JP2004316056A - Electrical insulating nonwoven fabric, method for producing the same, prepreg, laminated sheet and printed-wiring board - Google Patents

Electrical insulating nonwoven fabric, method for producing the same, prepreg, laminated sheet and printed-wiring board Download PDF

Info

Publication number
JP2004316056A
JP2004316056A JP2004092624A JP2004092624A JP2004316056A JP 2004316056 A JP2004316056 A JP 2004316056A JP 2004092624 A JP2004092624 A JP 2004092624A JP 2004092624 A JP2004092624 A JP 2004092624A JP 2004316056 A JP2004316056 A JP 2004316056A
Authority
JP
Japan
Prior art keywords
aramid fiber
nonwoven fabric
resol
phenol resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004092624A
Other languages
Japanese (ja)
Other versions
JP4066970B2 (en
Inventor
Manabu Ochita
学 落田
Toru Shimazu
徹 嶋津
Koichi Hiraoka
宏一 平岡
Tomokazu Ishikawa
智一 石川
Tetsuo Masuda
哲夫 増田
Mitsutoshi Kamata
満利 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004092624A priority Critical patent/JP4066970B2/en
Publication of JP2004316056A publication Critical patent/JP2004316056A/en
Application granted granted Critical
Publication of JP4066970B2 publication Critical patent/JP4066970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decrease moisture absorption of an electrical insulating nonwoven fabric containing an aramid fiber, and to improve moisture resistance and heat resistance of an insulating layer holding a thermosetting resin on the electrical insulating nonwoven fabric. <P>SOLUTION: The electrical insulating nonwoven fabric comprises an aramid fiber nonwoven fabric, wherein surfaces of the aramid fibers are treated with a resol-type phenol resin so as to form phenol resin cured films on the surfaces. The phenol resin cured films are completely cured. A water-soluble low molecular weight phenol resin of resol type in which residual methylol groups are contained in a large amount is preferably used as the resol-type phenol resin. The insulating layer of a laminated sheet or a printed-wiring board is obtained by impregnating the aramid fiber nonwoven fabric with an epoxy resin, and then subjecting the impregnated fabric to hot and press molding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アラミド繊維を含有する電気絶縁用不織布に関するものである。また、この不織布を基材とするプリプレグ、積層板ないしはプリント配線板に関するものである。   The present invention relates to a nonwoven fabric for electrical insulation containing aramid fibers. The present invention also relates to a prepreg, a laminate or a printed wiring board using the nonwoven fabric as a base material.

電子機器に使用されるプリント配線板は、多層プリント配線板が主流となっている。多層プリント配線板の層間の絶縁層は、一般に、ガラス繊維織布を基材として、これに熱硬化性樹脂を含浸し硬化させたもので構成されている。しかし、電子機器の小型軽量化の要求から、ガラス繊維よりも比重の小さいアラミド繊維(芳香族ポリアミド繊維)を含有する不織布を基材とし、これに熱硬化性樹脂を含浸した構成の絶縁層が注目されるようになってきた。   As printed wiring boards used in electronic devices, multilayer printed wiring boards have become mainstream. The insulating layer between the layers of the multilayer printed wiring board is generally composed of a glass fiber woven fabric as a base material, which is impregnated with a thermosetting resin and cured. However, due to the demand for smaller and lighter electronic devices, an insulating layer composed of a nonwoven fabric containing aramid fiber (aromatic polyamide fiber) having a specific gravity smaller than that of glass fiber and impregnated with a thermosetting resin has been developed. It is getting attention.

しかし、アラミド繊維はガラス繊維に比べて吸湿しやすく、その飽和吸湿率は1質量%を越える。従って、このアラミド繊維不織布に熱硬化性樹脂を保持させた絶縁層は吸湿しやすい。一般的なプリント配線板では、電子部品実装時に、リフロー半田付け工程で約250℃の高温に曝される。このため、吸湿量が多い状態で絶縁層が高温に曝されると、吸湿に起因して発生する水蒸気圧によって、膨れや剥離の現象を起こす。   However, aramid fibers absorb moisture more easily than glass fibers, and their saturated moisture absorption exceeds 1% by mass. Therefore, the insulating layer in which the thermosetting resin is held in the aramid fiber nonwoven fabric easily absorbs moisture. A general printed wiring board is exposed to a high temperature of about 250 ° C. in a reflow soldering process when mounting electronic components. For this reason, when the insulating layer is exposed to a high temperature in a state where the amount of moisture absorption is large, swelling and peeling phenomena occur due to the water vapor pressure generated due to moisture absorption.

上記問題点は、アラミド繊維と熱硬化性樹脂との接着性向上によって解決できると考えられ、接着性向上の手段として、特許文献1に記載されるような技術が提案されている。
この技術は、アラミド繊維表面を、フェノール性水酸基を有するポリアミドで被覆し、アラミド繊維表面にポリアミド層を形成するものである。この技術によれば、アラミド繊維表面に、フェノール性水酸基含有ポリアミド層が連続層として形成されるか、当該ポリアミドの層が断片的に付着した状態となる。あるいは、アラミド繊維内部に当該ポリアミドが浸透して含浸された状態となる。前記ポリアミドを構成するフェノール性水酸基は高い反応性を有するので、アラミド繊維表面は優れた接着性を有することになる。また、アラミド繊維表面に形成されるポリアミド層の化学的、熱的、力学的特性は、アラミド繊維のそれら特性に類似しているので、アラミド繊維の特性を低下させない。このようなアラミド繊維の不織布基材に樹脂(例えば、エポキシ樹脂)を含浸し加熱加圧成形して絶縁層を構成すると、アラミド繊維表面は当該樹脂(マトリックス樹脂)と優れた接着性有することとなり高接着性を実現できるとされている。
It is considered that the above problem can be solved by improving the adhesiveness between the aramid fiber and the thermosetting resin, and a technique described in Patent Document 1 has been proposed as a means for improving the adhesiveness.
In this technique, the surface of an aramid fiber is coated with a polyamide having a phenolic hydroxyl group, and a polyamide layer is formed on the surface of the aramid fiber. According to this technique, a phenolic hydroxyl group-containing polyamide layer is formed as a continuous layer on the surface of the aramid fiber, or the polyamide layer is in a state of being attached in a fragmentary manner. Alternatively, the polyamide is infiltrated and impregnated into the aramid fiber. Since the phenolic hydroxyl group constituting the polyamide has high reactivity, the surface of the aramid fiber has excellent adhesiveness. Further, the chemical, thermal and mechanical properties of the polyamide layer formed on the surface of the aramid fiber are similar to those of the aramid fiber, so that the properties of the aramid fiber are not reduced. When an insulating layer is formed by impregnating a resin (for example, an epoxy resin) into such a nonwoven base material of an aramid fiber and molding by heating and pressing, the surface of the aramid fiber has excellent adhesiveness with the resin (matrix resin). It is said that high adhesiveness can be realized.

特開平9−124801号公報JP-A-9-124801

しかしながら、特許文献1記載の技術を以ってしても、アラミド繊維不織布に熱硬化性樹脂を保持させた絶縁層の吸湿性を小さくすることは不十分であった。
本発明が解決しようとする課題は、アラミド繊維を含む電気絶縁用不織布の吸湿性を小さくし、この電気絶縁用不織布に熱硬化性樹脂を保持させた絶縁層の耐湿性と耐熱性を向上させることである。
However, even with the technique described in Patent Document 1, it has been insufficient to reduce the hygroscopicity of an insulating layer in which a thermosetting resin is held in an aramid fiber nonwoven fabric.
The problem to be solved by the present invention is to reduce the hygroscopicity of the non-woven fabric for electrical insulation containing aramid fiber and to improve the moisture resistance and heat resistance of the insulating layer in which a thermosetting resin is held in the non-woven fabric for electrical insulation. That is.

上記課題を達成するために、本発明に係るアラミド繊維を含む電気絶縁用不織布は、アラミド繊維を主成分として含むアラミド繊維不織布であって、アラミド繊維表面がレゾール型フェノール樹脂の完全硬化物で被覆されていることを特徴とする。   In order to achieve the above object, an electric insulating nonwoven fabric containing aramid fibers according to the present invention is an aramid fiber nonwoven fabric containing aramid fibers as a main component, and the aramid fiber surface is coated with a completely cured product of a resol-type phenol resin. It is characterized by having been done.

また、本発明に係る電気絶縁用不織布の製造法は、アラミド繊維を主成分として含むアラミド繊維不織布に、レゾール型フェノール樹脂ワニスを含浸し、当該レゾール型フェノール樹脂を完全に熱硬化させて、アラミド繊維表面を被覆することを特徴とする。   Further, the method for producing a nonwoven fabric for electrical insulation according to the present invention is a method of impregnating a resol type phenol resin varnish into an aramid fiber nonwoven material containing aramid fibers as a main component, and completely thermosetting the resol type phenol resin to obtain an aramid fiber. It is characterized by coating the fiber surface.

さらに、本発明に係るプリプレグは、上記完全硬化物で被覆された電気絶縁用不織布に、半硬化状態の熱硬化性樹脂が保持されたものである。そして、積層板は、前記プリプレグを加熱加圧成形した層を有するものであり、プリント配線板は、前記プリプレグを加熱加圧成形した絶縁層を有するものである。   Further, the prepreg according to the present invention is obtained by holding a thermosetting resin in a semi-cured state on the non-woven fabric for electrical insulation covered with the above-mentioned fully cured product. The laminated board has a layer formed by heating and pressing the prepreg, and the printed wiring board has an insulating layer formed by heating and pressing the prepreg.

レゾール型フェノール樹脂は、フェノール類とアルデヒド類とを、後者を過剰に配合してアルカリ触媒下で重縮合させたものであり、ベンゼン核にはメチロール基(−CHOH)が結合している。アラミド(芳香族ポリアミド)繊維不織布を前記レゾール型フェノール樹脂で処理することにより、芳香族ポリアミド分子鎖中のアミド基(−NHCO−)にメチロール基が配位し、アラミド繊維の吸湿性を下げることができるものと推測される。このような観点から、アラミド繊維を処理するレゾール型フェノール樹脂は、メチロール基が多く残存した水溶性低分子量レゾール型フェノール樹脂であることが好ましい。また、電気絶縁用不織布に占めるレゾール型フェノール樹脂の含有量は、15質量%より多くしても処理の効果が変わらなくなることから、1〜15質量%が好ましい。 The resole-type phenol resin is obtained by excessively blending the latter with phenols and aldehydes and subjecting them to polycondensation under an alkali catalyst. A methylol group (—CH 2 OH) is bonded to the benzene nucleus. . By treating an aramid (aromatic polyamide) fiber nonwoven fabric with the resol-type phenol resin, a methylol group coordinates to an amide group (—NHCO—) in the aromatic polyamide molecular chain, thereby reducing the hygroscopicity of the aramid fiber. It is presumed that it can From such a viewpoint, the resol-type phenol resin for treating the aramid fiber is preferably a water-soluble low-molecular-weight resol-type phenol resin in which many methylol groups remain. Further, the content of the resol-type phenol resin in the non-woven fabric for electrical insulation is preferably 1 to 15% by mass since the effect of the treatment does not change even if it is more than 15% by mass.

アラミド繊維表面を被覆するレゾール型フェノール樹脂は、完全に熱硬化され実質的にメチロール基が残存しない状態となっている必要がある。メチロール基が残存していると、この電気絶縁用不織布を使用するプリプレグの作製工程、さらには、積層板や絶縁層の成形工程で、フェノール樹脂の硬化反応(脱水反応)が起こるので好ましくない。また、絶縁層の耐湿性を小さくすることもできない。   The resol-type phenol resin that coats the aramid fiber surface needs to be completely thermoset and in a state in which substantially no methylol groups remain. If the methylol group remains, it is not preferable because a phenol resin curing reaction (dehydration reaction) occurs in a process of preparing a prepreg using the non-woven fabric for electrical insulation and in a process of forming a laminate or an insulating layer. Further, the moisture resistance of the insulating layer cannot be reduced.

本発明に係る電気絶縁用不織布を使用した積層板(絶縁層)は、吸湿率を低く抑えられ、かつ、耐熱性も向上する。この効果は、特許文献1記載の技術に相当する従来例2(以下に詳述)の特性を大きく凌駕するものである。   The laminate (insulating layer) using the non-woven fabric for electrical insulation according to the present invention has a low moisture absorption rate and also has improved heat resistance. This effect greatly surpasses the characteristics of Conventional Example 2 (detailed below) corresponding to the technique described in Patent Document 1.

本発明を実施するに当り、アラミド繊維不織布は、パラ系アラミド繊維とメタ系アラミド繊維のいずれも用い得る。レゾール型フェノール樹脂による処理は、アラミド繊維を主成分とし必要に応じて他の繊維そのほかの成分を一緒に抄造した不織布を準備し、このアラミド繊維不織布にレゾール型フェノール樹脂を直接塗布し、加熱乾燥して不織布表面にフェノール樹脂完全硬化物の皮膜を形成する方法を採用することができる。   In practicing the present invention, the aramid fiber nonwoven fabric may use both para-aramid fibers and meta-aramid fibers. In the treatment with resol type phenolic resin, prepare a non-woven fabric made of aramid fiber as the main component and other fibers and other components together as necessary, apply the resol type phenol resin directly to this aramid fiber non-woven fabric, and heat dry. To form a film of a completely cured phenolic resin on the surface of the nonwoven fabric.

ここで、レゾール型フェノール樹脂の硬化状態が完全か不完全かを判別するために、JIS−C−6481 5.17.2に規定される動的粘弾性測定装置を使用した引っ張りDMA法によるガラス転移温度試験方法を採用することができる。この方法によれば、積層板のガラス転移温度を損失正接の温度依存性挙動カーブのピーク位置から求めることができる。レゾール型フェノール樹脂の硬化が不完全な場合には、未反応生成物による脱水反応が起こるため、損失正接の温度依存性挙動カーブにおいて、60〜120℃の間にガラス転移温度によるピークが現われる。一方、レゾール型フェノール樹脂の硬化が完全な場合には、損失正接の温度依存性挙動カーブにおいて、60〜120℃の間にガラス転移温度によるピークが現われない。このようにして、硬化状態が、完全か不完全かを判別することができる。   Here, in order to determine whether the cured state of the resol-type phenol resin is complete or incomplete, a glass by a tensile DMA method using a dynamic viscoelasticity measurement device specified in JIS-C-6481 5.17.2. A transition temperature test method can be employed. According to this method, the glass transition temperature of the laminate can be determined from the peak position of the temperature-dependent behavior curve of the loss tangent. If the curing of the resol-type phenol resin is incomplete, a dehydration reaction occurs due to unreacted products, and thus a peak due to the glass transition temperature appears between 60 and 120 ° C. in the temperature dependence behavior curve of the loss tangent. On the other hand, when the resol-type phenol resin is completely cured, no peak due to the glass transition temperature appears between 60 and 120 ° C. in the temperature dependence behavior curve of the loss tangent. In this way, it is possible to determine whether the cured state is complete or incomplete.

上記フェノール樹脂完全硬化物の皮膜を形成したアラミド繊維不織布に占めるフェノール樹脂の含有量は、1〜15質量%が好ましい。前記フェノール樹脂の含有量が少ないと処理の効果が十分に発揮されず、徒に含有量を多くしても処理の効果は変わらなくなる。   The content of the phenol resin in the aramid fiber nonwoven fabric on which the film of the completely cured phenol resin is formed is preferably 1 to 15% by mass. If the content of the phenolic resin is small, the effect of the treatment is not sufficiently exhibited, and even if the content is excessively increased, the effect of the treatment does not change.

レゾール型フェノール樹脂は、フェノール類とアルデヒド類とを、後者を過剰に配合してアルカリ触媒下で重縮合させたものであり、ベンゼン核にはメチロール基が結合している。フェノール類は、フェノール、アルキルフェノール、クレゾール、チモール、カルバクロールなどの一価フェノールである。アルデヒド類は、ホルムアルデヒド、アセトアルデヒドなどの鎖式アルデヒドである。アルカリ触媒は、トリメチルアミン、トリエチルアミン、ヘキサメチレンテトラミンなどのアミン化合物である。フェノール類1モルに対しアルデヒド類1〜3モルの割合で配合して反応させる。レゾール型フェノール樹脂は、フェノール類2量体程度の水溶性低分子量フェノール樹脂とすることが好ましく、このようなレゾール型フェノール樹脂は、前記反応を74〜82℃で行なった後、減圧濃縮を行なうことにより製造し得る。   The resole type phenol resin is obtained by blending an excessive amount of phenols and aldehydes and subjecting them to polycondensation under an alkali catalyst. A methylol group is bonded to a benzene nucleus. Phenols are monohydric phenols such as phenol, alkylphenol, cresol, thymol, carvacrol. Aldehydes are chain aldehydes such as formaldehyde and acetaldehyde. The alkali catalyst is an amine compound such as trimethylamine, triethylamine, hexamethylenetetramine and the like. The aldehydes are mixed and reacted at a ratio of 1 to 3 moles of aldehydes to 1 mole of phenols. The resol-type phenol resin is preferably a water-soluble low-molecular-weight phenol resin of about phenol dimer. Such a resol-type phenol resin is subjected to the above-mentioned reaction at 74 to 82 ° C. and then concentrated under reduced pressure. It can be manufactured by the following.

レゾール型フェノール樹脂のメチロール基が芳香族ポリアミド分子鎖中のアミド基に配位することが吸湿性を小さくすることに寄与すると推測されるが、この配位は、メチロール基の残存が多い水溶性低分子量レゾール型フェノール樹脂でアラミド繊維を処理することにより良好に進むと推測される。しかし、当該処理後にもメチロール基が残存していると、吸湿性を小さくすることはできないので、アラミド繊維表面を覆うレゾール型フェノール樹脂の硬化を完全にするため、加熱乾燥を十分にした処理を行なう。このようにして、アミド基と配位せずに残ったメチロール基の架橋を確実に進めるのがよい。   It is presumed that the coordination of the methylol group of the resole type phenol resin to the amide group in the aromatic polyamide molecular chain contributes to reducing the hygroscopicity. It is presumed that the treatment proceeds favorably by treating the aramid fiber with a low molecular weight resol type phenol resin. However, if the methylol group remains even after the treatment, the hygroscopicity cannot be reduced, so that the treatment by heating and drying is sufficient to complete the curing of the resol-type phenol resin covering the aramid fiber surface. Do. In this way, it is preferable to surely promote the cross-linking of the methylol group remaining without coordination with the amide group.

本発明に係るプリプレグ、積層板及びプリント配線板は、次のようにして製造し得る。
上記処理をしたアラミド繊維不織布に熱硬化性樹脂(例えばエポキシ樹脂)を含浸し乾燥して、熱硬化性樹脂の硬化を半硬化状態まで進めたシート状のプリプレグとする。
このプリプレグを1枚又は複数枚重ねて加熱加圧成形し積層板を作製できる。この場合、所定厚みの金属箔(例えば銅箔)をプリプレグ層の片面又は両面に配置し、加熱加圧成形で一体化して金属箔張り積層板とすることもできる。プリント配線板は、上記プリプレグの層を加熱加圧成形した絶縁層を備えるものである。
The prepreg, laminated board and printed wiring board according to the present invention can be manufactured as follows.
The treated aramid fiber nonwoven fabric is impregnated with a thermosetting resin (for example, epoxy resin) and dried to obtain a sheet-shaped prepreg in which the thermosetting resin has been cured to a semi-cured state.
One or a plurality of the prepregs are stacked and heated and pressed to form a laminated plate. In this case, a metal foil (for example, copper foil) having a predetermined thickness may be arranged on one or both surfaces of the prepreg layer, and integrated by heating and pressing to form a metal foil-clad laminate. The printed wiring board includes an insulating layer formed by heating and pressing the prepreg layer.

以下、本発明に係る実施例を説明する。
アラミド繊維不織布として、アラミド繊維を含有する次のアラミド繊維不織布(a)(b)(c)を準備した。
(a)パラ系アラミド繊維(帝人製「テクノーラ」)チョップを主成分としメタ系アラミド繊維(帝人製「コーネックス」)チョップをバインダ成分として配合し抄造により製造したアラミド繊維不織布。
(b)パラ系アラミド繊維(東レ・デュポン製「ケブラー」)チョップを主成分としメタ系アラミド繊維(帝人製「コーネックス」)チョップをバインダ成分として配合し抄造により製造したアラミド繊維不織布。
(c)パラ系アラミド繊維(東レ・デュポン製「ケブラー」)チョップを主成分として抄造し、これに水溶性エポキシバインダ(大日本インキ化学工業製「Vコート」)を塗布して製造したアラミド繊維不織布。
Hereinafter, examples according to the present invention will be described.
The following aramid fiber nonwoven fabrics (a), (b), and (c) containing aramid fibers were prepared as the aramid fiber nonwoven fabric.
(A) An aramid fiber nonwoven fabric produced by mixing a para-aramid fiber (Tecjin "Technola") chop as a main component and a meta-aramid fiber (Teijin "Cornex") chop as a binder component, and manufacturing by papermaking.
(B) An aramid fiber nonwoven fabric manufactured by sheet-forming by mixing a para-aramid fiber ("Kevlar" manufactured by Toray DuPont) chop as a main component and a meta-aramid fiber ("Conex" manufactured by Teijin) as a binder component.
(C) Para-aramid fiber ("Kevlar" manufactured by Du Pont-Toray Co., Ltd.) Aramid fiber manufactured by making a chop as a main component and applying a water-soluble epoxy binder ("V Coat" manufactured by Dainippon Ink and Chemicals, Inc.) Non-woven fabric.

ここでは、アラミド繊維不織布の単位面積当り質量を72g/mとした。また、不織布の主成分はパラ系アラミド繊維としたが、主成分として異種パラ系アラミド繊維の混合物(例えば、「テクノーラ」と「ケブラー」の混合物)、パラ系アラミド繊維とその他繊維の混合物も選択することができる。また、不織布のバインダ成分として、メタ系アラミドの繊維チョップのほかパルプ、フィブリド形態も可能であり、この他に、水溶性エポキシバインダとメタ系アラミドの混合物等もバインダ成分として選択することができる。 Here, the mass per unit area of the aramid fiber nonwoven fabric was set to 72 g / m 2 . The main component of the nonwoven fabric is para-aramid fiber, but a mixture of different para-aramid fibers (for example, a mixture of "Technola" and "Kevlar") and a mixture of para-aramid fiber and other fibers are also selected. can do. In addition, as the binder component of the nonwoven fabric, a pulp or fibrid form may be used in addition to the meta-aramid fiber chop. In addition, a mixture of a water-soluble epoxy binder and the meta-aramid can be selected as the binder component.

上記アラミド繊維不織布を処理するためのレゾール型フェノール樹脂を次のとおり準備した。
フェノール1mol、ホルムアルデヒド2mol、触媒としてトリエチルアミン0.1molを反応釜に投入し、74〜82℃で約3時間反応させた後、減圧濃縮を行ない、反応生成物のゲルタイムが所定の値となったところで反応を終了した。これをメタノールで希釈して樹脂固形分50質量%の水溶性低分子量レゾール型フェノール樹脂ワニスを調製した。このレゾール型フェノール樹脂は、重量平均分子量が約270であり、2量体が主成分となっている。
A resol-type phenol resin for treating the aramid fiber nonwoven fabric was prepared as follows.
Phenol (1 mol), formaldehyde (2 mol), and triethylamine (0.1 mol) as a catalyst were charged into a reaction vessel, reacted at 74 to 82 ° C. for about 3 hours, concentrated under reduced pressure, and when the gel time of the reaction product reached a predetermined value. The reaction was completed. This was diluted with methanol to prepare a water-soluble low molecular weight resol-type phenol resin varnish having a resin solid content of 50% by mass. This resol-type phenol resin has a weight average molecular weight of about 270, and is mainly composed of a dimer.

実施例1
上記アラミド繊維不織布(a)(b)(c)それぞれに、上記レゾール型フェノール樹脂ワニスを含浸し、加熱乾燥(150℃,15分)して繊維表面にレゾール型フェノール樹脂の完全硬化皮膜を形成した電気絶縁用不織布とした。硬化状態の判別として、上述したDMA法により、硬化が完全であることを確認した。この不織布中のレゾール型フェノール樹脂含有量は、1質量%になるように調整した。
上記の電気絶縁用不織布にエポキシ樹脂ワニスを含浸し、加熱乾燥してエポキシ樹脂を半硬化状態とした樹脂含有量53質量%のプリプレグを得た。
尚、上記エポキシ樹脂ワニスは、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製「Ep−828」)10質量部、オルソクレゾールノボラック型エポキシ樹脂(東都化成製「YDCN704」)40質量部、難燃剤としてテトラブロモビスフェノールA(ブロムケムファーイースト製「FR1524」)27質量部、硬化剤としてフェノールノボラック樹脂(ジャパンエポキシレジン製「YLH−129」)22質量部、触媒として2−エチル−4−メチルイミダゾール(四国化成工業製「MG−50」)0.2質量部を配合した樹脂固形分65質量%の組成としたが、そのほか公知のエポキシ樹脂配合組成を適用することができる。
このようにして得たプリプレグを10枚重ね、4.9MPa、205℃で1.5時間加熱加圧成形して、1mm厚の積層板を得た。
また、前記プリプレグ10枚を重ねた両側に厚み18μmの銅箔を配置し、同様に加熱加圧成形して、1mm厚の金属箔張り積層板を得た。
Example 1
Each of the aramid fiber nonwoven fabrics (a), (b) and (c) is impregnated with the above resol phenol resin varnish, and heated and dried (150 ° C., 15 minutes) to form a completely cured resol phenol resin film on the fiber surface. The obtained non-woven fabric for electrical insulation was used. As the determination of the cured state, it was confirmed by the above-described DMA method that the curing was complete. The content of the resol-type phenol resin in this nonwoven fabric was adjusted to be 1% by mass.
The above non-woven fabric for electrical insulation was impregnated with an epoxy resin varnish and dried by heating to obtain a prepreg having a resin content of 53% by mass in which the epoxy resin was in a semi-cured state.
The epoxy resin varnish was prepared by adding 10 parts by mass of a bisphenol A type epoxy resin ("Ep-828" manufactured by Japan Epoxy Resin), 40 parts by mass of an orthocresol novolac type epoxy resin ("YDCN704" manufactured by Toto Kasei), and tetramethyl as a flame retardant. 27 parts by mass of bromobisphenol A ("FR1524" manufactured by Bromchem Far East), 22 parts by mass of a phenol novolak resin ("YLH-129" manufactured by Japan Epoxy Resin) as a curing agent, and 2-ethyl-4-methylimidazole (Shikoku) as a catalyst Although a composition having a resin solid content of 65% by mass containing 0.2 parts by mass of “MG-50” manufactured by Kasei Kogyo Co., Ltd., a known epoxy resin compounding composition can be applied.
Ten prepregs thus obtained were stacked and heated and pressed at 4.9 MPa and 205 ° C. for 1.5 hours to obtain a 1 mm-thick laminate.
In addition, copper foil having a thickness of 18 μm was arranged on both sides of the ten prepregs, which were stacked on each other, and heated and pressed in the same manner to obtain a metal foil-clad laminate having a thickness of 1 mm.

実施例2
実施例1において、レゾール型フェノール樹脂含有量を15質量%になるように調整した電気絶縁用不織布を使用し、そのほかは実施例1と同様にして積層板と金属箔張り積層板を得た。
Example 2
In Example 1, a laminated board and a metal foil-clad laminate were obtained in the same manner as in Example 1, except that the non-woven fabric for electric insulation was adjusted so that the content of the resol-type phenolic resin became 15% by mass.

実施例3
実施例1において、レゾール型フェノール樹脂含有量を20質量%になるように調整した電気絶縁用不織布を使用し、そのほかは実施例1と同様にして積層板と金属箔張り積層板を得た。
Example 3
In Example 1, a laminated board and a metal foil-clad laminate were obtained in the same manner as in Example 1, except that the non-woven fabric for electrical insulation was adjusted so that the content of the resol-type phenolic resin was 20% by mass.

従来例1
実施例1において、レゾール型フェノール樹脂による処理をしないアラミド繊維不織布(a)(b)(c)を使用し、そのほかは実施例1と同様にして積層板と金属箔張り積層板を得た。
Conventional example 1
In Example 1, a laminate and a metal foil-clad laminate were obtained in the same manner as in Example 1 except that aramid fiber nonwoven fabrics (a), (b), and (c) which were not treated with a resol-type phenol resin were used.

従来例2
アラミド繊維不織布(a)(b)(c)を、特許文献1に記載されるようにフェノール性水酸基を有するポリアミドで処理して電気絶縁用不織布基材とした。この不織布を使用し、そのほかは実施例1と同様にして積層板と金属箔張り積層板を得た。
Conventional example 2
Aramid fiber nonwoven fabrics (a), (b), and (c) were treated with a polyamide having a phenolic hydroxyl group as described in Patent Document 1 to obtain a nonwoven fabric substrate for electrical insulation. Using this nonwoven fabric, a laminate and a metal foil-clad laminate were obtained in the same manner as in Example 1 except for the above.

比較例1
実施例1において、レゾール型フェノール樹脂を含浸し、加熱乾燥(150℃,5分)して繊維表面のレゾール型フェノール樹脂皮膜が完全には硬化していない電気絶縁用不織布とした。前記レゾール型フェノール樹脂皮膜の硬化状態の判別を、上述したDMA法により行ない、硬化が不完全であることを確認した。この不織布中のレゾール型フェノール樹脂含有量は1質量%になるように調整した。そのほかは実施例1と同様にして積層板と金属箔張り積層板を得た。
Comparative Example 1
In Example 1, a resol type phenol resin was impregnated and dried by heating (150 ° C., 5 minutes) to obtain a non-woven fabric for electrical insulation in which the resol type phenol resin film on the fiber surface was not completely cured. The cured state of the resol-type phenolic resin film was determined by the DMA method described above, and it was confirmed that the curing was incomplete. The content of the resol-type phenol resin in this nonwoven fabric was adjusted to be 1% by mass. Otherwise in the same manner as in Example 1, a laminate and a metal foil-clad laminate were obtained.

上記の実施例、従来例、比較例における積層板については吸湿性を、金属箔張り積層板については耐熱性を、それぞれ評価した結果を表1に示す。
評価方法は、次のとおりである。
吸湿性試験:積層板試験片(1mm×50mm×50mm)を、加熱乾燥(105℃,1時間)した後、吸湿処理(湿度85%,85℃,200時間)する。そして、(吸湿処理後試験片質量−吸湿処理前試験片質量)/吸湿処理後試験片質量×100を吸湿率(%)とした。
耐熱性試験:金属箔張り積層板試験片(1mm×50mm×50mm)を、加熱乾燥(105℃,1時間)した後、吸湿処理(湿度85%,85℃,200時間)する。そして、吸湿処理後試験片を288℃の半田槽に浮かべて、銅箔表面に膨れが発生するまでの時間(分)を耐熱時間として評価した。
Table 1 shows the results of the evaluation of the moisture absorption of the laminates in the above Examples, Conventional Examples and Comparative Examples, and the heat resistance of the metal foil-clad laminates.
The evaluation method is as follows.
Hygroscopicity test: A laminate test piece (1 mm × 50 mm × 50 mm) is heated and dried (105 ° C., 1 hour) and then subjected to a moisture absorbing treatment (85% humidity, 85 ° C., 200 hours). Then, (moisture absorption-treated test piece mass-moisture-absorbing test piece mass) / (moisture-absorbing test piece mass) × 100 was defined as a moisture absorption rate (%).
Heat resistance test: A metal foil-clad laminate test piece (1 mm × 50 mm × 50 mm) is heated and dried (105 ° C., 1 hour) and then subjected to a moisture absorption treatment (85% humidity, 85 ° C., 200 hours). Then, after the moisture absorption treatment, the test piece was floated in a solder bath at 288 ° C., and the time (minutes) until swelling occurred on the copper foil surface was evaluated as the heat resistance time.

Figure 2004316056
Figure 2004316056

アラミド繊維を主成分として含有するアラミド繊維不織布のアラミド繊維表面にレゾール型フェノール樹脂の皮膜を形成し、これを完全に熱硬化させた電気絶縁用不織布とすることにより、これを使用した積層板(絶縁層)の吸湿率を低く抑え、かつ、耐熱性を向上することができた。この効果は、特許文献1記載の技術に相当する従来例2の特性をも大きく凌駕するものである。比較例1に示すように、アラミド繊維表面に形成したレゾール型フェノール樹脂皮膜の硬化が不完全であると、特許文献1記載の技術を大きく凌駕する効果は得られない。   A resol-type phenolic resin film is formed on the aramid fiber surface of an aramid fiber nonwoven fabric containing aramid fiber as a main component, and this is completely heat-cured to form an electrically insulating nonwoven fabric. The moisture absorption of the insulating layer) was kept low, and the heat resistance was improved. This effect greatly surpasses the characteristics of Conventional Example 2 corresponding to the technology described in Patent Document 1. As shown in Comparative Example 1, if the curing of the resol-type phenol resin film formed on the aramid fiber surface is incomplete, an effect far exceeding the technique described in Patent Document 1 cannot be obtained.

また、電気絶縁用不織布に占めるレゾール型フェノール樹脂の含有量は、15質量%より多くしても処理の効果が変わらなくなることから、1〜15質量%が好ましい。
Further, the content of the resol-type phenol resin in the non-woven fabric for electrical insulation is preferably 1 to 15% by mass since the effect of the treatment does not change even if it is more than 15% by mass.

Claims (7)

アラミド繊維を主成分として含むアラミド繊維不織布であって、アラミド繊維表面がレゾール型フェノール樹脂の完全硬化物で被覆されていることを特徴とする電気絶縁用不織布。 An aramid fiber nonwoven fabric containing aramid fibers as a main component, wherein the aramid fiber surface is coated with a completely cured product of a resol-type phenolic resin. レゾール型フェノール樹脂が、水溶性低分子量レゾール型フェノール樹脂である請求項1記載の電気絶縁用不織布。 The non-woven fabric for electrical insulation according to claim 1, wherein the resole type phenol resin is a water-soluble low molecular weight resole type phenol resin. レゾール型フェノール樹脂の完全硬化物で被覆された電気絶縁用不織布に占めるレゾール型フェノール樹脂完全硬化物の含有量が、1〜15質量%であることを特徴とする請求項1又は2記載の電気絶縁用不織布。 The electricity according to claim 1 or 2, wherein the content of the completely cured resol-type phenolic resin in the non-woven fabric for electrical insulation coated with the completely cured resol-type phenolic resin is 1 to 15% by mass. Non-woven fabric for insulation. アラミド繊維を主成分として含むアラミド繊維不織布に、レゾール型フェノール樹脂ワニスを含浸し、当該レゾール型フェノール樹脂を完全に熱硬化させて、アラミド繊維表面を被覆することを特徴とする電気絶縁用不織布の製造方法。 Aramid fiber nonwoven fabric containing aramid fiber as a main component, impregnated with a resole type phenolic resin varnish, completely thermoset the resole type phenolic resin, covering the aramid fiber surface of the non-woven fabric for electrical insulation, Production method. 請求項1〜3のいずれかに記載の電気絶縁用不織布に、半硬化状態の熱硬化性樹脂が保持されていることを特徴とするプリプレグ。 A prepreg, wherein a semi-cured thermosetting resin is held by the non-woven fabric for electrical insulation according to any one of claims 1 to 3. 請求項5記載のプリプレグの層を、加熱加圧成形した層を有することを特徴とする積層板。 A laminate comprising a layer formed by heating and pressing the layer of the prepreg according to claim 5. 請求項5記載のプリプレグの層を、加熱加圧成形した絶縁層を有することを特徴とするプリント配線板。 A printed wiring board comprising an insulating layer obtained by heating and pressing the layer of the prepreg according to claim 5.
JP2004092624A 2003-03-31 2004-03-26 Manufacturing method of prepreg, laminated board and printed wiring board Expired - Fee Related JP4066970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092624A JP4066970B2 (en) 2003-03-31 2004-03-26 Manufacturing method of prepreg, laminated board and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003093000 2003-03-31
JP2004092624A JP4066970B2 (en) 2003-03-31 2004-03-26 Manufacturing method of prepreg, laminated board and printed wiring board

Publications (2)

Publication Number Publication Date
JP2004316056A true JP2004316056A (en) 2004-11-11
JP4066970B2 JP4066970B2 (en) 2008-03-26

Family

ID=33478567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092624A Expired - Fee Related JP4066970B2 (en) 2003-03-31 2004-03-26 Manufacturing method of prepreg, laminated board and printed wiring board

Country Status (1)

Country Link
JP (1) JP4066970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161797A (en) * 2005-12-12 2007-06-28 Matsushita Electric Ind Co Ltd Character testing method for prepreg

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161797A (en) * 2005-12-12 2007-06-28 Matsushita Electric Ind Co Ltd Character testing method for prepreg

Also Published As

Publication number Publication date
JP4066970B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
KR20130027519A (en) Epoxy resin composition prepreg metal-clad laminate and printed wiring board
TWI458627B (en) Metal-clad phenolic resin laminate
JP4066970B2 (en) Manufacturing method of prepreg, laminated board and printed wiring board
US20050008882A1 (en) Phenol resin composition and phenol resin copper-clad laminate
JP3818208B2 (en) Prepreg, laminated board and printed wiring board
JP2005179838A (en) Nonwoven fabric for electrical insulation and method for producing the same, prepreg, laminated sheet and printed circuit board
JP2006037280A (en) Nonwoven fabric for electric insulation, method for producing the same, prepreg, laminated plate and printed circuit board
JP4320986B2 (en) Epoxy resin composition for impregnating glass fiber substrate and prepreg, laminate and printed wiring board using the same
JP2006037035A (en) Nonwoven fabric for electric insulation and method for manufacturing the same, prepreg, laminated plate, and printed circuit board
JP2004115634A (en) Epoxy resin composition for printed wiring board, prepreg, metal-clad laminated sheet, and multilayer printed wiring board
JP4175915B2 (en) Resin composition, prepreg and phenolic resin laminate
JP2004316057A (en) Aramid fiber for reinforcing resin molded product, aramid fiber base material for reinforcing the resin molded product and the resin molded product
JP2000064167A (en) Nonwoven fabric for laminate
JP4005384B2 (en) Epoxy resin composition for impregnating organic fiber substrate and prepreg, laminate and printed wiring board using the same
JP2005213386A (en) Prepreg, laminate board using the prepreg and printed wiring board
JP2003119346A (en) Epoxy resin composition for impregnating organic fabric base, prepreg using the same, laminated board and printed circuit board
JP4893185B2 (en) Phenol resin composition, prepreg, and phenol resin laminate
JP2005290144A (en) Resin composition, prepreg and phenolic resin laminated plate
JP2003327724A (en) Prepreg, laminate for printed wiring board, and printed wiring board
JP2001335651A (en) Epoxy resin composition for impregnation of organic fiber substrate, and prepreg, laminated sheet and printed wiring board using the same
JP2002060590A (en) Epoxy resin composition for imprregnating glass fiber substrate and prepreg, laminated sheet and printed wiring board using the same
JP4866087B2 (en) Prepreg for printed wiring boards, copper-clad laminates
JP2001081214A (en) Resin composition for impegnating nonwoven fabric made of aramid fiber, prepreg, insulating layer and metal clad laminated board
JP2001234494A (en) Nonwoven fabric for laminate
JP2001240688A (en) Epoxy resin composition, prepreg made thereof, laminated board clad with metallic foil and printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070926

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071218

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20071231

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120118

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees