30の内部においてどのような頻度で発生しているかを表した一例である。この図において破線で示すレベルは、所望のエミッション特性を維持するうえでHブロックに収束点が表れる頻度として許容できる上限の値である。つまり、図3は、触媒30が劣化した結果、Hブロックが収束点となる頻度が、その許容限界値を超えている状態を示している。
【0048】
本実施形態のシステムでは、触媒30の劣化が進むに連れて収束点頻度が顕著に増加する特定ブロックを予め実験的に探し出しておくことが可能である。そして、その特定ブロックにおける収束点頻度の許容限界値も、実験的に予め定めることが可能である。このため、本実施形態のシステムによれば、例えば、特定ブロックが収束点となる頻度を検出し、更に、その頻度が既定の許容限界値を超えているか否かを判断することにより、触媒30に劣化が生じているか否かを精度良く判断することが可能である。
【0049】
図4は、上記の機能を実現するためにECU40が実行するルーチンのフローチャートである。
図4に示すルーチンでは、先ず、空燃比フィードバック制御が実行されているか否かが、具体的な処理としては、そのための実行条件が成立しているか否かが判別される(ステップ100)。
【0050】
空燃比フィードバック制御の実行条件が成立していないと判別された場合は、以後速やかに今回の処理サイクルが終了される。一方、その条件が成立していると判別された場合は、次に、触媒モデルを用いた上記の処理により、触媒30内の全てのブロックにつき、流出酸素過不足量Cgout(N)が算出される(ステップ102)。
全てのブロックにつき流出酸素過不足量Cgout(N)が算出されると、そのCgout(N)がゼロとなるブロック、つまり、収束点を検知することができる。
【0051】
図4に示すルーチンでは、次に、収束点頻度のデータを更新する処理が行われる(ステップ104)。
ECU40は、過去最新の所定期間の間に、触媒30内の個々のブロックが収束点となった回数を記憶しており、その回数に基づいて上記所定期間における個々のブロックの収束点頻度を算出する。本ステップ104では、具体的には、上記ステップ102において検知された収束点の属するブロックにつき、収束点頻度を更新する処理が行われる。
【0052】
次に、触媒30の劣化の影響が顕著に表れるブロックとして予め設定されている特定ブロックにつき、そのブロックにおける収束点頻度が、許容限界値を超えているか否かが判別される(ステップ106)。
特定ブロックは、既述した通り、触媒30の劣化が進むに連れて、収束点頻度が顕著に増加するブロックであり、本実施形態では実験的に定められている。また、その特定ブロックにおける許容限界値も、実現すべき所望のエミッション特性が保証できる最大の値として実験的に予め定められている。但し、特定ブロックは、触媒30の劣化が収束頻度に表れるブロックであれば足り、例えば、触媒30の半分より下流側のブロックであれば、より好ましくは触媒30の下流側1/3の領域内のブロックであれば、特定ブロックとして用い得る可能性が認められる。
【0053】
図4に示すルーチンでは、上記ステップ106において特定ブロックの収束点頻度が許容上限値を超えていると判別された場合は、触媒30の劣化が判定される(ステップ108)。
一方、特定ブロックの収束点頻度が許容限界値以下であると判別された場合は、触媒30の劣化判定がなされることなく今回の処理サイクルが終了される。
【0054】
以上説明した通り、図4に示すルーチンによれば、触媒30の内部で、流出酸素過不足量Cgout(N)の頻度がどのような分布で存在しているかに基づき、触媒30が劣化しているか否かを精度良く判断することができる。つまり、図4に示すルーチンによれば、触媒30の下流に未浄化の排気ガスを流出させないための空燃比制御を実行しつつ、触媒30の劣化状態を判定することができる。このため、本実施形態のシステムによれば、内燃機関10のエミッション特性を何ら悪化させることなく、触媒30の劣化検出を行うことができる。
【0055】
ところで、上述した実施の形態1においては、触媒30が劣化しているか否かを、特定ブロックに収束点が発生する頻度に基づいて判断することとしているが、その判断の手法はこれに限定されるものではない。すなわち、本発明は、触媒30の内部において収束点が発生する位置に基づいて触媒30の劣化を判定するものであり、例えば、特定のブロックから最下流のブロックまでの領域において収束点が発生する頻度に基づいてその判断を行うこととしてもよい。
【0056】
また、上述した実施の形態1においては、特定ブロックを触媒30の下流領域に設定したうえで、つまり、特定ブロックを触媒30の劣化が進むにつれて収束点頻度が高まる領域に設定したうえで、そのブロックにおける収束点頻度が許容上限値を超えたか否かに基づいて触媒30の劣化を判断することとしているが、本発明はこれに限定されるものではない。つまり、特定ブロックを、触媒30の劣化が進むに連れて収束点頻度が低下する触媒上流側の領域に設定し、そのブロックにおける収束点頻度が、許容下限値を下回った場合に触媒30の劣化を判定することとしてもよい。
【0057】
更に、上述した実施の形態1においては、特定ブロックにおける許容上限値が固定値とされているが、許容上限値は固定値に限られるものではない。すなわち、許容限界値は、例えば、収束ブロックの平均位置に基づいて上下させることとしてもよい。尚、収束ブロックの平均位置に基づいて許容上限値を上下させる目的、および効果は、後に説明する実施の形態2の場合と同様である。
【0058】
尚、上述した実施の形態1においては、ECU40が、上記ステップ102の処理を実行することにより前記第1の発明における「触媒内酸素過不足量推定手段」および「収束点検知手段」が、その収束点が上流側に移行するように空燃比制御を行うことにより前記第1の発明における「空燃比制御手段」が、上記ステップ104および106の処理を実行することにより前記第1の発明における「触媒劣化判定手段」が、それぞれ実現されている。
【0059】
また、上述した実施の形態1においては、ECU40が、上記ステップ106の処理を実行することにより前記第2の発明における「頻度検出手段」が、上記ステップ106の処理を実行することにより前記第2の発明における「頻度判断手段」が、それぞれ実現されている。
また、上述した実施の形態1においては、ECU40に、上記ステップ106において、触媒内の特定位置、或いはその特定位置以前の領域内が収束点となる頻度を検出させることにより前記第3の発明における「頻度検出手段」を、上記ステップ106において、特定ブロックの収束点頻度が許容下限値を下回っているか否かを判別させることにより前記第3の発明における「「頻度判断手段」を、それぞれ実現することができる。
【0060】
また、上述した実施の形態1においては、ECU40に、収束点の平均位置を検出させることにより前記第6の発明における「平均収束点検出手段」を、その平均位置に基づいて許容上限値(または許容下限値)を設定させることにより前記第6の発明における「判定値設定手段」を、それぞれ実現することができる。
【0061】
実施の形態2.
次に、図5および図6を参照して、本発明の実施の形態2について説明する。本実施形態の装置は、実施の形態1の装置において、ECU40に、上記図4に示すルーチンに代えて、後述する図5に示すルーチンを実行させることにより実現することができる。
【0062】
既述した通り、流出酸素過不足量Cgout(N)の収束点は、触媒30が劣化することによりその下流側の領域において発生し易くなる。上述した実施の形態1では、この性質を利用して、下流側の特定ブロックにおける収束点頻度に基づいて触媒30に劣化が生じているか否かを判断することとしている。
【0063】
ところで、流出酸素過不足量Cgout(N)の収束点位置は、触媒30の劣化が進むにつれて大きくばらつく傾向を示す。すなわち、本実施形態の装置は、実施の形態1の場合と同様に、触媒内部の収束点が上流側に移行するように空燃比を制御している。内燃機関10の運転状態は常に一定ではないため、上記の空燃比制御が行われていても、触媒30に供給される排気ガスの空燃比には、ある程度の幅で頻繁に変化が生ずる。
【0064】
触媒30が十分な酸素吸蔵容量を有しており、上流側のブロックだけで十分な浄化能力が確保できている間は、そのような空燃比変化が生じても、流出酸素過不足量Cgout(N)の収束点が大きく下流側にずれることはない。しかしながら、触媒30の劣化が進んでおり、その上流側のブロックのみでは十分な浄化能力が確保できない状況下では、僅かな空燃比変化に伴い収束点が大きく下流側に変化する事態が生ずる。このため、流出酸素過不足量Cgout(N)の収束点は、触媒30の劣化が進むに連れておおきくばらつく傾向を示す。このため、本実施形態の装置によれば、内燃機関10の運転中に収束点がどの程度のばらつきを示すかに基づいて、触媒30の劣化程度を判断することができる。
【0065】
図5は、上記の機能を実現するために本実施形態においてECU40が実行する制御ルーチンのフローチャートを示す。尚、図5において、上記図4に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
【0066】
すなわち、図5に示すルーチンでは、空燃比フィードバック制御が実行されている状況下で(ステップ100)、触媒30内の個々のブロックの流出酸素過不足量Cgout(N)が算出されたら(ステップ102)、次いで、収束ブロックの番号♯が計算される(ステップ110)。
本実施形態において、触媒30内の個々のブロックには、上流側から下流側に向かってひとつずつ番号が大きくなるように、1から順に番号が付されている。本ステップ110では、収束点と判断されたブロックの番号が収束ブロック番号♯として記憶される。
【0067】
次に、収束ブロック番号♯の積算値Σ(収束ブロック♯)が算出される(ステップ112)。
本ステップ112では、具体的には、前回の処理サイクル時に算出された積算値Σ(収束ブロック♯)に、今回の処理サイクルで計算された収束ブロック番号♯を加える処理が実行される。
【0068】
次に、前回の収束ブロック番号(♯前回)と、今回の収束ブロック番号(♯今回)の差を積算する処理、つまり、収束点の変動幅の積算値Σ(│収束ブロック♯前回−収束ブロック♯今回│)を求める処理が実行される(ステップ114)。
収束点の上記変動幅(│収束ブロック♯前回−収束ブロック♯今回│)は、収束点が1サイクルの間に大きく変化するほど大きな値となる。1サイクルの間に生ずる収束点の変化量は、触媒30の劣化が進むほど大きくなる。従って、上記の積算値Σ(│収束ブロック♯前回−収束ブロック♯今回│)は、触媒30がどの程度劣化しているかを判断するための特性値として用いることができる。
【0069】
図5に示すルーチンでは、次に、収束ブロック番号♯や収束点の変動幅の積算回数が、所定の判定値αを超えたか否かが判別される(ステップ116)。
その結果、積算回数が判定値αを超えていないと判別された場合は、未だ触媒30の劣化状態を判定するに足る情報が得られていないと判断され、今回の処理サイクルが終了される。
一方、積算回数が判定値αを超えていると判別された場合は、以後、触媒30の劣化判定を行うべく、先ず、平均収束ブロックの算出処理が行われる(ステップ118)。
ここでは、具体的には、上記ステップ112において算出された収束ブロック番号♯の積算値(Σ収束ブロック♯)を積算回数で除することにより平均収束ブロックを求める処理が行われる。
【0070】
流出酸素過不足量Cgoutの収束点は、既述した通り、触媒30の劣化が進むにつれて下流側に移行する。従って、平均収束ブロックの位置は、それ自体、触媒30の劣化状態と相関を有している。図5に示すルーチンでは、その平均収束ブロックは、変動幅閾値を設定する際の基礎とされる(ステップ120)。
図6は、本ステップ120において、ECU40が変動幅閾値を設定するために参照するマップの一例を示す。このマップによれば、変動幅閾値は、平均収束ブロックの位置が下流側になるほど小さな値に設定される。つまり、本ステップ120の処理によれば、変動幅閾値は、平均収束ブロックが、触媒30の劣化を示唆しているほど小さな値に設定される。
【0071】
図6に示すルーチンでは、次に、変動幅の積算値、つまり、上記ステップ114において算出された積算値Σ(│収束ブロック♯前回−収束ブロック♯今回│)が、上記ステップ120において設定された変動幅閾値以上であるか否かが判別される(ステップ122)。
【0072】
その結果、変動幅の積算値が変動幅閾値以上であると判別された場合は、触媒30の劣化が判定される(ステップ124)。
一方、上記ステップ122において、変動幅の積算値が変動幅閾値以上でないと判別された場合は、以後、触媒30の劣化が判定されることなく今回の処理サイクルが終了される。
【0073】
以上説明した通り、図5に示すルーチンによれば、収束点の変動幅の積算値が変動幅閾値以上である場合に、つまり、収束点が、変動幅閾値により規定される基準を超えてばらついている場合に、触媒30の劣化を判定することができる。そして、このルーチンによれば、平均収束ブロックの位置が触媒30の劣化を示唆しているほど、変動幅閾値を小さな値に設定することができる。このため、本実施形態のシステムによれば、収束点のばらつき程度と平均収束ブロックの双方を基礎として、触媒30の劣化の有無を精度良く判断することができる。
【0074】
ところで、上述した実施の形態2においては、収束点のばらつき程度と、平均収束ブロックの双方を、触媒30の劣化を判断するための基礎としているが、これら2つの要素は必ずしも組み合わせて用いる必要はない。すなわち、触媒30の劣化判定は、収束点のばらつき程度のみに基づいて、或いは、平均収束ブロックの位置のみに基づいて行うこととしてもよい。
【0075】
また、上述した実施の形態2においては、ECU40が、上記ステップ122において、収束点の変動幅の積算値に基づいて触媒30の劣化判定を行うこととしているが、その判定の手法はこれに限定されるものではない。すなわち、触媒30の劣化判定は、変動幅の積算値を平均値などに変換した値に基づいて行うこととしてもよい。
【0076】
尚、上述した実施の形態2においては、ECU40が、上記ステップ114の処理を実行することにより前記第4の発明における「ばらつき検出手段」、および前記第5の発明における「変化距離積算値算出手段」が、上記ステップ122の処理を実行することにより前記第4の発明における「ばらつき判断手段」が、それぞれ実現されている。
また、上述した実施の形態2においては、ECU40が、上記ステップ118の処理を実行することにより前記第6の発明における「平均収束点検出手段」が、上記ステップ120の処理を実行することにより前記第6の発明における「判定値設定手段」が、それぞれ実現されている。
【0077】
実施の形態3.
次に、図7を参照して、本発明の実施の形態3について説明する。
本実施形態の装置は、実施の形態1の装置において、ECU40に、上記図4に示すルーチンに代えて、後述する図7に示すルーチンを実行させることにより実現することができる。
【0078】
本実施形態のシステムは、触媒30の下流に下流側空燃比センサ34を有している。従って、ECU40は、触媒30の下流に流出してくる排気ガスの空燃比を実測することができる。一方、ECU40は、上述した触媒モデルを用いた処理を行うことにより、触媒30の下流に流出する排気ガス中の酸素過不足量Cgoutを推定することができる。排気ガス中の酸素過不足量Cgoutは、その排気ガスの空燃比と相関を有する値であるため、酸素過不足量Cgoutは空燃比に変換することができ、反対に、空燃比は酸素過不足量Cgoutに変換することができる。このため、本実施形態においては、触媒下流の空燃比の実測値と、触媒下流における酸素過不足量の推定値とが互いに対応しているか否かを判断することができる。
【0079】
上記の実測値と推定値とが対応している場合は、触媒モデルが、現実の現象を精度良く表していると判断することができる。一方、両者が対応していない場合は、触媒モデルが現実の現象を正しく表していないと判断することができる。そして、後者の場合には、空燃比制御の精度を高めるために、触媒モデルに含まれる適合値(上記(1)式におけるδCg、および上記(3)式における適合係数K)に適当な修正を施すことが望ましい。
【0080】
本実施形態において、ECU40は、上記の要求を満たすべく、触媒下流における空燃比の実測値と、その位置における酸素過不足量Cgoutの推定値とが対応していない場合は、両者が対応するように、適当な修正幅だけ、δCgおよびKに修正を施すこととした。このため、本実施形態のシステムによれば、経時変化等に影響されることなく、触媒モデルを、常に現実の現象に適合したモデルに維持しておくことができる。
【0081】
以上説明した通り、本実施形態のシステムでは、触媒モデルが常に現実の現象を表すように、適宜そのモデルに対して修正が施される。ところで、触媒モデルにより表される現象と、現実に生ずる現象との乖離は、触媒30の劣化が進むに連れて頻繁に、かつ大きく発生し易くなる。このため、本実施形態のシステムにおいては、触媒モデルの修正が必要となる頻度、或いは、触媒モデルに施される修正の大きさから、触媒30にどの程度の劣化が生じているのかを推定することができる。
【0082】
図7は、上述した原理に従って触媒30の劣化状態を判定すべく本実施形態においてECU40が実行する制御ルーチンのフローチャートを示す。尚、図7において、上記図4に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
【0083】
すなわち、図7に示すルーチンでは、空燃比フィードバック制御が実行されている状況下で(ステップ100)、触媒30内の個々のブロックの流出酸素過不足量Cgout(N)が算出されたら(ステップ102)、次いで、収束ブロックの番号♯が計算される(ステップ130)。
尚、本ステップ130の処理は、実質的に図5に示すステップ110の処理と同じであるため、ここではその説明を省略する。
【0084】
図7に示すルーチンでは、次に、前回の処理サイクル時から今回の処理サイクル時にかけて、収束ブロックが触媒30の中から消滅しており、かつ、下流側空燃比センサ34の出力変化がないという状況が生じているか否かが判別される(ステップ132)。
この条件は、触媒モデルを用いた推定によれば触媒30の下流に酸素過不足のある排気ガスが流出し始めたと判断できるにも関わらず、下流側空燃比センサ34によればそのような状況が検出されていない場合にのみ成立する。つまり、本ステップ132において判別される条件は、推定による酸素過不足量Cgoutと、実測による空燃比との対応がとれていない場合に限って成立する条件の一つである。
【0085】
ステップ132において上記条件が不成立であると判別された場合は、次に、今回の処理サイクル時において触媒30の内部に収束点が検知されているにも関わらず、前回の処理サイクル時から今回の処理サイクル時にかけて、下流側空燃比センサ34の出力に顕な変化が生じているという状況が生じているか否かが判別される(ステップ134)。
この条件は、推定による酸素過不足量Cgoutと、実測による空燃比との対応がとれていない場合に限って成立するもう一つの条件である。
【0086】
上記ステップ132の条件、および上記ステップ134の条件の何れもが成立しない場合は、触媒モデルと現実の状態との間に修正すべきずれは認められないと判断することができる。この場合、以後、速やかに今回の処理サイクルが終了される。一方、それらの条件の何れかが成立する場合は、触媒モデルに修正すべきずれが生じていると判断することができる。図7に示すルーチンでは、この場合、先ず、触媒モデルに対して適当な補正が施されると共に、補正回数の積算処理、つまり、前回の処理サイクル時までに行われていた補正回数に1を加える処理が行われる(ステップ136)。
【0087】
次に、「補正回数の積算値」が所定の判定値αを超えたか否か、および触媒モデルに施された「補正量」が所定の判定値βを超えたか否かが判別される(ステップ138)。
【0088】
上記ステップ138において、「補正回数の積算値」としては、触媒30が新品の状態で使用され始めた後に行われた全ての補正回数の積算値、或いは現時点から遡って過去一定期間の間に行われた補正回数の積算値を用いることができる。前者の積算値は触媒モデルが過去にどれだけ補正されたかを表している。触媒モデルの補正は、触媒30の劣化が進むのに追従して行われるため、その値は、触媒30にどの程度の劣化が生じているかに対応している。従って、前者の積算値によれば、適当な判定値αとの比較を行うことで、触媒30の劣化判定を正確に行うことができる。また、後者の積算値は、触媒モデルの補正がどの程度の頻度で行われているかを表している。触媒モデルの補正は、触媒30の劣化が進むほど頻繁に行われ易くなる。従って、後者の積算値も触媒30の劣化状態を表しており、その値によれば、適当な判定値αとの比較を行うことにより、触媒30の劣化判定を正確に行うことができる。
【0089】
同様に、上記ステップ138において、「補正量」としては、触媒30が新品の状態で使用され始めた後に行われた全ての補正に伴う補正量(つまり個々の補正量の積算値)、或いは今回の処理サイクルにおいて行われた補正に伴う補正量を用いることができる。前者の補正量は触媒モデルが過去にどれだけ補正されたかを表しているため、その値によれば、適当な判定値βとの比較を行うことで、触媒30の劣化判定を正確に行うことができる。また、後者の補正量は、触媒モデルにどの程度急激な変化が要求されたかを表している。触媒モデルを現実の状態に合わせるためには、触媒30の劣化が進むにつれて急激で大きな補正が必要となる。従って、後者の補正量も触媒30の劣化状態を表しており、その値によれば、適当な判定値βとの比較を行うことにより、触媒30の劣化判定を正確に行うことができる。
【0090】
このように、上記ステップ138の処理によれば、補正回数が判定値αを超えているか否かに基づいて、また、補正量が判定値βを超えているか否かに基づいて、触媒30に許容できない劣化が生じているか否かを判定することができる。図7に示すルーチンでは、それら2つの条件の何れもが成立しない場合は、触媒劣化の判定がなされることなく今回の処理サイクルが終了される。一方、それらの条件の少なくとも一方が成立する場合には、触媒30の劣化が判定される(ステップ140)。
【0091】
以上説明した通り、図7に示すルーチンによれば、触媒モデルに対してどの程度の回数または頻度で補正が施されているのか、或いは、どの程度の量または激しさで補正が施されているのかに基づいて、触媒30に許容できない劣化が生じているか否かを精度良く判断することができる。この判断の過程では、触媒モデルを適切に修正しつつ、触媒30の下流に未浄化の排気ガスを流出させないための空燃比制御が継続される。このため、本実施形態の装置によれば、実施の形態1または2の場合と同様に、エミッション特性を何ら損なうことなく触媒30の劣化を精度良く検知することができる。
【0092】
ところで、上述した実施の形態3の装置は、内燃機関10の排気通路14に触媒30が一つだけ配置される構造を有しているが、本発明の適用が可能な構造は、このような構造に限定されるものではない。すなわち、本発明は、図8(A)または図8(B)に示すように、排気通路14に、直列に配置された2つの触媒50,52を備える構造に対しても適用することが可能である。
図8(A)は、上流側の触媒50の下流に空燃比センサ54を備える構造を示す。この構造によれば、その空燃比センサ54を実施の形態3における下流側空燃比センサ34として用い、かつ、上流側の触媒50を実施の形態3における触媒30として取り扱うことにより、触媒50の劣化を精度良く判定することができる。
図8(B)は、下流側の触媒52の下流に空燃比センサ56を備える構造を示す。この構造によれば、その空燃比センサ56を実施の形態3における下流側空燃比センサ34として用い、かつ、上流側の触媒50および下流側の触媒52の双方を実施の形態3における触媒30として取り扱うことにより、直列に並んだ2つの触媒50,52が全体として劣化しているか否かを精度良く判定することができる。
【0093】
また、上述した実施の形態3においては、触媒30の下流に、下流側空燃比センサ34を配置すること、つまり、排気ガス中の空燃比に応じた出力を発するセンサを配置することとしているが、そのセンサはこれに限定されるものではない。すなわち、触媒30の下流に配置するセンサは、排気ガスがリッチであるかリーンであるかに応じた出力を発する酸素濃度センサであってもよい。
【0094】
尚、上述した実施の形態3においては、下流側空燃比センサ34が前記第7の発明における「酸素過不足状態検出センサ」に相当していると共に、ECU40が、上記ステップ102の処理を実行することにより前記第7の発明における「酸素過不足量推定手段」が、上記ステップ136において触媒モデルに補正を施すことにより前記第7の発明における「推定手法補正手段」が、上記ステップ138の処理を実行することにより前記第7の発明における「触媒劣化判定手段」が、それぞれ実現される。
また、上述した実施の形態3においては、ECU40が、上記ステップ102の処理を実行することにより前記第8または第9の発明における「触媒内酸素過不足量推定手段」が、上記ステップ130の処理を実行することにより前記第8または第9の発明における「収束点検知手段」が、それぞれ実現されている。
【0095】
【発明の効果】
この発明は以上説明したように構成されているので、以下に示すような効果を奏する。
第1の発明によれば、触媒の内部で排気ガス中の酸素過不足量が判定値以下となる収束点を検知することができる。この収束点の分布は、触媒が正常である場合と劣化している場合とで異なったものとなる。本発明によれば、その収束点の位置に基づいて、触媒が劣化しているか否かを精度良く判定することができる。
【0096】
第2の発明によれば、触媒内の特定位置が収束点となる頻度、或いは、触媒内の特定位置以降の領域内に収束点が収まる頻度が、正常時には到達することのない判定値に達したか否かに基づき、触媒が劣化しているか否かを精度良く判断することができる。
【0097】
第3の発明によれば、触媒内の特定位置が収束点となる頻度、或いは、触媒内の特定位置以前の領域内に収束点が収まる頻度が、正常時には下回ることのない判定値を下回っているか否かに基づき、触媒が劣化しているか否かを精度良く判断することができる。
【0098】
第4の発明によれば、収束点のばらつき程度を検出することができる。収束点は、劣化するにつれてばらつきが大きくなる。本発明によれば、そのばらつき程度が、正常時に到達することのない判定値に達したか否かに基づき、触媒が劣化しているか否かを精度良く判断することができる。
【0099】
第5の発明によれば、収束点の変化距離の積算値に基づいて収束点のばらつき程度を正確に求めることができる。
【0100】
第6の発明によれば、収束点の平均位置に基づいてばらつき程度を検出することができると共に、その平均位置に基づいて、第2の発明において収束頻度と比較される判定値、或いは、第3または第4の発明においてばらつき程度と比較される判定値を適当な値に設定することができる。収束点の平均値は、触媒の劣化状態が反映される一つの物理量である。本発明によれば、その物理量に基づいて判定値を上下させることにより、触媒の劣化検出精度を更に高めることができる。
【0101】
第7の発明によれば、一方で触媒の下流に流出する排気ガス中の酸素過不足量を推定しつつ、他方でその位置における酸素過不足状態を実測することができる。更に、それら両者が対応しない場合には、両者が一致するように酸素過不足量の推定手法を補正することができる。そして、頻繁な補正が必要とされる場合、或いは、大幅な補正が必要とされる場合に、触媒に劣化が生じていると判断することができる。
【0102】
第8の発明によれば、触媒下流への未浄化成分の吹き抜けが推定される状況下で、触媒下流の酸素過不足状態の反転が実測されない場合に、推定による酸素過不足量と実測による酸素過不足状態とが対応していないと判断することができる。
【0103】
第9の発明によれば、触媒下流に清浄な排気ガスが流出していると推定される状況下で、触媒下流の酸素過不足状態の反転が実測された場合に、推定による酸素過不足量と実測による酸素過不足状態とが対応していないと判断することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の構成を説明するための図である。
【図2】本発明の実施の形態1において用いられる触媒モデルの概念を説明するための図である。
【図3】図1に示す構成において触媒の劣化時に、その内部に生ずる収束点の分布を表す図である。
【図4】本発明の実施の形態1において実行される制御ルーチンのフローチャートである。
【図5】本発明の実施の形態2において実行される制御ルーチンのフローチャートである。
【図6】図5に示すルーチンの実行に伴って参照されるマップの一例である。
【図7】本発明の実施の形態3において実行される制御ルーチンのフローチャートである。
【図8】本発明の実施の形態3の制御手法を適用することができる他の構成の例を説明するための図である。
【符号の説明】
10 内燃機関
12 吸気通路
14 排気通路
30 触媒
40 ECU(Electronic Control Unit)
Cgin 触媒に流入する排気ガス中の酸素過不足量
Cgout 触媒から流出する排気ガス中の酸素過不足量
Cgout(N) 第N段のブロックから流出する排気ガス中の酸素過不足量
Cgin(N) 第N段のブロックに流入する排気ガス中の酸素過不足量
ost(N) 第N段のブロックの酸素吸蔵量
OSC(N) 第N段のブロックの酸素吸蔵容量

Claims (9)

  1. 排気通路に配置され、内燃機関から排出される排気ガスを浄化して排出する触媒と、
    前記触媒の内部を流れる排気ガス中の酸素過不足量を、排気ガスの流れ方向の位置毎に推定することのできる触媒内酸素過不足量推定手段と、
    排気ガス中の酸素過不足量が判定値以下となる触媒内の収束点を検知する収束点検知手段と、
    前記収束点が触媒内の上流側に位置するように空燃比を制御する空燃比制御手段と、
    前記収束点の位置に基づいて前記触媒の劣化状態を判定する触媒劣化判定手段と、
    を備えることを特徴とする内燃機関の触媒劣化検出装置。
  2. 前記触媒劣化判定手段は、
    触媒内の特定位置が前記収束点となる頻度、或いは、触媒内の特定位置以降の領域内に前記収束点が収まる頻度を検出する頻度検出手段と、
    前記頻度が、触媒正常時には超えることのない判定値を超えている場合に前記触媒の劣化を判断する頻度判断手段と、
    を含むことを特徴とする請求項1記載の内燃機関の触媒劣化検出装置。
  3. 前記触媒劣化判定手段は、
    触媒内の特定位置が前記収束点となる頻度、或いは、触媒内の特定位置以前の領域内に前記収束点が収まる頻度を検出する頻度検出手段と、
    前記頻度が、触媒正常時には下回ることのない判定値を下回っている場合に前記触媒の劣化を判断する頻度判断手段と、
    を含むことを特徴とする請求項1記載の内燃機関の触媒劣化検出装置。
  4. 前記触媒劣化判定手段は、
    前記収束点のばらつき程度を検出するばらつき検出手段と、
    前記ばらつき程度が、触媒正常時には超えることのない判定値を超えている場合に前記触媒の劣化を判断するばらつき判断手段と、
    を含むことを特徴とする請求項1記載の内燃機関の触媒劣化検出装置。
  5. 前記ばらつき検出手段は、前記収束点の変化距離の積算値を求める変化距離積算値算出手段を含み、
    前記ばらつき判断手段は、前記変化距離の積算値、或いはその変換値に基づいて前記触媒が劣化しているか否かを判断することを特徴とする請求項4記載の内燃機関の触媒劣化検出装置。
  6. 前記収束点の平均位置を検出する平均収束点検出手段と、
    前記平均位置に基づいて前記判定値を設定する判定値設定手段と、
    を備えることを特徴とする請求項2乃至5の何れか1項記載の内燃機関の触媒劣化検出装置。
  7. 排気通路に配置され、内燃機関から排出される排気ガスを浄化して排出する触媒と、
    前記触媒の下流に流出する排気ガス中の酸素過不足量を推定することのできる酸素過不足量推定手段と、
    前記触媒の下流において排気ガス中の酸素過不足状態を検出する酸素過不足状態検出センサと、
    推定された前記酸素過不足量と、検出された前記酸素過不足状態とが対応しない場合に、前者が後者に一致するように、前記酸素過不足量推定手段による推定手法を補正する推定手法補正手段と、
    前記推定手法の補正頻度、或いは、前記推定手法の補正幅に基づいて前記触媒の劣化状態を判定する触媒劣化判定手段と、
    を備えることを特徴とする内燃機関の触媒劣化検出装置。
  8. 前記触媒の内部を流れる排気ガス中の酸素過不足量を、排気ガスの流れ方向の位置毎に推定することのできる触媒内酸素過不足量推定手段と、
    排気ガス中の酸素過不足量が判定値以下となる触媒内の収束点を検知する収束点検知手段とを備え、
    前記推定手法補正手段は、前記収束点が前記触媒内に存在しなくなったにも関わらず、検出された前記酸素過不足状態に反転が認められない場合に、推定された前記酸素過不足量と、検出された前記酸素過不足状態とが対応していないと判断することを特徴とする請求項7記載の内燃機関の触媒劣化検出装置。
  9. 前記触媒の内部を流れる排気ガス中の酸素過不足量を、排気ガスの流れ方向の位置毎に推定することのできる触媒内酸素過不足量推定手段と、
    排気ガス中の酸素過不足量が判定値以下となる触媒内の収束点を検知する収束点検知手段とを備え、
    前記推定手法補正手段は、前記収束点が前記触媒内に存在しているにも関わらず、検出された前記酸素過不足状態に反転が認められた場合に、推定された前記酸素過不足量と、検出された前記酸素過不足状態とが対応しないと判断することを特徴とする請求項7または8記載の内燃機関の触媒劣化検出装置。
JP2003107999A 2003-04-11 2003-04-11 内燃機関の触媒劣化検出装置 Withdrawn JP2004316459A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107999A JP2004316459A (ja) 2003-04-11 2003-04-11 内燃機関の触媒劣化検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107999A JP2004316459A (ja) 2003-04-11 2003-04-11 内燃機関の触媒劣化検出装置

Publications (1)

Publication Number Publication Date
JP2004316459A true JP2004316459A (ja) 2004-11-11

Family

ID=33469681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107999A Withdrawn JP2004316459A (ja) 2003-04-11 2003-04-11 内燃機関の触媒劣化検出装置

Country Status (1)

Country Link
JP (1) JP2004316459A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145141A1 (ja) * 2006-06-16 2007-12-21 Toyota Jidosha Kabushiki Kaisha 触媒劣化検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145141A1 (ja) * 2006-06-16 2007-12-21 Toyota Jidosha Kabushiki Kaisha 触媒劣化検出装置
US8020371B2 (en) 2006-06-16 2011-09-20 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration detection device

Similar Documents

Publication Publication Date Title
JP3963130B2 (ja) 触媒劣化判定装置
JP4835497B2 (ja) 内燃機関の空燃比制御装置
US20070017212A1 (en) Catalyst diagnosis apparatus for internal combustion engine
JP6098735B2 (ja) 内燃機関の制御装置
JP2004044450A (ja) 触媒劣化判定方法
JP3759567B2 (ja) 触媒劣化状態検出装置
JP2004225684A (ja) 酸素センサの異常検出装置
JPS6153436A (ja) 内燃機関の燃料供給量制御装置
JP2841823B2 (ja) 触媒の浄化率検出装置
JP6269371B2 (ja) 内燃機関
JP4419950B2 (ja) 内燃機関の制御装置
KR20190127093A (ko) 운행거리를 반영한 엔진의 질소산화물 제어 방법
JP2003148136A (ja) 排気浄化触媒の劣化判定装置
JP4661691B2 (ja) 内燃機関の空燃比制御装置
JP4127092B2 (ja) 内燃機関の空燃比制御装置
JP5545631B2 (ja) 空燃比制御装置
JP2004003405A (ja) 触媒劣化判定装置
JP2004316459A (ja) 内燃機関の触媒劣化検出装置
JP5287458B2 (ja) 酸素センサの応答性判定装置
JP4314815B2 (ja) 内燃機関の触媒劣化検出装置
JP2007032438A (ja) 内燃機関の空燃比制御装置
JP5041294B2 (ja) 空燃比センサの異常診断装置
JP2007077849A (ja) 吸入空気量検出手段の補正装置
JP2004308574A (ja) 排気ガスセンサの異常検出装置
JP2006257904A (ja) 内燃機関の触媒劣化判定装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060327

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704