JP2004315993A - Heat-resistant fabric, method for producing the same and heat-resistant protective wear comprising the same - Google Patents

Heat-resistant fabric, method for producing the same and heat-resistant protective wear comprising the same Download PDF

Info

Publication number
JP2004315993A
JP2004315993A JP2003108728A JP2003108728A JP2004315993A JP 2004315993 A JP2004315993 A JP 2004315993A JP 2003108728 A JP2003108728 A JP 2003108728A JP 2003108728 A JP2003108728 A JP 2003108728A JP 2004315993 A JP2004315993 A JP 2004315993A
Authority
JP
Japan
Prior art keywords
fiber
heat
resistant
yarn
cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108728A
Other languages
Japanese (ja)
Inventor
Hiromi Ishimaru
裕美 石丸
Morihiko Sugimoto
守彦 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2003108728A priority Critical patent/JP2004315993A/en
Publication of JP2004315993A publication Critical patent/JP2004315993A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a lightweight and heat-resistant fabric exhibiting excellent heat-resistant properties, to provide a method for producing the same and to obtain a heat-resistant protective wear produced by using the heat-resistant fabric. <P>SOLUTION: The heat-resistant protective wear is obtained by winding two or more heat-resistant yarns spirally in the different directions on a polyvinyl chloride yarn having ≥40 limiting oxygen index (LOI value) to produce a double covering yarn, producing a fabric by using the double covering yarn and heat-treating the fabric to dominantly shrink the polyvinyl chloride yarn. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性布帛及びその製造方法、並びに、該耐熱性布帛を用いて製造された耐熱性防護服に関するものであり、さらに詳しくは、新規な糸形態を有する耐熱性繊維を使用し、優れた耐熱特性を示す耐熱性布帛及びその製造方法、並びに、該耐熱性布帛を用いて製造された耐熱性防護服に関するものである。
【0002】
【従来の技術】
従来、消防士が消火作業時に着用する耐熱性防護服としては、不燃性のアスベスト繊維、ガラス繊維等が使われていたが、環境問題、動きやすさなどの観点から近年では、アラミド、ポリフェニレンスルフィド、ポリイミド、ポリベンズイミダゾールなどの難燃性の有機繊維が使用され、さらに、火災により発生する輻射熱を防止する目的から、これらの難燃繊維からなる布帛に金属アルミニウム等をコーティングあるいは蒸着等により、表面加工したものが多く使われている。
【0003】
一方、近年、遮熱性の評価方法の国際標準化がなされ、輻射熱はもとより、伝導熱にも注目した評価方法が確立された(試験法番号:ISO9151)。この評価方法をクリアするにあたっては、熱の伝導を遅延させるために、防護服内に大量の空気層を形成することが有用となると考えられている。しかしながら前述したようなアルミニウム加工された有機繊維からなる布帛を防護服として用いる場合、その重量が非常に重くなる欠点があり、さらに空気層を作るという観点から積層構造にすることが最も有用であるが、この積層構造により重量が一層増加するという欠点がある。このためにこの種の積層構造の防護服を使用することは実用上不可能であった。
【0004】
かかる問題解決のために、遮熱性に富んだ空気層が得られる嵩高性の不職布が提案されている(特開2000−212810号公報)。しかしながら、このような不職布を用いた防護服では、遮熱層が得られるものの、他方では、透湿性や通気性が極端に低減し、暑熱感や蒸れ感を引き起こす原因となるため、消火作業時のような非常に過酷な環境では、着用感が悪いものとなり、更なる改良が求められている。
【0005】
一方、着用性向上のため、膨張剤を用いて衣服内の空気量を増やす試み(特開2000−214318号公報)や、特殊な織物構造を利用して衣服内の空気量を増やす試み(特開2002−115106号公報)がなされてきた。しかしながら、これらの改良はいずれも耐熱性繊維の糸構造に起因する空気量を増加させるものではなく、防護服の重量が大幅に増加するのを抑えることは非常に難しかった。
【0006】
【特許文献1】
特開2000−212810号公報
【0007】
【特許文献2】
特開2000−214318号公報
【0008】
【特許文献3】
特開2002−115106号公報
【0009】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の有する問題点を解決し、軽量で優れた耐熱特性を示す耐熱性布帛及びその製造方法、並びに、該耐熱性布帛を用いて製造された耐熱性防護服を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは上記の問題を解決するために鋭意検討した結果、糸軸方向に沿ってらせん状に、且つ、異なる方向に旋回する二本以上の耐熱性繊維糸条により形成される旋回糸の芯部にポリ塩化ビニル繊維を配置し、且つそれらの間に連続した空隙を形成させるとき、所望の耐熱性防護服が得られることを究明した。
【0011】
かくして本発明によれば、糸軸方向に沿ってらせん状に、且つ、異なる方向に旋回する二本以上の耐熱性繊維糸条により形成される旋回糸を用いてなる布帛であって、該耐熱性繊維糸条の旋回数がいずれも400回/m以上であり、且つ該旋回糸の芯部にはポリ塩化ビニル繊維が配置されていると共に、該芯部と該耐熱性繊維糸条との間には糸条の長手方向に連続した空隙が存在することを特徴とする耐熱性布帛が提供される。
【0012】
また、本発明によれば、限界酸素指数(LOI値)が40以上のポリ塩化ビニル繊維の周りに、二本以上の耐熱性繊維がらせん状に且つ異なる方向に旋回してなるダブルカバリングヤーンを製造し、該カバリングヤーンを用いて布帛を形成した後、該布帛を熱処理して、該ポリ塩化ビニル繊維を優勢的に収縮させることを特徴とする耐熱性布帛の製造方法が提供される。
【0013】
さらに本発明によれば、上記耐熱性布帛、若しくは、上記の製造方法により得られる耐熱性布帛を用いてなることを特徴とする耐熱性防護服が提供される。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の耐熱性布帛は、糸軸方向に沿ってらせん状に、且つ、異なる方向に旋回する二本以上の耐熱性繊維糸条により形成される旋回糸の芯部にポリ塩化ビニル繊維を配置し、且つそれらの間に連続した空隙を形成させた糸条から構成された布帛であって、このような糸条は、ポリ塩化ビニル繊維の周りに、耐熱性繊維をダブルカバリングして得た糸条を用いて布帛となした後、該布帛を熱処理してポリ塩化ビニル繊維を優勢的に、つまり耐熱性繊維よりも多く収縮させることにより製造できる。
【0015】
本発明で使用する耐熱性繊維としては、アラミド繊維、ポリベンゾイミダゾール繊維、ポリイミド繊維、ポリアミドイミド繊維、ポリエーテルイミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ノボロイド繊維、難燃アクリル繊維、ポリクラール繊維、難燃ポリエステル繊維、難燃綿繊維、難燃ウール繊維などが例示され、これらの耐熱性繊維を一定量以上混在させることにより充分な耐熱性能が得られるので、さらに非耐熱繊維を混在させることも可能である。
【0016】
耐熱性繊維の中でも優れたLOI値を示し、なおかつ繊維そのものが白色であるポリメタフェニレンイソフタルアミドは防護衣料を作成するにあたり非常に有用である。更に織物強度を向上させる目的でパラ系のアラミド繊維、すなわち、ポリパラフェニレンテレフタルアミドや、あるいは、これに第三成分を共重合した繊維を混合させることが好ましい。ポリパラフェニレンテレフタルアミド共重合体の一例として、下記式に示すコポリパラフェニレン・3.4’オキシジフェニレンテレフタルアミドが例示される。
【0017】
【化1】

Figure 2004315993
ここで、m及びnは正の整数を表す。
【0018】
該パラ系のアラミド繊維の混合比率としては、表地を構成する全繊維に対して5重量%以上が好ましいが、パラ系のアラミド繊維は、フィブリル化を起こしやすいため、混合比率を60重量%以下に抑えることが好ましい。
【0019】
また、本発明で使用するポリ塩化ビニル繊維は、40以上の限界酸素指数(LOI値)を有しており、優れた難燃性、耐熱性を示すと共に、120℃雰囲気下2分で50〜60%、また、150℃雰囲気下2分で70%〜80%という高い熱収縮率を示す。
【0020】
本発明の耐熱性布帛は、前述のように、上記耐熱性繊維からなる旋回部と、上記ポリ塩化ビニル繊維からなる芯部との間に、糸条の長手方向に連続した空隙が形成されたダブルカバリングヤーンにより構成されていることが肝要である。即ち、本発明で使用する糸条は、二本以上の耐熱性繊維が、ポリ塩化ビニル繊維の外周部分を糸軸方向に沿ってらせん状に、且つ、異なる方向に旋回するカバリング構造を有し、しかもその間に空隙が形成されている特殊な形態を有している。
【0021】
このような形態は、例えば、ポリ塩化ビニル繊維の周りに、二本以上の耐熱性繊維を、400回/m以上の撚数でダブルカバリングして得た糸条を用いて布帛となした後、該布帛を熱処理してポリ塩化ビニル繊維を優勢的に収縮させることにより得ることができる。
【0022】
この際、該撚数が400回/m未満の場合は、連続した空隙が形成できない。ただ、撚数があまり大き過ぎると、2重らせんが形成され、糸条の取扱性が低下したり、得られる布帛の外観や風合いを損ねるので、3000回/m以下程度の撚数に止めることが好ましい。
【0023】
また、ポリ塩化ビニル繊維の収縮は、合撚糸条の状態で実施し、上記の形態が形成された後、布帛となしても構わないが、製織の際、形成された空隙が消滅する恐れがあるので、布帛の状態で実施することが好ましい。
【0024】
また、上記合撚糸条からなる布帛とは、編物や織物或いは不織布などを言うが、該布帛を用いて消防服などの耐熱性防護服を製造する場合は、充分な強度を必要とするため織物が好ましく使用され、織物の場合にはその目付けが150〜350g/mの範囲にあるものを使用することが好ましい。該目付けが150g/m未満の場合には、十分な耐熱性能が得られない恐れがあり、また、該目付けが350g/mを超える場合には、防護服にした場合の着用感が阻害されるので好ましくない。
【0025】
上記布帛の表地面(耐熱性防護服の表側面)には、さらに、撥水性加工を施して耐水性の高い布帛とすることが好ましい。該撥水加工は、フッ素系の撥水性樹脂を用い、公知の方法に従って、コーティング法、スプレー法、あるいは浸漬法などの加工方法により加工を行うことができる。このような撥水性加工を施した耐熱性布帛を用いてなる防護服においては、消火作業の際に空隙部に水が浸入してくるのを防止することができるので、防護服の着用性能を向上させることができる。
【0026】
また、防火衣など、高い防火性能を要求される分野では、中間層として、透湿防水性のある薄膜フィルムを耐熱性繊維布帛にラミネート加工したものを用いることが効果的である。このような中間層を挿入することにより、透湿防水性が向上し、防水性能は勿論のこと、着用者の汗の蒸散を促進してヒートストレスを減少させることができる。
【0027】
ここで用いる薄膜フィルムとしては、透湿防水性を有するものであればいずれも使用可能であるが、耐薬品性を兼ね備えたポリテトラフルオロエチレン製の薄膜フィルムを用いることが特に好ましい。
【0028】
【発明の作用】
本発明の耐熱性布帛は、二本以上の耐熱性繊維が異なる方向に旋回しつつ鞘部に、またポリ塩化ビニル繊維が芯部に配置されているので、難燃性に優れており、しかも鞘部と芯部との間には、糸条の長手方向に連続した空隙が存在する合撚糸条から構成されているので、軽量で、且つ空気層を多く含むために遮熱性にも優れている。
【0029】
【実施例】
以下、本発明を実施例により更に詳細に説明する。尚、実施例中の各物性は下記の方法により測定した。
【0030】
(1)遮熱性
ISO9151に準拠し、24℃温度上昇試験を行う。すなわち、遮熱性試験に供する試験布を用いて外衣を作成する。また、遮熱性測定の際に使用する内衣は、透湿防水性のポリテトラフルオロエチレン製フィルム(日本ゴアテックス(株)製)を貼り合わせたポリメタフェニレンイソフタルアミド製織布(目付:105g/m)からなる中間層に、ウォーターニードル法にて作成したポリメタフェニレンイソフタルアミド製不職布(目付:35g/m)の2枚を遮熱層としてキルティング加工することにより製造する。
【0031】
測定は、内衣の上に外衣を重ねて作成した試験用衣服を規定の火炎に暴露し、該内衣の温度上昇が24℃に達するまでの時間を測定した。
【0032】
(2)耐熱性
温度1200℃の火炎に試験布を曝露し、火炎により穴があくまでの時間を測定した。
【0033】
(3)着用感
軽量性・伸縮性に起因する防護服の着用感を官能判定した。
【0034】
[実施例1]
ポリ塩化ビニル糸(110dtex/25フィラメント)と、ポリメタフェニレンイソフタルアミド(商品名:コーネックス、帝人(株)製)からなる短繊維及びコポリパラフェニレン・3.4’オキシジフェニレンテレフタルアミド(商品名:テクノーラ、帝人(株)製)からなる短繊維を90:10の割合で均一に混紡してなる混紡糸(綿番手40番手)2本とを用い、ダブルカバリング法により、下撚をZ撚方向に960回/m、上撚をS撚方向に800回/mとしてカバリングヤーンを得た。
【0035】
該カバリングヤーンを経/緯に用いて綾織組織に織成した後、該綾織物を温度98℃の沸騰水で30分処理し、カバリングヤーン中のポリ塩化ビニル糸を収縮させて、耐熱性の混紡糸二本が異なる方向に旋回しつつ鞘部に、また、ポリ塩化ビニル繊維が主として芯部に配置され、且つ該鞘部と芯部との間には、糸条の長手方向に連続した空隙が形成された複合糸条とした。
【0036】
得られた布帛の目付は260g/mであった。この耐熱性布帛を使用して耐熱性防護服(外衣)を作成し、前述の方法により各物性を測定した。結果を表1に示す。
【0037】
[実施例2]
実施例1において、ダブルカバリングの撚数を、下撚りをZ撚方向に2400回/m、上撚をS撚方向に2000回/mとした以外は実施例1と同様に実施した。
【0038】
得られた布帛の目付は280g/mであった。この耐熱性布帛を使用して耐熱性防護服(外衣)を作成し、前述の方法により各物性を測定した。結果を表1に示す。
【0039】
[比較例1]
実施例1において、ダブルカバリングの撚数を、下撚をZ撚方向に240回/m、上撚をS撚方向に200回/mとした以外は実施例1と同様に実施した。
【0040】
得られた布帛の目付は240g/mであった。該布帛を構成するカバリングヤーンは、耐熱性の混紡糸二本が異なる方向に旋回しつつ鞘部に、また、ポリ塩化ビニル繊維が主として芯部に配置され、且つ該鞘部と芯部との間には、部分的に空隙が形成されてはいるものの、糸条の長手方向に連続したものではなかった。
【0041】
この布帛を使用して耐熱性防護服(外衣)を作成し、前述の方法により各物性を測定した。結果を表1に示す。
【0042】
[比較例2]
ポリメタフェニレンイソフタルアミド(商品名:コーネックス、帝人(株)製)からなる短繊維と、コポリパラフェニレン・3.4’オキシジフェニレンテレフタルアミド(商品名:テクノーラ、帝人(株)製)からなる短繊維とを90:10の割合で均一に混紡してなる混紡糸(綿番手20番)を2本合わせて、500回/mの撚数で合撚した複合糸条を得た。
【0043】
該複合糸条を経/緯に用いて綾織組織に織成した後、該綾織物を温度98℃の沸騰水で30分処理したが、鞘部と芯部との間に、連続した空隙が形成された複合糸条とはならなかった。
【0044】
得られた布帛の目付は280g/mであった。この布帛を使用して耐熱性防護服(外衣)を作成し、前述の方法により各物性を測定した。結果を表1に示す。
【0045】
【表1】
Figure 2004315993
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant cloth and a method for producing the same, and a heat-resistant protective suit manufactured using the heat-resistant cloth, and more specifically, using a heat-resistant fiber having a novel yarn form, The present invention relates to a heat-resistant cloth exhibiting excellent heat-resistant properties, a method for producing the same, and a heat-resistant protective suit manufactured using the heat-resistant cloth.
[0002]
[Prior art]
In the past, non-combustible asbestos fibers, glass fibers, etc. were used as heat-resistant protective clothing worn by firefighters during firefighting work.In recent years, however, aramid and polyphenylene sulfide have been used in view of environmental issues and ease of movement. Flame-retardant organic fibers such as polyimide and polybenzimidazole are used.Moreover, for the purpose of preventing radiant heat generated by a fire, a cloth made of these flame-retardant fibers is coated with metal aluminum or the like by vapor deposition or the like. Surface-treated ones are often used.
[0003]
On the other hand, in recent years, international standardization of a method of evaluating heat insulation has been performed, and an evaluation method focusing on conduction heat as well as radiant heat has been established (test method number: ISO9151). In order to clear this evaluation method, it is considered that it is useful to form a large air layer in the protective clothing to delay heat conduction. However, when using a fabric made of the above-mentioned organically processed organic fibers as a protective suit, there is a disadvantage that the weight becomes very heavy, and it is most useful to adopt a laminated structure from the viewpoint of creating an air layer. However, there is a disadvantage that the weight is further increased by this laminated structure. For this reason, it has been practically impossible to use this kind of protective clothing having a laminated structure.
[0004]
In order to solve such a problem, a bulky nonwoven cloth capable of obtaining an air layer having a high heat shielding property has been proposed (Japanese Patent Application Laid-Open No. 2000-212810). However, such protective clothing using non-woven cloth can provide a heat-shielding layer, but on the other hand, it significantly reduces moisture permeability and air permeability, causing hot and stuffy feelings. In a very harsh environment such as during work, the feeling of wearing is poor, and further improvement is required.
[0005]
On the other hand, in order to improve wearability, an attempt to increase the amount of air in clothes using an inflating agent (Japanese Patent Application Laid-Open No. 2000-214318) or an attempt to increase the amount of air in clothes using a special woven structure (Japanese Patent Laid-Open No. 2000-214318). JP-A-2002-115106). However, none of these improvements increase the amount of air resulting from the yarn structure of the heat-resistant fiber, and it has been very difficult to suppress a significant increase in the weight of protective clothing.
[0006]
[Patent Document 1]
JP 2000-212810 A
[Patent Document 2]
JP 2000-214318 A
[Patent Document 3]
JP-A-2002-115106
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, to provide a lightweight heat-resistant cloth exhibiting excellent heat-resistant properties, a method for producing the same, and a heat-resistant protective suit manufactured using the heat-resistant cloth. To provide.
[0010]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a swirling yarn formed by two or more heat-resistant fiber yarns spiraling along the yarn axis direction and in different directions. It has been found that a desired heat-resistant protective suit can be obtained when a polyvinyl chloride fiber is arranged on the core of the resin and a continuous space is formed between them.
[0011]
Thus, according to the present invention, there is provided a fabric comprising a swirl yarn formed by two or more heat-resistant fiber yarns spirally wound in a yarn axis direction and in different directions, The number of turns of the conductive fiber yarn is 400 times / m or more, and a polyvinyl chloride fiber is disposed at the core of the swirl yarn. There is provided a heat-resistant fabric characterized by having continuous voids in the longitudinal direction of the yarn.
[0012]
Further, according to the present invention, a double covering yarn in which two or more heat resistant fibers are spirally wound in different directions around a polyvinyl chloride fiber having a limiting oxygen index (LOI value) of 40 or more. A method for producing a heat-resistant fabric is provided, wherein the fabric is manufactured, the fabric is formed using the covering yarn, and then the fabric is heat-treated to shrink the polyvinyl chloride fiber predominantly.
[0013]
Further, according to the present invention, there is provided a heat-resistant protective suit characterized by using the above-mentioned heat-resistant cloth or the heat-resistant cloth obtained by the above-mentioned production method.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. In the heat-resistant fabric of the present invention, a polyvinyl chloride fiber is arranged in a core portion of a swirling yarn formed by two or more heat-resistant fiber yarns spiraling in different directions in a spiral shape along the yarn axis direction. And a yarn formed by forming a continuous void between them, such a yarn is obtained by double-covering a heat-resistant fiber around a polyvinyl chloride fiber. After forming into a fabric using the yarn, the fabric can be heat-treated to shrink the polyvinyl chloride fiber predominantly, that is, by shrinking more than the heat-resistant fiber.
[0015]
Examples of the heat-resistant fiber used in the present invention include aramid fiber, polybenzimidazole fiber, polyimide fiber, polyamideimide fiber, polyetherimide fiber, polyarylate fiber, polyparaphenylenebenzobisoxazole fiber, novoloid fiber, and flame-retardant acrylic fiber. , Polychloral fiber, flame-retardant polyester fiber, flame-retardant cotton fiber, flame-retardant wool fiber, etc. are exemplified.By mixing these heat-resistant fibers in a certain amount or more, sufficient heat-resistant performance can be obtained. It is also possible to make it.
[0016]
Among the heat-resistant fibers, polymetaphenylene isophthalamide, which exhibits an excellent LOI value and has a white fiber itself, is very useful in producing protective clothing. For the purpose of further improving the fabric strength, it is preferable to mix para-aramid fibers, that is, polyparaphenylene terephthalamide, or fibers obtained by copolymerizing the third component with this. As an example of the polyparaphenylene terephthalamide copolymer, copolyparaphenylene • 3.4 ′ oxydiphenylene terephthalamide represented by the following formula is exemplified.
[0017]
Embedded image
Figure 2004315993
Here, m and n represent positive integers.
[0018]
The mixing ratio of the para-based aramid fiber is preferably 5% by weight or more based on all the fibers constituting the outer material. However, since the para-based aramid fiber is likely to be fibrillated, the mixing ratio is 60% by weight or less. It is preferable to suppress it.
[0019]
In addition, the polyvinyl chloride fiber used in the present invention has a limiting oxygen index (LOI value) of 40 or more, exhibits excellent flame retardancy and heat resistance, and has a 50 to 50 min. It shows a high heat shrinkage of 60%, and 70% to 80% in 2 minutes in a 150 ° C. atmosphere.
[0020]
As described above, in the heat-resistant fabric of the present invention, a continuous space in the longitudinal direction of the yarn was formed between the swirling portion made of the heat-resistant fiber and the core made of the polyvinyl chloride fiber. It is important that it is composed of double covering yarn. That is, the yarn used in the present invention has a covering structure in which two or more heat-resistant fibers spiral around the outer peripheral portion of the polyvinyl chloride fiber along the yarn axis direction, and in different directions. Moreover, it has a special form in which a gap is formed therebetween.
[0021]
Such a form is obtained, for example, by forming a fabric using a yarn obtained by double covering two or more heat-resistant fibers around a polyvinyl chloride fiber with a twist number of 400 turns / m or more. And heat treating the fabric to predominantly shrink the polyvinyl chloride fibers.
[0022]
At this time, if the number of twists is less than 400 turns / m, continuous voids cannot be formed. However, if the number of twists is too large, a double helix will be formed, and the handleability of the yarn will be reduced, and the appearance and texture of the obtained fabric will be impaired. Is preferred.
[0023]
Further, the shrinkage of the polyvinyl chloride fiber is carried out in the state of a ply-twisted yarn, and after the above-mentioned form is formed, the cloth may be formed. Therefore, it is preferable to carry out in a state of a fabric.
[0024]
Further, the cloth made of the ply-twisted yarn refers to a knitted fabric, a woven fabric, a nonwoven fabric, or the like. However, when heat-resistant protective clothing such as a firefighting clothing is manufactured using the cloth, the fabric is required to have sufficient strength. Is preferably used, and in the case of a woven fabric, a fabric having a basis weight in the range of 150 to 350 g / m 2 is preferably used. If the basis weight is less than 150 g / m 2 , sufficient heat resistance may not be obtained, and if the basis weight exceeds 350 g / m 2 , the feeling of wearing when wearing protective clothing is impaired. Is not preferred.
[0025]
It is preferable that the outer surface of the cloth (the front side surface of the heat-resistant protective clothing) is further subjected to a water-repellent treatment to obtain a cloth having high water resistance. The water-repellent processing can be performed by a processing method such as a coating method, a spray method, or an immersion method using a fluorine-based water-repellent resin according to a known method. In a protective suit made of a heat-resistant cloth subjected to such a water-repellent treatment, it is possible to prevent water from entering the voids during a fire extinguishing operation, so that the wearability of the protective suit is improved. Can be improved.
[0026]
In fields requiring high fire protection performance, such as fire protection clothing, it is effective to use an intermediate layer obtained by laminating a moisture-permeable and waterproof thin film on a heat-resistant fiber cloth. By inserting such an intermediate layer, moisture permeability and waterproofness are improved, and heat stress can be reduced by promoting transpiration of sweat of the wearer as well as waterproofness.
[0027]
As the thin film used here, any film having moisture permeability and waterproofness can be used, but it is particularly preferable to use a polytetrafluoroethylene thin film having chemical resistance.
[0028]
Effect of the Invention
The heat-resistant fabric of the present invention has excellent flame retardancy because two or more heat-resistant fibers are arranged in the sheath while rotating in different directions, and the polyvinyl chloride fiber is arranged in the core. Between the sheath and the core, it is composed of ply-twisted yarns with continuous voids in the longitudinal direction of the yarns, so it is lightweight and has excellent heat insulation because it contains a lot of air layers. I have.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples. In addition, each physical property in an Example was measured by the following method.
[0030]
(1) Thermal barrier properties A 24 ° C. temperature rise test is performed in accordance with ISO9151. That is, an outer garment is prepared using a test cloth to be subjected to a thermal barrier test. The inner garment used for the heat insulation measurement was a woven cloth made of polymetaphenylene isophthalamide bonded to a moisture-permeable and water-resistant polytetrafluoroethylene film (manufactured by Nippon Gore-Tex Co., Ltd.) (basis weight: 105 g / an intermediate layer consisting of m 2), poly-m-phenylene isophthalamide manufactured nonwoven fabric created in a water needle technique (basis weight: two sheets of 35 g / m 2) is prepared by quilted a thermal barrier layer.
[0031]
The measurement was performed by exposing a test garment prepared by laminating an outer garment on an inner garment to a prescribed flame, and measuring the time until the temperature rise of the inner garment reached 24 ° C.
[0032]
(2) Heat resistance The test cloth was exposed to a flame having a temperature of 1200 ° C., and the time until a hole was formed by the flame was measured.
[0033]
(3) Wearing feeling The wearing feeling of the protective clothing caused by the lightness and elasticity was sensory-determined.
[0034]
[Example 1]
Short fibers composed of polyvinyl chloride yarn (110 dtex / 25 filament) and polymetaphenylene isophthalamide (trade name: Conex, manufactured by Teijin Limited) and copolyparaphenylene 3.4'oxydiphenylene terephthalamide (product) Name: Technora, manufactured by Teijin Ltd.) Using two blended yarns (cotton count 40th) obtained by uniformly blending staple fibers at a ratio of 90:10, the double twisting method is used to form a bottom twist Z. A covering yarn was obtained at 960 turns / m in the twist direction and 800 turns / m in the S twist direction.
[0035]
After weaving the covering yarn into a twill weave using warp / weft, the twill fabric is treated with boiling water at a temperature of 98 ° C. for 30 minutes to shrink the polyvinyl chloride yarn in the covering yarn to obtain a heat-resistant blend. A void continuous in the longitudinal direction of the yarn between the sheath and the core, wherein the two yarns are swirled in different directions in the sheath, and the polyvinyl chloride fiber is mainly disposed in the core. Was formed as a composite yarn.
[0036]
The basis weight of the obtained fabric was 260 g / m 2 . Using this heat-resistant cloth, heat-resistant protective clothing (outer garment) was prepared, and each physical property was measured by the method described above. Table 1 shows the results.
[0037]
[Example 2]
Example 1 was carried out in the same manner as in Example 1 except that the number of twists of the double covering was 2,400 turns / m in the Z twist direction and 2,000 turns / m in the S twist direction.
[0038]
The basis weight of the obtained fabric was 280 g / m 2 . Using this heat-resistant cloth, heat-resistant protective clothing (outer garment) was prepared, and each physical property was measured by the method described above. Table 1 shows the results.
[0039]
[Comparative Example 1]
Example 1 was carried out in the same manner as in Example 1 except that the number of twists of the double covering was 240 times / m in the ply twist in the Z twist direction and 200 times / m in the twist direction in the S twist direction.
[0040]
The basis weight of the obtained fabric was 240 g / m 2 . The covering yarn constituting the fabric is formed in the sheath while the two heat-resistant blended yarns are swirling in different directions, and the polyvinyl chloride fiber is mainly arranged in the core, and the sheath and the core are Although gaps were partially formed between the yarns, they were not continuous in the longitudinal direction of the yarn.
[0041]
Using this cloth, heat-resistant protective clothing (outer garment) was prepared, and each physical property was measured by the method described above. Table 1 shows the results.
[0042]
[Comparative Example 2]
From short fibers composed of polymetaphenylene isophthalamide (trade name: Conex, manufactured by Teijin Limited) and copolyparaphenylene 3.4'oxydiphenylene terephthalamide (trade name: Technora, manufactured by Teijin Limited) The resulting short fibers were mixed at a ratio of 90:10, and two blended yarns (cotton count No. 20) were combined to obtain a composite yarn that was plied at a twist of 500 times / m.
[0043]
After weaving the composite yarn into a twill weave using warp / weft, the twill fabric was treated with boiling water at a temperature of 98 ° C. for 30 minutes, but continuous voids were formed between the sheath and the core. The composite yarn was not obtained.
[0044]
The basis weight of the obtained fabric was 280 g / m 2 . Using this cloth, heat-resistant protective clothing (outer garment) was prepared, and each physical property was measured by the method described above. Table 1 shows the results.
[0045]
[Table 1]
Figure 2004315993

Claims (5)

糸軸方向に沿ってらせん状に、且つ、異なる方向に旋回する二本以上の耐熱性繊維糸条により形成される旋回糸を用いてなる布帛であって、該耐熱性繊維糸条の旋回数がいずれも400回/m以上であり、且つ該旋回糸の芯部にはポリ塩化ビニル繊維が配置されていると共に、該芯部と該耐熱性繊維糸条との間には糸条の長手方向に連続した空隙が存在することを特徴とする耐熱性布帛。A fabric using a swirling yarn formed of two or more heat-resistant fiber yarns spirally wound in a yarn axis direction and in different directions, the number of rotations of the heat-resistant fiber yarns Are 400 times / m or more, and a polyvinyl chloride fiber is disposed on the core of the swirling yarn, and a longitudinal length of the yarn is provided between the core and the heat-resistant fiber yarn. A heat-resistant cloth characterized by having voids continuous in directions. 耐熱性繊維がアラミド繊維、ポリベンゾイミダゾール繊維、ポリイミド繊維、ポリアミドイミド繊維、ポリエーテルイミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ノボロイド繊維、難燃アクリル繊維、ポリクラール繊維、難燃ポリエステル繊維、難燃綿繊維、難燃ウール繊維からなる群から選ばれた少なくとも1種の繊維である請求項1記載の耐熱性布帛。Heat resistant fiber is aramid fiber, polybenzimidazole fiber, polyimide fiber, polyamide imide fiber, polyether imide fiber, polyarylate fiber, polyparaphenylene benzobisoxazole fiber, novoloid fiber, flame retardant acrylic fiber, polyclar fiber, flame retardant polyester The heat-resistant cloth according to claim 1, wherein the heat-resistant cloth is at least one kind of fiber selected from the group consisting of fiber, flame-retardant cotton fiber, and flame-retardant wool fiber. 限界酸素指数(LOI値)が40以上のポリ塩化ビニル繊維の周りに、二本以上の耐熱性繊維がらせん状に且つ異なる方向に旋回してなるダブルカバリングヤーンを製造し、該カバリングヤーンを用いて布帛を形成した後、該布帛を熱処理して、該ポリ塩化ビニル繊維を優勢的に収縮させることを特徴とする耐熱性布帛の製造方法。A double covering yarn in which two or more heat-resistant fibers are spirally wound in different directions around a polyvinyl chloride fiber having a limiting oxygen index (LOI value) of 40 or more, and the covering yarn is used. A method for producing a heat-resistant cloth, comprising: heat-treating the cloth after the formation of the cloth to shrink the polyvinyl chloride fiber predominantly. 耐熱性繊維がアラミド繊維、ポリベンゾイミダゾール繊維、ポリイミド繊維、ポリアミドイミド繊維、ポリエーテルイミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ノボロイド繊維、難燃アクリル繊維、ポリクラール繊維、難燃ポリエステル繊維、難燃綿繊維、難燃ウール繊維からなる群から選ばれた少なくとも1種の繊維である請求項3記載の耐熱性布帛の製造方法。Heat resistant fiber is aramid fiber, polybenzimidazole fiber, polyimide fiber, polyamide imide fiber, polyether imide fiber, polyarylate fiber, polyparaphenylene benzobisoxazole fiber, novoloid fiber, flame retardant acrylic fiber, polyclar fiber, flame retardant polyester The method for producing a heat-resistant cloth according to claim 3, wherein the fiber is at least one kind of fiber selected from the group consisting of fiber, flame-retardant cotton fiber, and flame-retardant wool fiber. 請求項1又は2記載の耐熱性布帛、若しくは、請求項3又は4のいずれか1項に記載の方法により得られる耐熱性布帛を用いてなることを特徴とする耐熱性防護服。A heat-resistant protective suit comprising the heat-resistant cloth according to claim 1 or 2, or the heat-resistant cloth obtained by the method according to any one of claims 3 and 4.
JP2003108728A 2003-04-14 2003-04-14 Heat-resistant fabric, method for producing the same and heat-resistant protective wear comprising the same Pending JP2004315993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108728A JP2004315993A (en) 2003-04-14 2003-04-14 Heat-resistant fabric, method for producing the same and heat-resistant protective wear comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108728A JP2004315993A (en) 2003-04-14 2003-04-14 Heat-resistant fabric, method for producing the same and heat-resistant protective wear comprising the same

Publications (1)

Publication Number Publication Date
JP2004315993A true JP2004315993A (en) 2004-11-11

Family

ID=33470109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108728A Pending JP2004315993A (en) 2003-04-14 2003-04-14 Heat-resistant fabric, method for producing the same and heat-resistant protective wear comprising the same

Country Status (1)

Country Link
JP (1) JP2004315993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208509A (en) * 2007-01-29 2008-09-11 Japan Wool Textile Co Ltd Heat-resistant flame retardant workwear and woven fabric to be used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208509A (en) * 2007-01-29 2008-09-11 Japan Wool Textile Co Ltd Heat-resistant flame retardant workwear and woven fabric to be used for the same

Similar Documents

Publication Publication Date Title
TWI381075B (en) Double layer fabric and the use of its heat-resistant protective clothing
JP6037837B2 (en) Laminated heat-resistant protective clothing
JP4446274B2 (en) Cloth for protective clothing
EP1740746B1 (en) Fabric for protective garments
EP3009547B1 (en) Fabric and textile product
JP5400459B2 (en) Heat-resistant protective clothing
JP2009280942A (en) Fabric for protective garment
JP3768395B2 (en) Heat-resistant protective clothing
JP2015094043A (en) Fabric and fiber product
JP4130122B2 (en) Heat resistant fabric, method for producing the same, and heat resistant protective clothing comprising the same
JP4447476B2 (en) Woven knitted fabric with improved washing durability
JP4180961B2 (en) Heat resistant fabric, method for producing the same, and heat resistant protective clothing comprising the same
JP2004315993A (en) Heat-resistant fabric, method for producing the same and heat-resistant protective wear comprising the same
JP7294803B2 (en) Stretch fabrics and their textile products
JP4354835B2 (en) Flame-retardant composite yarn, heat-insulating lining comprising the same, and method for producing the same
JP2007092209A (en) Heat-resiatant fabric and heat-resiatant protective garment
JP2004197233A (en) Blended yarn for flame-retardant yarn, heat-resistant fabric and method for producing the same
JP2022048630A (en) Heat-resistant protective garment
JP2020084347A (en) Heat resistant protective wear
MXPA06011102A (en) Fabric for protective garments