JP2004314824A - Vessel having lateral bending absorption type bow - Google Patents

Vessel having lateral bending absorption type bow Download PDF

Info

Publication number
JP2004314824A
JP2004314824A JP2003112715A JP2003112715A JP2004314824A JP 2004314824 A JP2004314824 A JP 2004314824A JP 2003112715 A JP2003112715 A JP 2003112715A JP 2003112715 A JP2003112715 A JP 2003112715A JP 2004314824 A JP2004314824 A JP 2004314824A
Authority
JP
Japan
Prior art keywords
valve
bow
ship
collision
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003112715A
Other languages
Japanese (ja)
Other versions
JP3870265B2 (en
Inventor
Hisayoshi Endo
久芳 遠藤
Yasuhei Yamada
安平 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2003112715A priority Critical patent/JP3870265B2/en
Publication of JP2004314824A publication Critical patent/JP2004314824A/en
Application granted granted Critical
Publication of JP3870265B2 publication Critical patent/JP3870265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vessel having an absorption-type bow capable of expecting a considerable effect even by a comparatively simple construction. <P>SOLUTION: A wall thickness reduction part to reduce bending rigidity in the lateral direction of a valve is provided on an outer board at the root of the valve in a bulbous bow. The wall thickness reduction part is provided on the outer board side surface a part wherein bending moment by water pressure between a plurality of adjacent transverse rib members mounted at certain distances in the fore-and-aft line direction is almost zero. The damaged depth of the belly of an opposite vessel is reduced at the time of collision, and a leakage accident of a load is prevented by preventing the rupture of a hole. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、造波抵抗を減少させるための球状船首(バルバスバウ)を有する船舶に関する。特には、他の船と衝突した場合に相手方の船の損傷を極力低減でき、油流出等による海洋汚染事故の予防に貢献できる船舶に関する。
【0002】
【従来の技術】
従来、船舶の船首は他の船と衝突した場合の緩衝効果を想定した設計がなされていなかった。しかし最近、衝突された油タンカーからの貨油漏洩事故が後を絶たないことから、特に球状船首(バルバスバウ)を有する船舶において、緩衝効果を備えた船首の要請が高まっている。この一従来例として、例えば特開平8−164887号公報(特許文献1)を挙げることができる。
【0003】
図4(A)は、特許文献1に開示された衝突エネルギー吸収型球状船首要部の縦断面図であり、図4(B)は図4(A)のA―A矢視の断面図である。また、図4(C)はその衝突時のバルブ圧潰状態を示す水平断面図である。
図4(A)、(B)には、船首前端部において水密横置隔壁12よりも前方へ突出したバルブ11が示されており、バルブ11はバルブ先端面を形成されるように配置された水密性の先端壁部材13と、同先端壁部材13の周縁部を水密横置隔壁12の近傍の船体外板14に連結する非耐圧殻としての衝突エネルギー吸収用周壁部15とを備えている。
【0004】
この衝突エネルギー吸収型球状船首においては、図4(C)からわかるように、船首バルブが他船の船腹に衝突するような事故を起こした場合に、同バルブの非耐圧殻としての周壁部が衝突エネルギーを吸収しながらつぶれることで、他船に破口を生じさせるのを極力抑制しようとしている。
【0005】
【特許文献1】
特開平8−164887号公報(図1から図3)
【0006】
【発明が解決しようとする課題】
上記特許文献1は、緩衝型船首の1つの有力な提案と考えられる。
本発明は、比較的簡単な工作によっても相当な効果を期待できる緩衝型船首を有する船舶を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明の横曲げ緩衝型船首を有する船舶は、球状船首(バルバスバウ)を有する船舶であって、該バルバスバウにおける球状突起(バルブ)の根本部の外板に、該バルブの横方向の曲げ剛性を低下させるための肉厚減少部が設けられていることを特徴としている。
【0008】
本発明の横曲げ緩衝型船首を有する船舶では、他の船と衝突した場合でも、自船船首部が衝突の反力で折れ曲がることにより、相手方の船腹に本船の船首部(バルブ)がメリ込むことを防止でき、相手側の船体の損傷を極力抑えることができる。
【0009】
なお、横方向の曲げ剛性とは、船の首尾線に対して左右方向の曲げ剛性のことである。また、バルブの根本部とは、バルブの船体本体への取り付け部及びそのやや前の部分を表している。
横方向の曲げ剛性低下の割合は一例として30%〜60%マイナスが考えられる。肉厚減少部の例として、局部的に薄くする、また、溝、切欠きとすることなどができる。
なお、バルブの上下方向の曲げ剛性は極力低下させないことが好ましい。
【0010】
また、本発明の横曲げ緩衝型船首を有する船舶は、前記バルブの外板の内面に横肋骨部材が首尾線方向にある寸法を隔てて複数枚取り付けられている場合に、
前記肉厚減少部を、隣り合う前記横肋骨部材間において、横肋骨部材設置断面から肋骨部材間隔の0.18〜0.25断面位置における外板側面部に設けることが好ましい。
【0011】
この場合、肉厚減少部の位置を工夫することによって、水圧等の外力に対して従来と同等の強度を保持しながら、衝突した場合には折れ曲がり易いという緩衝型船首として望ましい性能が確保できる。
【0012】
【発明の実施の形態】
以下、図面を参照しつつより詳しく説明する。
図1、図2は本発明の1つの実施の形態に係る横曲げ緩衝型船首のバルバスバウの部分を示す図である。
図1(A)は、その側面図であり、図1(B)は、図1(A)のB−Bの正面断面図であり、 図1(C)は、図1(A)のC−Cの水平断面図である。図1(C)には、バルブ1に対して直角から少しずれた衝突角度fで衝突する他船の船腹5をも示している。
図2は他船の船腹(図示されず)に衝突した場合の自船の船首(バルブ)が変形する状況を示す斜視図である。
図3(A)はバルブ根本の肉厚減少部を拡大して示す断面図である。
【0013】
図1(A)、(C)には、船首底部から前方に突き出た造波抵抗減少用のバルブ1が示されている。バルブ1は首尾線垂直断面が楕円形で、前端に向けて突出したドーム状のものである。バルブ1内には、バルブ1の本体を形成するバルブ外板4を内側から補強するため、リング状の横肋骨部材3a〜3dが取り付けられている。この横肋骨部材3a〜3dは船体の前後方向にほぼ等間隔のピッチLで配設されている。
【0014】
バルブ1の根本部に最も近い横肋骨部材3aと横肋骨部材3bとの間には、バルブ1の横方向の曲げ剛性を低下させるための溝状の肉厚減少部2が形成されている。
この肉厚減少部2は、図1からわかるように、バルブ外板4の両側面において横肋骨部材3a、3bに平行に沿うように、帯状の溝をつけたものである。同肉厚減少部2は、バルブ1のB−Bの正面断面(図1(B)参照)の楕円形の中心振り分けで、左右それぞれ配設されている。
なお、肉厚減少部2は、バルブ1の上部(天井)および下部(底)には設けられていない。これは、バルブ1の縦方向(上下方向)の曲げ剛性は低下させたくないからである
【0015】
以下に肉厚減少部2の数値例を説明する。肉厚減少部2は横肋骨部材3aからピッチLの0.21倍の間隔を置いた場所に位置し、片側の長さは楕円形の半周長の約3分の2である。また、図3(A)に示す通り、肉厚減少部2の溝はバルブ外板4の内側にあり、断面形状はU字形状であり溝幅は10mmで溝の深さはバルブ外板4の板厚の2分の1である。従ってこの場合の肉厚減少量は50%となる。
図1において、バルブ1の全長を2300mm、バルブ外板4の板厚を9mm、横肋骨部材3aと3bのピッチLを550mm、バルブ1のB−B矢視断面(肉厚減少部2のある断面、図1(B)参照)の楕円形状の長辺を3200mm、短辺を1250mmとした時の肉厚減少前後の断面係数は
(1) 減肉しなかった場合: Z = 2.17×10cm
(2) 減肉した場合 : Z = 1.32×10cm
となり、(1)と(2)の割合から横方向の曲げ剛性すなわち、水平方向の曲げモーメントに対する抵抗力が61%に減少したことになる。このことが他船との衝突時に、自船船首部(バルブ1)が衝突反力P(図1(C)参照)で折れ曲がり易くなるという作用を生み出している。
【0016】
図2は、以上の実施例でバルブ1が他船の船腹5に70度の衝突角度fで衝突した場合におけるバルブ1の変形状態のシミュレーション結果である。図2(B)にあるように、バルブ1が肉厚減少部を基点として折れ曲がっており、その分衝突した相手方の船へのバルブのメリ込みは少なくなることが期待できる。
なお、折れ曲がったバルブ1が有る程度の大きさを有していれば、衝突時に相手方の船腹と大きな接触面積をもって接することになる。その場合、損傷面積は大きくなったとしても単位面積あたりの衝突反力は小さく抑えられるため、相手方の船腹の損傷深さを小さくすると同時に、破孔を防ぐことができる。
【0017】
図3(A)は、肉厚減少部2のバルブ外板4に加わる外力(等分布水圧6、後述)を、船体の前後方向に模式的に示したものである。
航行時に加わる外力の中で支配的となるのは、衝撃水圧及び静的水圧である。これらの水圧は局部的に見れば等分布荷重(等分布水圧6)に近いと考えることができる。
図3(A)に示すように横肋骨部材3で支持されているバルブ外板4に等分布水圧6が作用した場合には、バルブ外板4に発生する曲げモーメントの分布は、図3(B)のようになり、曲げモーメントの大きさが横肋骨部材3のスパンLの中でほぼ0になる位置がある。この断面位置aは、横肋骨部材3の位置から0.21L近辺(0.18〜0.25)の距離にある。この断面位置aでは上記外力(等分布水圧6)に起因して発生する応力が極めて小さくなることから、この断面位置aを肉厚減少部2としても、バルブ1の耐水圧強度に影響があまりないので好ましい。
【0018】
また、図1(B)に示すように、肉厚減少部2を楕円形の中心振り分けに配設し、肉厚減少部2の片側の長さを楕円形の半周長の3分の2とすることにより、バルブ1の縦方向(上下方向)の曲げ剛性を大幅に下げることなく、垂直方向の波浪衝撃力等に対するバルブ1の上下方向の強度が確保できる。
【0019】
以上の作用により、本発明の実施の形態では、バルブ外板4に作用する衝撃水圧及び静的水圧等の外力に対しての強度と垂直方向の波浪衝撃力等に対するバルブ1の縦方向(上下方向)の強度を確保しつつ、衝突時における相手方の船腹の損傷深さを小さくすると同時に、破孔を防ぐことができる。そして相手方の船が油タンカー等の危険物運搬船であった場合には、積荷の漏洩事故を防止するという利点を備える横曲げ緩衝型船首を有する船舶を提供できる。
【0020】
【発明の効果】
以上の説明で明らかなように、本発明によれば、衝突時に自船船首部が衝突反力で折れ曲がることにより相手方の船腹の損傷の深さを小さくすると同時に、破孔を防ぎ、積荷の漏洩事故を防止するという利点を備える船舶を提供できる。
【図面の簡単な説明】
【図1】本発明の1つの実施の形態に係る横曲げ緩衝型船首のバルバスバウの部分を示す図で
(A) 側面図である。
(B)(A)のB−Bの正面断面図である。
(C)(A)のC−Cの水平断面図である。
【図2】図1に示すバルバスバウが他船の船腹(図示されず)に衝突した場合の自船の船首(バルブ)が変形する状況を示す斜視図で
(A) 衝突前の様子を示している。
(B) 衝突した時の様子を示している。
【図3】図1に示す肉厚減少部の拡大図である。
(A) 肉厚減少部が等分布水圧を受けている状況を示している。
(B)(A)に対応した、等分布水圧を受けているバルブ外板に発生する曲げモーメントの分布図である。
【図4】特許文献1に開示された衝突エネルギー吸収型球状船首要部を示していて、
(A) 船首要部の縦断面図である。
(B)(A)のA−A矢視断面図である。
(C)(A)のバルバス・バウ構造の衝突時におけるバルブ圧潰状態を(B)に対応させて示す水平断面図である。
【符号の説明】
1 バルブ a 断面位置
2 肉厚減少部 f 衝突角度
3、3a,3b,3c,3d 横肋骨部材 L ピッチ
4 バルブ外板 P 衝突反力
5 他船の船腹
6 等分布水圧
11 バルブ
12 水密横置隔壁
13 先端壁部材
14 船体外板
15 周壁部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ship having a spherical bow (Barbasbau) for reducing wave making resistance. In particular, the present invention relates to a ship capable of minimizing damage to a partner ship when colliding with another ship and contributing to prevention of a marine pollution accident due to an oil spill or the like.
[0002]
[Prior art]
Heretofore, the bow of a ship has not been designed to assume a buffering effect in the event of a collision with another ship. However, in recent years, there has been an ever-increasing number of accidents involving leakage of freight oil from oil tankers that have collided, and there has been an increasing demand for a bow having a buffering effect, especially for ships having a spherical bow (Barbasbau). As one conventional example, for example, JP-A-8-164887 (Patent Document 1) can be cited.
[0003]
FIG. 4A is a longitudinal sectional view of a main portion of a collision energy absorbing type spherical bow disclosed in Patent Document 1, and FIG. 4B is a sectional view taken along line AA of FIG. 4A. is there. FIG. 4C is a horizontal cross-sectional view showing the crushed state of the valve at the time of the collision.
FIGS. 4A and 4B show a valve 11 projecting forward from the watertight horizontal partition 12 at the front end of the bow, and the valve 11 is arranged so as to form a valve tip end surface. A watertight tip wall member 13 and a collision energy absorbing peripheral wall portion 15 as a non-pressure-resistant shell that connects a peripheral edge of the tip wall member 13 to a hull outer plate 14 near the watertight horizontal partition wall 12 are provided. .
[0004]
In this collision energy absorbing spherical bow, as can be seen from FIG. 4 (C), when an accident occurs in which the bow valve collides with the flank of another ship, the peripheral wall as a non-pressure-resistant shell of the same valve is formed. By absorbing the energy of the collision and collapsing, it is trying to minimize the occurrence of a breach in another ship.
[0005]
[Patent Document 1]
JP-A-8-164887 (FIGS. 1 to 3)
[0006]
[Problems to be solved by the invention]
Patent Document 1 is considered to be one of the leading proposals of the shock-absorbing bow.
SUMMARY OF THE INVENTION An object of the present invention is to provide a ship having a shock-absorbing bow that can be expected to have a considerable effect even with relatively simple work.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a ship having a lateral bending shock-type bow according to the present invention is a ship having a spherical bow (Barbas bow), wherein the bulb is provided on an outer plate at a root portion of a spherical projection (valve) in the Balbas bow. Is characterized in that a reduced thickness portion for reducing the lateral bending rigidity is provided.
[0008]
In a ship having a lateral bending shock-type bow according to the present invention, even when a ship collides with another ship, the bow of the own ship is bent by the reaction force of the collision, so that the bow (valve) of the ship fits into the belly of the other party. Can be prevented, and damage to the hull of the other party can be minimized.
[0009]
The lateral bending stiffness refers to the bending stiffness in the left-right direction with respect to the ship's tail line. Further, the root portion of the valve indicates a portion where the valve is attached to the hull body and a portion slightly before the portion.
As an example, the rate of decrease in the bending stiffness in the lateral direction may be 30% to 60% minus. Examples of the reduced thickness portion include a locally thinned portion, a groove, a notch, and the like.
It is preferable that the bending rigidity in the vertical direction of the valve is not reduced as much as possible.
[0010]
Further, in the case of a ship having a transverse bending shock-type bow of the present invention, when a plurality of transverse rib members are attached to the inner surface of the outer plate of the valve with a certain distance in the direction of the tail line,
It is preferable that the reduced thickness portion is provided between the adjacent horizontal rib members on a side surface portion of the outer plate at a position of 0.18 to 0.25 cross section of the rib member interval from the horizontal rib member installation cross section.
[0011]
In this case, by devising the position of the reduced thickness portion, it is possible to secure the desired performance as a shock-absorbing bow that can be easily bent in the event of a collision while maintaining the same strength against the external force such as water pressure as before.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, this will be described in more detail with reference to the drawings.
FIG. 1 and FIG. 2 are views showing a portion of a valbas bow of a transverse bending shock type bow according to one embodiment of the present invention.
1 (A) is a side view, FIG. 1 (B) is a front sectional view taken along line BB of FIG. 1 (A), and FIG. It is a horizontal sectional view of -C. FIG. 1C also shows a side wall 5 of another ship colliding with the valve 1 at a collision angle f slightly deviated from a right angle.
FIG. 2 is a perspective view showing a situation in which the bow (valve) of the own ship is deformed when it collides with the side (not shown) of another ship.
FIG. 3A is an enlarged cross-sectional view showing a reduced thickness portion at the root of the valve.
[0013]
FIGS. 1A and 1C show a valve 1 for reducing wave making resistance, which protrudes forward from the bow bottom. The bulb 1 has a dome shape protruding toward the front end and having an elliptical vertical cross section. Ring-shaped horizontal rib members 3a to 3d are mounted inside the valve 1 in order to reinforce the valve outer plate 4 forming the body of the valve 1 from the inside. The horizontal rib members 3a to 3d are arranged at substantially equal pitches L in the longitudinal direction of the hull.
[0014]
Between the horizontal rib member 3a and the horizontal rib member 3b closest to the root of the valve 1, a groove-shaped thickness reducing portion 2 for reducing the bending rigidity in the lateral direction of the valve 1 is formed.
As shown in FIG. 1, the reduced thickness portion 2 is provided with a band-shaped groove on both side surfaces of the valve outer plate 4 so as to be parallel to the horizontal rib members 3a and 3b. The reduced thickness portions 2 are disposed on the left and right sides in an elliptical center distribution in a front cross-section (see FIG. 1B) of BB of the valve 1.
In addition, the thickness reduction part 2 is not provided in the upper part (ceiling) and the lower part (bottom) of the valve 1. This is because the bending rigidity in the vertical direction (vertical direction) of the valve 1 is not desired to be reduced.
Hereinafter, a numerical example of the thickness reducing portion 2 will be described. The reduced thickness portion 2 is located at a distance of 0.21 times the pitch L from the horizontal rib member 3a, and the length of one side is about two thirds of the half circumference of the ellipse. Also, as shown in FIG. 3A, the groove of the reduced thickness portion 2 is located inside the valve outer plate 4, the cross-sectional shape is U-shaped, the groove width is 10 mm, and the groove depth is the valve outer plate 4. Is one half of the plate thickness. Therefore, the thickness reduction amount in this case is 50%.
In FIG. 1, the overall length of the valve 1 is 2300 mm, the thickness of the valve outer plate 4 is 9 mm, the pitch L between the transverse rib members 3 a and 3 b is 550 mm, (See FIG. 1 (B).) When the long side of the elliptical shape in FIG. 1 (B) is 3200 mm and the short side is 1250 mm, the section modulus before and after the thickness reduction is (1) When the wall thickness is not reduced: Z = 2.17 × 10 4 cm 3
(2) When the thickness is reduced: Z = 1.32 × 10 4 cm 3
From the ratio of (1) and (2), the bending rigidity in the lateral direction, that is, the resistance to the bending moment in the horizontal direction, has been reduced to 61%. This produces an effect that, at the time of a collision with another ship, the bow of the own ship (valve 1) is easily bent by a collision reaction force P (see FIG. 1C).
[0016]
FIG. 2 is a simulation result of the deformation state of the valve 1 when the valve 1 collides with the flank 5 of another ship at a collision angle f of 70 degrees in the above embodiment. As shown in FIG. 2 (B), the valve 1 is bent starting from the reduced thickness portion, and it can be expected that the valve is less likely to fit into the other ship that collided.
If the bent valve 1 has a certain size, the valve 1 comes into contact with the flank of the other party with a large contact area at the time of collision. In this case, even if the damage area is increased, the collision reaction force per unit area can be kept small, so that the damage depth of the flank of the other party can be reduced and the hole can be prevented.
[0017]
FIG. 3A schematically shows the external force (equally distributed water pressure 6, described later) applied to the valve outer plate 4 of the thickness reducing portion 2 in the longitudinal direction of the hull.
The dominant external forces applied during navigation are impact water pressure and static water pressure. It can be considered that these water pressures are close to an evenly distributed load (equally distributed water pressure 6) when viewed locally.
As shown in FIG. 3 (A), when the equal distribution water pressure 6 acts on the valve skin 4 supported by the lateral rib member 3, the distribution of the bending moment generated on the valve skin 4 is as shown in FIG. B), and there is a position where the magnitude of the bending moment becomes almost zero in the span L of the horizontal rib member 3. The cross-sectional position a is at a distance of around 0.21 L (0.18 to 0.25) from the position of the horizontal rib member 3. At this cross-sectional position a, the stress generated due to the external force (equally distributed hydraulic pressure 6) becomes extremely small. Therefore, even if this cross-sectional position a is used as the reduced thickness portion 2, the water pressure resistance of the valve 1 is not significantly affected. Not preferred.
[0018]
Further, as shown in FIG. 1B, the reduced thickness portion 2 is disposed at the center of the elliptical shape, and the length of one side of the reduced thickness portion 2 is set to two thirds of the half circumference of the elliptical shape. By doing so, the vertical strength of the valve 1 against vertical wave impact force or the like can be ensured without significantly lowering the bending rigidity in the vertical direction (vertical direction) of the valve 1.
[0019]
According to the above operation, in the embodiment of the present invention, the strength of the valve 1 against the external force such as shock water pressure and static water pressure acting on the valve outer plate 4 and the vertical direction (up and down Direction), the depth of damage to the flank of the opponent at the time of the collision can be reduced, and the hole can be prevented. When the counterpart ship is a dangerous goods carrier such as an oil tanker, a ship having a lateral bending shock-type bow having an advantage of preventing a cargo leakage accident can be provided.
[0020]
【The invention's effect】
As apparent from the above description, according to the present invention, at the time of a collision, the bow of the own ship is bent by the collision reaction force, thereby reducing the depth of damage to the flank of the opponent ship, and at the same time, preventing the hole and preventing the leakage of the cargo. A ship having an advantage of preventing an accident can be provided.
[Brief description of the drawings]
FIG. 1A is a side view showing a portion of a valbas bow of a transverse bending shock type bow according to an embodiment of the present invention, and FIG.
(B) It is a front sectional view of BB of (A).
(C) It is a horizontal sectional view of CC of (A).
FIG. 2 is a perspective view showing a situation in which a bow (valve) of the own ship is deformed when the balbass bow shown in FIG. 1 collides with a flank (not shown) of another ship, and (A) shows a state before the collision. I have.
(B) shows a state at the time of collision.
FIG. 3 is an enlarged view of a reduced thickness portion shown in FIG.
(A) The situation where the thickness-reduced portion is subjected to equal distribution water pressure is shown.
(B) It is a distribution map of the bending moment which arises in the valve skin which receives the equally distributed water pressure corresponding to (A).
FIG. 4 shows a main part of a collision energy absorbing type spherical bow disclosed in Patent Document 1,
(A) It is a longitudinal section of a bow main part.
(B) It is the sectional view on the AA arrow of (A).
(C) It is a horizontal cross-sectional view which shows the valve crush state at the time of the collision of the valbas-bow structure of (A) corresponding to (B).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve a Cross-sectional position 2 Thickness reduction part f Collision angle 3, 3a, 3b, 3c, 3d Lateral rib member L Pitch 4 Valve outer plate P Collision reaction force 5 Ship flank of another ship 6 Equally distributed water pressure 11 Valve 12 Watertight horizontal Partition wall 13 Tip wall member 14 Hull shell 15 Peripheral wall

Claims (2)

球状船首(バルバスバウ)を有する船舶であって、
該バルバスバウにおける球状突起(バルブ)の根本部の外板に、該バルブの横方向の曲げ剛性を低下させるための肉厚減少部が設けられていることを特徴とする横曲げ緩衝型船首を有する船舶。
A ship having a spherical bow (Barbasbau),
A lateral bending buffer type bow is provided in which a thinned portion for reducing the lateral bending rigidity of the bulb is provided on an outer plate at a root portion of a spherical projection (valve) in the balbus bow. Ship.
前記バルブ外板の内面に横肋骨部材が首尾線方向にある寸法を隔てて複数枚取り付けられている場合に、
前記肉厚減少部が、隣り合う前記横肋骨部材間において、横肋骨部材設置断面から肋骨部材間隔の0.18〜0.25断面位置における外板側面部に設けられていることを特徴とする請求項1記載の横曲げ緩衝型船首を有する船舶。
When a plurality of transverse rib members are attached to the inner surface of the valve outer plate with a certain distance in the direction of the line,
The thickness-reducing portion is provided on a side surface portion of the outer panel at a cross-sectional position of 0.18 to 0.25 of a rib member interval from a horizontal rib member installation cross section between the adjacent horizontal rib members. A ship having the side-bend buffer type bow according to claim 1.
JP2003112715A 2003-04-17 2003-04-17 Ship with lateral bending buffer type bow Expired - Lifetime JP3870265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112715A JP3870265B2 (en) 2003-04-17 2003-04-17 Ship with lateral bending buffer type bow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112715A JP3870265B2 (en) 2003-04-17 2003-04-17 Ship with lateral bending buffer type bow

Publications (2)

Publication Number Publication Date
JP2004314824A true JP2004314824A (en) 2004-11-11
JP3870265B2 JP3870265B2 (en) 2007-01-17

Family

ID=33472842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112715A Expired - Lifetime JP3870265B2 (en) 2003-04-17 2003-04-17 Ship with lateral bending buffer type bow

Country Status (1)

Country Link
JP (1) JP3870265B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2293975A1 (en) * 2008-05-22 2011-03-16 AB Volvo Penta Gear housing for an aquatic vessel, breakaway safety system for an aquatic vessel and aquatic vessel
CN102381437A (en) * 2010-08-30 2012-03-21 联合船舶设计发展中心 Side-bend energy absorbing buffer stem
CN103144739A (en) * 2013-03-11 2013-06-12 韩通(上海)新能源船舶设计研发有限公司 Manufacturing method of active separated bulbous bow
CN107792313A (en) * 2017-10-25 2018-03-13 德清海德游艇有限公司 A kind of Small yacht anticollision device, collision-prevention device
KR101940307B1 (en) * 2017-07-28 2019-01-18 대우조선해양 주식회사 Ship Having Short Bulbous Bow

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2293975A1 (en) * 2008-05-22 2011-03-16 AB Volvo Penta Gear housing for an aquatic vessel, breakaway safety system for an aquatic vessel and aquatic vessel
EP2293975A4 (en) * 2008-05-22 2013-01-16 Volvo Penta Ab Gear housing for an aquatic vessel, breakaway safety system for an aquatic vessel and aquatic vessel
US8579669B2 (en) 2008-05-22 2013-11-12 Ab Volvo Penta Gear housing for an aquatic vessel, breakaway safety system for an aquatic vessel and aquatic vessel
CN102381437A (en) * 2010-08-30 2012-03-21 联合船舶设计发展中心 Side-bend energy absorbing buffer stem
CN103144739A (en) * 2013-03-11 2013-06-12 韩通(上海)新能源船舶设计研发有限公司 Manufacturing method of active separated bulbous bow
WO2014139254A1 (en) * 2013-03-11 2014-09-18 韩通(上海)新能源船舶设计研发有限公司 Method for manufacturing actively separable bulbous bow
CN103144739B (en) * 2013-03-11 2015-08-19 韩通(上海)新能源船舶设计研发有限公司 The initiatively manufacture method of divergence type bulbous bow
KR101940307B1 (en) * 2017-07-28 2019-01-18 대우조선해양 주식회사 Ship Having Short Bulbous Bow
CN107792313A (en) * 2017-10-25 2018-03-13 德清海德游艇有限公司 A kind of Small yacht anticollision device, collision-prevention device

Also Published As

Publication number Publication date
JP3870265B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
US5542365A (en) Ship having a crushable, energy absorbing hull assembly
US8347803B2 (en) Roll suppression device for offshore structure
JP3899406B2 (en) Ship with lateral bending buffer type bow
JP2003104279A (en) Large transport ship
JP2004314824A (en) Vessel having lateral bending absorption type bow
WO2017033921A1 (en) Ship
JP2010064724A (en) Bow part shape of ship and designing method for the bow part shape
JP4119813B2 (en) Tank cover and ship
JP2007112330A (en) Double hull structure of ship engine room
KR0176274B1 (en) Double hull structure of oil carrier
CN209634695U (en) A kind of ship with beam
KR20140084492A (en) Tank for reducing rolling
US7207283B2 (en) Marine craft
TWI381977B (en) Side bend can be broken buffer type bow
KR20080093672A (en) Optimun design of bow structure for minimizing ship damage considering collision
KR101826682B1 (en) Anti-rolling tank with chamfers and a marine structure having the tank
JP4789484B2 (en) Bow valve and ship equipped with the same
CN212423373U (en) Composite board containing expanded rubber and anti-sinking ship
JP2006056471A (en) Bumper beam mounting structure
JP5103687B2 (en) Hull structure with step of increasing resistance in waves
WO2011037474A1 (en) Vessel
CN210364310U (en) Marine rubber fender
JP2011126510A (en) Wave-making resistance reducing device for ship
KR20160037257A (en) Bulwark structure for bow of ship
JP2002114188A (en) Reinforcement structure of vertical waveform bulkhead

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Ref document number: 3870265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term