JP2001247905A - Heat resistant and wear resistant composite structural member and its producing method - Google Patents

Heat resistant and wear resistant composite structural member and its producing method

Info

Publication number
JP2001247905A
JP2001247905A JP2000060716A JP2000060716A JP2001247905A JP 2001247905 A JP2001247905 A JP 2001247905A JP 2000060716 A JP2000060716 A JP 2000060716A JP 2000060716 A JP2000060716 A JP 2000060716A JP 2001247905 A JP2001247905 A JP 2001247905A
Authority
JP
Japan
Prior art keywords
powder
layer
heat
structural member
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000060716A
Other languages
Japanese (ja)
Other versions
JP4346780B2 (en
Inventor
Koji Emori
宏二 江守
Shingo Izumi
真吾 泉
Masatoshi Ayagaki
昌俊 綾垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000060716A priority Critical patent/JP4346780B2/en
Publication of JP2001247905A publication Critical patent/JP2001247905A/en
Application granted granted Critical
Publication of JP4346780B2 publication Critical patent/JP4346780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat resistant and wear resistant composite structural member used for the one to be subjected to temperature and loads such as a guide roll and a roll for rolling used at a rolling factory in an iron making field and to provide its producing method. SOLUTION: In this heat resistant and wear resistant composite structural member, powder having a componential composition containing, by mass, 0.9 to 2.5% C, 0.15 to 1.5% Si, 0.1 to 2.0% Mn, 3.5 to 12.0% Cr, 3.0 to 10.0% Mo, 0.8 to 8.0% V and 1.0 to 10.0% W, furthermore containing one or more kinds selected from 0.5 to 3.0% Ni, 0.8 to 8.0% Nb and 1.0 to 12.0% Co, and the balance Fe with inevitable impurities is formed on the outside of a base metal composed of carbon steel as a first HIP treated layer, and, on the outer layer of the first HIP treated layer, a second HIP treated layer composed of a powdery mixture consisting of the powder of one or more kinds among metallic carbide, nitride, oxide and boride of 5 to 30% by total volume ratio and the balance powder of above components is formed. Moreover, the producing method uses the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば製鉄分野に
おける圧延工場で使用されるガイドロールや圧延用ロー
ル等のような温度や荷重の負荷を受けるものに使用され
る耐熱耐摩耗複合構造部材およびその製造方法に関する
ものである。
The present invention relates to a heat-resistant and wear-resistant composite structural member used for a member subjected to a temperature or a load such as a guide roll and a roll for rolling used in a rolling mill in the field of steelmaking. The present invention relates to the manufacturing method.

【0002】[0002]

【従来の技術】近年、鉄鋼圧延分野、例えば圧延工場等
において、製品の精度、品質向上や生産性向上の要求が
高く、そのため操業条件は苛酷となっている。従って、
上記製品を製造するツールでの1つであるガイドロール
や圧延用ロール等に対し、耐久性が求められ、特に、ツ
ールの原単位や保守の低減を主な理由として、強度の信
頼性を確保しつつ耐熱、耐摩耗性の向上が強く要求され
てきている。一方、耐熱、耐摩耗性の向上については、
これまで、多くの研究、開発が試みられており、最新の
技術の1つとして、例えば特開10−280101号公
報に開示されているように、強靱性を持った炭素鋼母材
の外側に、金属の炭化物、窒化物、ホウ化物のうちの1
種以上からなる粉末と残部が高速度鋼(ハイス)粉末と
からなる複合粉末をHIP処理してなる第2の処理層を
形成した2層構造とし、外層に硬化熱処理を行ったもの
である。
2. Description of the Related Art In recent years, in the field of steel rolling, for example, in a rolling mill or the like, there is a high demand for improving the accuracy, quality and productivity of products, and therefore operating conditions are severe. Therefore,
Durability is required for guide rolls and rolling rolls, which are one of the tools used to manufacture the above products. Particularly, the reliability of strength is secured mainly because of the reduction in tool unit consumption and maintenance. There is a strong demand for improved heat resistance and wear resistance. On the other hand, regarding the improvement of heat resistance and wear resistance,
Many researches and developments have been attempted so far, and as one of the latest technologies, for example, as disclosed in Japanese Patent Laid-Open No. , One of metal carbides, nitrides and borides
It has a two-layer structure in which a second processing layer is formed by performing HIP processing on a composite powder composed of a powder composed of at least one kind and a high-speed steel (high-speed steel) powder, and a hardening heat treatment is performed on the outer layer.

【0003】[0003]

【発明が解決しようとする課題】上述した特開10−2
80101号公報に開示されている技術のものは、外層
に耐熱耐摩耗性に優れたハイスサーメット(金属化合物
とハイスの複合粉末)、内層に強靱性を持った炭素鋼の
2層構造となっているため耐熱耐摩耗性と強度信頼性を
同時に有している。しかしながら、外層のハイスサーメ
ットが内層の炭素鋼に拡散接合されていること、さら
に、硬化熱処理されるために、この硬化熱処理時に外層
はマルテンサイト変態により膨張し、硬化熱処理後の内
外層の境界部では半径方向の引っ張り残留応力がピーク
となる。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 10-2
The technology disclosed in Japanese Patent No. 80101 has a two-layer structure of high-speed cermet (composite powder of a metal compound and high-speed steel) having excellent heat and abrasion resistance in the outer layer and tough carbon steel in the inner layer. Therefore, it has both heat and abrasion resistance and strength reliability at the same time. However, since the outer HSS cermet is diffusion-bonded to the inner carbon steel and is subjected to hardening heat treatment, the outer layer expands due to martensitic transformation during this hardening heat treatment, and the boundary between the inner and outer layers after the hardening heat treatment. , The tensile residual stress in the radial direction peaks.

【0004】一方、境界部の接合強度は外層材のハイス
サーメット中のセラミックの添加割合やハイスの炭素含
有量が多くなるにつれ低下する。この接合強度が低下す
ると、製造中や使用中に境界部でのクラックが発生する
危険性を有する。従って、特開10−280101号公
報に開示されている炭素鋼の外側に、ハイスサーメット
を拡散結合された技術のものでは、接合部での境界部で
の接合強度を確保するために、外層材のハイスサーメッ
ト中へのセラミックやハイスの炭素含有量を多くして、
しかも境界部の接合強度を高めることは難しい。そのた
めに、特開10−280101号公報に開示されている
2層構造材料では境界部に充分な強度を付与することが
困難であると言う問題がある。
On the other hand, the bonding strength at the boundary decreases as the proportion of ceramic added to the high-speed cermet of the outer layer or the carbon content of the high-speed steel increases. If the bonding strength is reduced, there is a risk that cracks may occur at the boundary during manufacturing or use. Therefore, in the technology disclosed in Japanese Patent Application Laid-Open No. 10-280101, in which high-speed cermet is diffusion-bonded to the outside of carbon steel, the outer layer material is required to secure the bonding strength at the boundary at the bonding portion. Increase the carbon content of ceramics and high speed steel in high speed cermet,
Moreover, it is difficult to increase the bonding strength at the boundary. For this reason, there is a problem that it is difficult to give sufficient strength to the boundary portion with the two-layer structure material disclosed in Japanese Patent Application Laid-Open No. 10-280101.

【0005】[0005]

【課題を解決するための手段】本発明は、上述したよう
な問題を解消するもので、従来の技術が有する耐熱、耐
摩耗性の作用・効果を有すると共に母材との接着強度の
優れた、強度信頼性の高い、しかも極めて実用的な適用
範囲の広い耐熱耐摩耗性複合材料を提供することを目的
とするものである。その発明の要旨とするところは、 (1)炭素鋼からなる母材の外側に、質量%で、C:
0.9〜2.5%、Si:0.15〜1.5%、Mn:
0.1〜2.0%、Cr:3.5〜12.0%、Mo:
3.0〜10.0%、V:0.8〜8.0%、W:1.
0〜10.0%、残部Feおよび不可避的不純物からな
る成分組成の粉末を第1のHIP処理層と成し、該第1
のHIP処理層の外層に、金属の炭化物、窒化物、酸化
物、ホウ化物の内の1種または2種以上からなる粉末を
合計体積比率で5〜30%、残部を上記成分からなる粉
末との混合粉末からなる第2のHIP処理層を形成した
ことを特徴とする耐熱耐摩耗複合構造部材。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and has the functions and effects of heat resistance and abrasion resistance of the prior art and has excellent adhesive strength to a base material. It is an object of the present invention to provide a heat-resistant and abrasion-resistant composite material having high strength reliability and a wide range of practical applications. The gist of the invention is as follows: (1) In the outside of a base material made of carbon steel, C:
0.9-2.5%, Si: 0.15-1.5%, Mn:
0.1 to 2.0%, Cr: 3.5 to 12.0%, Mo:
3.0 to 10.0%, V: 0.8 to 8.0%, W: 1.
A powder having a component composition of 0 to 10.0%, with the balance being Fe and unavoidable impurities, forms a first HIP-treated layer.
In the outer layer of the HIP treatment layer, a powder composed of one or more of carbides, nitrides, oxides, and borides of metal in a total volume ratio of 5 to 30%, and a balance composed of a powder composed of the above components A heat- and wear-resistant composite structural member, wherein a second HIP treatment layer made of a mixed powder of the above is formed.

【0006】(2)前記(1)記載の成分に、さらにN
i:0.5〜3.0%、Nb:0.8〜8.0%、C
o:1.0〜12.0%、の内の1種または2種以上含
有せしめたことを特徴とする耐熱耐摩耗複合構造部材。 (3)前記(1)または(2)記載の第1の処理層を溶
射または肉盛り溶接にて形成したことを特徴とする耐熱
耐摩耗複合構造部材。
(2) In addition to the components described in (1) above,
i: 0.5 to 3.0%, Nb: 0.8 to 8.0%, C
o: A heat- and wear-resistant composite structural member characterized in that one or more of 1.0 to 12.0% of the same are contained. (3) A heat- and wear-resistant composite structural member, wherein the first treatment layer according to (1) or (2) is formed by thermal spraying or overlay welding.

【0007】(4)前記(1)記載の第2のHIP処理
層用の混合粉末をメカニカルアロイング法により、予め
合金化した複合粉末を形成する第1の工程と、その後、
炭素鋼からなる母材の外側に、前記(1)または(2)
記載の粉末を第1層用として充填し、第1層用粉末の外
部に、上記予め作成した第2のHIP処理用の複合粉末
を充填する第2の工程と、その後、温度1000〜12
00℃、圧力98〜196MPa、2〜5時間のHIP
処理を行い3層構造とする第3の工程と、該構造材を硬
化熱処理する第4の工程からなることを特徴とする耐熱
耐摩耗複合構造部材の製造方法。
(4) A first step of forming a pre-alloyed composite powder of the mixed powder for the second HIP processing layer according to the above (1) by a mechanical alloying method, and thereafter,
(1) or (2) above the base material made of carbon steel
A second step of filling the powder described above for the first layer, and filling the outside of the powder for the first layer with the previously prepared composite powder for the second HIP treatment, and thereafter, at a temperature of 1000 to 12
HIP at 00 ° C., pressure 98-196 MPa, 2-5 hours
A method for producing a heat- and wear-resistant composite structural member, comprising: a third step of performing a treatment to form a three-layer structure; and a fourth step of performing a curing heat treatment on the structural material.

【0008】(5)前記(1)記載の第2のHIP処理
層用の混合粉末をメカニカルアロイング法により、予め
合金化した複合粉末を形成する第1の工程と、その後、
炭素鋼からなる母材の外側に、前記(1)または(2)
記載の粉末を溶射または肉盛り溶接にて第1層を形成
し、該第1層の外部に、上記予め作成した第2のHIP
処理用の複合粉末を充填する第2の工程と、その後、温
度1000〜1200℃、圧力98〜196MPa、2
〜5時間のHIP処理を行い3層構造とする第3の工程
と、該構造材を硬化熱処理する第4の工程からなること
を特徴とする耐熱耐摩耗複合構造部材の製造方法にあ
る。
(5) A first step of forming a pre-alloyed composite powder of the mixed powder for the second HIP processing layer according to the above (1) by a mechanical alloying method, and thereafter,
(1) or (2) above the base material made of carbon steel
A first layer is formed by spraying or overlay welding the powder described above, and the second HIP prepared in advance is formed outside the first layer.
A second step of filling the composite powder for processing, followed by a temperature of 1000-1200 ° C., a pressure of 98-196 MPa,
A method for producing a heat- and wear-resistant composite structural member, comprising: a third step of performing a HIP treatment for up to 5 hours to form a three-layer structure; and a fourth step of curing and heat-treating the structural material.

【0009】[0009]

【発明の実施の形態】以下、本発明に係る第1層および
第2層に適用する成分組成の限定理由について説明す
る。 C:0.9〜2.5% Cは主としてマトリックス中に固溶されるマルテンサイ
ト相を生成する。また、さらにFe,Cr,Mo,N
b,V,W等と結合して種々の炭化物を形成する。しか
し、0.9%未満ではその炭化物量が少なく、耐摩耗性
が得られない。また、2.5%を超えると、粗大な炭化
物が形成され、靱性の低下や肌荒れの原因となる。従っ
て、その範囲を0.9〜2.5%とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the reasons for limiting the component compositions applied to the first and second layers according to the present invention will be described. C: 0.9 to 2.5% C mainly forms a martensite phase which is dissolved in the matrix. Further, Fe, Cr, Mo, N
Combines with b, V, W, etc. to form various carbides. However, if it is less than 0.9%, the amount of the carbide is small, and the wear resistance cannot be obtained. On the other hand, if it exceeds 2.5%, coarse carbides are formed, which causes a decrease in toughness and a rough skin. Therefore, the range is set to 0.9 to 2.5%.

【0010】Si:0.15〜1.5% Siは脱酸作用を目的として添加する。しかし、0.1
5%未満ではその効果が不十分であり、1.5%を超え
る添加は、靱性を低下させるため、その範囲を0.15
〜1.5%とする。 Mn:0.1〜2.0% Mnは脱酸、脱硫作用や焼入れ性を高めマトリックス硬
度の増加を目的として添加する。しかし、0.1%未満
ではその効果が不十分であり、2%を超えると靱性を低
下させるため、その範囲を0.1〜2.0%とする。
Si: 0.15 to 1.5% Si is added for the purpose of deoxidizing. However, 0.1
If it is less than 5%, the effect is insufficient, and if it exceeds 1.5%, the toughness is reduced.
To 1.5%. Mn: 0.1 to 2.0% Mn is added for the purpose of enhancing the deoxidizing and desulfurizing actions and the hardenability and increasing the matrix hardness. However, if it is less than 0.1%, the effect is insufficient, and if it exceeds 2%, the toughness is reduced. Therefore, the range is set to 0.1 to 2.0%.

【0011】Cr:3.5〜12.0% Crはマトリックス中に固溶されて焼入れ性を高めると
共に、Cと結合した炭化物を形成する。しかし、3.5
%未満では炭化物量が少なく、耐摩耗性が低下し、ま
た、12.0%を超えると、粗大な炭化物が形成され、
靱性の低下を招く。従って、その範囲を3.5〜12.
0%とする。 Mo:3.0〜10.0% MoはCrと同様に、マトリックス中に固溶されて基地
を強化すると共に、Cと結合して炭化物を形成する。基
地強化のためには、最低3.0%以上の含有が必要であ
るが、10.0%を超えても効果は変わらず、従って、
経済的な理由からその上限を10.0%とした。
Cr: 3.5 to 12.0% Cr forms a solid solution in the matrix to enhance quenchability and form carbides combined with C. However, 3.5
%, The amount of carbides is small, and the wear resistance is reduced. If it exceeds 12.0%, coarse carbides are formed,
This leads to a decrease in toughness. Therefore, the range is set to 3.5 to 12.
0%. Mo: 3.0 to 10.0% Mo, like Cr, forms a solid solution in the matrix to strengthen the matrix and combines with C to form a carbide. In order to strengthen the base, the content must be at least 3.0% or more, but even if it exceeds 10.0%, the effect does not change.
The upper limit was set to 10.0% for economic reasons.

【0012】V:0.8〜8.0% VはCと結合して高硬度のMC炭化物を形成する。しか
し、0.8%未満ではその効果は不十分であり、8.0
%を超えて含有させた場合、マトリックス中の固溶炭素
量が減少しマトリックス硬度を下げるので好ましくな
い。従って、その範囲を0.8〜8.0%とした。 W:1.0〜10.0% WはMoと同様に、マトリックス中に固溶されて基地を
強化すると共に、Cと結合した炭化物を形成する。基地
強化のためには、最低1.0%以上の含有が必要である
が、しかし、10.0%を超えると粗大炭化物が形成さ
れ靱性が低下する。従って、その範囲を1.0〜10.
0%とした。
V: 0.8-8.0% V combines with C to form a high hardness MC carbide. However, if the content is less than 0.8%, the effect is insufficient, and 8.0% is used.
%, It is not preferable because the amount of dissolved carbon in the matrix decreases and the hardness of the matrix decreases. Therefore, the range was set to 0.8 to 8.0%. W: 1.0 to 10.0% W, like Mo, is solid-dissolved in the matrix to strengthen the matrix and to form carbides combined with C. In order to strengthen the matrix, the content must be at least 1.0% or more. However, if it exceeds 10.0%, coarse carbides are formed and the toughness is reduced. Therefore, the range is set to 1.0 to 10.
0%.

【0013】本発明材の基本成分は、上記の通りである
が、適用を対象とする複合構造材に要求される所要特性
により、その他の成分として、上記した本発明の化学成
分に加えて、さらに下記の成分を含有してもよい。 Ni:0.5〜3.0% Niはマトリックス中に固溶され、基地のオーステナイ
トを安定化して焼入れ性を向上する。そのために大きな
サイズ部材を製造する場合少量を含有させることがある
が、3.0%を超えて含有させた場合、オーステナイト
が安定化し過ぎてオーステナイトの残留を来たし、硬度
の確保が困難になったり、熱間圧延使用中に変形等を起
こすことがある。しかし、0.5%未満ではその効果が
ない。従って、その範囲を0.5〜3.0%とした。
The basic components of the material of the present invention are as described above. However, depending on the required properties required for the composite structural material to which the present invention is applied, other components, in addition to the above-mentioned chemical components of the present invention, Further, the following components may be contained. Ni: 0.5 to 3.0% Ni is dissolved in the matrix to stabilize austenite of the matrix and improve quenchability. For this reason, when a large size member is manufactured, a small amount may be contained. However, if the content exceeds 3.0%, austenite is excessively stabilized, austenite remains, and it becomes difficult to secure hardness. During hot rolling, deformation may occur. However, less than 0.5% has no effect. Therefore, the range was set to 0.5 to 3.0%.

【0014】Nb:0.8〜8.0% NbはCと結合して耐摩耗性に大きく寄与するMC炭化
物を形成する重要な元素である。しかし、0.8%未満
では炭化物量が不十分で耐摩耗性が確保できず、8.0
%を超える添加は靱性の低下に繋がる。特に、耐摩耗性
の著しい改善を必要とする場合に添加される。従って、
その範囲を0.8〜8.0%とする。 Co:1.0〜12.0% Coはその殆んどがマトリックス中に固溶され基地を強
化する。そのため、高温での硬度および強度を向上させ
る作用を有している。しかし、1.0%未満ではその効
果は不十分であり、12.0%を超えてはその効果が飽
和するため、経済性の点からも12.0%以下が望まし
い。特に、例えば表面温度が600℃以上の高温とな
り、表面の高温耐摩耗性を改善する場合に添加するとよ
い。
Nb: 0.8-8.0% Nb is an important element that combines with C to form MC carbide which greatly contributes to wear resistance. However, if it is less than 0.8%, the amount of carbides is insufficient, so that the wear resistance cannot be secured, and
% Leads to a decrease in toughness. In particular, it is added when a marked improvement in wear resistance is required. Therefore,
The range is set to 0.8 to 8.0%. Co: 1.0 to 12.0% Most of Co is dissolved in the matrix to strengthen the matrix. Therefore, it has the effect of improving the hardness and strength at high temperatures. However, if it is less than 1.0%, the effect is insufficient, and if it exceeds 12.0%, the effect is saturated. Therefore, from the viewpoint of economy, 12.0% or less is desirable. In particular, when the surface temperature becomes high, for example, 600 ° C. or higher, and the high-temperature abrasion resistance of the surface is improved, it may be added.

【0015】次に、1種以上のセラミックス(金属の炭
化物、窒化物、酸化物、ホウ化物)の混合率の合計を体
積で5〜30%とした理由は、混合率が増加するにつれ
て硬質粒子が増加するために硬度が上昇し耐摩耗性が向
上するが、5%未満では効果は少なく、30%を超える
と、外層の強度低下による欠陥や表面の肌荒れ等が発生
し易くなり好ましくない。また、メカニカルアロイング
では、セラミックスと粉末の混合粉末を粉砕、固着を繰
り返しすることにより、微細に分散した複合粉末組織と
なり耐熱耐摩耗耐肌荒れ性の向上をもたらす。
Next, the reason why the total mixing ratio of one or more ceramics (metal carbides, nitrides, oxides, borides) is 5 to 30% by volume is that the hard particles are hardened as the mixing ratio increases. However, if the content is less than 5%, the effect is small, and if it exceeds 30%, defects due to a decrease in the strength of the outer layer, surface roughening, and the like are liable to occur, which is not preferable. In mechanical alloying, a mixed powder of ceramics and powder is repeatedly crushed and fixed to form a finely dispersed composite powder structure, thereby improving heat resistance, wear resistance, and surface roughness.

【0016】また、HIP温度は、1000℃未満では
焼結の効率的がなく、気孔状欠陥が残りやすくなる。ま
た、1200℃を超えると粒子が粗大化し強度が低下す
るため、上限を1200℃とした。さらに、圧力は98
MPa以上であれば気孔は消滅出来る。しかし、196
MPaを超えてもその効果は同じであり、経済性および
設備の耐圧性を考慮して、その上限を196MPaとし
た。
On the other hand, if the HIP temperature is lower than 1000 ° C., the sintering is not efficient, and pore defects tend to remain. If the temperature exceeds 1200 ° C., the particles are coarsened and the strength is reduced. In addition, the pressure is 98
If the pressure is at least MPa, the pores can be eliminated. However, 196
The effect is the same even when the pressure exceeds MPa, and the upper limit is set to 196 MPa in consideration of economy and pressure resistance of equipment.

【0017】以下、本発明について図面に従って詳細に
説明する。表1は本発明に係る第1層用粉末を成す化学
成分組成を示す。また、第2層用粉末としての金属炭化
物の代表例としてはチタン炭化物(TiC)を用い、表
1に示す粉末の化学成分組成のものに体積比率で20%
添加し、混合粉末を作成した。その後、この混合物をS
UJ2製のボールを用いてメカニカルアロイング法によ
って、60時間の合金化作業を行い混合粉末を製造す
る。
Hereinafter, the present invention will be described in detail with reference to the drawings. Table 1 shows the chemical composition of the first layer powder according to the present invention. In addition, titanium carbide (TiC) is used as a typical example of the metal carbide as the powder for the second layer, and the powder having the chemical composition shown in Table 1 has a volume fraction of 20%.
Was added to form a mixed powder. Thereafter, the mixture is
An alloying operation is performed for 60 hours by a mechanical alloying method using a UJ2 ball to produce a mixed powder.

【0018】[0018]

【表1】 [Table 1]

【0019】また、試験用の充填容器としては、図1に
示すようなものを使用する。すなわち、図1は境界強度
測定試験片作製用カプセル構造を示す図である。この図
1に示すように、図1(a)は、本発明に係る3層構造
であり、図1(b)は従来の2層構造のものである。こ
の容器本体であるカプセル1が炭素鋼からなり、内径D
が14.2mmφ、高さHが140mmのサイズのもの
を使用した。母材4は全てSCM材の中実円柱を使用
し、カプセル1の底部に設置した。図1(b)に示す2
層構造試験片は母材4に接して第2層用粉末3を充填
し、図1(a)に示す本発明の3層構造試験材は母材4
に接して約5mm厚さに第1層用粉末2を充填し、その
上部に第2層用粉末3を充填した。
As a test filling container, the one shown in FIG. 1 is used. That is, FIG. 1 is a diagram showing a capsule structure for preparing a boundary strength measurement test piece. As shown in FIG. 1, FIG. 1A shows a three-layer structure according to the present invention, and FIG. 1B shows a conventional two-layer structure. The capsule 1, which is the container body, is made of carbon steel and has an inner diameter D
Was 14.2 mmφ and the height H was 140 mm. All the base materials 4 used solid cylinders of SCM material and were installed at the bottom of the capsule 1. 2 shown in FIG.
The layer structure test piece is in contact with the base material 4 and is filled with the powder 3 for the second layer, and the three-layer structure test material of the present invention shown in FIG.
And the first layer powder 2 was filled to a thickness of about 5 mm, and the second layer powder 3 was filled thereon.

【0020】以上の充填後、真空脱気後、1140℃、
147MPa、3時間のHIP処理を行い、軟化焼鈍
後、焼き入れは1000℃×2時間で常温まで冷却した
後、550℃×3.5時間で3回焼き戻しした。その後
それぞれの試験材の母材4と第1層用粉末2との境界を
中央部としたJIS4号引張り試験片の1/2サイズの
試験片を加工採取し、その機械的強度を測定した。その
結果を表2に示す。その結果、表2に示すように本発明
材は、従来の2層構造に比べ、引張り強度、伸び、絞り
共に高いことが判る。
After the above filling, vacuum deaeration, 1140 ° C.
After HIP treatment at 147 MPa for 3 hours, and after softening and annealing, quenching was performed at 1000 ° C. × 2 hours, cooled to room temperature, and then tempered three times at 550 ° C. × 3.5 hours. Thereafter, a test piece of 1 / size of a JIS No. 4 tensile test piece with the boundary between the base material 4 of each test material and the first layer powder 2 as a center was sampled, and its mechanical strength was measured. Table 2 shows the results. As a result, as shown in Table 2, it is understood that the material of the present invention has higher tensile strength, elongation, and reduced drawing compared to the conventional two-layer structure.

【0021】[0021]

【表2】 [Table 2]

【0022】図2は引張り試験片の境界部破断状況を示
す図である。切断箇所は、図2(b)に示す従来の2層
構造の場合には、母材4と第2層用粉末3よりなる鋼の
境界で破断しているのに対し、図2(a)に示す本発明
材は、母材4と第1層用粉末2よりなる鋼と第2層用粉
末3よりなる鋼のいずれの境界共に強固に接合されてお
り破断位置は強靱性の高い母材で破断している。このこ
とからも本発明材の境界部分の強度は極めて高いことが
判る。
FIG. 2 is a diagram showing the state of fracture at the boundary of a tensile test piece. In the case of the conventional two-layer structure shown in FIG. 2B, the cut portion breaks at the boundary between the base material 4 and the steel composed of the powder 3 for the second layer, whereas FIG. The present invention material shown in FIG. 1 is firmly joined to any of the boundaries between the steel composed of the base material 4 and the first layer powder 2 and the steel composed of the second layer powder 3, and the fracture position is the base material having high toughness. It is broken by. This also indicates that the strength of the boundary portion of the material of the present invention is extremely high.

【0023】また、圧延用複合ロールの応力状態につい
ては、製造時に発生したロールの残留応力に圧延の負荷
応力および熱応力が加わる。このような応力状態につい
て図3に示す。すなわち、図3はロール断面の半径方向
の残留応力分布を示す図である。図3(a)は本発明の
3層構造での残留応力分布を示し、図3(b)は従来で
の2層構造での残留応力分布を示すもので、図3(b)
においては、焼入れにより第2層はマルテンサイト変態
で膨張するために母材との境界で引張り残留応力がピー
クとなるため、境界強度が充分でないと、焼入れ中、機
械加工中や圧延使用中に境界にクラックが発生すること
がある。本発明の3層構造の場合は、図3(a)に示す
ように、引張りの残留応力のピークは母材と第1層の境
界である。すなわち、本発明材の場合はその境界は強靱
な母材よりも引張り強度は強く境界からのクラック発生
に対して信頼性の高い複合材料となっていることが判
る。
As for the stress state of the composite roll for rolling, the load stress and the thermal stress of the rolling are added to the residual stress of the roll generated at the time of manufacturing. FIG. 3 shows such a stress state. That is, FIG. 3 is a diagram showing the residual stress distribution in the radial direction of the roll cross section. FIG. 3A shows the residual stress distribution in the three-layer structure of the present invention, and FIG. 3B shows the residual stress distribution in the conventional two-layer structure.
In the quenching, since the second layer expands by martensitic transformation due to quenching, the tensile residual stress peaks at the boundary with the base material, so if the boundary strength is not sufficient, during quenching, during machining or during rolling use Cracks may occur at the boundaries. In the case of the three-layer structure of the present invention, as shown in FIG. 3A, the peak of the tensile residual stress is at the boundary between the base material and the first layer. That is, in the case of the material of the present invention, it is understood that the boundary is a composite material having higher tensile strength at the boundary than the tough base material and having high reliability against crack generation from the boundary.

【0024】以下、本発明について実施例によって具体
的に説明する。
Hereinafter, the present invention will be described specifically with reference to examples.

【実施例】(実施例1)第1層の粉末については、表3
に示す2種類の粉末の化学成分組成のものを使用した。
また、第2層の粉末は、チタン炭化物を準備し、表3中
の2種類の粉末にそれぞれ体積比率で10%、20%の
混合し合計4種類の混合粉末を作成した。その後4種類
の混合粉末をそれぞれSUJ2製のボールを用いたメカ
ニカルアロイング法によって60時間の合金化作業を行
い複合粉末を製造した。一方、充填容器は、60mmφ
×10mmtの摩耗試験片を作成するために、図4
(b)に示す従来の2層構造4個と図4(a)に示す本
発明の3層構造用カプセルを2個準備した。これらは、
内径は78mm、高さは60mmで1個のカプセルから
試験片が2個採取出来る。充填はカプセル中央に50m
mφの低合金炭素鋼母材をセットし、従来の2層構造は
その周囲に第2層粉末の4種類のものを、それぞれ1個
づつ充填し、合計4個作成した。
EXAMPLES (Example 1) For the powder of the first layer, see Table 3
The two types of powder having the chemical composition shown in Table 1 were used.
As the powder of the second layer, titanium carbide was prepared, and the two kinds of powders in Table 3 were mixed at a volume ratio of 10% and 20%, respectively, to prepare a total of four kinds of mixed powders. Thereafter, the four types of mixed powders were alloyed for 60 hours by a mechanical alloying method using SUJ2 balls to produce composite powders. On the other hand, the filling container is
In order to prepare a wear test piece of × 10 mmt, FIG.
Four conventional two-layered capsules shown in FIG. 4B and two three-layered capsules of the present invention shown in FIG. 4A were prepared. They are,
The inner diameter is 78 mm, the height is 60 mm, and two test pieces can be collected from one capsule. Filling is 50m in the center of capsule
A low-alloy carbon steel base material of mφ was set, and in the conventional two-layer structure, four kinds of second-layer powders were filled one by one around the periphery to make a total of four pieces.

【0025】[0025]

【表3】 [Table 3]

【0026】図5は本発明に係る3層構造カプセルの充
填工程を示す図である。すなわち、本発明の3層構造
は、この図5(a)に示すようにカプセル1の中央に母
材4をセットし、また、カプセル1と母材4間に第1層
と第2層用の空間を形成するために隔壁円筒5をセット
する。このような状態で、図5(b)に示すように、第
1層空間に第1層用粉末を、第2層空間に第2層用粉末
を充填し、隔壁円筒5を上昇させつつ、両粉末の充填を
上部まで行う。その後図5(c)に示すように、引上げ
ネジ6によって台座冶具7にて保持していた母材4か
ら、隔壁円筒5を除去後、上カプセル8を溶接し、脱気
後密閉する。このような手順で作成し、母材の外周に約
2〜3mm厚さに第1層粉末(ハイス粉末)をその周囲
に2.3%CハイスにTiCを10%、20%混合した
第2層粉末(MAハイスサーメット複合粉末)を充填
し、それぞれ1個づつ合計2個作成した。
FIG. 5 is a view showing a filling step of the three-layered capsule according to the present invention. That is, in the three-layer structure of the present invention, as shown in FIG. 5 (a), the base material 4 is set at the center of the capsule 1, and the first layer and the second layer are provided between the capsule 1 and the base material 4. The partition cylinder 5 is set in order to form a space. In such a state, as shown in FIG. 5 (b), the first layer space is filled with the first layer powder, the second layer space is filled with the second layer powder, and the partition cylinder 5 is raised. Fill both powders to the top. Thereafter, as shown in FIG. 5 (c), the partition wall cylinder 5 is removed from the base material 4 held by the pedestal jig 7 by the pull-up screw 6, the upper capsule 8 is welded, and after degassing, it is sealed. A second layer in which the first layer powder (high-speed powder) is formed to a thickness of about 2 to 3 mm around the outer periphery of the base material, and 2.3% C high-speed steel is mixed with 10% and 20% of TiC is formed in the above procedure. Layer powder (MA high-speed cermet composite powder) was filled, and two powders each were prepared.

【0027】以上の充填の後、真空脱気後、1140
℃、147MPa、3時間のHIP処理を行い、軟化焼
鈍後粗加工を施した。焼入れは、1000℃×2時間で
常温まで冷却した後、550℃×3.5時間で3回焼き
戻した後仕上げ加工を行った。その製造結果を表4に示
す。従来の2層構造材は、焼入れや機械加工中に複合境
界にクラックが発生することがあり、高炭素ハイスにT
iC高配合率のMAハイスサーメットの2層構造の材料
に境界クラックが発生しやすい傾向がある。これに対
し、本発明の3構造材は高炭素ハイスにTiC高配合率
のMAハイスサーメットでも境界クラックの発生は皆無
であった。なお、第1層の設定厚みについては、0.2
〜20mmが好ましい。0.2mm未満ではその効果が
少なく、また、20mmを超えると効果が飽和するため
経済上の点より20mm以下とした。
After the above filling, after vacuum degassing, 1140
C., 147 MPa, HIP treatment for 3 hours, and roughening was performed after softening annealing. After quenching, it was cooled to room temperature at 1000 ° C. × 2 hours, and then tempered three times at 550 ° C. × 3.5 hours, followed by finishing. Table 4 shows the production results. In the conventional two-layer structure material, cracks may occur at the composite boundary during quenching or machining, and the T
Boundary cracks tend to occur easily in a material having a two-layer structure of a MA high-speed cermet having a high iC content. On the other hand, in the three-structure material of the present invention, no boundary crack was generated even in MA high-speed cermet having a high content of TiC and high carbon. Note that the set thickness of the first layer is 0.2
~ 20 mm is preferred. If it is less than 0.2 mm, the effect is small, and if it exceeds 20 mm, the effect is saturated.

【0028】[0028]

【表4】 [Table 4]

【0029】(実施例2)第1層の粉末はついては、表
5に示す粉末の化学成分組成のものを使用した。また、
第2層の粉末は、チタン炭化物を準備し、表5中の粉末
に体積比率で10%混合し混合粉末を作成した。その後
SUJ2製のボールを用いたメカニカルアロイング法に
よって40時間の合金化作業を行い複合粉末を製造し
た。 一方、充填容器は、図6(a)に示すような内径
93mm、高さ190mmで1個のカプセルから図6
(b)の製品が2個採取出来る。充填はカプセル中央に
45mmφの低合金炭素鋼母材(SCM440)をセッ
トし、図5の要領で、母材の外周に約3〜4mm厚さに
第1層用粉末2をその周囲に表5の粉末にTiCを10
%混合した第2層用粉末3を充填し、3層構造充填材を
作成した。以上の充填の後、真空脱気後、1140℃、
147MPa、3時間のHIP処理を行い、軟化焼鈍後
粗加工を施した。焼入れは、1140℃×0.5時間で
常温まで冷却した後、550℃×3.5時間で3回焼き
戻した後図6(b)に示すように直径74mm、長さ7
0mmの線材圧延用ガイドロールに仕上げ加工を行っ
た。製造中に境界クラックのトラブルは発生せず順調に
使用できた。
(Example 2) As the powder of the first layer, those having the chemical composition of the powder shown in Table 5 were used. Also,
For the powder of the second layer, titanium carbide was prepared and mixed with the powders in Table 5 at a volume ratio of 10% to prepare a mixed powder. Thereafter, an alloying operation was performed for 40 hours by a mechanical alloying method using SUJ2 balls to produce a composite powder. On the other hand, the filling container has an inner diameter of 93 mm and a height of 190 mm as shown in FIG.
Two products of (b) can be collected. For filling, a 45 mmφ low alloy carbon steel base material (SCM440) was set in the center of the capsule, and the first layer powder 2 was formed to a thickness of about 3 to 4 mm around the base material as shown in FIG. 10% TiC in powder
% Mixed powder 3 was filled to prepare a filler having a three-layer structure. After the above filling, after vacuum deaeration, 1140 ° C,
HIP treatment was performed at 147 MPa for 3 hours, and roughening was performed after softening annealing. After quenching, the specimen was cooled to room temperature at 1140 ° C. for 0.5 hour, tempered three times at 550 ° C. for 3.5 hours, and then 74 mm in diameter and 7 mm in length as shown in FIG.
Finishing was performed on a 0 mm wire rod guide roll. No trouble of boundary crack occurred during manufacturing, and it could be used smoothly.

【0030】[0030]

【表5】 [Table 5]

【0031】(実施例3)第1層の粉末については、表
6に示す粉末の化学成分組成のものを使用した。また、
第2層の粉末は、チタン炭化物を準備し、表6中の粉末
に体積比率で10%混合し混合粉末を作成した。その後
SUJ2製のボールを用いたメカニカルアロイング法に
よって40時間の合金化作業を行い複合粉末を製造し
た。 一方、充填容器は、図7(a)に示すような内径
387mm、高さ263mmで1個のカプセルから図7
(b)の製品が2個採取出来る。充填はカプセル中央に
215mmφの低合金炭素鋼母材をセットし、図5の要
領で、母材の外周に約3〜5mm厚さに第1層用粉末2
をその周囲に表6の粉末にTiCを10%混合した第2
層用粉末3を充填し、3層構造充填材を作成した。以上
の充填の後、真空脱気後、1140℃、147MPa、
3時間のHIP処理を行い、軟化焼鈍後粗加工を施し
た。焼入れは、1140℃×0.5時間で常温まで冷却
した後、550℃×3.5時間で3回焼き戻した後図6
(b)に示すように直径330mm、長さ95mmの大
径の線材圧延用中間ワークロールに仕上げ加工を行っ
た。製造中に境界クラックのトラブルの発生はなく順調
に使用できた。
(Example 3) As the powder of the first layer, the powder having the chemical composition shown in Table 6 was used. Also,
For the powder of the second layer, titanium carbide was prepared and mixed with the powder in Table 6 at a volume ratio of 10% to prepare a mixed powder. Thereafter, an alloying operation was performed for 40 hours by a mechanical alloying method using SUJ2 balls to produce a composite powder. On the other hand, the filling container has an inner diameter of 387 mm and a height of 263 mm as shown in FIG.
Two products of (b) can be collected. Filling is performed by setting a low alloy carbon steel base material of 215 mmφ in the center of the capsule and, as shown in FIG.
And a second mixture of 10% TiC and the powder shown in Table 6
The layer powder 3 was filled to prepare a three-layer filler. After the above filling, after vacuum deaeration, 1140 ° C, 147 MPa,
HIP treatment was performed for 3 hours, and roughening was performed after softening annealing. After quenching, cooling to normal temperature at 1140 ° C. × 0.5 hour, and tempering three times at 550 ° C. × 3.5 hours, FIG.
As shown in (b), a large diameter intermediate work roll for rolling a wire having a diameter of 330 mm and a length of 95 mm was finished. There was no trouble of boundary cracking during production, and it could be used smoothly.

【0032】[0032]

【表6】 [Table 6]

【0033】(実施例4)第1層の粉末はついては、表
7に示す溶射用粉末の化学成分組成のものを使用した。
また、第2層の粉末は、チタン炭化物を準備し、表7中
のMAハイスサーメット用ハイスに体積比率で10%混
合し混合粉末を作成した。その後SUJ2製のボールを
用いたメカニカルアロイング法によって72時間の合金
化作業を行い複合粉末を製造した。一方、充填容器は、
図8(a)に示すような内径80mm、高さ120mm
で1個のカプセルから図8(b)の製品が2個採取出来
る。充填はカプセル中央に45mmφのカリバー形状の
低合金炭素鋼母材の表面に第1層用粉末を約0.5mm
厚さに減圧プラズマ法による溶射した材料をセットし、
その外周に第2層用粉末にTiCを20%混合した第2
層粉末(MAハイスサーメット複合粉末)を充填し、3
層構造充填材を作成した。
(Example 4) As the powder of the first layer, the one having the chemical composition of the powder for thermal spraying shown in Table 7 was used.
Further, as the powder of the second layer, titanium carbide was prepared and mixed with a high speed steel for MA high speed cermet in Table 7 at a volume ratio of 10% to prepare a mixed powder. Thereafter, alloying was performed for 72 hours by a mechanical alloying method using SUJ2 balls to produce a composite powder. On the other hand, filling containers
80 mm in inner diameter and 120 mm in height as shown in FIG.
Thus, two products shown in FIG. 8B can be collected from one capsule. Filling is about 0.5 mm for the first layer powder on the surface of a low alloy carbon steel base material of 45 mmφ caliber shape in the center of the capsule.
Set the material sprayed by the reduced pressure plasma method to the thickness,
A second layer of 20% TiC mixed with the powder for the second layer on the outer periphery thereof
Layer powder (MA high speed cermet composite powder)
A layered packing material was prepared.

【0034】[0034]

【表7】 [Table 7]

【0035】以上の充填の後、真空脱気後、1140
℃、147MPa、3時間のHIP処理を行い、軟化焼
鈍後粗加工を施した。焼入れは、1140℃×0.5時
間で常温まで冷却した後、550℃×3.5時間で3回
焼き戻した後図8(b)に示すように直径60mm、長
さ40mmの線材圧延用ガイドロールに仕上げ加工を行
った。製造中に境界クラックのトラブルの発生はなく製
造し、使用成績はクラックなどのトラブルはなく、表8
に示すように、従来の工具系ロールに比べ10倍以上の
耐久性を示した。本実施例で示した母材への溶射方法や
肉盛り溶接方法は、例えば母材の形状が深いカリバーを
有するため前記実施例のように隔壁円筒を使用したセラ
ミック粉の充填方法では実施が困難な場合に有効な方法
である。また、この場合、母材への溶射および肉盛り時
の厚みは0.1〜1.0mmが好ましい。0.1mm未
満では、その効果がなく、1.0mmを超えると経済的
でない。
After the above filling, after vacuum degassing, 1140
C., 147 MPa, HIP treatment for 3 hours, and roughening was performed after softening annealing. The quenching is performed by cooling to room temperature at 1140 ° C. × 0.5 hours, and then tempering three times at 550 ° C. × 3.5 hours, and then for rolling a wire rod having a diameter of 60 mm and a length of 40 mm as shown in FIG. Finish processing was performed on the guide roll. Table 8 shows that there were no problems such as cracks during production.
As shown in Fig. 5, the durability was 10 times or more that of the conventional tool roll. The method of spraying or overlay welding on the base material shown in the present embodiment is difficult to implement by the method of filling ceramic powder using a partition cylinder as in the above-described embodiment because the base material has a deep caliber, for example. This is an effective method in such cases. In this case, the thickness at the time of thermal spraying and overlaying on the base material is preferably 0.1 to 1.0 mm. If it is less than 0.1 mm, the effect is not obtained, and if it exceeds 1.0 mm, it is not economical.

【0036】[0036]

【表8】 [Table 8]

【0037】以上述べた実施例において、本発明の適用
例を線材圧延用のガイドロール、中間ワークロールとし
たが、適用例はこれらに限られるものではなく、例えば
その他の熱間および冷間圧延用ロール、工具類等に幅広
く適用可能であり、また、実施例において、母材の材質
は炭素鋼の中から低合金炭素鋼(SCM440)を使用
したが、本発明材における母材の材質としては、これに
限定されることなく炭素鋼であればよく、例えば機械構
造用炭素鋼、軸受鋼等幅広く適用できる。この場合母材
の選定に当たっては複合構造材として要求される強靱
性、硬度等より適宜選定すればよい。
In the embodiments described above, the application examples of the present invention are guide rolls and intermediate work rolls for wire rod rolling. However, the application examples are not limited to these. For example, other hot and cold rolling may be used. It can be widely applied to rolls, tools and the like, and in the examples, the material of the base material is a low alloy carbon steel (SCM440) from carbon steel. Is not limited to this, and may be any carbon steel, and can be widely applied, for example, carbon steel for machine structures, bearing steel, and the like. In this case, when selecting the base material, it may be appropriately selected from the toughness, hardness and the like required for the composite structural material.

【0038】[0038]

【発明の効果】以上述べたように、本発明により従来の
技術が有する耐熱耐摩耗性を有すると共に母材との接着
強度の優れた、強度信頼性の高い、しかも極めて実用的
な適用範囲の広い耐熱耐摩耗性複合材料を提供すること
が出来る優れた効果を奏するものである。
As described above, according to the present invention, the heat-resistant and abrasion-resistant properties of the prior art, the excellent adhesion strength to the base material, the high strength reliability, and the extremely practical range of application can be obtained. This is an excellent effect that can provide a wide heat- and wear-resistant composite material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】境界強度測定試験片作製用カプセル構造を示す
図、
FIG. 1 is a diagram showing a capsule structure for producing a boundary strength measurement test piece,

【図2】引張り試験片の境界部破断状況を示す図、FIG. 2 is a diagram showing the state of fracture at the boundary of a tensile test piece;

【図3】ロール断面の半径方向の残留応力分布を示す
図、
FIG. 3 is a diagram showing a residual stress distribution in a radial direction of a roll cross section;

【図4】カプセルおよび粉末充填状況を示す図、FIG. 4 is a diagram showing a capsule and a powder filling state;

【図5】本発明に係る3層構造カプセルの充填工程を示
す図、
FIG. 5 is a view showing a filling step of a three-layered capsule according to the present invention;

【図6】線材圧延用ガイドロール用3層構造カプセルと
その製品を示す図、
FIG. 6 is a diagram showing a three-layer structure capsule for a guide roll for wire rod rolling and its product,

【図7】線材圧延用中間ワークロール用3層構造カプセ
ルとその製品を示す図、
FIG. 7 is a view showing a three-layer structure capsule for an intermediate work roll for wire rod rolling and a product thereof;

【図8】母材をカリバー形状にした線材圧延用ガイドロ
ール用3層構造カプセルとその製品を示す図である。
FIG. 8 is a view showing a three-layered capsule for a guide roll for wire rolling in which a base material is formed into a caliber and a product thereof.

【符号の説明】[Explanation of symbols]

1 カプセル 2 第1層用粉末 3 第2層用粉末 4 母材 5 隔壁円筒 6 引上げネジ 7 台座冶具 8 上カプセル DESCRIPTION OF SYMBOLS 1 Capsule 2 Powder for 1st layer 3 Powder for 2nd layer 4 Base material 5 Partition cylinder 6 Pulling screw 7 Pedestal jig 8 Upper capsule

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/38 C22C 38/38 38/58 38/58 C23C 4/06 C23C 4/06 // C22C 33/02 C22C 33/02 B (72)発明者 綾垣 昌俊 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社エンジニアリング事業本 部内 Fターム(参考) 4E016 CA06 CA08 CA09 CA10 DA03 EA08 EA16 EA22 4K018 AA34 AA36 AB01 AB02 AB03 AB04 AC01 BA11 BA16 BC16 EA11 JA27 KA17 4K031 AA02 AB02 AB08 CB11 CB22 CB23 CB24 CB26 CB28 DA04 FA07 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C22C 38/38 C22C 38/38 38/58 38/58 C23C 4/06 C23C 4/06 // C22C 33/02 C22C 33 / 02 B (72) Inventor Masatoshi Ayagaki 46-59 Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka F-term in the Engineering Business Unit of Nippon Steel Corporation 4E016 CA06 CA08 CA09 CA10 DA03 EA08 EA16 EA22 4K018 AA34 AA36 AB01 AB02 AB03 AB04 AC01 BA11 BA16 BC16 EA11 JA27 KA17 4K031 AA02 AB02 AB08 CB11 CB22 CB23 CB24 CB26 CB28 DA04 FA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭素鋼からなる母材の外側に、質量%
で、 C:0.9〜2.5%、 Si:0.15〜1.5%、 Mn:0.1〜2.0%、 Cr:3.5〜12.0%、 Mo:3.0〜10.0%、 V:0.8〜8.0%、 W:1.0〜10.0% 残部Feおよび不可避的不純物からなる成分組成の粉末
を第1のHIP処理層と成し、該第1のHIP処理層の
外層に、金属の炭化物、窒化物、酸化物、ホウ化物の内
の1種または2種以上からなる粉末を合計体積比率で5
〜30%、残部を上記成分からなる粉末との混合粉末か
らなる第2のHIP処理層を形成したことを特徴とする
耐熱耐摩耗複合構造部材。
1. The method according to claim 1, wherein a mass%
C: 0.9 to 2.5%, Si: 0.15 to 1.5%, Mn: 0.1 to 2.0%, Cr: 3.5 to 12.0%, Mo: 3. 0 to 10.0%, V: 0.8 to 8.0%, W: 1.0 to 10.0% A powder having a component composition comprising the balance of Fe and unavoidable impurities is used as a first HIP treatment layer. In the outer layer of the first HIP treatment layer, a powder composed of one or more of metal carbides, nitrides, oxides, and borides is added in a total volume ratio of 5%.
A heat- and abrasion-resistant composite structural member, wherein a second HIP-treated layer made of a mixed powder with a powder containing the above components is formed in an amount of up to 30%.
【請求項2】 請求項1記載の成分に、さらに Ni:0.5〜3.0%、 Nb:0.8〜8.0%、 Co:1.0〜12.0%、 の内の1種または2種以上含有せしめたことを特徴とす
る耐熱耐摩耗複合構造部材。
2. The composition according to claim 1, further comprising: Ni: 0.5 to 3.0%, Nb: 0.8 to 8.0%, Co: 1.0 to 12.0%. A heat- and wear-resistant composite structural member characterized by containing one or more kinds.
【請求項3】 請求項1または2記載の第1の処理層を
溶射または肉盛り溶接にて形成したことを特徴とする耐
熱耐摩耗複合構造部材。
3. A heat- and wear-resistant composite structural member, wherein the first treatment layer according to claim 1 or 2 is formed by thermal spraying or overlay welding.
【請求項4】 請求項1記載の第2のHIP処理層用の
混合粉末をメカニカルアロイング法により、予め合金化
した複合粉末を形成する第1の工程と、その後、炭素鋼
からなる母材の外側に、請求項1または2記載の粉末を
第1層用として充填し、第1層用粉末の外部に、上記予
め作成した第2のHIP処理用の複合粉末を充填する第
2の工程と、その後、温度1000〜1200℃、圧力
98〜196MPa、2〜5時間のHIP処理を行い3
層構造とする第3の工程と、該構造材を硬化熱処理する
第4の工程からなることを特徴とする耐熱耐摩耗複合構
造部材の製造方法。
4. A first step of forming a composite powder in which the mixed powder for the second HIP processing layer according to claim 1 is alloyed in advance by a mechanical alloying method, and thereafter, a base material made of carbon steel 3. A second step of filling the powder according to claim 1 or 2 for the first layer outside the powder, and filling the composite powder for the second HIP processing prepared in advance outside the powder for the first layer. After that, a HIP treatment is performed at a temperature of 1000 to 1200 ° C., a pressure of 98 to 196 MPa, and 2 to 5 hours.
A method for producing a heat- and wear-resistant composite structural member, comprising: a third step of forming a layered structure; and a fourth step of curing and heat-treating the structural material.
【請求項5】 請求項1記載の第2のHIP処理層用の
混合粉末をメカニカルアロイング法により、予め合金化
した複合粉末を形成する第1の工程と、その後、炭素鋼
からなる母材の外側に、請求項1または2記載の粉末を
溶射または肉盛り溶接にて第1層を形成し、該第1層の
外部に、上記予め作成した第2のHIP処理用の複合粉
末を充填する第2の工程と、その後、温度1000〜1
200℃、圧力98〜196MPa、2〜5時間のHI
P処理を行い3層構造とする第3の工程と、該構造材を
硬化熱処理する第4の工程からなることを特徴とする耐
熱耐摩耗複合構造部材の製造方法。
5. A first step of forming a pre-alloyed composite powder of the mixed powder for the second HIP processing layer according to claim 1 by a mechanical alloying method, and thereafter, a base material made of carbon steel A first layer is formed on the outside of the first layer by thermal spraying or overlay welding of the powder according to claim 1 or 2, and the outside of the first layer is filled with the previously prepared composite powder for the second HIP processing. A second step, followed by a temperature of 1000 to 1
200 ° C., pressure 98-196 MPa, HI for 2-5 hours
A method for producing a heat- and wear-resistant composite structural member, comprising: a third step of performing a P treatment to form a three-layer structure; and a fourth step of curing and heat-treating the structural material.
JP2000060716A 2000-03-06 2000-03-06 Heat-resistant and wear-resistant composite structural member and manufacturing method thereof Expired - Fee Related JP4346780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060716A JP4346780B2 (en) 2000-03-06 2000-03-06 Heat-resistant and wear-resistant composite structural member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060716A JP4346780B2 (en) 2000-03-06 2000-03-06 Heat-resistant and wear-resistant composite structural member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001247905A true JP2001247905A (en) 2001-09-14
JP4346780B2 JP4346780B2 (en) 2009-10-21

Family

ID=18580977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060716A Expired - Fee Related JP4346780B2 (en) 2000-03-06 2000-03-06 Heat-resistant and wear-resistant composite structural member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4346780B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411739B (en) * 2002-12-09 2004-05-25 American Maplan Corp Tool or machine component, in particular an extruder barrel, comprises a steel supporting part and a wear resistant layer produced by hot isotactic compression of powders in binder metal
KR100608098B1 (en) 2005-05-27 2006-08-03 (주)성진씨앤씨 Hot wear-resistant materials and method of manufacturing the same and roller crusher having the same
KR100643170B1 (en) 2005-01-20 2006-11-10 주식회사 경도공업 A composition material for guide roller
CN101925969A (en) * 2008-01-22 2010-12-22 阿塞洛米塔尔不锈钢镍合金公司 The Fe-Co alloy that is used for high dynamic electromagnetic actuators
JP2012522896A (en) * 2009-04-07 2012-09-27 フェデラル−モーグル ブルシェイド ゲーエムベーハー Sliding element with adjustable characteristics
CN103056173A (en) * 2011-10-21 2013-04-24 襄阳博亚精工装备股份有限公司 Turning roll with spongy chromium plating technique to achieve roll face texturing and manufacturing method thereof
WO2019176279A1 (en) * 2018-03-14 2019-09-19 日本製鉄株式会社 Piercer plug
CN110919005A (en) * 2019-12-04 2020-03-27 湖北文理学院 Pin shaft material with multilayer composite structure and preparation method thereof
JP2020138219A (en) * 2019-02-28 2020-09-03 山陽特殊製鋼株式会社 Metallic member
CN114378260A (en) * 2022-01-17 2022-04-22 新密蓝火激光科技有限公司 Dry/water quenching lining plate and preparation method and application thereof
CN115070044A (en) * 2021-03-10 2022-09-20 中国航发商用航空发动机有限责任公司 GH4169 and TA19 same-material and different-material multistage rotor assembly and preparation method thereof
CN115323246A (en) * 2022-08-19 2022-11-11 合肥工业大学 Mo-containing double-layer iron-based antifriction material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108500069B (en) * 2018-05-14 2020-06-16 合肥东方节能科技股份有限公司 Wear-resistant alloy guide roller

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411739B (en) * 2002-12-09 2004-05-25 American Maplan Corp Tool or machine component, in particular an extruder barrel, comprises a steel supporting part and a wear resistant layer produced by hot isotactic compression of powders in binder metal
KR100643170B1 (en) 2005-01-20 2006-11-10 주식회사 경도공업 A composition material for guide roller
KR100608098B1 (en) 2005-05-27 2006-08-03 (주)성진씨앤씨 Hot wear-resistant materials and method of manufacturing the same and roller crusher having the same
CN101925969A (en) * 2008-01-22 2010-12-22 阿塞洛米塔尔不锈钢镍合金公司 The Fe-Co alloy that is used for high dynamic electromagnetic actuators
JP2012522896A (en) * 2009-04-07 2012-09-27 フェデラル−モーグル ブルシェイド ゲーエムベーハー Sliding element with adjustable characteristics
CN103056173A (en) * 2011-10-21 2013-04-24 襄阳博亚精工装备股份有限公司 Turning roll with spongy chromium plating technique to achieve roll face texturing and manufacturing method thereof
WO2019176279A1 (en) * 2018-03-14 2019-09-19 日本製鉄株式会社 Piercer plug
JPWO2019176279A1 (en) * 2018-03-14 2021-01-07 日本製鉄株式会社 Piercer plug
JP2020138219A (en) * 2019-02-28 2020-09-03 山陽特殊製鋼株式会社 Metallic member
JP7274304B2 (en) 2019-02-28 2023-05-16 山陽特殊製鋼株式会社 metal member
CN110919005A (en) * 2019-12-04 2020-03-27 湖北文理学院 Pin shaft material with multilayer composite structure and preparation method thereof
CN110919005B (en) * 2019-12-04 2022-06-28 湖北文理学院 Pin shaft material with multilayer composite structure and preparation method thereof
CN115070044A (en) * 2021-03-10 2022-09-20 中国航发商用航空发动机有限责任公司 GH4169 and TA19 same-material and different-material multistage rotor assembly and preparation method thereof
CN115070044B (en) * 2021-03-10 2024-04-19 中国航发商用航空发动机有限责任公司 GH4169 and TA19 homogeneous and heterogeneous material multistage rotor assembly and preparation method thereof
CN114378260A (en) * 2022-01-17 2022-04-22 新密蓝火激光科技有限公司 Dry/water quenching lining plate and preparation method and application thereof
CN114378260B (en) * 2022-01-17 2023-09-26 新密蓝火激光科技有限公司 Dry/water quenching Jiao Chenban and preparation method and application thereof
CN115323246A (en) * 2022-08-19 2022-11-11 合肥工业大学 Mo-containing double-layer iron-based antifriction material and preparation method thereof

Also Published As

Publication number Publication date
JP4346780B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
US9689061B2 (en) Tool steel alloy with high thermal conductivity
US9410230B2 (en) Powder-metallurgically produced, wear-resistant material
EP2252717B1 (en) Steel, process for the manufacture of a steel blank and process for the manufacture of a component of the steel
JP2001247905A (en) Heat resistant and wear resistant composite structural member and its producing method
EP2776204B1 (en) Friction stir welding tool made of cemented tungsten carbid with nickel and with a al2o3 surface coating
KR20060045772A (en) Tool for hot working
EP2758559B1 (en) A roll for hot rolling
JP3743793B2 (en) Composite roll for hot rolling, method for producing the same, and hot rolling method using the same
US5403670A (en) Compound sleeve roll and method for producing same comprising chamfered axial ends
JP5121276B2 (en) High-speed steel alloy composite products
JP2857724B2 (en) High speed steel based sintered alloy
US20190185976A1 (en) Steel Material That is Produced via Powder Metallurgy, Method for Producing a Component from Such a Steel Material and Component Produced from the Steel Material
JPH07179997A (en) High speed steel type powder alloy
JP2006181628A (en) Method for rolling thick steel plate and method for producing thick steel plate
JPH07166300A (en) High speed steel type powder alloy
JPH10291008A (en) Tool for hot making tube and its manufacture
JP5121275B2 (en) High toughness high speed steel sintered alloy
JP2007000892A (en) Build-up welding material for hot-forging die and hot-forging die using the welding material
JPS63297510A (en) Composite member having excellent resistance to wear, seizure and surface roughening and its production
JPH10280101A (en) Heat resisting and wear resisting member and its production
JPS60158906A (en) Composite roll for rolling and its manufacture
JPH01252704A (en) Complex member and its manufacture
JPH04221044A (en) High speed steel type sintered alloy
JPH105824A (en) Composite roll made of sintered hard alloy
CA3207645A1 (en) Method for manufacturing a tool steel as a support for pvd coatings and a tool steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees