JP2004315950A - Heat resistant and wear resistant member, and its production method - Google Patents

Heat resistant and wear resistant member, and its production method Download PDF

Info

Publication number
JP2004315950A
JP2004315950A JP2003115293A JP2003115293A JP2004315950A JP 2004315950 A JP2004315950 A JP 2004315950A JP 2003115293 A JP2003115293 A JP 2003115293A JP 2003115293 A JP2003115293 A JP 2003115293A JP 2004315950 A JP2004315950 A JP 2004315950A
Authority
JP
Japan
Prior art keywords
powder
wear
resistant member
present
nos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003115293A
Other languages
Japanese (ja)
Inventor
Kesanori Imi
今朝則 伊美
Masatoshi Ayagaki
昌俊 綾垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Nippon Steel Corp
Original Assignee
Yoshikawa Kogyo Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd, Nippon Steel Corp filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP2003115293A priority Critical patent/JP2004315950A/en
Publication of JP2004315950A publication Critical patent/JP2004315950A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolls And Other Rotary Bodies (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat resistant and wear resistant member which is brought into contact with a high temperature material and particularly requires high toughness, such as a roll and a roller, e.g., used in a rolling factory in an iron manufacturing field, and to provide its production method. <P>SOLUTION: The heat resistant and wear resistant member is obtained by forming a HIP (hot isostatic press) treatment layer consisting of one or more selected from the carbide, nitride, oxide, and boride of metal, a high speed steel, and an Ni-B based self-fluxing alloy on a base material consisting of a carbon steel so as to be a multilayer structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄分野などにおいて、例えば圧延工場等で使用されているロール、ローラーなどのように高温材料と接触し、特に大きな靭性を必要とする耐熱耐摩耗部材及びその製造方法に関するものである。
【0002】
【従来の技術】
一般に耐熱耐摩耗部材には高硬度が要求され、かつ熱衝撃や機械的衝撃に十分耐え得る強度、特に大きな靱性が要求される。このための従来の技術として、例えば特開平10−280101号公報(特許文献1)に開示されている。この技術の概要は、炭素鋼からなる母材に金属の炭化物、窒化物、酸化物、ホウ化物のうちの1種以上と高速度鋼(以下、ハイスと称す)の合金とからなるHIP処理層を形成し多層構造としたことを特徴とする耐熱耐摩耗部材である。すなわち、ハイス粉末とセラミックス粉末とをメカニカルアロイング(以下、MAと称す)後、HIP法にて前記の固相焼結相を炭素鋼の表面に形成するものであり、これにより、耐摩耗性、耐肌荒れ性が向上する。
【0003】
【引用文献】
(1)特許文献1(特開平10−280101号公報)
【0004】
【発明が解決しようとする課題】
しかしながら、前記特許文献1に開示されている技術内容のものでは、使用環境、例えば前記圧延工場などで使用されているロール、ローラーなどのように高温材料と接触するものにおいては、その靭性が充分でなく、使用時に亀裂が発生することがあり、操業を停止せざるを得ない。
以上述べたような従来技術の課題に鑑み、本発明の目的は、高温材料と接触し、特に大きな靭性を必要とする耐熱耐摩耗部材及びその製造方法を提供する。
【0005】
【課題を解決するための手段】
本発明は、上記の課題を解決するために発明されたもので、その発明の要旨とするところは、
(1)炭素鋼からなる母材に、金属の炭化物、窒化物、酸化物、ホウ化物のうちの1種以上と高速度鋼とNi−B系自溶性合金とからなるHIP処理層を形成し多層構造としたことを特徴とする耐熱耐摩耗部材。
【0006】
(2)予めハイス粉末に体積%で5〜45%の金属の炭化物、窒化物、酸化物、ホウ化物のうちの1種以上からなる粉末とをメカニカルアロイング法により合金化し、その後、前記合金化物と質量%で、1〜6%のNi−B系の自溶性合金粉末とを混合した後、炭素鋼からなる母材の表面へ温度1000〜1200℃、圧力100MPa以上、2〜5時間のHIP処理を行い多層構造としたことを特徴とする耐熱耐摩耗部材の製造方法。
【0007】
(3)ハイス粉末に体積%で5〜45%の金属の炭化物、窒化物、酸化物、ホウ化物のうちの1種以上からなる粉末を、さらに、前記両者に対し、質量%で1〜6%のNi−B系の自溶性合金粉末とからなる3者をメカニカルアロイング法により合金化し、その後、炭素鋼からなる母材の表面へ温度1000〜1200℃、圧力100MPa以上、2〜5時間のHIP処理を行い多層構造としたことを特徴とする耐熱耐摩耗部材の製造方法である。
【0008】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明では従来の技術である前記特許文献1に開示されている組織、すなわち、ハイス材と硬質でかつ化学的に安定な炭化物、窒化物、酸化物、ホウ化物からなる1種以上を微細に分散させた組織にNi−B系の合金を液相焼結させることにより、該焼結品は、微細分散されたサーメット組織となり、これにより、前記の従来材質に比し、靭性及び耐摩耗性・耐肌荒性を大幅に向上させることが可能となった。
【0009】
自溶性合金粉末としては、種々の自溶性粉末の中、Ni−B系の合金粉末が液相を出現させやすく、Ni−B、Fe−Ni−B等、Bとの共晶反応により低融点化を図っている点から適している。また、その添加量については、ハイス粉末と炭化物、窒化物、酸化物からなる1種以上の粉末との質量割合が1%より少ないとサーメット組織の分散が不十分で靭性、耐摩耗・耐肌荒性の改善効果が充分でなく、他方、6%を超えると前記組織が粗大で且つ、硬度が低下するので耐摩耗・耐肌荒性・靭性を充分に確保することができない。従って、Ni−B系の合金粉末の適切なる添加量としては、質量比で1〜6%が好ましい。
次に、ハイス粉末に対する炭化物、窒化物、酸化物からなる1種以上の粉末の体積%が、5%より少ないと耐摩耗性改善効果が充分でないため好ましくなく、他方、45%を超えると靭性が低下する。従って、前記粉末の適切なる添加量としては、ハイス粉末に対して、体積%で5〜45%が好ましい。
【0010】
次に、ハイス粉末の成分限定理由について、以下に説明する。
C:0.9〜2.5%
Cは、焼入性を向上させ、マトリックス硬度を高くし、Cr,Mo,V,Wと高硬度の炭化物を形成し、耐摩耗性を向上させる。0.9%未満では炭化物量が少なく、硬度、耐摩耗性の向上は期待できない。また、2.5%を越えると、靱性が低下するため好ましくない。
【0011】
Si:0.2〜1.5%
Siは、粉末製造の原料となる溶湯中の酸素と化合し脱酸効果があり、清浄な粉末を製造するために必要である。0.2%未満ではその効果がなく、1.5%を越えると、その効果は変わらないため上限を1.5%とした。
Mn:0.3〜2.0%
Mnは、粉末製造の原料溶湯中のSを固定し、有害物質の発生を防止する。また、焼入性を高め、マトリックス硬度の増加に寄与する。0.3%未満ではその効果はなく、2.0%を越えると、その効果が変わらない。
【0012】
Cr:3.5〜12.0%
Crは、マトリックスの焼入性を向上させ、硬度を上げるとともに、炭化物をつくり全体硬度の向上に寄与する。3.5%未満ではその効果は無く、12.0%を越えると炭化物の粗大化による靱性が低下するため、耐衝撃性が損なわれる。
Mo:3.0〜10.0%
Moは、マトリックスの焼入性を高めるとともに、安定な炭化物を形成し、全体の硬度向上に寄与し耐摩耗性を向上する。3.0%未満では効果が無く、10%を越えても効果は変わらないため、上限を10.0%とした。
【0013】
V:0.8〜8.0%
Vは、炭素と化合し、高硬度の微細なVC炭化物を晶出し、耐摩耗性向上の効果が高い元素である。0.8%未満では効果が無く、8.0%を越えると、マトリックス中の固溶炭化物量が減少するためマトリックス硬度を下げるので好ましくない。
W:1.0〜10.0%
Wは、炭素と化合し高硬度の炭化物を形成し耐摩耗性を高めるが1.0%未満では効果が無く、10.0%を越えると炭化物が粗大化し、靱性低下、耐衝撃性の低下につながり好ましくない。
【0014】
なお、Niについては必須の成分ではないが、焼入性を向上させ、マトリックス硬度を高める効果がある。ただし、3.0%を越えると残留オーステナイトが増え、硬度低下を招くので好ましくない。Coについても必須成分ではないが、炭素の固溶を促進しマトリックスの焼入性を高め、マトリックス硬度を増加させる効果がある。しかし、10.0%を越えると残留オーステナイト量が増え、マトリックス硬度が低下するので好ましくない。
【0015】
次に、本発明で用いるMAについて説明する。MAは鋼球やセラミックス製のボールによって、前記特許文献1に開示されているように、混合粉末の粉末砕、固着を繰り返すことによって異種材料を原子レベルで合金化することができる。
本発明におけるHIP処理前の事前方法としては、以下の2つが適している。要求特性、コスト面、工期等を考慮し、適宜選定・実施するとよい。
(1)予めハイス粉末と金属の炭化物、窒化物、酸化物、ホウ化物のうちの1種以上の粉末からなる2者をMAにより合金化し、その後、前記合金化物とNi−B系の自溶性合金粉末とを混合した後、HIP処理する方法。この方法の特徴は、予めハイスサーメット粉を大量に作成し、Ni−B系粉の添加量を種々変更することにより使用特性(用途)に適合する造り分けを容易に実施できる。従って、短納期での適正なる材料の提供が容易に可能である。
【0016】
(2)前記ハイス粉末と金属の炭化物、窒化物、酸化物、ホウ化物のうちの1種以上の粉末からなる2者に加え、Ni−B系の自溶性合金粉末からなる合計3者をMAにより合金化し、その後、HIP処理する方法。この方法の特徴は、工程がシンプルであり、且つ、HIP処理前でのMAにより合金が微細化されるためHIP後の焼結体の結晶粒径が極めて微細となり、その結果、前記(1)の方法に比し、破壊靭性、耐摩耗性、耐肌荒れ性が優れる。
【0017】
一般に粉末を用いた場合、鋳造材に比べて高コストとなるので、極力、粉末使用量を抑えることが重要である。そこで本発明では実際の使用時に相手材と接触し耐摩耗性、耐衝撃性が必要な外層にのみ粉末冶金材料を用い、耐摩耗性の必要が無い母材には安価で高靱性の炭素鋼を用いた2層構造とすることによってコスト低減を実現している。なお、使用条件が極めて厳しい素材として適用の場合、前記2層構造材である炭素鋼である母材と外層材との間に、中間層材として、金属ハイスを形成することにより該境界部の信頼性がより向上するため好ましい。
【0018】
また、粉末の焼結にはHIP法を用いているが、これはHIPでは、高温高圧下による粉末の塑性変形によって粉末間の間隙をつぶすため、通常の焼結助剤を用いた焼結法に比して、極めて欠陥の少ない強度特性に優れた材料の製造が可能となる。さらに焼結と同時に外層材料と母材との境界に原子拡散を生じせしめ冶金的結合を形成し、強固な密着力を得ることが可能である。
【0019】
次に、本発明材におけるHIP条件について、以下に説明する。
HIP温度が1000℃未満の場合は、Ni−Bの溶融反応が不十分で、サーメットの分散組織が得られず、また気孔が残こることもあり、好ましくない。他方、1200℃を越えると、粒子が粗大化し強度が減少するので上限を1200℃とした。圧力は100MPa以上であれば気孔を消失せしめるには十分である。また、処理時間は2時間以上で十分密な焼結組織が得られるが5時間を越えると組織が粗大化するため好ましくない。
【0020】
【実施例】
以下、本発明について実施例によって具体的に説明する。
本発明の作用、効果を確証するため、表1に示す本発明例No.1〜8、および比較例No.9〜12、並びに従来例No.13の試験片を各々製作し、前記表1に示している各種の材料特性を測定した。以下、表1〜3及び図1〜7を用いてその内容及び結果について説明する。表1に示すHIP処理前の事前処理としては、使用した粉末、すなわち、ハイス粉末としては表2に示す化学成分のハイス粉末を、硬質炭化物粉末としてはTiC粉末を、自溶性合金粉末としては、表3に示す化学成分のNi−B合金粉末を各々使用した。
【0021】
【表1】

Figure 2004315950
【0022】
【表2】
Figure 2004315950
【0023】
【表3】
Figure 2004315950
【0024】
表1に示す本発明例No.1〜4、比較例No.9〜10において、前記ハイス粉末として表1に各々示す質量%と前記セラミック粉末を一定の質量%である6%(体積%=10%)とをSUJ2鋼製のボールを用いたMAによって30時間の合金化作業を行った。その後、前記合金化物に、前記表1に各々示す質量%のNi−B合金粉末を各々混合し、HIP処理前の事前処理工程を終了した。
【0025】
また、前記表1に示す本発明例No.5〜8、比較例No.11〜12において、前記ハイス粉末として表1に各々示す質量%と前記セラミック粉末を一定の質量%である6%(体積%=10%)と表1に各々示す質量%のNi−B合金粉末とを前記と同様に、SUJ2鋼製のボールを用いたMAによって30時間の合金化作業を行いHIP処理前の事前処理工程工程を終了した。
また、残りの表1に示す、従来例であるNo.13において、前記ハイス粉末として表1に各々示す質量%と前記TiC粉末を一定の質量%である6%(体積%=10%)とをSUJ2鋼製のボールを用いたMAによって30時間の合金化作業を行い、これによりHIP処理前の事前処理工程を終了した。
【0026】
HIP処理(摩耗・硬度・破壊靭性試験用の試験片の製作等)については、図4に示す炭素鋼管1からなるカプセル4中に、母材である芯材2として低合金炭素鋼SCM440を配置し、その周囲に前記事前処理の終了したNo.1〜13の合金化物を充填し、その後、脱気パイプ5から、真空脱気後、1180℃、120MPa、3時間のHIP処理を行い、軟化焼鈍後、粗加工を施した。焼き入れは1050℃×2時間のオーステナイト後、常温まで冷却した後、550℃×3.5時間で3回焼戻した。以上により、摩耗試験・硬度測定・破壊靭性用の試験片素材の製作が完了した。
【0027】
耐摩耗性は、図5に示す熱間摩耗試験にて実施・評価した。図5における試験片7としては、前記のとおり製作した13種類の試験片から、リング形状(φ60×10t mm)に加工した本材料を切り出し、相手材8としては、(S45C鋼:φ180×15tmm)に押しつけながら回転させ、一定回転数後の摩耗量で、耐摩耗性を評価した。試験中は、試験材7の温度を500℃、相手材8の温度を加熱コイル9の作用で、850℃−定に保った。回転速度は700rpm、押しつけ荷重は50kgで、10000回転後の摩耗重量及び表面租度を測定した。その試験結果を表1及び図6に示す。
【0028】
以下、試験結果について、表1及び図6を用いて前記試験結果について詳述する。図6は、本発明に係る試験結果を示す図であり、点線は表1におけるNo.5〜8、11、12に示す粉末▲1▼、▲2▼、▲3▼同時MAしたもの、連続実線は表1におけるNo.1〜4、9、10に示す粉末▲2▼+▲3▼で同時MA後粉末▲1▼を混合した場合である。図6(a)は破壊靱性試験で、Ni−B添加量と破壊靱性値(KIC)との関係を示し、図6(b)は高温摩耗試験で、Ni−B添加量と表面粗度(μm)との関係を、また、図6(c)はNi−B添加量と耐摩耗比(%)との関係を示す図である。
【0029】
この表1及び図6において、本発明例No.1〜8で示す本発明材の摩耗試験結果、すなわち、耐摩耗比及び肌荒れは、従来材であるNo.13と比べ、耐摩耗比は大きく、肌荒れは小さく、いずれも優れていることが明確である。また、機械的性質である破壊靭性値についても.前記と同様に本発明材であるNo.1〜8が従来材であるNo.13と比べ、その値が大きく優れていることが明確である。
【0030】
図1は、各々本発明材である表1におけるNo.1のミクロ組織写真(×400倍)を示す。同様に図2は、No.2の、図3は、No.5のミクロ組織写真(×400倍)を示すものである。一方、図7は、従来材であるNo.13のミクロ組織写真(×400倍)を示す。ここで、本発明材のミクロ写真である前記図1、2.3と従来材である図7とのミクロ組織を比較してみる。従来材のミクロ写真である前記図7においては、サーメット組織が面状をなしている。これに対し、本発明材である図1.2.3においては、サーメット中の硬質物が微細分散化されており、このミクロ写真からも前記本発明材の摩耗試験結果および破壊靭性が従来材に比べて優れているとの前記の説明が容易に理解できる。
【0031】
また、前記本発明材のNo.1〜8において、No.1〜4は、予めハイス粉末とセラミックス粉末との2者をMA法により合金化した後、前記合金化物とNi−B系の自溶性合金粉末とを混合した後、HIP処理を行ったものであり、残りのNo.5〜8は、ハイス粉末とセラミックス粉末とNi−B系の自溶性合金粉末との3者をMA法により合金化し、その後、HIP処理を行ったものである。ここで、両者を比較してみると、原材料が同一且つ混合する質量割合%が同じでも前記No.5〜8の方法で処理をした方が、前記No.1〜4の方法で処理をした分より、いずれも、材料特性が優れていることが明確であり、前述した通りの試験結果となっていることが明らかである。
【0032】
No.9〜10は、前記本発明例のNo.1〜4に対する比較例であり、同様にNo.11〜12は、前記本発明例のNo.5〜8に対する比較例である.両者を比較してみると、Ni−B系の自溶性合金粉末が、本発明材の適正範囲を外れている比較例No.9〜12では、いずれも本発明材No.1〜8に比し、表1及び図6に示されているようにその材料特性が劣っていることが明確である。
【0033】
【発明の効果】
以上述べたように、本発明によって、耐熱耐摩耗性及び耐事故性(強靭性)が要求される使用環境で有効な材料、部材を提供することができ、寿命向上によってライン整備費等のコスト軽減に寄与できる。
【図面の簡単な説明】
【図1】本発明材のミクロ組織(×400倍)を示す顕微鏡写真である。
【図2】本発明材の他のミクロ組織(×400倍)を示す顕微鏡写真である。
【図3】本発明材の他のミクロ組織(×400倍)を示す顕微鏡写真である。
【図4】本発明の試験時の(HIPカプセル)を示す概要図である。
【図5】本発明の試験時の摩耗試験機の概要図である。
【図6】本発明に係る試験結果を示す図である。
【図7】従来材のミクロ組織(×400倍)を示す顕微鏡写真である。
【符号の説明】
1 炭素鋼管
2 芯材
3 粉末
4 カプセル
5 脱気パイプ
6 溶接シール
7 試験片
8 相手材(圧延材相当)
9 加熱コイル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant and wear-resistant member that contacts a high-temperature material such as a roll or a roller used in a rolling mill or the like and particularly requires a large toughness in a steelmaking field or the like, and a method for manufacturing the same. .
[0002]
[Prior art]
Generally, a heat-resistant and wear-resistant member is required to have high hardness, and strength that can sufficiently withstand thermal shock and mechanical shock, particularly large toughness. A conventional technique for this purpose is disclosed in, for example, Japanese Patent Application Laid-Open No. 10-280101 (Patent Document 1). The outline of this technology is a HIP treatment layer comprising a base material made of carbon steel and an alloy of one or more of metal carbides, nitrides, oxides, and borides and a high-speed steel (hereinafter, referred to as high-speed steel). The heat and wear resistant member is characterized by having a multilayer structure formed by forming That is, after the high-speed powder and the ceramic powder are mechanically alloyed (hereinafter, referred to as MA), the solid phase sintering phase is formed on the surface of the carbon steel by the HIP method. The resistance to rough skin is improved.
[0003]
[References]
(1) Patent Document 1 (JP-A-10-280101)
[0004]
[Problems to be solved by the invention]
However, in the technology disclosed in Patent Document 1, in a use environment, for example, a material that comes into contact with a high-temperature material such as a roll or a roller used in the rolling mill, the toughness is not sufficient. In addition, cracks may occur during use, and the operation must be stopped.
In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a heat-resistant and wear-resistant member that comes into contact with a high-temperature material and requires particularly high toughness, and a method for manufacturing the same.
[0005]
[Means for Solving the Problems]
The present invention has been invented to solve the above problems, and the gist of the invention is as follows:
(1) Forming a HIP treatment layer comprising at least one of metal carbides, nitrides, oxides and borides, a high-speed steel and a Ni-B-based self-fluxing alloy on a carbon steel base material. A heat and wear resistant member having a multilayer structure.
[0006]
(2) An alloy of 5% to 45% by volume of a metal carbide, nitride, oxide, or boride is previously alloyed to a high-speed powder by mechanical alloying, and then the alloy is formed. Of Ni-B-based self-fluxing alloy powder of 1 to 6% by mass and a mass%, and then a temperature of 1000 to 1200 ° C., a pressure of 100 MPa or more, and a pressure of 2 to 5 hours are applied to the surface of the base material made of carbon steel. A method for producing a heat-resistant and wear-resistant member, wherein the member is subjected to HIP treatment to form a multilayer structure.
[0007]
(3) 5 to 45% by volume of a metal carbide, nitride, oxide, or boride powder of at least 1% of metal carbide, nitride, oxide or boride, and 1 to 6% by mass with respect to both. % Ni-B-based self-fluxing alloy powder and alloyed by mechanical alloying, and thereafter, a temperature of 1000 to 1200 ° C., a pressure of 100 MPa or more, and a pressure of 100 MPa or more for 2 to 5 hours. HIP treatment to form a multilayer structure.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, the structure disclosed in Patent Document 1 which is a conventional technique, that is, one or more kinds of high-speed steel and hard and chemically stable carbides, nitrides, oxides, and borides are finely divided. By performing liquid phase sintering of the Ni-B alloy on the dispersed structure, the sintered product has a finely dispersed cermet structure, and thus has a higher toughness and abrasion resistance than the conventional materials.・ It has become possible to greatly improve skin roughness resistance.
[0009]
Among the self-fluxing alloy powders, among various self-fluxing powders, Ni-B-based alloy powders easily cause a liquid phase to appear, and have a low melting point due to a eutectic reaction with B, such as Ni-B and Fe-Ni-B. It is suitable from the point of achieving the goal. If the mass ratio of the high-speed powder and one or more powders of carbides, nitrides and oxides is less than 1%, the dispersion of the cermet structure is insufficient and the toughness, abrasion resistance and skin resistance are insufficient. If the effect of improving the roughness is not sufficient, on the other hand, if it exceeds 6%, the structure is coarse and the hardness is reduced, so that it is not possible to sufficiently secure wear resistance, skin roughness resistance and toughness. Therefore, the appropriate addition amount of the Ni-B-based alloy powder is preferably 1 to 6% by mass.
Next, if the volume percentage of one or more powders of carbides, nitrides, and oxides with respect to the HSS powder is less than 5%, the effect of improving wear resistance is not sufficient, and if it exceeds 45%, the toughness is increased. Decreases. Therefore, an appropriate amount of the powder to be added is preferably 5 to 45% by volume based on the HSS powder.
[0010]
Next, the reasons for limiting the components of the HSS powder will be described below.
C: 0.9-2.5%
C improves hardenability, increases matrix hardness, forms carbides of high hardness with Cr, Mo, V, and W, and improves wear resistance. If it is less than 0.9%, the amount of carbide is small, and improvement in hardness and wear resistance cannot be expected. On the other hand, if it exceeds 2.5%, the toughness is undesirably reduced.
[0011]
Si: 0.2-1.5%
Si has a deoxidizing effect by being combined with oxygen in a molten metal which is a raw material of powder production, and is necessary for producing clean powder. If it is less than 0.2%, there is no effect, and if it exceeds 1.5%, the effect does not change, so the upper limit is made 1.5%.
Mn: 0.3-2.0%
Mn fixes S in the raw material melt for powder production and prevents generation of harmful substances. In addition, it enhances hardenability and contributes to an increase in matrix hardness. If it is less than 0.3%, there is no effect, and if it exceeds 2.0%, the effect does not change.
[0012]
Cr: 3.5 to 12.0%
Cr improves the hardenability of the matrix, increases the hardness, and forms carbide to contribute to the improvement of the overall hardness. If it is less than 3.5%, the effect is not obtained, and if it exceeds 12.0%, the toughness is reduced due to coarsening of the carbide, and the impact resistance is impaired.
Mo: 3.0 to 10.0%
Mo enhances the hardenability of the matrix, forms a stable carbide, contributes to the improvement of the overall hardness, and improves the wear resistance. If it is less than 3.0%, there is no effect, and if it exceeds 10%, the effect does not change. Therefore, the upper limit is set to 10.0%.
[0013]
V: 0.8-8.0%
V is an element that combines with carbon to crystallize fine VC carbides having high hardness and has a high effect of improving wear resistance. If it is less than 0.8%, there is no effect, and if it exceeds 8.0%, the amount of solid-dissolved carbide in the matrix is reduced, so that the hardness of the matrix is undesirably lowered.
W: 1.0 to 10.0%
W combines with carbon to form carbides of high hardness and enhances wear resistance, but if less than 1.0%, there is no effect. If it exceeds 10.0%, carbides become coarse, and toughness and impact resistance decrease. Undesirably leads to
[0014]
Although Ni is not an essential component, it has an effect of improving hardenability and increasing matrix hardness. However, when the content exceeds 3.0%, retained austenite increases, which causes a decrease in hardness, which is not preferable. Co is not an essential component, but has the effect of promoting solid solution of carbon, increasing the hardenability of the matrix, and increasing the matrix hardness. However, if it exceeds 10.0%, the amount of retained austenite increases and the matrix hardness decreases, which is not preferable.
[0015]
Next, the MA used in the present invention will be described. MA is capable of alloying different materials at the atomic level by repeatedly crushing and fixing the mixed powder as disclosed in Patent Document 1 using steel balls or ceramic balls.
In the present invention, the following two methods are suitable as the prior methods before the HIP processing. It is advisable to select and implement as appropriate in consideration of required characteristics, cost, construction period, etc.
(1) A high-speed powder and one or more powders of carbides, nitrides, oxides and borides of metal are alloyed by MA beforehand, and then the alloyed material and the Ni-B based self-solubility A method of performing HIP treatment after mixing with an alloy powder. The feature of this method is that a large amount of high-speed cermet powder is prepared in advance, and the amount of addition of the Ni-B-based powder is variously changed, so that it is possible to easily carry out the production suitable for use characteristics (use). Therefore, it is possible to easily provide an appropriate material with a short delivery time.
[0016]
(2) In addition to two of the above-mentioned high-speed powder and one or more powders of carbides, nitrides, oxides, and borides of metals, a total of three of the Ni-B based self-fluxing alloy powders is MA. And then HIPing. The feature of this method is that the steps are simple and the alloy is refined by MA before HIP treatment, so that the crystal grain size of the sintered body after HIP becomes extremely fine. As compared with the method of (1), the fracture toughness, abrasion resistance and skin roughness resistance are excellent.
[0017]
In general, when powder is used, the cost is higher than that of a cast material. Therefore, it is important to minimize the amount of powder used. Therefore, in the present invention, powder metallurgical material is used only for the outer layer that needs to have abrasion resistance and impact resistance when it comes into contact with the counterpart material during actual use, and a low-cost, high-toughness carbon steel is used for the base material that does not require abrasion resistance. A cost reduction is realized by adopting a two-layer structure using. In the case where the material is used as a material under extremely severe conditions, a metal high-speed steel is formed as an intermediate layer material between the base material, which is carbon steel, which is the two-layer structure material, and the outer layer material, thereby forming the boundary portion. This is preferable because the reliability is further improved.
[0018]
In addition, the HIP method is used for sintering the powder. In the HIP method, since the gap between the powders is crushed by plastic deformation of the powder under high temperature and high pressure, a sintering method using a normal sintering aid is used. As a result, it is possible to produce a material having very few defects and excellent strength characteristics. Further, at the same time as sintering, atomic diffusion is caused at the boundary between the outer layer material and the base material to form a metallurgical bond, and a strong adhesion can be obtained.
[0019]
Next, the HIP conditions in the material of the present invention will be described below.
If the HIP temperature is lower than 1000 ° C., the melting reaction of Ni—B is insufficient, a dispersed structure of cermet cannot be obtained, and pores may remain, which is not preferable. On the other hand, if the temperature exceeds 1200 ° C., the particles become coarse and the strength decreases, so the upper limit was set to 1200 ° C. A pressure of 100 MPa or more is sufficient for eliminating pores. When the treatment time is 2 hours or more, a sufficiently dense sintered structure can be obtained, but if it exceeds 5 hours, the structure is undesirably coarse.
[0020]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
In order to confirm the operation and effect of the present invention, the present invention example No. 1 shown in Table 1 was used. Nos. 1 to 8 and Comparative Example Nos. Nos. 9 to 12 and Conventional Example Nos. Thirteen test pieces were manufactured, and various material properties shown in Table 1 were measured. Hereinafter, the contents and results will be described with reference to Tables 1 to 3 and FIGS. As the pre-treatment before the HIP treatment shown in Table 1, the powder used, that is, the HSS powder having the chemical composition shown in Table 2 as the HSS powder, the TiC powder as the hard carbide powder, and the self-fluxing alloy powder as Ni-B alloy powders having the chemical components shown in Table 3 were used.
[0021]
[Table 1]
Figure 2004315950
[0022]
[Table 2]
Figure 2004315950
[0023]
[Table 3]
Figure 2004315950
[0024]
Example 1 of the present invention shown in Table 1. Nos. 1 to 4, Comparative Example Nos. In 9 to 10, the mass% shown in Table 1 as the high-speed powder and the ceramic powder at a constant mass percentage of 6% (volume% = 10%) were 30 hours by MA using SUJ2 steel balls. Alloying work was performed. Thereafter, Ni-B alloy powders of each mass% shown in Table 1 were mixed with the alloyed product, and the pre-treatment step before the HIP treatment was completed.
[0025]
In addition, the present invention example No. shown in Table 1 above. 5 to 8, Comparative Example Nos. 11-11, Ni-B alloy powders having the mass% shown in Table 1 as the high-speed powder and the ceramic powder having a constant mass% of 6% (volume% = 10%) and the mass% shown in Table 1 respectively. In the same manner as described above, an alloying operation was performed for 30 hours by MA using SUJ2 steel balls, and the pretreatment step before the HIP treatment was completed.
Further, in the remaining Table 1, No. 1 which is a conventional example. In 13, the mass% shown in Table 1 as the high-speed powder and the constant mass% of 6% (volume% = 10%) of the TiC powder were alloyed for 30 hours by MA using SUJ2 steel balls. A pretreatment step before the HIP treatment was completed.
[0026]
Regarding the HIP treatment (production of a test piece for a wear / hardness / fracture toughness test, etc.), a low alloy carbon steel SCM440 is disposed as a core material 2 as a base material in a capsule 4 made of a carbon steel pipe 1 shown in FIG. No. around which the pre-processing has been completed. The alloyed materials of Nos. 1 to 13 were filled, and thereafter, after deaeration from the deaeration pipe 5, HIP treatment was performed at 1180 ° C. and 120 MPa for 3 hours. After softening and annealing, rough processing was performed. The quenching was performed after austenite at 1050 ° C. × 2 hours, cooled to room temperature, and then tempered three times at 550 ° C. × 3.5 hours. As described above, the production of the test specimen material for the wear test, the hardness measurement, and the fracture toughness was completed.
[0027]
Wear resistance was evaluated by a hot wear test shown in FIG. As the test piece 7 in FIG. 5, this material processed into a ring shape (φ60 × 10 tmm) was cut out from the 13 types of test pieces manufactured as described above, and the mating material 8 was (S45C steel: φ180 × 15 tmm). ) And rotated while being pressed against it, and the wear resistance after a certain number of rotations was evaluated for wear resistance. During the test, the temperature of the test material 7 was kept at 500 ° C., and the temperature of the mating material 8 was kept at 850 ° C.-constant by the action of the heating coil 9. The rotation speed was 700 rpm, the pressing load was 50 kg, and the abrasion weight and surface roughness after 10,000 rotations were measured. The test results are shown in Table 1 and FIG.
[0028]
Hereinafter, the test results will be described in detail with reference to Table 1 and FIG. FIG. 6 is a diagram showing the test results according to the present invention. The powders (1), (2), and (3) shown in Tables 5 to 8, 11, and 12 were subjected to simultaneous MA. This is the case where powder (1) after simultaneous MA was mixed with powder (2) + (3) shown in 1-4, 9 and 10. FIG. 6A is a fracture toughness test showing the relationship between the amount of Ni-B added and the fracture toughness value (K IC ). FIG. 6B is a high-temperature wear test showing the amount of Ni-B added and the surface roughness. FIG. 6C is a graph showing the relationship between the amount of Ni-B added and the wear resistance ratio (%).
[0029]
In Table 1 and FIG. The wear test results of the material of the present invention indicated by Nos. 1 to 8, ie, the wear resistance ratio and the surface roughness, were the same as those of the conventional material. As compared with No. 13, it is clear that the abrasion resistance ratio is large, the surface roughness is small, and all are excellent. Also, regarding the fracture toughness value, which is a mechanical property. In the same manner as described above, the material of the present invention, Nos. 1 to 8 are conventional materials. It is clear that the value is much better than that of No. 13.
[0030]
FIG. 1 shows Nos. In Table 1 which are the materials of the present invention. 1 shows a microstructure photograph (× 400). Similarly, FIG. 2 and FIG. 5 shows a microstructure photograph (× 400) of FIG. On the other hand, FIG. 13 shows a microstructure photograph (× 400). Here, the microstructures of FIGS. 1 and 2.3 which are micro photographs of the material of the present invention and FIG. 7 which is a conventional material are compared. In FIG. 7, which is a microphotograph of the conventional material, the cermet structure is planar. On the other hand, in FIG. 1.2.3 which is the material of the present invention, the hard material in the cermet is finely dispersed, and the microphotograph shows that the wear test result and the fracture toughness of the material of the present invention are the same as those of the conventional material. The above description of superiority can be easily understood.
[0031]
In addition, in the case of the material of the present invention, In Nos. 1 to 8, Nos. 1 to 4 are obtained by previously alloying the high-speed powder and the ceramic powder by the MA method, mixing the alloyed material and the Ni-B-based self-fluxing alloy powder, and then performing HIP processing. And the remaining No. Nos. 5 to 8 are obtained by alloying a high-speed powder, a ceramic powder, and a Ni-B-based self-fluxing alloy powder by the MA method, and then performing HIP processing. Here, when the two are compared, even if the raw materials are the same and the mass ratio% to be mixed is the same, the above-mentioned No. 2 is obtained. Nos. 5 to 8 were more suitable for the treatment. It is clear that the material properties are excellent in all of the cases where the treatment is performed by the methods 1 to 4, and it is clear that the test results are as described above.
[0032]
No. Nos. 9 to 10 are Nos. Of the examples of the present invention. 4 are comparative examples for Nos. 1 to 4; Nos. 11 to 12 of the present invention examples. It is a comparative example with respect to 5-8. Comparing the two, the Ni-B-based self-fluxing alloy powder was found to be in Comparative Example No. In Nos. 9 to 12, all of the material Nos. Of the present invention. It is clear that the material properties are inferior to those of Nos. 1 to 8 as shown in Table 1 and FIG.
[0033]
【The invention's effect】
As described above, according to the present invention, it is possible to provide materials and members that are effective in a use environment in which heat resistance and wear resistance and accident resistance (toughness) are required. It can contribute to reduction.
[Brief description of the drawings]
FIG. 1 is a micrograph showing the microstructure (× 400 magnification) of the material of the present invention.
FIG. 2 is a micrograph showing another microstructure (× 400) of the material of the present invention.
FIG. 3 is a micrograph showing another microstructure (× 400) of the material of the present invention.
FIG. 4 is a schematic diagram showing a (HIP capsule) during a test of the present invention.
FIG. 5 is a schematic diagram of a wear tester during a test according to the present invention.
FIG. 6 is a diagram showing test results according to the present invention.
FIG. 7 is a micrograph showing a microstructure (× 400) of a conventional material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Carbon steel pipe 2 Core material 3 Powder 4 Capsule 5 Deaeration pipe 6 Weld seal 7 Test piece 8 Counterpart material (equivalent to rolled material)
9 heating coil

Claims (3)

炭素鋼からなる母材に、金属の炭化物、窒化物、酸化物、ホウ化物のうちの1種以上と高速度鋼とNi−B系自溶性合金とからなるHIP処理層を形成し多層構造としたことを特徴とする耐熱耐摩耗部材。A multi-layer structure is formed by forming at least one of metal carbides, nitrides, oxides, and borides, a high-speed steel and a Ni—B-based self-fluxing alloy on a base material made of carbon steel, and a multilayer structure. A heat and wear resistant member characterized by the following. 予めハイス粉末に体積%で5〜45%の金属の炭化物、窒化物、酸化物、ホウ化物のうちの1種以上からなる粉末とをメカニカルアロイング法により合金化し、その後、前記合金化物と質量%で、1〜6%のNi−B系の自溶性合金粉末とを混合した後、炭素鋼からなる母材の表面へ温度1000〜1200℃、圧力100MPa以上、2〜5時間のHIP処理を行い多層構造としたことを特徴とする耐熱耐摩耗部材の製造方法。5 to 45% by volume of a metal carbide, nitride, oxide, or boride powder is alloyed with a high-speed powder in advance by a mechanical alloying method. %, After mixing with 1 to 6% of a Ni-B based self-fluxing alloy powder, the surface of the base material made of carbon steel is subjected to HIP treatment at a temperature of 1000 to 1200 ° C. and a pressure of 100 MPa or more for 2 to 5 hours. A method for producing a heat- and wear-resistant member, characterized by having a multilayer structure. ハイス粉末に体積%で5〜45%の金属の炭化物、窒化物、酸化物、ホウ化物のうちの1種以上からなる粉末を、さらに、前記両者に対し、質量%で1〜6%のNi−B系の自溶性合金粉末とからなる3者をメカニカルアロイング法により合金化し、その後、炭素鋼からなる母材の表面へ温度1000〜1200℃、圧力100MPa以上、2〜5時間のHIP処理を行い多層構造としたことを特徴とする耐熱耐摩耗部材の製造方法。5% to 45% by volume of a metal carbide, nitride, oxide, or boride powder is added to the HSS powder, and 1% to 6% of Ni -B-based self-fluxing alloy powder is alloyed by a mechanical alloying method, and then HIP treatment is performed on the surface of the base material made of carbon steel at a temperature of 1000 to 1200 ° C. and a pressure of 100 MPa or more for 2 to 5 hours. And producing a heat and wear resistant member having a multilayer structure.
JP2003115293A 2003-04-21 2003-04-21 Heat resistant and wear resistant member, and its production method Pending JP2004315950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115293A JP2004315950A (en) 2003-04-21 2003-04-21 Heat resistant and wear resistant member, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115293A JP2004315950A (en) 2003-04-21 2003-04-21 Heat resistant and wear resistant member, and its production method

Publications (1)

Publication Number Publication Date
JP2004315950A true JP2004315950A (en) 2004-11-11

Family

ID=33474533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115293A Pending JP2004315950A (en) 2003-04-21 2003-04-21 Heat resistant and wear resistant member, and its production method

Country Status (1)

Country Link
JP (1) JP2004315950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174915A1 (en) * 2014-05-13 2015-11-19 Hyp Uthyrning Ab New powder metal process for production of components for high temperature useage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174915A1 (en) * 2014-05-13 2015-11-19 Hyp Uthyrning Ab New powder metal process for production of components for high temperature useage
CN106470784A (en) * 2014-05-13 2017-03-01 金属价值联合股份公司 For producing the new powder metal process of applied at elevated temperature component

Similar Documents

Publication Publication Date Title
EP2591874B1 (en) Friction stir welding tool made of cemented tungsten carbid with Nickel and with a Al2O3 surface coating
US7867315B2 (en) Hard-particle powder for sintered body and sintered body
JP2010215951A (en) Sintered composite sliding component and manufacturing method therefor
EP2253727A1 (en) Powder for iron-based sintered alloy
EP3483295B1 (en) Repair-welding material for die
Hayat et al. Fabrication, microstructure and mechanical properties of in situ formed particle reinforced titanium matrix composite
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP3743793B2 (en) Composite roll for hot rolling, method for producing the same, and hot rolling method using the same
JP2006022896A (en) Double-layered bearing material and its manufacturing method
JP2007131886A (en) Method for producing fiber-reinforced metal superior in abrasion resistance
JP2001247905A (en) Heat resistant and wear resistant composite structural member and its producing method
JP3690617B2 (en) Cemented carbide composite roll
JP5273987B2 (en) Cermet manufacturing method
JP2004243380A (en) Composite roll for rolling made of cemented carbide
JP2006175456A (en) Composite rolling roll made of cemented carbide
JP2004315950A (en) Heat resistant and wear resistant member, and its production method
JP2005262321A (en) Composite roll made of cemented carbide
JP6202787B2 (en) Molybdenum heat-resistant alloy, friction stir welding tool, and manufacturing method
EP2045346B1 (en) Method for producing a sintered composite sliding part
JP4018308B2 (en) Composite material for sliding member and sliding member
JP4330157B2 (en) Screw for injection molding machine and its assembly parts
JP6178689B2 (en) Tungsten heat resistant alloy, friction stir welding tool, and manufacturing method
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JPH10280101A (en) Heat resisting and wear resisting member and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20060118

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080624

Free format text: JAPANESE INTERMEDIATE CODE: A02