JPH10311146A - Reinforcing method for concrete structure - Google Patents

Reinforcing method for concrete structure

Info

Publication number
JPH10311146A
JPH10311146A JP30872497A JP30872497A JPH10311146A JP H10311146 A JPH10311146 A JP H10311146A JP 30872497 A JP30872497 A JP 30872497A JP 30872497 A JP30872497 A JP 30872497A JP H10311146 A JPH10311146 A JP H10311146A
Authority
JP
Japan
Prior art keywords
polyoxymethylene
concrete
linear
reinforcing
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30872497A
Other languages
Japanese (ja)
Inventor
Tsutomu Iiboshi
力 飯星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP30872497A priority Critical patent/JPH10311146A/en
Publication of JPH10311146A publication Critical patent/JPH10311146A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the execution of work easier and also reduce cost by adhering in parallel a plurality of linear bodies of polyoxymethylene having a particular tensile modulus of elasticity with an adhesive for reinforcement. SOLUTION: A column to be reinforced is chamfered at the corners with a straight line or a circular arc having a very small radius, and the surfaces are smoothened, coated with primer and then hardened. Thereafter, a sheetshaped body of polyoxymethylene linear bodies is adhered in a direction at right angle with the axis of member, and an ending edge portion is superimposed with a starting edge portion and then fixed. The polyoxymethylene linear body has a tensile modulus of elasticity of 20 to 150 GPa, but 30 to 120 GPa is desirable. When processing to a plane-shaped body, polyoxymethylene linear bodies are pulled and arranged in parallel, and nylon fiber or the like is woven as weft yarn in one united body. Polyoxymethylene linear bodies arranged in parallel may be impregnated with a resin. By doing this, the work can be simplified and the time period of the work can be shortened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンクリート造の土
木・建築構造物に対する、ポリオキシメチレン線状体を
用いた補強方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reinforcing a concrete civil engineering or building structure using a polyoxymethylene linear body.

【0002】[0002]

【従来の技術】従来の高強度繊維を用いた補強方法とし
ては、カーボン繊維やアラミド繊維などをコンクリート
柱部材や梁部材などに、部材表面に貼り付けて補強する
方法があった。しかし、カーボン繊維を用いた補強方法
は、繊維をコンクリート柱に接着剤を用いて強固に貼り
付けた場合に、繊維の引張弾性率が200GPa以上と
高弾性であるため、部材の曲げ降伏後、コンクリートに
大きな拘束力を発揮し、耐力低下をある程度抑えること
はできるが、繊維の破断伸度が1.5%程度と小さいた
め、十分な部材の変形性能を発揮することはできなかっ
た。また、繊維の破断は撃破的に起こるので繊維に損傷
を受けると一気に破断に至り、部材の耐力が低下し構造
物が倒壊に至る可能性が高い。同じ理由により、コンク
リート部材に補強材を周回させる際、隅角部を半径30
mm以上の円弧で面取りをする必要があり、施工にも手
間と時間がかかっていた。また、既往の補強工法として
主に用いられる鋼板巻立てによる補強方法で使用する鋼
板に比べて、カーボン繊維は非常に高価であるという欠
点があった。
2. Description of the Related Art As a conventional reinforcing method using high-strength fiber, there has been a method in which carbon fiber, aramid fiber, or the like is adhered to a concrete column member or a beam member on the surface of the member and reinforced. However, the reinforcing method using carbon fiber is such that when the fiber is firmly attached to a concrete column using an adhesive, the tensile elastic modulus of the fiber is as high as 200 GPa or more. Although a large restraining force is exerted on the concrete, the decrease in proof stress can be suppressed to some extent, but the breaking elongation of the fiber is as small as about 1.5%, so that sufficient deformation performance of the member could not be exhibited. In addition, since the fiber breakage occurs in a destructive manner, if the fiber is damaged, the fiber breaks at a stretch, and the strength of the member is reduced, and the structure is likely to collapse. For the same reason, when a reinforcing member is circulated around a concrete member, the corner portion has a radius of 30.
It was necessary to chamfer with an arc of not less than mm, and the construction took time and effort. In addition, there is a drawback that carbon fibers are very expensive compared to steel sheets used in a reinforcing method based on steel sheet winding which is mainly used as a conventional reinforcing method.

【0003】アラミド繊維を用いた補強方法では、繊維
の引張弾性率が70GPa程度とカーボン繊維の約3分
の1程度しかないため、柱の曲げ降伏後の耐力低下を抑
制する効果が、カーボン繊維で補強した場合と比較して
低かった。また、アラミド繊維はカーボン繊維とほぼ同
程度のコストであり、鋼板と比較して非常に高価である
という問題があった。
In the reinforcing method using aramid fiber, the tensile modulus of the fiber is about 70 GPa, which is only about one third of that of carbon fiber. It was lower than when reinforced with. Further, aramid fiber has a problem that the cost is almost the same as that of carbon fiber, and it is very expensive as compared with steel plate.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来の
補強方法の問題点を解決し、コンクリート造構造物の
柱、梁、壁、床、煙突などの構造部材を効果的に補強
し、かつ該補強の施工が容易であると同時に、低コスト
な方法を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the conventional reinforcing method and effectively reinforces structural members such as columns, beams, walls, floors, and chimneys of concrete structures. In addition, the present invention provides a low-cost method in which the reinforcement is easily applied.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに鋭意検討した結果本発明をなすに至った。即ち、本
発明は、 1. 引張弾性率が20〜150GPaのポリオキシメ
チレン線状体を複数並列に、コンクリート造の土木・建
築構造物の表面に貼り付ける事を特徴とするコンクリー
ト構造物の補強方法、 2. ポリオキシメチレン線状体を、補強するコンクリ
ートの粗骨材の最大寸法以下のあき間隔で、複数並列に
コンクリート造の土木・建築構造物の表面に貼り付ける
上記1のコンクリート構造物の補強方法、である。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present invention has been accomplished. That is, the present invention provides: 1. A method for reinforcing a concrete structure characterized by attaching a plurality of polyoxymethylene linear bodies having a tensile modulus of 20 to 150 GPa in parallel to the surface of a concrete civil engineering or building structure; The method for reinforcing a concrete structure according to the above 1, wherein a plurality of polyoxymethylene linear bodies are attached in parallel to the surface of a concrete civil engineering / building structure at a gap equal to or less than the maximum size of the coarse aggregate of the concrete to be reinforced, It is.

【0006】本発明では、コンクリートの表面に貼り付
ける補強材料は、引張弾性率が20〜150GPaのポ
リオキシメチレン線状体である。引張弾性率ではカーボ
ン繊維の約10分の1となるが、厚さ0.5mm・幅
1.4mmのポリオキシメチレン線状体を複数並列に1
層配置すると、一般的に使用されるカーボン繊維シート
目付量(200g/m2 )の約3.7倍の補強量(重量
比)となり、フィラメントの腰の強さと外径寸法の大き
さ及び破断伸度の大きさにより応力集中を緩和できる事
と、コンクリートの塑性変形時の拘束効果は補強素材の
剛性に完全には比例しないという事、さらに、フィラメ
ントがせん断方向の力にも強いという事もあって、カー
ボン繊維シートと同等以上のコンクリートの拘束力を発
揮することを、コンクリートの圧縮実験により確認して
いる。また、この材料はカーボン繊維及びアラミド繊維
の6分の1以下の安価で製造することが可能であり、カ
ーボン繊維の標準繊維量の約3.7倍の補強量(重量
比)(すなわちシート目付量で730g/m2 )を用い
た場合でも、素材コストはカーボン繊維より安価とする
ことが可能である。
In the present invention, the reinforcing material to be attached to the surface of concrete is a linear polyoxymethylene having a tensile modulus of 20 to 150 GPa. Although the tensile modulus is about one tenth of that of carbon fiber, a plurality of polyoxymethylene linear bodies having a thickness of 0.5 mm and a width of 1.4 mm are arranged in parallel.
When the layers are arranged, the reinforcing amount (weight ratio) is about 3.7 times the weight of the carbon fiber sheet (200 g / m 2 ) which is generally used, the strength of the filament, the size of the outer diameter, and the breakage. The stress concentration can be reduced by the degree of elongation, the restraining effect during plastic deformation of concrete is not completely proportional to the rigidity of the reinforcing material, and the fact that the filament is also strong in the shear direction force It has been confirmed through concrete compression experiments that the concrete exerts a binding force equal to or higher than that of the carbon fiber sheet. In addition, this material can be manufactured at a low cost of 1/6 or less of carbon fiber and aramid fiber, and the reinforcing amount (weight ratio) of about 3.7 times the standard fiber amount of carbon fiber (that is, sheet weight) Even when 730 g / m 2 ) is used, the material cost can be lower than that of carbon fiber.

【0007】コンクリートの圧縮実験はコンクリート円
柱体外周部に材軸方向に直角に繊維を貼り付けて周回し
巻き付けて補強した後、圧縮力を作用させたもので、実
験に於いては、ポリオキシメチレン線状体で補強した方
がカーボン繊維シートで補強した場合に比べて、最大耐
力・最大軸歪みともに大きくなった。ポリオキシメチレ
ン線状体の材料破断伸度がカーボン繊維に対して、非常
に大きいので、特に最大軸歪みに関しては、実験に於い
てもカーボン繊維シートで補強した場合の3倍以上のコ
ンクリートの変形まで耐力を保持し、非常に大きなエネ
ルギー吸収性能を発揮することが分かった。また、ポリ
オキシメチレン線状体材料の破断は、徐々に損傷が大き
くなって破断に至り、カーボン繊維シートのように撃破
的に破断することは無かった。この結果より、引張弾性
率が20〜150GPaのポリオキシメチレン線状体を
用いて補強すれば、コンクリート部材曲げ降伏後に十分
な拘束効果を発揮し、耐力の低下を抑えることが出来る
事が分かった。また、この場合、補強材料であるポリオ
キシメチレン線状体の引張破断耐力が十分高いので、地
震力の過大入力が作用した場合にも、安全である。
In the concrete compression test, a fiber was attached to the outer periphery of the concrete cylinder at right angles in the direction of the material axis, wrapped around and reinforced, and a compressive force was applied. Both the maximum proof stress and the maximum axial strain were larger when reinforced with a methylene linear body than when reinforced with a carbon fiber sheet. Since the material elongation at break of the polyoxymethylene linear body is much larger than that of carbon fiber, especially in the case of the maximum axial strain, even in experiments, the deformation of concrete is more than three times that of the case where carbon fiber sheet is reinforced. It has been found that the proof strength is maintained and a very large energy absorbing performance is exhibited. In addition, when the polyoxymethylene linear material was broken, the damage gradually increased, leading to breakage, and there was no breaking like a carbon fiber sheet. From these results, it was found that if the reinforcing member is reinforced using a polyoxymethylene linear body having a tensile modulus of 20 to 150 GPa, a sufficient restraining effect can be exerted after bending yield of a concrete member, and a decrease in proof stress can be suppressed. . Further, in this case, since the tensile strength of the polyoxymethylene linear body as the reinforcing material is sufficiently high, it is safe even when an excessive input of seismic force acts.

【0008】コンクリート造構造物の表面に貼り付ける
ポリオキシメチレン線状体のあき間隔は、必要とする補
強量によって変わってくるが、コンクリートの粗骨材の
最大寸法以下とする事が、補強効果を確実にする上で好
ましい。本発明で用いるポリオキシメチレン線状体は、
伸び率が大きくせん断方向力に対してもカーボン繊維の
ように極めて脆弱ということは無く、高い抵抗力がある
ので補強効果が高く、さらにモノフィラメント状である
ことから径が大きいという事もあり、応力集中により破
断することが少ない。したがって、力学的には必ずしも
樹脂によりコンポジット化する必要がなく、施工を簡略
化し、施工コストを低くすることも可能できる。
[0008] The clearance interval of the polyoxymethylene linear body attached to the surface of the concrete structure varies depending on the required reinforcement amount. It is preferable to ensure the following. The polyoxymethylene linear used in the present invention is:
It has a high elongation and is not extremely fragile to shear direction forces like carbon fiber.It has a high resistance, so it has a high reinforcing effect, and since it is a monofilament, it has a large diameter. Less rupture due to concentration. Therefore, mechanically, it is not always necessary to make the composite with a resin, and the construction can be simplified and the construction cost can be reduced.

【0009】ポリオキシメチレン線状体は、前述のよう
に厚さ0.5mm・幅1.4mm程度のものを使用すれ
ば、腰が強くコンクリート部材に貼り付けて補強したと
きに曲げせん断力に対して、鋼板で補強したような高い
初期剛性を得られる。また、材料の伸び性能が高い事は
施工面でも有利であり、コンクリート部材を周回させて
補強する場合、隅角部の面取りは直線又は、極小半径の
円弧で行えば良く、その他表面の凹凸の平滑処理もカー
ボン繊維を用いる場合程、精度を必要としないので、施
工の簡略化・工期の短縮が可能で、施工コストも低く抑
える事が出来る。
If a polyoxymethylene linear body having a thickness of about 0.5 mm and a width of about 1.4 mm is used as described above, the rigidity of the linear body is strong when it is attached to a concrete member and reinforced. On the other hand, a high initial rigidity as reinforced by a steel plate can be obtained. In addition, the high elongation performance of the material is also advantageous in terms of construction, and when reinforced by surrounding concrete members, the corners may be chamfered with straight lines or arcs with a minimal radius. Since the smoothing treatment does not require as much precision as when carbon fiber is used, the construction can be simplified and the construction period can be shortened, and the construction cost can be reduced.

【0010】本発明でいう「線状体を複数並列」という
状態を形成するには、線状体を一本一本並べてもよい
が、ポリオキシメチレン線状体をシート状やテープ状、
織布、編布、ネット状などの面状体にしたものを用いる
ことが好ましく、このようにして線状体を複数並列にす
ると、コンクリート構造体の補強作業の手間が少なくな
る。
[0010] In order to form the state of "parallel plural linear bodies" in the present invention, the linear bodies may be arranged one by one.
It is preferable to use a woven fabric, a knitted fabric, or a net-like planar body. When a plurality of linear bodies are arranged in parallel in this manner, the labor for reinforcing the concrete structure is reduced.

【0011】面状体は、曲げ補強であれば、柱材の材軸
方向に、せん断補強であれば、材軸の直角方向に貼り付
けて部材を拘束し補強するが、1方向にポリオキシメチ
レン線状体を配列した面状体を用いた場合、初めに柱の
材軸方向に面状体を並列に貼り付けた上に、材軸方向に
直角にポリオキシメチレン線状体の面状体を貼り付けて
巻き付けても良い。この場合、本発明に於いて使用する
ポリオキシメチレン線状体は、材料破断伸度がカーボン
繊維に比べて非常に大きく、応力集中による早期の材料
破断は生じにくいので、上下2層の間を縁切り材で絶縁
したり、意図的に低強度の接着剤を使用する必要はな
い。また、ポリオキシメチレン線状体及びテープ状体を
用いた場合は螺旋状に柱を捲回する事もできる。
When the sheet is bent, the sheet is attached in the direction of the axis of the column material, and when it is sheared, the sheet is attached in the direction perpendicular to the axis of the member to restrain and reinforce the member. In the case of using a planar body in which methylene linear bodies are arranged, first, the planar bodies are attached in parallel in the axial direction of the pillar, and then the surface of the polyoxymethylene linear body is perpendicular to the axial direction of the material. The body may be pasted and wound. In this case, the polyoxymethylene linear body used in the present invention has a material rupture elongation much larger than that of carbon fiber, and early material rupture due to stress concentration is unlikely to occur. There is no need to insulate with edgings or intentionally use low strength adhesives. When a polyoxymethylene linear body or a tape-like body is used, the pillar can be spirally wound.

【0012】本発明のポリオキシメチレン線状体を用い
た補強方法は、特にコンクリート造の土木・建築構造
物、特に橋脚や建築物のピロティ柱の補強に好適であ
る。本発明における補強方法の適応できるコンクリート
構造物としては、既存の構造物ならびに新築のものでも
良い。特に既存の構造物で高い変形性能が求められるも
のに適している。
The reinforcing method using the polyoxymethylene linear body of the present invention is particularly suitable for reinforcing civil engineering and building structures, particularly bridge piers and piloti columns of buildings. Existing concrete structures and newly constructed concrete structures to which the reinforcing method of the present invention can be applied may be used. It is particularly suitable for existing structures requiring high deformation performance.

【0013】[0013]

【発明の実施の形態】本発明を更に詳細に説明する。本
発明は、ポリオキシメチレン線状体又はポリオキシメチ
レン線状体を並列に配置して保持させ作成した面状体
を、例えばエポキシ樹脂等の接着剤を用いて、コンクリ
ート構造物の表面に貼り付けて補強するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail. According to the present invention, a polyoxymethylene linear body or a planar body prepared by arranging and holding a polyoxymethylene linear body in parallel is attached to the surface of a concrete structure using an adhesive such as an epoxy resin. It is to reinforce it.

【0014】本発明においてはポリオキシメチレン線状
体を用いることが必須である。ポリオキシメチレン線状
体の場合、モノフィラメント状であるため、腰があり、
高倍率延伸が可能であり、比較的簡単に線状体の引張弾
性率を高くできる。本発明において用いるポリオキシメ
チレン線状体は、引張弾性率が20〜150GPaであ
ることが必要である。ポリオキシメチレン線状体は、例
えば特開昭60−183122号公報に開示されている
方法によって得られる。ポリオキシメチレン未延伸体を
成形した後、これを熱媒中で連続的に加熱・加圧しなが
ら10倍以上に延伸する方法である。引張弾性率は大き
い方が補強効果は高いが、コンクリートの弾性率との関
係及び施工能率等を考慮すると、20〜150GPaあ
る事が必要である。
In the present invention, it is essential to use a polyoxymethylene linear body. In the case of a polyoxymethylene linear body, since it is a monofilament, there is a waist,
High magnification stretching is possible, and the tensile modulus of the linear body can be increased relatively easily. The polyoxymethylene linear body used in the present invention needs to have a tensile modulus of 20 to 150 GPa. The polyoxymethylene linear body can be obtained, for example, by the method disclosed in JP-A-60-183122. This is a method in which a polyoxymethylene unstretched body is molded and then stretched 10 times or more while continuously heating and pressing in a heat medium. The larger the tensile modulus is, the higher the reinforcing effect is. However, in consideration of the relationship with the elastic modulus of concrete and the construction efficiency, it is necessary that the tensile modulus is 20 to 150 GPa.

【0015】特開平3−17303号公報に開示されて
いるように、ポリオキシメチレン線状体の場合、延伸比
と引張弾性率・引張強度は、ある程度相関がある。即
ち、ポリオキシメチレンの引張弾性率20GPaは引張
強度約1.7GPaに相当し、引張弾性率40GPaは
引張強度約2.3GPaに相当する。従ってポリオキシ
メチレン線状体の場合、高引張弾性率であれば高引張強
度でもある。また、延伸比と破断伸度もある程度相関が
ある。即ち、ポリオキシメチレンの引張弾性率20GP
aは破断伸度約9%に相当し、引張弾性率40GPaは
破断伸度約5%に、引張弾性率100GPaは破断伸度
約3%に相当する。延伸比をあまり高くすると、引張弾
性率が大きくなり、初期の補強効果は向上するが、破断
伸度が低くなり補強した際の変形性能が低くなってしま
う。引張弾性率が20〜150GPaのものが使用さ
れ、好ましくは30〜120GPaで、特に好ましいの
は引張弾性率が40〜100GPaのものである。
As disclosed in JP-A-3-17303, in the case of linear polyoxymethylene, the stretching ratio and the tensile modulus and tensile strength have a certain correlation. That is, the tensile modulus of polyoxymethylene of 20 GPa corresponds to a tensile strength of about 1.7 GPa, and the tensile modulus of 40 GPa corresponds to a tensile strength of about 2.3 GPa. Therefore, in the case of a polyoxymethylene linear body, a high tensile modulus is also a high tensile strength. Further, there is a certain correlation between the stretching ratio and the elongation at break. That is, the tensile elastic modulus of polyoxymethylene is 20GP.
a corresponds to a breaking elongation of about 9%, a tensile modulus of 40 GPa corresponds to a breaking elongation of about 5%, and a tensile modulus of 100 GPa corresponds to a breaking elongation of about 3%. If the stretching ratio is too high, the tensile modulus increases, and the initial reinforcing effect is improved. However, the elongation at break is reduced, and the deformation performance upon reinforcement is reduced. Those having a tensile modulus of 20 to 150 GPa are used, preferably 30 to 120 GPa, and particularly preferably those having a tensile modulus of 40 to 100 GPa.

【0016】ポリオキシメチレン線状体の面状体への加
工の一例として、シート状体へ加工する方法について述
べるが、他のテープ状体、織布、編布、ネット状体も同
様の方法にて製造可能である。ポリオキシメチレン線状
体をシート状体などの面状体に加工する方法としては、
ポリオキシメチレン線状体を数本ないし数百本集合させ
た集合体として構成する。シート状体の形状は、幅10
〜1000m、厚みが1〜10mm程度である。この場
合、シート状体を形成させる方法としてはポリオキシメ
チレン線状体を並列に引き揃えたのち、横糸としてナイ
ロン、エステル、ガラス繊維などで編む込んで一体化す
る方法がある。その他には、並列に引き揃えたポリオキ
シメチレン線状体に樹脂を含浸させるなどの方法もあ
る。好ましい形態の一例としては、例えば線径が0.5
〜5mmのものを5〜400本、より好ましくは線径が
0.5〜1.5mmのものを20〜400本集合させて
シート状体を形成させる方法がある。
As an example of processing a polyoxymethylene linear body into a planar body, a method of processing a sheet-like body will be described. Other tape-like bodies, woven fabrics, knitted fabrics, and net-like bodies are similarly processed. It can be manufactured at As a method of processing a polyoxymethylene linear body into a planar body such as a sheet-like body,
The polyoxymethylene linear body is constituted as an aggregate in which several to several hundreds are assembled. The shape of the sheet is width 10
10001000 m and a thickness of about 11〜10 mm. In this case, as a method of forming a sheet-like body, there is a method in which polyoxymethylene linear bodies are aligned in parallel, and then knitted with a weft of nylon, ester, glass fiber, or the like to integrate them. In addition, there is a method of impregnating a resin into a polyoxymethylene linear body aligned in parallel. As an example of a preferred embodiment, for example, the wire diameter is 0.5
There is a method of forming a sheet by assembling 5 to 400 pieces having a diameter of 5 mm, more preferably 20 to 400 pieces having a wire diameter of 0.5 to 1.5 mm.

【0017】該シート状体は1方向にポリオキシメチレ
ン線状体を配置したものでも良いし、90度方向を変え
た2方向のポリオキシメチレン線状体を配置したもので
も良い。並列するポリオキシメチレン線状体のあき間隔
は、好ましくは、コンクリートの粗骨材の最大寸法以下
とする事が、補強効果を確実にする上で望ましく、線状
体を互いに密に相接するまで、(1層の)補強量を増や
す事も可能である。
The sheet may be one in which a polyoxymethylene linear body is arranged in one direction, or one in which a two-way polyoxymethylene linear body whose direction is changed by 90 degrees may be arranged. The gap between the parallel polyoxymethylene linear bodies is preferably not more than the maximum dimension of the coarse aggregate of concrete, in order to ensure the reinforcing effect, and the linear bodies are in close contact with each other. It is also possible to increase the amount of reinforcement (of one layer).

【0018】次に、補強の施工に関して、建築物のコン
クリート角柱を補強する場合について説明する。補強す
る柱は下地処理として、清掃後、隅角部を直線又は、極
小半径の円弧で面取りをするとともに、表面の豆板など
の凹凸をパテの塗布や研磨などにより平滑にする。それ
から表面に接着剤との親和性をよくするためにプライマ
ーを塗布し硬化させる。その後、接着剤を塗布しエステ
ル糸などを織り込み一体化したポリオキシメチレン線状
体のシート状体を材軸に直角方向にエポキシ樹脂接着剤
を用いて貼り付け、シート状体の終端部を始端部に重ね
て定着する。その後、接着剤を上塗りして、より接着力
を高めると同時に、ポリオキシメチレン線状体表面を保
護する。
Next, a case of reinforcing a concrete prism of a building will be described with respect to the construction of reinforcement. After cleaning, the pillars to be reinforced are chamfered at the corners with a straight line or an arc having a very small radius after cleaning, and the unevenness of the bean plate or the like is smoothed by applying putty or polishing. Then a primer is applied and cured on the surface to improve the affinity with the adhesive. Then, a sheet of polyoxymethylene linear body, which is coated with an adhesive and woven with an ester thread etc., is attached using an epoxy resin adhesive in the direction perpendicular to the material axis, and the end of the sheet is started. Set it over the part. Then, an adhesive is applied over the surface to further enhance the adhesive strength and at the same time protect the surface of the polyoxymethylene linear body.

【0019】壁の取り付かないコンクリート構造物の柱
や煙突など、断面を周回して被覆できる部材に対して
は、ポリオキシメチレン線状体にエポキシ樹脂等の強固
な接着剤を塗布又は部材表面に塗布しておき、直接螺旋
状に捲回していくこともできる。その場合、ポリオキシ
メチレン線状体の端部は速乾性の接着剤又は、ポリオキ
シメチレン線状体をコンクリート表面に仮止めしておく
治具を用いるなどして、エポキシ樹脂等の接着力が発揮
するまで固定しておいた方が良い。
For a member such as a pillar or a chimney of a concrete structure having no wall and which can be covered around the cross section, a strong adhesive such as an epoxy resin is applied to the polyoxymethylene linear body or the member surface is coated. It can also be applied and wound directly into a spiral. In this case, the end of the polyoxymethylene linear body has a quick-drying adhesive or a jig for temporarily fixing the polyoxymethylene linear body to the concrete surface. It's better to keep it fixed until you show it.

【0020】ポリオキシメチレン線状体をコンクリート
表面に接着した後、仕上げとして、モルタルを塗布した
り、不燃性の材料を被覆するなどして耐久性及び防火性
を高めるのは好ましい。本発明による面状体をコンクリ
ート柱のせん断補強に用いる例を示す。図1はポリオキ
シメチレン線状体3を並列にあき間隔をほぼゼロに配置
したシート状体2を、隅角部を直線で面取りしたコンク
リート柱1の表面に、材軸の直角方向に貼り付けてせん
断補強した例を示す。図2はポリオキシメチレン線状体
3を経糸として並列にあき間隔を有する状態で配置し、
緯糸にエステル糸4を用いて織ったシート状体の平面図
である。
After the polyoxymethylene linear body is adhered to the concrete surface, it is preferable to improve the durability and fire resistance by applying mortar or coating a nonflammable material as a finish. The example which uses the planar body by this invention for shear reinforcement of a concrete column is shown. FIG. 1 shows a sheet-like body 2 in which polyoxymethylene linear bodies 3 are arranged side by side and arranged at almost zero intervals, on a surface of a concrete column 1 in which corners are straight-chamfered, in a direction perpendicular to the material axis. Here is an example of shear reinforcement. FIG. 2 shows that the polyoxymethylene linear bodies 3 are arranged in parallel with warp as warps,
It is a top view of the sheet-like body woven using the ester yarn 4 for the weft.

【0021】[0021]

【実施例1〜4及び比較例1〜3】粗骨材の最大寸法が
10mmのコンクリートで作製した、直径10cm、高
さ20cmの円柱に対し、円柱の側面全面に円周方向に
厚さ0.5mm・幅1.4mmのポリオキシメチレン線
状体をエポキシ樹脂接着剤で貼り付けて部材を拘束し、
軸圧縮力を加える事により、コンクリートの圧縮耐力の
補強効果を評価した。コンクリートの圧縮性状は、せん
断補強効果の一つの指標となる。評価内容としては、最
大耐力、最大変形量、エネルギー吸収量を測定した。比
較として、カーボン繊維及びアラミド繊維についても同
様の評価を行った。その結果を表1に示す。表1からポ
リオキシメチレン線状体を用いたものが高い補強効果で
ある事が分かる。実施例1〜3は、カーボン繊維及びア
ラミド繊維を用いた比較例2及び3に比較して、最大耐
力、軸変形量ともに上回り、エネルギー吸収量でも格段
に高い効果を示している。
EXAMPLES 1-4 AND COMPARATIVE EXAMPLES 1-3 For a cylinder having a diameter of 10 cm and a height of 20 cm made of concrete having a maximum size of coarse aggregate of 10 mm, a thickness of 0 in the circumferential direction is applied to the entire side surface of the cylinder. A polyoxymethylene linear body having a width of 0.5 mm and a width of 1.4 mm is attached with an epoxy resin adhesive to restrain the member,
The effect of reinforcing the compressive strength of concrete was evaluated by applying axial compressive force. The compressive property of concrete is one indicator of the effect of shear reinforcement. As the evaluation contents, the maximum proof stress, the maximum deformation amount, and the energy absorption amount were measured. For comparison, the same evaluation was performed for carbon fibers and aramid fibers. Table 1 shows the results. From Table 1, it can be seen that the one using the polyoxymethylene linear body has a high reinforcing effect. In Examples 1 to 3, both the maximum proof stress and the amount of axial deformation were higher than Comparative Examples 2 and 3 using carbon fibers and aramid fibers, and the effects of energy absorption were remarkably high.

【0022】表1及び表2における目付量とは、1m2
当たりの補強材の重量を示し、目付量が小さいほど補強
量が少ないことを意味する。表1において、実施例1〜
4及び比較例1では目付量が、比較例2及び比較例3に
対して多いが、この場合でも前述のように、ポリオキシ
メチレン繊維はカーボン繊維、アラミド繊維の6分の1
以下の材料費で済むことから、カーボン繊維(比較例
2)、アラミド繊維(比較例3)と比較して、補強素材
を安価に製造することが出来る。
The basis weight in Tables 1 and 2 is 1 m 2
It indicates the weight of the reinforcing material per unit, and the smaller the basis weight, the smaller the reinforcing amount. In Table 1, Examples 1 to
In Comparative Example 4 and Comparative Example 1, the weight per unit area was larger than that in Comparative Example 2 and Comparative Example 3. However, even in this case, as described above, the polyoxymethylene fiber was one sixth of carbon fiber or aramid fiber.
Since the following material costs are sufficient, a reinforcing material can be manufactured at a lower cost than carbon fiber (Comparative Example 2) and aramid fiber (Comparative Example 3).

【0023】[0023]

【実施例5〜6及び比較例4】ポリオキシメチレン線状
体の間隔を変化させ、実施例1〜4と同様の評価を行っ
た。比較として、無補強のものについても同様の評価を
行った。表2から、本発明による線状体をコンクリート
の粗骨材の最大寸法以下のあき間隔とした方が、補強効
果が高いことが分かる。
Examples 5 to 6 and Comparative Example 4 The same evaluation as in Examples 1 to 4 was carried out by changing the distance between the polyoxymethylene linear bodies. As a comparison, the same evaluation was performed for an unreinforced material. From Table 2, it can be seen that the reinforcing effect is higher when the linear body according to the present invention is provided with a clearance interval equal to or less than the maximum dimension of the coarse aggregate of concrete.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明のポリオキシメチレン線状体をコ
ンクリート構造物に貼り付ける事により、構造物の強度
・靱性を向上させ、エネルギー吸収量を増大させる補強
を安価に簡便に短時間の施工で実現できる。
According to the present invention, the polyoxymethylene linear body of the present invention is attached to a concrete structure, thereby improving the strength and toughness of the structure and increasing the amount of energy absorption. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明により補強したコンクリート柱の一例の
斜視図である。
FIG. 1 is a perspective view of an example of a concrete column reinforced according to the present invention.

【図2】本発明の方法に用いるシート状体の一例の平面
図である。
FIG. 2 is a plan view of an example of a sheet used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 コンクリート柱 2 シート状体 3 ポリオキシメチレン線状体 4 エステル糸 DESCRIPTION OF SYMBOLS 1 Concrete pillar 2 Sheet-like body 3 Polyoxymethylene linear body 4 Ester thread

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 引張弾性率が20〜150GPaのポリ
オキシメチレン線状体を複数並列に、コンクリート造の
土木・建築構造物の表面に貼り付ける事を特徴とするコ
ンクリート構造物の補強方法。
1. A method for reinforcing a concrete structure, comprising: attaching a plurality of polyoxymethylene linear bodies having a tensile modulus of elasticity of 20 to 150 GPa in parallel to the surface of a concrete civil engineering or building structure.
【請求項2】 ポリオキシメチレン線状体を、補強する
コンクリートの粗骨材の最大寸法以下のあき間隔で、複
数並列にコンクリート造の土木・建築構造物の表面に貼
り付ける請求項1に記載のコンクリート構造物の補強方
法。
2. The method according to claim 1, wherein a plurality of the polyoxymethylene linear bodies are affixed in parallel to the surface of a concrete civil engineering / building structure at an interval equal to or less than the maximum dimension of the coarse aggregate of the concrete to be reinforced. Method for reinforcing concrete structures.
JP30872497A 1997-03-11 1997-11-11 Reinforcing method for concrete structure Pending JPH10311146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30872497A JPH10311146A (en) 1997-03-11 1997-11-11 Reinforcing method for concrete structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-56193 1997-03-11
JP5619397 1997-03-11
JP30872497A JPH10311146A (en) 1997-03-11 1997-11-11 Reinforcing method for concrete structure

Publications (1)

Publication Number Publication Date
JPH10311146A true JPH10311146A (en) 1998-11-24

Family

ID=26397136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30872497A Pending JPH10311146A (en) 1997-03-11 1997-11-11 Reinforcing method for concrete structure

Country Status (1)

Country Link
JP (1) JPH10311146A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027417A1 (en) * 2001-09-25 2003-04-03 Structural Quality Assurance, Inc. Reinforcement material and reinforcement structure of structure and method of designing reinforcement material
JP2004003346A (en) * 1999-12-27 2004-01-08 Structural Quality Assurance Inc Method of reinforcing construction and its structure
US6964141B2 (en) 1999-12-27 2005-11-15 Structural Quality Assurance Inc. Building reinforcing method, material, and structure
JP2006022642A (en) * 2001-09-25 2006-01-26 Structural Quality Assurance Inc Reinforcing method, reinforcing structure and reinforcement material for construction
JP2015151836A (en) * 2014-02-19 2015-08-24 株式会社美貴本 Reinforcing structure of hollow construction and reinforcing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003346A (en) * 1999-12-27 2004-01-08 Structural Quality Assurance Inc Method of reinforcing construction and its structure
US6964141B2 (en) 1999-12-27 2005-11-15 Structural Quality Assurance Inc. Building reinforcing method, material, and structure
WO2003027417A1 (en) * 2001-09-25 2003-04-03 Structural Quality Assurance, Inc. Reinforcement material and reinforcement structure of structure and method of designing reinforcement material
JP2006022642A (en) * 2001-09-25 2006-01-26 Structural Quality Assurance Inc Reinforcing method, reinforcing structure and reinforcement material for construction
JP2015151836A (en) * 2014-02-19 2015-08-24 株式会社美貴本 Reinforcing structure of hollow construction and reinforcing method

Similar Documents

Publication Publication Date Title
US6219988B1 (en) Wrapping system for strengthening structural columns or walls
AU2006289279B2 (en) Reinforcing body made of fibre-reinforced plastic
AU2014276778A1 (en) Arrangement and method for reinforcing supporting structures
Papanicolaou et al. Strengthening of two-way reinforced concrete slabs with textile reinforced mortars (TRM)
JPH10311146A (en) Reinforcing method for concrete structure
JP3415107B2 (en) Method for reinforcing concrete structure and reinforcing structure
JP3806252B2 (en) Reinforcing method of concrete structure with reinforcing fiber sheet
KR20020053897A (en) Method of reinforcing a structure with inserting a reinforcing material vertically
JP3350447B2 (en) Fiber sheet for reinforcement and repair
JPH09151612A (en) Reinforcing method for reinforced concrete column
KR100348767B1 (en) Concrete pillar
JP2718459B2 (en) Reinforcement structure of existing concrete skeleton
JP2002115403A (en) Reinforcing structure of concrete member
JPH08144541A (en) Reinforcing method of beam having slab
JP2006097273A (en) Structure repairing and reinforcing sheet, and structure repaired and reinforced by sheet
JPH10102364A (en) Reinforcement of structure
JP4893328B2 (en) FRP reinforcing method for structure and reinforcing structure for structure
JPH09228322A (en) Repairing method for concrete with unidirectionally oriented reinforced fiber sheet
JP3978282B2 (en) Reinforced wood
JP2573801Y2 (en) Carbon fiber reinforced concrete standing body
JP7454363B2 (en) Shear reinforcement method and shear reinforcement structure for concrete members in concrete structures
JPH108423A (en) Reinforcement method of concrete structure
JP4301463B2 (en) Fiber sheet for structural reinforcement
JPH11324343A (en) Method for reinforcing reinforced concrete column by fiber sheet
JP2984054B2 (en) High strength fiber reinforcement