JP2004316335A - Method for reinforcing concrete structure - Google Patents

Method for reinforcing concrete structure Download PDF

Info

Publication number
JP2004316335A
JP2004316335A JP2003114405A JP2003114405A JP2004316335A JP 2004316335 A JP2004316335 A JP 2004316335A JP 2003114405 A JP2003114405 A JP 2003114405A JP 2003114405 A JP2003114405 A JP 2003114405A JP 2004316335 A JP2004316335 A JP 2004316335A
Authority
JP
Japan
Prior art keywords
concrete structure
fiber sheet
thermosetting resin
pile
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003114405A
Other languages
Japanese (ja)
Other versions
JP3816064B2 (en
Inventor
Masaharu Matsumoto
正春 松本
Ichiro Ueki
一郎 植木
Rokuro Sakai
麓郎 酒井
Tomoaki Masuda
知朗 増田
Tetsuya Kojimoto
哲哉 柑本
Atsushi Tsunoda
角田  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOUSHUU PILE KK
SAIKI KENSETSU CO Ltd
Sumitomo Rubber Industries Ltd
Du Pont Toray Co Ltd
Sakai Sangyo KK
Original Assignee
HOUSHUU PILE KK
SAIKI KENSETSU CO Ltd
Sumitomo Rubber Industries Ltd
Du Pont Toray Co Ltd
Sakai Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOUSHUU PILE KK, SAIKI KENSETSU CO Ltd, Sumitomo Rubber Industries Ltd, Du Pont Toray Co Ltd, Sakai Sangyo KK filed Critical HOUSHUU PILE KK
Priority to JP2003114405A priority Critical patent/JP3816064B2/en
Publication of JP2004316335A publication Critical patent/JP2004316335A/en
Application granted granted Critical
Publication of JP3816064B2 publication Critical patent/JP3816064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply reinforce a concrete structure such as a prestressed concrete pile, and to effectively prevent the development of a crack at an initial stage at a time when a bending stress or the like is applied to the structure. <P>SOLUTION: The concrete structure (1) is constituted so that a sheet (2) made of fibers, a plurality of metallic reinforcing bodies (3) and second sheets (4) made of fibers are stuck successively on a surface by a thermosetting resin. The longitudinal direction of the structure (1) is arranged so as to run parallel with the longitudinal direction of the reinforcing bodies (3). The sheets (2) and (4) made of fibers and the metallic reinforcing bodies (3) are fixed tightly on the surface of the structure (1) by curing the thermosetting resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート構造物の補強方法に関し、さらに詳しくは、例えば、プレストレストコンクリートくい等のコンクリート構造物において、初期のクラック発生時の曲げ応力を効果的に向上させる技術等の、コンクリート構造物の効率的な補強方法に関わる。
【0002】
【発明の背景】
ビルや橋脚等の建築や土木の基礎工事に用いられる高強度プレストレストコンクリートくい(以下、PHCくいと略称する)は、JIS A5373でその強度特性からA種、B種及びC種に区分されている。この標準的なPHCくいのほか、底部の太いSTくい材や節のある節くい材も同様にA種〜C種に分類されており、異形鉄筋を使用したPRCくい材はI種〜V種に分類されている。なお、上記くいを以下「プレストレスコンクリートくい」と称す。これらのなかで、最も一般的に使用されるA種は見込み生産に基づき量産され在庫量も多い。これに対し、せん断及び曲げ強度の高いB種やC種は消費量が少ないので受注生産され、在庫量も少ない。しかしながら、現実には設計時にB種やC種が採用される場合、当該在庫品が不足し或いは無いことが多く、当該製品を生産するために工場で新たに生産工程を組み直す必要が出てくる。その際、新たに生産工程を組み直すための手間と生産機会ロスが発生する。これを解消するにはB種やC種など高強度グレードのくい材も余裕をもって多めに在庫することが考えられるが、PHCくいのように大型で重量の大きいコンクリート構造物の在庫量を多くすることは在庫コストが高くつく問題があった。
【0003】
【従来の技術】
従来、上記の問題点を解消する方法として、プレストレストコンクリートくいの外周に高強度繊維製シートを貼り付けることで、より高強度でクラックの入りにくいプレストレストコンクリートくいを調達する方法がある(例えば、特許文献1参照。)。即ち、この調達方法は、例えばA種のPHCくいの外周表面を研磨し、次いでこの外周表面に、接着樹脂とともにアラミド繊維などの高強度繊維からなるシートを貼り付け、これによりPHCくいのせん断及び曲げ強度をB種やC種の水準にまで高めるという方法である。
上記の方法によれば、A種など標準グレードのくい材を量産して在庫しておくことで、必要に応じてB種代替品やC種代替品など、せん断及び曲げ強度の高いくい材をこのA種くい材から素早く調達できるので、生産効率や在庫効率を高めるとともに、素早くかつ安価に対応できる利点がある。
【0004】
【特許文献1】
特開2003−55966号公報
【0005】
【発明が解決しようとする課題】
上記の従来技術では、くい材の初期のクラック発生時の曲げ応力を高くするには、多量の高強度繊維を必要とし、安価に実施できない問題があった。
本発明は上記の問題点を解消し、コンクリート構造物を簡便に補強できるうえ初期のクラック発生時の曲げ応力を効果的に向上させる、コンクリート構造物の補強方法を提供することを技術的課題とする。
【0006】
【課題を解決するための手段】
本発明は上記の課題を解決するために、コンクリート構造物の補強方法において、コンクリート構造物の表面に繊維製シートと金属製補強体とを熱硬化性樹脂を用いて貼り付けたのち、この熱硬化性樹脂を硬化させることを特徴とする。
【0007】
【作用】
上記の繊維製シートはコンクリート構造物の表面に沿わせることにより、補強材の一部として作用するとともに、この繊維製シートを介して金属製補強体がコンクリート構造物にしっかりと固定される。この金属製補強体は弾性率が高いので、曲げ応力等に対して効果的に作用する。
【0008】
コンクリート構造物の表面に直接金属製補強体を配置した場合は、このコンクリート構造物と金属製補強体の間の接着が弱く、外力が働くと容易にはがれる惧れがある。従って、コンクリート構造物の表面側から順に、繊維製シートと金属製補強体とを貼り付け、あるいはその上にさらに第2の繊維製シートとを貼り付けることで、この繊維製シートを介して金属製補強体をコンクリート構造物に一層しっかりと固定することができる。
【0009】
上記の金属製補強体の材質としては、力学特性的には弾性率が高いほど好ましく、特定の材質に限定されないが、ステンレス鋼材や防錆処理を施した鋼材が好ましい。
上記の金属製補強体の形態は特に限定されないが、板状や線状が好ましく、特に板状が好ましい。この場合、取扱いの容易さやコスト等の観点から、幅は5〜200mm、好ましくは10〜100mmのものが用いられ、厚さは0.2〜2.0mm、好ましくは0.8〜1.0mmのものが用いられるが、特にこれらの寸法のものに限定されるものではない。
上記の金属製補強体は、コンクリート構造物の表面形状が平面でない場合、このコンクリート構造物の表面形状にあった形状に加工されることが好ましい。
【0010】
上記の繊維製シートの材質としては、例えばビニロン繊維、ポリエステル繊維、ナイロン、パラ系アラミド繊維、全芳香族ポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、炭素繊維及びガラス繊維などを挙げることができる。
上記の繊維製シートの形態としては織物、編物又は不織布であってもよい。織物としては平織、綾織などが挙げられる。繊維製シートの目付は例えば50〜2000g/mが好ましい。
【0011】
上記の熱硬化性樹脂としては、例えばエポキシ樹脂、メタクリレート樹脂、不飽和ポリエステル樹脂又はビニルエステル樹脂、ウレアウレタン樹脂等の公知の熱硬化性樹脂が挙げられる。このなかで、常温硬化型エポキシ樹脂が好ましい。この場合の標準使用量は繊維製シートの種類にもよるが、下塗りの場合、0.2〜2kg/mであり、上塗りの場合は0.2〜1kg/mである(全体では0.5〜3.0kg/mの範囲となる)。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
図1及び図2は本発明の実施形態を示し、図1はプレストレストコンクリートくいをコンクリート構造物として用いた場合の一部破断斜視図、図2はコンクリート構造物の要部の拡大断面図である。
【0013】
図1に示すように、A種のPHCくいであるコンクリート構造物(1)の表面には、最初に繊維製シート(2)が貼り付けられ、この繊維製シート(2)の外側に複数の長尺金属製補強板(3)が、その長さ方向をコンクリート構造物(1)の長さ方向と平行に配置され、さらにその外側に第2の繊維製シート(4)が巻きつけられ、これらの各補強材(2・3・4)が、熱硬化性樹脂により固定されている。
【0014】
次に、上記のコンクリート構造物(1)の表面に各補強材を固定する手順について説明する。
【0015】
最初に、上記のコンクリート構造物(1)は、好ましくは予め表面処理が施される。
即ち、最初にコンクリート構造物(1)表面がグラインダー等で研磨され、微細凸凹部や汚れが除去される。グラインダーとしては例えばバフ加工用のグラインダーでよい。この研磨処理はコンクリート構造物(1)表面の汚れや表面上の弱い層を除去するものであり、サンドブラストや高圧水洗浄(ジェットウォーター)など他の研磨方法によって行ってもよい。これらはいずれも公知方法に従って行うことができる。なお、コンクリート構造物(1)の表面に脆弱層がない等の場合はこの研磨処理を省いてもよい。
【0016】
次に、上記のコンクリート構造物(1)の表面が乾燥されていることを確認したのち、例えば粘度の低い常温硬化型エポキシ樹脂のプライマーがローラー、刷毛等で塗布される。このとき、上記のコンクリート構造物(1)の表面に段差がある場合は、エポキシ系パテ等の不陸調整材を用いて平坦に仕上げるのが好ましい。上記のプライマー樹脂使用量は表面の状態にもよるが通常0.1〜0.3kg/mである。なお、プライマー処理における樹脂の種類には前記の熱硬化性樹脂と同種類とするのが好ましい。
【0017】
次に、上記の熱硬化性樹脂が上記のコンクリート構造物(1)の表面に下塗りされたのち、上記の繊維製シート(2)がコンクリート構造物(1)の表面に貼り付けられ、次いで上記の金属製補強板(3)が、その長さ方向を上記のコンクリート構造物(1)の長さ方向と平行にして上記の繊維製シート(2)の外側に配置される。そして上記の下塗り熱硬化性樹脂が繊維製シート(2)へ十分含浸したことが確認された後、さらにその上に同じく熱硬化性樹脂の上塗りが行われる。この場合の標準使用量は繊維の種類にもよるが、下塗りの場合0.2〜2kg/mであり、上塗りの場合は0.2〜1kg/mである(全体では0.5〜3.0kg/mの範囲となる)。
【0018】
次に、第2の繊維製シート(4)がコンクリート構造物(1)の周方向に巻き付けられ、上記と同種の熱硬化性樹脂が上塗りされる。なお、この実施形態では一周の長さよりやや長い第2の繊維製シート(4)を、端部が重ね合せの状態で、且つ隣接する各繊維製シート(4・4)間は隙間が無い状態で巻き付けてある。この実施形態に代えて、細幅の第2の繊維製シートを螺旋状に巻回しても良い。
【0019】
上記の手順により、コンクリート構造物(1)の表面には、図2に示すように、繊維製シート(2)と金属製補強板(3)と第2の繊維製シート(4)とが順に貼り付けられる。このため、上記のコンクリート構造物(1)と金属製補強板(3)はいずれもこの間に介在する繊維製シート(2)に密着しており、従って、金属製補強板(3)はコンクリート構造物(1)に高い接着強度で固定することができる。
【0020】
上記の繊維製シート(2・4)をコンクリート構造物(1)の表面に巻付けて接着する際には、脱泡ローラーやゴムへらを使用して空気溜まりが残らないようにしごきながら、コンクリート構造物(1)の表面に貼付けることが望ましい。
また、繊維製シート(2・4)や金属製補強板(3)を接着したのち、上記の繊維製シート(2・4)に含浸した熱硬化性樹脂はビニールシート等で蔽って養生させることが好ましい。
なお、上記の繊維製シート(2・4)と金属製補強板(3)で補強された高強度のPHCくい代替品は、場合によっては埋め込み時に外力から保護するために、さらに樹脂系塗装材料等で仕上げを施すこともできる。
【0021】
【実施例1、2】
厚さ5cm、幅10cm、長さ80cmの無鉄筋コンクリート板を作成し、これをコンクリート構造物(1)として用いた。
即ち、このコンクリート構造物(1)の表面を研磨したのち、常温硬化型エポキシ樹脂プライマー(住友ゴム工業株式会社製、商品名:GB30)を0.2kg/m塗布し、含浸接着剤として同じく常温硬化型エポキシ樹脂(住友ゴム工業株式会社製、商品名:GB35)をその外周表面にローラーで均一に塗布した。
【0022】
次いで、実施例1では、このコンクリート構造物(1)の表面に、最初に繊維製シート(2)を貼り付け、その外側に金属製補強板(3)を、その長さ方向がコンクリート構造物(1)の長さ方向と平行になるように貼り付けたのち、上記の熱硬化性樹脂を上塗りした。
また、実施例2では、上記のコンクリート構造物(1)の表面に、最初に金属製補強板(3)を、その長さ方向がコンクリート構造物(1)の長さ方向と平行になるように貼り付け、その外側に繊維製シート(2)を貼り付けたのち、上記の熱硬化性樹脂を上塗りした。上記の熱硬化性樹脂の量はいずれも0.5kg/mであった。
そして両実施例とも、さらにその外側に第2の繊維製シート(4)を1層巻き付け、熱硬化性樹脂を上塗りした。なお、上記の繊維製シート(4)にはアラミド繊維製シート(目付け量280g/m、耐力40tf/m)を用いた。また、熱硬化性樹脂の量は0.2kg/mであった。その後、上記の熱硬化性樹脂を硬化させた。
【0023】
上記の補強処理を施工していない、元の状態のコンクリート構造物(1)を比較例とし、この比較例と上記の実施例1及び2について、コンクリート構造物の中央部にストレーンゲージを取り付け、スパン間60cmで3点曲げ試験した。この時のクロスヘッド速度は2mm/分であった。これらの測定結果を表−1にまとめた。なお、引張強度、引張弾性率、保証耐力はJIS K7073により、繊維目付け量はJIS K1096により測定した。
【0024】
【表1】

Figure 2004316335
【0025】
【実施例3、4】
コンクリート構造物(1)として、有効プレストレス量約40N/mm、外径400mm、厚さ65mm、長さ8mの高強度コンクリートパイル材料A種(豊州パイル株式会社製、商品名:宇部USパイル−PHC)を用い、このコンクリート構造物(1)の表面を研磨したのち、常温硬化型エポキシ樹脂プライマー(住友ゴム工業株式会社製、商品名:GB30)を0.2kg/m塗布し、含浸接着剤として同じく常温硬化型エポキシ樹脂(住友ゴム工業株式会社製、商品名:GB35)をその外周表面にローラーで均一に0.5kg/m塗布した。
【0026】
上記のコンクリート構造物(1)の表面に、繊維製シート(2)としてアラミド繊維製シート(東レ・デュポン株式会社製、商品名:ケブラー49使用、一方向シート)を速やかに巻付けて貼り付けた。なお、上記のアラミド繊維製シートは、目付け量415g/m、耐力60tf/mを有していた。
次いで上記の繊維製シート(2)の上に、厚さ1mm、幅50mmのステンレス鋼板(3)を、実施例3では10枚、実施例4では15枚、コンクリート構造物(1)の長さ方向と平行に配置して貼付け、上記の熱硬化性樹脂を上塗りした。熱硬化性樹脂の量は0.5kg/mであった。
【0027】
そしてさらに上記の繊維製シート(2)とステンレス鋼板(3)の外側に、第2の繊維製シート(4)としてアラミド繊維製シート(目付け量280g/m、耐力40tf/m)を、コンクリート構造物(1)の周方向へ巻き付け、熱硬化性樹脂を上塗りした。この熱硬化性樹脂の量は0.2kg/mであった。
【0028】
上記の熱硬化性樹脂は、施工後翌日には完全に硬化した。上記の繊維製シート(2・4)やステンレス鋼板(3)で補強されたコンクリート構造物(1)について、曲げ強度をJIS A5373に従って測定したところ、表2に示すようにB種やC種と同等またはそれ以上の性能を有していた。
【0029】
【表2】
Figure 2004316335
【0030】
なお、上記の実施形態では、コンクリート構造物としてA種のPHCくいを用いたが、本発明により適用されるコンクリート構造物がくい材の場合には、例えば下記の補強が可能となる。
(i) A種のPHCくい → B種又はC種のPHCくい
(ii) A種のSTくい → B種又はC種のSTくい
(iii)A種の節くい → B種又はC種の節くい
(iv) I種のPRCくい → II種、III種、IV種又はV種のPRCくい
(v) A種のPHCくい → I種、II種、III種、IV種又はV種のPRCくい
なお、本発明はくい材に限定されるものではなく、橋脚や梁など他のコンクリート構造物に適用できることはいうまでもない。
【0031】
【効果】
本発明は上記のように構成され作用することから、次の効果を奏する。
即ち、コンクリート構造物の表面に繊維製シートと金属製補強体を熱硬化性樹脂を用いて貼り付け、上記の熱硬化性樹脂を硬化させて接着することにより、コンクリート構造物に曲げ応力等が加わった際に、初期のクラック発生を効果的に防止することができる。しかも経済性から見ると、繊維製シートのみによる補強に比較して大幅に安価に実施できる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す、プレストレストコンクリートくいの一部破断斜視図である。
【図2】本発明の実施形態を示す、プレストレストコンクリートくいの要部の拡大断面図である。
【符号の説明】
1…コンクリート構造物
2…繊維製シート
3…金属製補強材(金属製補強板、ステンレス鋼板)
4…第2の繊維製シート[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reinforcing a concrete structure, and more specifically, for example, in a concrete structure such as a prestressed concrete pile, for example, a technique for effectively improving the bending stress at the time of initial crack generation. Related to efficient reinforcement methods.
[0002]
BACKGROUND OF THE INVENTION
High-strength prestressed concrete piles (hereinafter abbreviated as PHC piles) used for construction of buildings and bridge piers and for civil engineering foundation work are classified into Class A, Class B and Class C according to JIS A5373 based on their strength characteristics. . In addition to the standard PHC slabs, thicker ST slabs and knotted slabs with knots are also classified into Class A to Class C, and PRC stakes using deformed reinforcing bars are Class I to Class V. Has been classified. In addition, the said pile is called "prestress concrete pile" below. Of these, the most commonly used type A is mass-produced based on expected production and has a large inventory. On the other hand, Class B and Class C, which have high shear and bending strength, are low-consumption and are produced on order and have small inventory. However, in reality, when the B type or the C type is adopted at the time of design, the stock is often short or not, and it is necessary to reconfigure a new production process at a factory in order to produce the product. . At that time, labor for reassembling the production process and loss of production opportunity are generated. In order to solve this problem, it is conceivable to stock a large amount of high-strength grade materials such as Class B and Class C with ample room, but increase the inventory of large and heavy concrete structures such as PHC piles. The problem was that inventory costs were high.
[0003]
[Prior art]
Conventionally, as a method of solving the above problems, there is a method of procuring a prestressed concrete pile having higher strength and less cracking by attaching a high-strength fiber sheet to the outer periphery of the prestressed concrete pile (for example, see Patent Reference 1). That is, in this procurement method, for example, the outer peripheral surface of a type A PHC pile is polished, and then a sheet made of high-strength fiber such as aramid fiber is adhered to the outer peripheral surface together with the adhesive resin, whereby the shearing and This is a method of increasing the bending strength to the level of the B type or the C type.
According to the above method, by mass-producing and stocking standard grade stakes such as Class A, if necessary, shards having high shear and bending strength such as Class B substitutes and Class C substitutes can be obtained. Since it can be procured quickly from the Class A piling material, there is an advantage that production efficiency and inventory efficiency can be increased, and that it is possible to respond quickly and inexpensively.
[0004]
[Patent Document 1]
JP-A-2003-55966 [0005]
[Problems to be solved by the invention]
In the above-mentioned prior art, a large amount of high-strength fiber is required to increase the bending stress at the time of initial crack generation of the stake material, and there has been a problem that it cannot be implemented at low cost.
It is an object of the present invention to solve the above problems and to provide a method for reinforcing a concrete structure, which can easily reinforce a concrete structure and effectively improve bending stress at the time of initial crack generation. I do.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a method for reinforcing a concrete structure, comprising: attaching a fiber sheet and a metal reinforcing body to the surface of the concrete structure using a thermosetting resin; The curable resin is cured.
[0007]
[Action]
The above-mentioned fiber sheet acts as a part of the reinforcing material by being along the surface of the concrete structure, and the metal reinforcing body is firmly fixed to the concrete structure via the fiber sheet. Since the metal reinforcement has a high elastic modulus, it effectively acts on bending stress and the like.
[0008]
When the metal reinforcement is directly disposed on the surface of the concrete structure, the adhesion between the concrete structure and the metal reinforcement is weak, and there is a possibility that the concrete reinforcement may be easily peeled off when an external force acts. Therefore, the fiber sheet and the metal reinforcing member are pasted in order from the surface side of the concrete structure, or the second fiber sheet is further pasted thereon, so that the metal sheet is interposed through the fiber sheet. The reinforcement body can be more firmly fixed to the concrete structure.
[0009]
The material of the metal reinforcing member is preferably higher in terms of mechanical properties as the elastic modulus is higher. The material is not limited to a specific material, but stainless steel or a steel material subjected to rust prevention treatment is preferable.
The form of the metal reinforcing body is not particularly limited, but is preferably a plate or a line, and particularly preferably a plate. In this case, from the viewpoint of ease of handling and cost, the width is 5 to 200 mm, preferably 10 to 100 mm, and the thickness is 0.2 to 2.0 mm, preferably 0.8 to 1.0 mm. Is used, but is not particularly limited to these dimensions.
When the surface shape of the concrete structure is not flat, the metal reinforcing body is preferably processed into a shape that matches the surface shape of the concrete structure.
[0010]
Examples of the material of the fiber sheet include vinylon fiber, polyester fiber, nylon, para-aramid fiber, wholly aromatic polyester fiber, polyparaphenylenebenzobisoxazole fiber, carbon fiber, and glass fiber.
The form of the fiber sheet may be a woven fabric, a knitted fabric, or a nonwoven fabric. Examples of the woven fabric include plain weave and twill weave. The basis weight of the fiber sheet is preferably, for example, 50 to 2000 g / m 2 .
[0011]
Examples of the thermosetting resin include known thermosetting resins such as an epoxy resin, a methacrylate resin, an unsaturated polyester resin or a vinyl ester resin, and a urea urethane resin. Of these, a cold-setting epoxy resin is preferred. The standard amount of the case will depend on the type of textile sheet, when the undercoat is 0.2~2kg / m 2, in the case of top coat is 0.2~1kg / m 2 (in total 0 0.5-3.0 kg / m 2 ).
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show an embodiment of the present invention. FIG. 1 is a partially cutaway perspective view when a prestressed concrete pile is used as a concrete structure, and FIG. 2 is an enlarged sectional view of a main part of the concrete structure. .
[0013]
As shown in FIG. 1, a fiber sheet (2) is first adhered to the surface of a concrete structure (1) which is a type A PHC pile, and a plurality of sheets are provided outside the fiber sheet (2). A long metal reinforcing plate (3) is disposed so that its length direction is parallel to the length direction of the concrete structure (1), and a second fiber sheet (4) is wound around the outside thereof, Each of these reinforcing members (2, 3, 4) is fixed by a thermosetting resin.
[0014]
Next, a procedure for fixing each reinforcing material to the surface of the concrete structure (1) will be described.
[0015]
First, the concrete structure (1) is preferably subjected to a surface treatment beforehand.
That is, first, the surface of the concrete structure (1) is polished with a grinder or the like to remove fine irregularities and dirt. As the grinder, for example, a grinder for buffing may be used. This polishing treatment removes dirt on the surface of the concrete structure (1) and a weak layer on the surface, and may be performed by another polishing method such as sandblasting or high-pressure water washing (jet water). All of these can be performed according to known methods. In the case where there is no fragile layer on the surface of the concrete structure (1), the polishing treatment may be omitted.
[0016]
Next, after confirming that the surface of the concrete structure (1) is dried, a primer of a low-temperature-setting epoxy resin having a low viscosity is applied by a roller, a brush, or the like. At this time, if there is a step on the surface of the concrete structure (1), it is preferable to finish it flat using a non-landing adjusting material such as an epoxy-based putty. The amount of the above-mentioned primer resin used is usually 0.1 to 0.3 kg / m 2 although it depends on the surface condition. In addition, it is preferable that the kind of the resin in the primer treatment is the same as the above-mentioned thermosetting resin.
[0017]
Next, after the thermosetting resin is primed on the surface of the concrete structure (1), the fiber sheet (2) is attached to the surface of the concrete structure (1). The metal reinforcing plate (3) is disposed outside the fiber sheet (2) with its length direction parallel to the length direction of the concrete structure (1). After it is confirmed that the undercoat thermosetting resin has sufficiently impregnated the fiber sheet (2), the thermosetting resin is further overcoated thereon. The standard amount used in this case depends on the type of fiber, but is 0.2 to 2 kg / m 2 for undercoating and 0.2 to 1 kg / m 2 for overcoating (total 0.5 to 2 kg / m 2). 3.0 kg / m 2 ).
[0018]
Next, a second fiber sheet (4) is wound in the circumferential direction of the concrete structure (1), and a thermosetting resin of the same type as above is overcoated. In this embodiment, the second fiber sheet (4), which is slightly longer than one circumference, is placed in a state where the ends are overlapped and there is no gap between the adjacent fiber sheets (4, 4). It is wound around. Instead of this embodiment, a narrow second fiber sheet may be spirally wound.
[0019]
According to the above procedure, as shown in FIG. 2, a fiber sheet (2), a metal reinforcing plate (3), and a second fiber sheet (4) are sequentially arranged on the surface of the concrete structure (1). Pasted. Therefore, both the concrete structure (1) and the metal reinforcing plate (3) are in intimate contact with the fiber sheet (2) interposed therebetween, and therefore, the metal reinforcing plate (3) is in the concrete structure. It can be fixed to the object (1) with high adhesive strength.
[0020]
When the above fiber sheet (2.4) is wound around and adhered to the surface of the concrete structure (1), the concrete sheet is squeezed using a defoaming roller or a rubber spatula so that no air pool remains. It is desirable to attach to the surface of the structure (1).
After bonding the fiber sheet (2.4) or the metal reinforcing plate (3), the thermosetting resin impregnated in the fiber sheet (2.4) is cured by covering with a vinyl sheet or the like. Is preferred.
The high-strength PHC pile substitute reinforced with the above-mentioned fiber sheet (2.4) and metal reinforcing plate (3) may be further coated with a resin-based coating material in order to protect it from external force when embedded. Finishing can also be applied.
[0021]
Embodiments 1 and 2
A non-reinforced concrete plate having a thickness of 5 cm, a width of 10 cm and a length of 80 cm was prepared and used as a concrete structure (1).
That is, after the surface of the concrete structure (1) is polished, a room temperature curing type epoxy resin primer (manufactured by Sumitomo Rubber Industries, Ltd., trade name: GB30) is applied at 0.2 kg / m 2 , and the same is used as an impregnating adhesive. A cold-setting epoxy resin (manufactured by Sumitomo Rubber Industries, Ltd., trade name: GB35) was uniformly applied to the outer peripheral surface with a roller.
[0022]
Next, in Example 1, a fiber sheet (2) was first adhered to the surface of the concrete structure (1), and a metal reinforcing plate (3) was placed outside the fiber sheet (2). (1) After being attached so as to be parallel to the length direction, the above thermosetting resin was overcoated.
In the second embodiment, a metal reinforcing plate (3) is first placed on the surface of the concrete structure (1) so that its length direction is parallel to the length direction of the concrete structure (1). After attaching the fiber sheet (2) to the outside, the above thermosetting resin was overcoated. The amount of each of the above thermosetting resins was 0.5 kg / m 2 .
In both examples, the second fiber sheet (4) was further wrapped around the outside by one layer, and a thermosetting resin was overcoated. An aramid fiber sheet (basis weight 280 g / m 2 , proof stress 40 tf / m) was used as the fiber sheet (4). The amount of the thermosetting resin was 0.2 kg / m 2 . Thereafter, the thermosetting resin was cured.
[0023]
The concrete structure (1) in the original state where the above reinforcing treatment was not performed was used as a comparative example. For this comparative example and Examples 1 and 2, a strain gauge was attached to the center of the concrete structure. A three-point bending test was performed at a span of 60 cm. The crosshead speed at this time was 2 mm / min. Table 1 summarizes the measurement results. The tensile strength, tensile modulus, and guaranteed proof stress were measured according to JIS K7073, and the basis weight of the fiber was measured according to JIS K1096.
[0024]
[Table 1]
Figure 2004316335
[0025]
Embodiments 3 and 4
As the concrete structure (1), a high-strength concrete pile material A having an effective prestress amount of about 40 N / mm 2 , an outer diameter of 400 mm, a thickness of 65 mm, and a length of 8 m (manufactured by Toyoshu Pile Co., trade name: Ube US) After the surface of the concrete structure (1) was polished using a pile-PHC), a cold-setting epoxy resin primer (manufactured by Sumitomo Rubber Industries, Ltd., trade name: GB30) was applied at 0.2 kg / m 2 , A cold-setting epoxy resin (manufactured by Sumitomo Rubber Industries, Ltd., trade name: GB35) was also uniformly applied to the outer peripheral surface by a roller at 0.5 kg / m 2 as an impregnating adhesive.
[0026]
An aramid fiber sheet (manufactured by Toray DuPont, trade name: Kevlar 49, one-way sheet) is quickly wound and attached as a fiber sheet (2) on the surface of the concrete structure (1). Was. The aramid fiber sheet had a basis weight of 415 g / m 2 and a proof stress of 60 tf / m.
Next, on the above-mentioned fiber sheet (2), 10 stainless steel plates (3) having a thickness of 1 mm and a width of 50 mm were obtained in Example 3 and 15 in Example 4, and the length of the concrete structure (1). The thermosetting resin was overlaid with the above-mentioned thermosetting resin. The amount of the thermosetting resin was 0.5 kg / m 2 .
[0027]
Further, an aramid fiber sheet (basis weight 280 g / m 2 , proof stress 40 tf / m) as a second fiber sheet (4) was placed on the outside of the fiber sheet (2) and the stainless steel plate (3). The structure (1) was wound in the circumferential direction, and a thermosetting resin was overcoated. The amount of this thermosetting resin was 0.2 kg / m 2 .
[0028]
The thermosetting resin was completely cured the next day after the application. The flexural strength of the concrete structure (1) reinforced with the fiber sheet (2.4) or the stainless steel plate (3) was measured according to JIS A5373. It had equal or better performance.
[0029]
[Table 2]
Figure 2004316335
[0030]
In the above embodiment, the PHC class A pile is used as the concrete structure. However, when the concrete structure applied according to the present invention is a pile material, for example, the following reinforcement is possible.
(I) Type A PHC pile → Type B or C type PHC pile (ii) Type A ST pile → Type B or C type ST pile (iii) Type A knot → Type B or C type knot Pile (iv) Type I PRC pile → Type II, III, IV or V type PRC pile (v) Type A PHC pile → Type I, II, III, IV or V type PRC pile It is needless to say that the present invention is not limited to a stake, but can be applied to other concrete structures such as piers and beams.
[0031]
【effect】
The present invention is configured and operated as described above, and has the following effects.
That is, by attaching a fiber sheet and a metal reinforcing member to the surface of the concrete structure using a thermosetting resin, and curing and bonding the thermosetting resin, bending stress or the like is applied to the concrete structure. When added, cracks at the initial stage can be effectively prevented. In addition, from the viewpoint of economy, it can be carried out at a much lower cost than reinforcement using only a fiber sheet.
[Brief description of the drawings]
FIG. 1 is a partially broken perspective view of a prestressed concrete pile showing an embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a main part of a prestressed concrete pile showing an embodiment of the present invention.
[Explanation of symbols]
1: concrete structure 2: fiber sheet 3: metal reinforcing material (metal reinforcing plate, stainless steel plate)
4: Second fiber sheet

Claims (5)

コンクリート構造物の表面に繊維製シートと金属製補強体とを熱硬化性樹脂を用いて貼り付けたのち、この熱硬化性樹脂を硬化させることを特徴とするコンクリート構造物の補強方法。A method for reinforcing a concrete structure, comprising: attaching a fiber sheet and a metal reinforcing member to the surface of a concrete structure using a thermosetting resin, and then curing the thermosetting resin. コンクリート構造物の表面側から順に、繊維製シートと金属製補強体とを貼り付けることを特徴とする、請求項1に記載のコンクリート構造物の補強方法。The method for reinforcing a concrete structure according to claim 1, wherein a fiber sheet and a metal reinforcing body are attached in order from the surface side of the concrete structure. コンクリート構造物の表面側から順に、繊維製シートと金属製補強体と第2の繊維製シートとを貼り付けることを特徴とする、請求項1に記載のコンクリート構造物の補強方法。The method for reinforcing a concrete structure according to claim 1, wherein the fiber sheet, the metal reinforcing member, and the second fiber sheet are attached in order from the surface side of the concrete structure. 上記の金属製補強体が、ステンレス鋼材又は防錆処理を施した鋼材であることを特徴とする、請求項1から3のいずれか1項に記載のコンクリート構造物の補強方法。The method for reinforcing a concrete structure according to any one of claims 1 to 3, wherein the metal reinforcing member is a stainless steel material or a steel material subjected to rust prevention treatment. 上記のコンクリート構造物がプレストレストコンクリートくいであることを特徴とする、請求項1から4のいずれか1項に記載のコンクリート構造物の補強方法。The method for reinforcing a concrete structure according to any one of claims 1 to 4, wherein the concrete structure is a prestressed concrete pile.
JP2003114405A 2003-04-18 2003-04-18 Method for reinforcing concrete structures Expired - Fee Related JP3816064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114405A JP3816064B2 (en) 2003-04-18 2003-04-18 Method for reinforcing concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114405A JP3816064B2 (en) 2003-04-18 2003-04-18 Method for reinforcing concrete structures

Publications (2)

Publication Number Publication Date
JP2004316335A true JP2004316335A (en) 2004-11-11
JP3816064B2 JP3816064B2 (en) 2006-08-30

Family

ID=33474007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114405A Expired - Fee Related JP3816064B2 (en) 2003-04-18 2003-04-18 Method for reinforcing concrete structures

Country Status (1)

Country Link
JP (1) JP3816064B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113346A (en) 2005-10-24 2007-05-10 Nippon Oil Corp Shearing reinforcement method for concrete structure using braid-like carbon fiber
CN102720193A (en) * 2012-05-28 2012-10-10 国鼎(南通)管桩有限公司 Surface coating prestressed concrete pipe pile and manufacturing process thereof
CN104612145A (en) * 2015-01-13 2015-05-13 成都聚智工业设计有限公司 Concrete pile
CN111982677A (en) * 2020-08-03 2020-11-24 重庆大学 Initial effective prestress field detection method for prestressed concrete frame structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194057A (en) * 1987-02-05 1988-08-11 山本 光祥 Reinforced pillar
JPH1077683A (en) * 1996-09-03 1998-03-24 Denki Kagaku Kogyo Kk Joint structure of steel plate and reinforcement structure of structure with application of joint structure 0f the steel plate
JPH1088822A (en) * 1996-09-17 1998-04-07 Sato Kogyo Co Ltd Earthquake resisting and reinforcing method of existing concrete structure and earthquake resisting and reinforcing structure
JPH10121745A (en) * 1996-10-17 1998-05-12 Shin Nippon Kaishu Kensetsu Kk Earthquake-resistant reinforcing method
JPH1150448A (en) * 1997-08-07 1999-02-23 Kajima Corp Earthquake resistant reinforcement structure of concrete pile
JPH11247182A (en) * 1998-02-27 1999-09-14 Geotop Corp Joint section of pile
JP2002250136A (en) * 2001-02-26 2002-09-06 Civil Renewale Kk Reinforced panel
JP2003055966A (en) * 2001-08-20 2003-02-26 Saiki Kensetsu Co Ltd Preparation method of prestressed concrete pile member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194057A (en) * 1987-02-05 1988-08-11 山本 光祥 Reinforced pillar
JPH1077683A (en) * 1996-09-03 1998-03-24 Denki Kagaku Kogyo Kk Joint structure of steel plate and reinforcement structure of structure with application of joint structure 0f the steel plate
JPH1088822A (en) * 1996-09-17 1998-04-07 Sato Kogyo Co Ltd Earthquake resisting and reinforcing method of existing concrete structure and earthquake resisting and reinforcing structure
JPH10121745A (en) * 1996-10-17 1998-05-12 Shin Nippon Kaishu Kensetsu Kk Earthquake-resistant reinforcing method
JPH1150448A (en) * 1997-08-07 1999-02-23 Kajima Corp Earthquake resistant reinforcement structure of concrete pile
JPH11247182A (en) * 1998-02-27 1999-09-14 Geotop Corp Joint section of pile
JP2002250136A (en) * 2001-02-26 2002-09-06 Civil Renewale Kk Reinforced panel
JP2003055966A (en) * 2001-08-20 2003-02-26 Saiki Kensetsu Co Ltd Preparation method of prestressed concrete pile member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113346A (en) 2005-10-24 2007-05-10 Nippon Oil Corp Shearing reinforcement method for concrete structure using braid-like carbon fiber
CN102720193A (en) * 2012-05-28 2012-10-10 国鼎(南通)管桩有限公司 Surface coating prestressed concrete pipe pile and manufacturing process thereof
CN104612145A (en) * 2015-01-13 2015-05-13 成都聚智工业设计有限公司 Concrete pile
CN104612145B (en) * 2015-01-13 2016-05-25 金华市顺通环境建设有限公司 Concrete-pile
CN111982677A (en) * 2020-08-03 2020-11-24 重庆大学 Initial effective prestress field detection method for prestressed concrete frame structure
CN111982677B (en) * 2020-08-03 2022-05-10 重庆大学 Initial effective prestress field detection method for prestressed concrete frame structure

Also Published As

Publication number Publication date
JP3816064B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP5214864B2 (en) Structure reinforcement method
WO2002001020A1 (en) Structure reinforcing method, structure-reinforcing reinforcing fiber yarn-containing material, reinforcing structure material and reinforced structure
JP5478651B2 (en) Reinforcing method and reinforcing structure for concrete structure, and elastic layer forming material for reinforcing concrete structure
JP3415107B2 (en) Method for reinforcing concrete structure and reinforcing structure
JP5645440B2 (en) Structure reinforcement method
JP2004316335A (en) Method for reinforcing concrete structure
JP4068033B2 (en) Steel structure reinforcement method
JP3806252B2 (en) Reinforcing method of concrete structure with reinforcing fiber sheet
JP7153995B1 (en) Coating agent application method, fiber sheet, and fiber sheet construction method
JPH09125601A (en) Reinforcing structure of peripheral edge of hole of concrete structure and peripheral edge of hole of concrete beam
JP3553865B2 (en) Method of reinforcing steel structure and buffer layer for reinforcing steel structure
KR100433379B1 (en) Panel for reinforcing conc&#39;c body and reinforcing method using the same
JP2005105697A (en) Reinforced fiber resin plate and reinforcing method of structure using the same
JP2014168862A (en) Construction method of composite structure, and composite structure
JP3399918B2 (en) Reinforcement structure of concrete structure with curved surface
JP5869930B2 (en) Reinforced structure of concrete structure and concrete structure
JPH08144541A (en) Reinforcing method of beam having slab
JP2003055966A (en) Preparation method of prestressed concrete pile member
JP2004092120A (en) Concrete reinforcing work method
JP4893328B2 (en) FRP reinforcing method for structure and reinforcing structure for structure
JP2006097273A (en) Structure repairing and reinforcing sheet, and structure repaired and reinforced by sheet
JPH0593463A (en) Reinforcing method for existing concrete structure
KR100601733B1 (en) Punched-steel-plate fiber-mesh one-directional-fiber composite mesh and construction method using thereof
JP3852085B2 (en) Reinforcing fiber sheet
JPH10311146A (en) Reinforcing method for concrete structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Ref document number: 3816064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees