JP2004314080A - Method for manufacturing steel sheet by adjusting surface roughness of rolling roll - Google Patents
Method for manufacturing steel sheet by adjusting surface roughness of rolling roll Download PDFInfo
- Publication number
- JP2004314080A JP2004314080A JP2003107238A JP2003107238A JP2004314080A JP 2004314080 A JP2004314080 A JP 2004314080A JP 2003107238 A JP2003107238 A JP 2003107238A JP 2003107238 A JP2003107238 A JP 2003107238A JP 2004314080 A JP2004314080 A JP 2004314080A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- cooling
- temperature
- surface roughness
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は表面に冷却水を供給して熱鋼板を冷却した場合に、鋼板に発生する冷却ムラを圧延ロールのオンライン研削によってロール表面粗度を調整し、その解消を図る圧延ロール表面粗度調整による鋼板の製造方法に関する。
【0002】
【従来の技術】
最近、厚板製造工程において、新鋼種の開発、合金元素の低減、省熱処理などを目的として調質冷却プロセスの研究が行われている。調質冷却プロセスは、素材の加熱温度および加熱時間の制御、並びに制御圧延に圧延直後の強制冷却を組み合わせた技術よりなっている。これら加熱、圧延から冷却に至る一連の制御は、厚鋼板の変態組織の制御と機械的性質の向上を狙ったものである。
【0003】
しかして、鋼板冷却工程においては均一冷却を目的としてそれに沿うような冷却装置および冷却方法が開発されている。冷却後の鋼板温度のばらつきを少なくし、鋼板形状を向上させるため、表面粗さRz20μm以上及びそのピッチが50μm以上の圧延ロールで鋼板を圧延し、圧延ロールの表面粗さを鋼板表面に転写する技術(例えば、特許文献1参照)がある。
【0004】
また、熱圧鋼板を精密かつ均一に冷却して、高品質かつ均一な機械的性質と優れた形状を有する鋼板を得るために、適正粗度のロールを用いて圧延することにより、その粗度を鋼板表面に転写する技術(例えば、特許文献2参照)が開示されている。
【0005】
【特許文献1】
特開昭62−54507号公報
【特許文献2】
特開昭63−149315号公報
【0006】
【発明が解決しようとする課題】
熱延鋼板の制御冷却は、連続的な冷却により鋼材の組織制御を行うため、合金元素の低減や熱処理工程の省略が可能であり、製造コストの低減効果が大きい。しかしながら鋼板を均一に冷却することは容易ではなく、冷却ムラが発生すると熱応力による形状変化が生じ矯正作業が必要となる場合や、強度のばらつきが大きく品質を満足できない場合がある。
【0007】
上記のような従来公知の方法により鋼板を冷却した場合、同一冷却条件にもかかわらず、冷却された鋼板において冷却ムラが発生することがある。通常圧延においては、圧延を重ねるにつれ圧延ロール表面の鋼板通過部分が摩耗し、圧延ロールは初期の表面粗度を維持することができず、安定した効果
(目的)を発揮することができないため、圧延ロールを交換する必要があり、生産性の低下は避けられない。
【0008】
また、熱間圧延された鋼板は直ちに700〜850℃近傍の高温域から、150〜650℃程度まで強制冷却されるが、冷却中に鋼板形状を維持しながら、鋼板全体を均一に冷却する必要がある。しかし、これに対応できる冷却装置の開発および冷却制御方法は容易ではなく、多くの困難が伴い解決しなければならない課題が山積している。
【0009】
一方、冷却対象となる鋼板については、冷却前の鋼板の偏熱、冷却前の鋼板形状(圧延後の形状)、冷却前の鋼板表面性状(スケール付着および表面粗さ)などがあり、これらの影響が複合して、冷却直後の温度の不均一および鋼板形状の不安定を生ずることが経験的に認識されている。したがって、冷却装置および冷却制御の高精度化と同時に冷却対象鋼板の安定化が、冷却後の鋼板における均一温度分布および形状の安定化を図るうえでは必要不可欠である。
本発明は以上の点に鑑みてなされたもので、均一冷却、鋼板形状の安定化を狙ったものである。
【0010】
【課題を解決するための手段】
本発明は前記した従来方法における問題点を解決するためになされたものであって、その要旨するところは、下記手段にある。
(1) オンライン研削装置を設けた圧延設備で鋼板を熱間圧延した後、冷却装置で冷却する鋼板の製造方法において、前記冷却装置で冷却後の鋼板の温度を幅方向で測定し、この測定した鋼板幅方向温度からその温度差を求め、この温度差が予め設定した設定値を超えた場合は、前記圧延設備の圧延ロールを前記オンライン研削装置で研削して、該圧延ロールの表面粗度を調整する圧延ロール表面粗度調整による鋼板の製造方法。
(2) 前記温度差を、測定した鋼板幅方向温度の最高温度と最低温度の差とする(1)記載の圧延ロール表面粗度調整による鋼板の製造方法。
(3) 前記温度差が前記設定値を超えた場合、その温度差と設定値の差に応じて、オンライン研削装置での研削量を調整する(1)または(2)記載の圧延ロール表面粗度調整による鋼板の製造方法。
【0011】
【発明の実施の形態】
本発明者らは冷却後の鋼板の形状を詳細に調査した結果、圧延終了時の鋼板表面粗度により鋼板の冷却が影響されることに着目した。
鋼板の圧延後、所定の冷却条件により冷却を行い、鋼板で平坦な形状を確保できるように務めている。しかし、冷却後の鋼板においては冷却ムラのため形状の平坦度が損なわれる事態は避けられない実情にある。
【0012】
例えば、水冷する条件や鋼板のサイズによっては、鋼板幅方向のエッジ部或るいはセンター部が、過冷却或るいは冷却不足となるような幅方向の冷却ムラが発生する。これは鋼板の冷却能が板内で均一になっていないことに起因するものと考えられる。
その原因の一つに圧延ロール全長での表面粗度が不均一であるため、その結果鋼板の冷却時に均一な冷却が行なわれず冷却ムラが生ずるものと思われる。
【0013】
図1は冷却水が鋼板にどのような経過を辿って接触するか、その状況を示したもので、(a)は接触する初期,(b)は接触する中期,(c)は接触する末期をそれぞれ表している(図は鋼板表面を拡大誇張し模式的に示した)。
鋼板の冷却状態を考察するに、冷却開始の初期は(a)に示されるように鋼板1が高温であるため冷却水2が直に蒸発し、冷却水2は蒸気膜3により直接鋼板表面と触れることはできない。蒸気膜3は熱抵抗となるため、鋼板1は冷却され難い。
【0014】
時間が経過して鋼板1の表面温度が低下していくと(b)のように蒸気膜3が薄くなり、鋼板1で表面粗度が大きい部分(1a)では蒸気膜3を突き破り、部分的に冷却水2と鋼板表面が直に接触する。冷却水2に接した箇所は冷却能が高く抜熱量が大きくなる。このため蒸気膜3が存在する箇所と、存在しない箇所とでは鋼板温度に偏差が生じる。
【0015】
さらに時間が経過して温度が低下すると(c)のように蒸気膜3が完全になくなり、鋼板表面全体が冷却水2と接する状態となる。このような状態になると鋼板全面での冷却形態が同一となるため、その時点に達すれば温度偏差は発生しない。
このように鋼板表面の粗度によって冷却状態が左右され、鋼板での均一冷却が行なわれない事態が生じ、前述のような鋼板形状不良が発生する。
【0016】
通常、圧延ロールで圧延される鋼板の表面には、圧延ロール表面の粗度がそのまま転写されるため、鋼板表面粗度は圧延ロールの表面粗度に影響され、両者の表面粗度には正の相関関係が存在する。
【0017】
図2はこの状態を圧延ロール,鋼板共にその表面部を誇張し模式的に示したもので(a)は圧延ロール表面粗度が均一の場合、(b)は圧延ロール表面粗度が不均一の場合を表している。すなわち、(a)に示されるように圧延ロール全長での表面粗度(大小に関係なく)が均一の場合は、鋼板表面において全面にその粗度が転写されるため、ほぼ均一な粗度を有することになる。しかし、(b)に示されるように圧延ロール4a,bにおいて、粗度が中央部で小さく両端部で大きいような不均一の場合は、その粗度がそのまま転写されるので鋼板表面において中央部で小さく、両端部で大きい粗度を有する鋼板となる。
【0018】
本発明は前記の如き冷却状態に不具合を生じない鋼板の製造を目的として開発されたもので、冷却後の鋼板の表面温度分布状態を把握し、冷却ムラのある場合は、次に圧延される鋼板においてはその冷却ムラを解消すべく、把握した鋼板表面温度分布情報をオンラインロール研削装置へフィードバックさせ、その情報に基づき圧延ロールにおいて、ロール表面粗度調整のための研削(以下同様)すべきロール部分の研削を行うことによって、鋼板冷却時の冷却ムラを防ぐことを意図したものである。
【0019】
そこで本発明においては、冷却装置で冷却後の鋼板の温度を幅方向で測定し、この測定した鋼板幅方向温度からその温度差を求め、この温度差が予め設定した設定値を超えた場合は、前記圧延設備における圧延ロールの当該部分を前記オンライン研削装置で研削して、該圧延ロールの表面粗度を調整することを特長とするもので、前記温度差を、測定した鋼板幅方向温度の最高温度と最低温度の差とし、また、前記温度差が前記設定値を超えた場合、その温度差と設定値の差に応じて、オンライン研削装置での研削量を調整するものである。
【0020】
すなわち、鋼板幅方向における温度差(鋼板幅方向での各位置で測定した温度同士の差)が予め設定した設定値を超えた場合に圧延ロールの研削を行うものである。この温度差は測定位置の隣同士でもよいが、鋼板幅方向での最高値と最低値の差を採るのが望ましい。しかして、温度差に応じて研削量を調整することは好ましい実施態様であるが、温度差が設定値を超えた場合に一定の研削量を以て研削を行ってもよい。
【0021】
圧延ロールの研削に際しての研削量は、研削砥石の周速,ロール軸方向への移動速度,砥石のロールへの押付力(負荷重)およびロールの回転数を変えることにより、研削条件を自由に変えることができるので、所定のロール表面粗度を確保することは容易である。
例えば、研削砥石の周速,ロール軸方向への移動速度を速くすればロールの表面粗度は小さくなり、逆に、研削砥石の周速,ロール軸方向への移動速度を遅くすればロールの表面粗度は大きくなる。
【0022】
上記冷却後の鋼板表面温度分布の計測状況を鋼板製造工程の概略を示した図3によって説明する。
圧延ロール4a,bによって圧延された鋼板1は冷却装置5によって制御冷却されて後工程に搬送されるが、冷却装置5の下流(鋼板搬送方向において)には温度計6が設置されており、鋼板1の幅方向の複数位置の温度を計測し、この測定された温度は演算装置8に入力される。そして、幅方向の温度差を求め、この温度差が予め設定した設定値から逸脱する場合は、オンライン研削装置9に指令が発せられ演算された値に基づき圧延ロール4の所定箇所の研削を行う。
なお、前記温度差を求める場合、測定した鋼板幅方向温度の最大値と最小値を求め、この温度差を用いることが温度差が顕著に顕れ好ましい。
【0023】
すなわち、オンラインロール研削装置9で研削する条件を変化させ、圧延ロール4の表面粗度を調整してやることにより、鋼板1の冷却ムラの解消を図ろうとするものである。なお、鋼板表面形状を把握するために平坦度計7を設置することは好ましく、また温度計6に代えてサーモトレーサーを設置してもよい。
前述したように鋼板表面の状態によって鋼板への冷却能が大きく左右されることから、鋼板表面温度測定結果に沿い鋼板において温度が高く測定された部分に対応する圧延ロール部分については、ロール研削においてその当該部分のロール表面の粗度が大きくなるようなロール研削を行い、逆に鋼板温度が低い部分は、対応する圧延ロール部分の粗度が小さくなるような研削を行う。
【0024】
かくすることによって鋼板冷却時の冷却能の増大(低下)を図り、他の部分との均合を保つようになす。この場合鋼板表面にどの程度の温度差があったとき、どの程度のロール研削を行えばよいかは、多くのロール研削の実績から求めて置く必要があり、これらの実績を基にして冷却後の鋼板の温度分布から研削すべきロール部分を決めて研削を実施することが肝要である。
【0025】
圧延ロール表面の研削を必要とする場合、すなわち、鋼板を冷却した結果、冷却が不均一な状態(温度偏差の発生)になるのには種々のケースが想定される。例えば、冷却後の目標温度に対して鋼板温度に高・低がある場合(鋼板全面で)、鋼板幅方向でエッジ部に対してセンター部が高温の場合、これとは逆に鋼板幅方向でエッジ部に対してセンター部が低温の場合などがある。
【0026】
上記温度偏差が発生した場合に対処する圧延ロール研削の具体例を挙げると、▲1▼鋼板表面温度差が目標温度(設定温度)に対して高温の場合は、研削を行ってロール表面粗度をロール軸方向に均一とする。この研削の度合いを温度差と目標温度の差により調整、つまり、差が大きい場合には研削度合いを大きくし、小さい場合には研削度合いを小さくすることが好ましい。なお研削の度合いとは1回の研削量または研削回数を云う。
【0027】
▲2▼鋼板表面温度がエッジ部に対してセンター部が高温の場合は、エッジ部のロール表面粗度を小さくしエッジ部の冷却能を低下させるか、或はセンター部のロール表面粗度を大きくしセンター部の冷却能を増加させる。また、鋼板表面温度がエッジ部に対してセンター部が低温の場合は、エッジ部のロール表面粗度を大きくしエッジ部の冷却能を増加させるか、或はセンター部のロール表面粗度を小さくしセンター部の冷却能を低下させる。
【0028】
上記圧延ロールへ粗度の大小を付与するに当たっては、圧延された鋼板の温度分布から研削量が少なくてもよい方を選択することによって、研削時間が短くて済むため、研削条件の制約が緩和されるので好ましい。従ってその時の圧延状況に応じて適した方を採用し実施すればよい。
【0029】
本発明はあくまでも前回圧延され冷却された鋼板を基にして、次回に圧延される鋼板にその結果をフィードバックするような制御を行うものであり、ロール研削に当たっては、圧延される鋼板がロット単位で行われるのに適しており、寸法等がロット内で類似しているものが好ましい。
【0030】
冷却後の鋼板の計測に当たっては、鋼板の幅方向に複数個の温度計を設置し、連続して温度の測定を継続すれば、鋼板が冷却装置を通過して搬送されてくるので、鋼板全長に亙って温度を測ることができ、鋼板全面での温度分布を容易に知ることができる。
鋼板全面での温度分布が判れば、エッジ部とセンター部との温度差も簡単に算出することができるので、最小限鋼板幅方向に亙って複数個(例えば3〜7個)の温度計を設ければよい。
【0031】
本発明におけるロール研削を必要とする鋼板の温度偏差値の許容限界は、本発明者らは過去のデータの蓄積結果からみて50℃以下をその限界値と定め、温度偏差が限界値を超えた場合に適用することにしている。
【0032】
【実施例】
本発明例は鋼板冷却後の目標温度に対して、鋼板表面で許容限界を超える温度差が発生したので、圧延ロールの研削を行って対処した。その時のロール研削前の鋼板温度および温度差,ロール研削条件,ロール研削後の鋼板の温度差および波高さを従来例と共に表1に示した。なお、鋼板の波高さとは鋼板表面の最低位置と最高位置との高低差(mm)を以て表した。
【0033】
実施例での前提条件は、鋼板寸法:20×4000×22000(mm),温度測定:放射温度計で板幅方向に等間隔に5台配置,波高さ測定:平坦度計で測定,温度差の設定値:40℃,砥石の幅:30mm,砥石の種類:粒度#120のレジンボンドCBN砥石で、砥粒の占める体積比率が20%の(A)と粒度#120のレジンボンドCBN砥石で、砥粒の占める体積比率が30%の(B),圧延ロールの寸法:径735mmで長さ2500mm,材質:ニッケルグレン,ロールの周速:1000mpmであった。
【0034】
【表1】
【0035】
実施例から明らかなように本発明によるロール研削を行ったロールにより、次回に圧延された鋼板の冷却後の温度差は小さかったが、一方、これに対しロールの研削を行わなかった従来例では、次回に圧延された鋼板の温度差は改善されず、不都合な結果であった。
【0036】
【発明の効果】
以上に記述したように、本発明では冷却後の鋼板表面温度を検出し、その値に基づいて適切なるロール削研を実施し、ロール表面粗度を調整して圧延した鋼板を冷却することにより、鋼板を精密かつ均一に冷却でき、形状の優れた鋼板を得ることができる。
【図面の簡単な説明】
【図1】冷却水が鋼板と接触する状況を示した図。
【図2】圧延ロール表面の粗度と鋼板表面粗度との関連を示した図。
【図3】圧延ロールによる鋼板圧延から鋼板冷却後における鋼板の計測状況を製造工程に沿って示した図。
【符号の説明】
1 鋼板
2 冷却水
3 蒸気膜
4 圧延ロール
5 冷却装置
6 温度計
7 平坦度計
8 演算装置
9 ロール研削装置[0001]
BACKGROUND OF THE INVENTION
The present invention adjusts the roll surface roughness by adjusting the roll surface roughness by on-line grinding of the rolling roll when cooling water is supplied to the surface to cool the hot steel sheet, thereby adjusting the rolling roll surface roughness. The present invention relates to a method for manufacturing a steel sheet.
[0002]
[Prior art]
Recently, in the plate manufacturing process, research on tempering and cooling processes has been conducted for the purpose of developing new steel types, reducing alloying elements, and heat-saving. The temper cooling process is a technique that combines the control of the heating temperature and heating time of the material, and the controlled cooling immediately after rolling with controlled rolling. These series of controls from heating and rolling to cooling are aimed at controlling the transformation structure and improving the mechanical properties of the thick steel plate.
[0003]
Therefore, in the steel plate cooling process, a cooling device and a cooling method have been developed for uniform cooling. In order to reduce the variation in the steel plate temperature after cooling and improve the steel plate shape, the steel plate is rolled with a rolling roll having a surface roughness Rz of 20 μm or more and a pitch of 50 μm or more, and the surface roughness of the rolling roll is transferred to the steel plate surface. There exists a technique (for example, refer patent document 1).
[0004]
In addition, in order to cool the hot-pressed steel plate precisely and uniformly and obtain a steel plate having high quality, uniform mechanical properties and excellent shape, the roughness of the hot-pressed steel plate is rolled by using a roll of appropriate roughness. Is disclosed (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP 62-54507 A [Patent Document 2]
JP-A 63-149315 [0006]
[Problems to be solved by the invention]
Controlled cooling of hot-rolled steel sheets controls the structure of the steel material by continuous cooling, so that the alloy elements can be reduced and the heat treatment process can be omitted, and the effect of reducing manufacturing costs is great. However, it is not easy to uniformly cool the steel sheet. If uneven cooling occurs, the shape may change due to thermal stress and correction work may be required, or the strength may vary greatly and the quality may not be satisfied.
[0007]
When a steel plate is cooled by a conventionally known method as described above, uneven cooling may occur in the cooled steel plate despite the same cooling conditions. In normal rolling, as the rolling is repeated, the steel plate passage portion of the surface of the rolling roll is worn, and the rolling roll cannot maintain the initial surface roughness and cannot exhibit a stable effect (purpose). It is necessary to replace the rolling roll, and a reduction in productivity is inevitable.
[0008]
Further, the hot-rolled steel sheet is immediately forcibly cooled from a high temperature range near 700 to 850 ° C. to about 150 to 650 ° C., but it is necessary to uniformly cool the entire steel sheet while maintaining the shape of the steel plate during cooling. There is. However, it is not easy to develop a cooling device and a cooling control method that can cope with this, and there are many problems to be solved with many difficulties.
[0009]
On the other hand, the steel plate to be cooled includes uneven heat of the steel plate before cooling, the shape of the steel plate before cooling (the shape after rolling), the surface properties of the steel plate before cooling (scale adhesion and surface roughness), etc. It has been empirically recognized that the effects are combined to cause uneven temperature immediately after cooling and instability of the steel sheet shape. Therefore, high accuracy of the cooling device and cooling control and stabilization of the steel plate to be cooled are indispensable in order to stabilize the uniform temperature distribution and shape of the steel plate after cooling.
The present invention has been made in view of the above points, and aims at uniform cooling and stabilization of the steel plate shape.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the problems in the conventional methods described above, and the gist of the present invention resides in the following means.
(1) In a method of manufacturing a steel sheet, which is hot-rolled with a rolling facility equipped with an online grinding device and then cooled with a cooling device, the temperature of the steel plate after cooling with the cooling device is measured in the width direction, and this measurement is performed. When the temperature difference is determined from the temperature in the width direction of the steel sheet and the temperature difference exceeds a preset value, the rolling roll of the rolling equipment is ground with the online grinding device, and the surface roughness of the rolling roll is determined. The manufacturing method of the steel plate by the rolling roll surface roughness adjustment which adjusts.
(2) The method for producing a steel sheet by adjusting the surface roughness of the rolling roll according to (1), wherein the temperature difference is a difference between the maximum temperature and the minimum temperature of the measured steel sheet width direction temperature.
(3) When the temperature difference exceeds the set value, the grinding roll surface roughness according to (1) or (2) is adjusted according to the difference between the temperature difference and the set value. Steel sheet manufacturing method by adjusting the degree.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As a result of investigating the shape of the steel sheet after cooling in detail, the present inventors paid attention to the fact that the cooling of the steel sheet is influenced by the surface roughness of the steel sheet at the end of rolling.
After rolling the steel sheet, the steel sheet is cooled under predetermined cooling conditions so that a flat shape can be secured with the steel sheet. However, in the steel sheet after cooling, the situation that the flatness of the shape is impaired due to uneven cooling is inevitable.
[0012]
For example, depending on the water-cooling conditions and the size of the steel plate, unevenness in the width direction such that the edge portion or the center portion in the steel plate width direction is overcooled or insufficiently cooled occurs. This is considered to be due to the fact that the cooling ability of the steel sheet is not uniform within the plate.
One of the causes is that the surface roughness of the entire length of the rolling roll is not uniform, and as a result, uniform cooling is not performed when the steel sheet is cooled, and it is considered that uneven cooling occurs.
[0013]
FIG. 1 shows how the cooling water makes contact with the steel sheet and shows the situation. (A) is the initial stage of contact, (b) is the middle stage of contact, and (c) is the final stage of contact. (The figure schematically shows the steel plate surface in an enlarged and exaggerated manner).
Considering the cooling state of the steel sheet, at the beginning of the cooling, as shown in (a), since the steel sheet 1 is at a high temperature, the cooling water 2 evaporates directly. I can't touch it. Since the vapor film 3 becomes a thermal resistance, the steel plate 1 is hardly cooled.
[0014]
When the surface temperature of the steel plate 1 decreases with time, the vapor film 3 becomes thin as shown in (b), and the portion (1a) where the surface roughness is large in the steel plate 1 breaks through the vapor film 3 and partially. The cooling water 2 and the steel sheet surface are in direct contact with each other. A portion in contact with the cooling water 2 has a high cooling capacity and a large amount of heat removal. For this reason, a deviation occurs in the steel sheet temperature between the location where the vapor film 3 exists and the location where the vapor film 3 does not exist.
[0015]
When the temperature further decreases with time, the vapor film 3 disappears completely as shown in (c), and the entire steel sheet surface comes into contact with the cooling water 2. In such a state, the cooling mode on the entire surface of the steel sheet becomes the same, so that temperature deviation does not occur when that point is reached.
In this way, the cooling state is influenced by the roughness of the steel sheet surface, and there is a situation in which uniform cooling on the steel sheet is not performed, resulting in the above-described poor steel plate shape.
[0016]
Usually, since the roughness of the surface of the rolling roll is transferred as it is onto the surface of the steel sheet rolled by the rolling roll, the surface roughness of the steel sheet is affected by the surface roughness of the rolling roll, and the surface roughness of both is positive. There is a correlation.
[0017]
FIG. 2 schematically shows the state of both the rolling roll and the steel sheet with exaggerated surface portions. (A) shows a uniform rolling roll surface roughness and (b) shows a non-uniform rolling roll surface roughness. Represents the case. That is, as shown in (a), when the surface roughness (regardless of size) is uniform over the entire length of the rolling roll, the roughness is transferred to the entire surface of the steel sheet surface, so that the substantially uniform roughness is obtained. Will have. However, as shown in (b), in the rolling rolls 4a and 4b, when the roughness is non-uniform such that the roughness is small at the center and large at both ends, the roughness is transferred as it is. It becomes a steel plate having a small roughness at both ends and a large roughness.
[0018]
The present invention was developed for the purpose of producing a steel sheet that does not cause problems in the cooling state as described above. The surface temperature distribution state of the steel sheet after cooling is grasped, and if there is uneven cooling, it is rolled next. In order to eliminate the cooling unevenness in the steel sheet, the grasped steel sheet surface temperature distribution information should be fed back to the online roll grinding machine, and the rolling roll should be ground for adjusting the roll surface roughness based on this information (the same shall apply hereinafter). This is intended to prevent uneven cooling during cooling of the steel sheet by grinding the roll portion.
[0019]
Therefore, in the present invention, the temperature of the steel sheet cooled by the cooling device is measured in the width direction, the temperature difference is obtained from the measured steel sheet width direction temperature, and when the temperature difference exceeds a preset value, , Characterized in that the portion of the rolling roll in the rolling equipment is ground with the on-line grinding device to adjust the surface roughness of the rolling roll, and the temperature difference is measured in the width direction of the measured steel sheet. The difference between the maximum temperature and the minimum temperature is set, and when the temperature difference exceeds the set value, the grinding amount in the online grinding apparatus is adjusted according to the difference between the temperature difference and the set value.
[0020]
That is, when the temperature difference in the steel plate width direction (difference between temperatures measured at each position in the steel plate width direction) exceeds a preset set value, the rolling roll is ground. This temperature difference may be adjacent to the measurement position, but it is desirable to take the difference between the maximum value and the minimum value in the steel plate width direction. Thus, although it is a preferred embodiment to adjust the grinding amount in accordance with the temperature difference, grinding may be performed with a constant grinding amount when the temperature difference exceeds a set value.
[0021]
The grinding amount of the rolling roll can be adjusted freely by changing the peripheral speed of the grinding wheel, the moving speed in the roll axis direction, the pressing force of the grinding wheel to the roll (load weight), and the rotation speed of the roll. Since it can be changed, it is easy to ensure a predetermined roll surface roughness.
For example, if the peripheral speed of the grinding wheel and the moving speed in the roll axis direction are increased, the surface roughness of the roll will be reduced. Conversely, if the peripheral speed of the grinding wheel and the moving speed in the roll axis direction are decreased, the roll surface roughness will be reduced. The surface roughness increases.
[0022]
The measurement state of the steel plate surface temperature distribution after the cooling will be described with reference to FIG. 3 showing an outline of the steel plate manufacturing process.
The steel plate 1 rolled by the rolling rolls 4a and b is controlled and cooled by the cooling device 5 and conveyed to the subsequent process, but a thermometer 6 is installed downstream (in the steel plate conveying direction) of the cooling device 5, Temperatures at a plurality of positions in the width direction of the steel plate 1 are measured, and the measured temperatures are input to the arithmetic device 8. And when the temperature difference of the width direction is calculated | required and this temperature difference deviates from the preset setting value, a command is issued to the online grinding apparatus 9, and the predetermined location of the rolling roll 4 is ground based on the calculated value. .
In addition, when calculating | requiring the said temperature difference, it is preferable that the maximum value and minimum value of the measured steel plate width direction temperature are calculated | required, and a temperature difference notably appears and to use.
[0023]
That is, by changing the conditions for grinding by the online roll grinding device 9 and adjusting the surface roughness of the rolling roll 4, the cooling unevenness of the steel sheet 1 is to be eliminated. In addition, in order to grasp | ascertain the steel plate surface shape, it is preferable to install the flatness meter 7, and it may replace with the thermometer 6 and may install a thermo tracer.
As described above, the cooling ability to the steel sheet is greatly affected by the state of the steel sheet surface, and the roll part corresponding to the part where the temperature is measured high in the steel sheet according to the steel sheet surface temperature measurement result is Roll grinding is performed so that the roughness of the roll surface of the part increases, and conversely, the part where the steel plate temperature is low is ground so that the roughness of the corresponding rolling roll part becomes small.
[0024]
In this way, the cooling capacity is increased (decreased) when the steel sheet is cooled, and the balance with other parts is maintained. In this case, when there is a temperature difference on the steel sheet surface, it is necessary to determine how much roll grinding should be performed based on the results of many roll grindings, and after cooling based on these results It is important to determine the roll part to be ground from the temperature distribution of the steel sheet and perform grinding.
[0025]
When grinding of the surface of the rolling roll is required, that is, as a result of cooling the steel sheet, various cases are assumed for cooling to be in a non-uniform state (generation of temperature deviation). For example, when the steel plate temperature is high or low with respect to the target temperature after cooling (over the entire surface of the steel plate), when the center portion is hot relative to the edge portion in the steel plate width direction, on the contrary, in the steel plate width direction There are cases where the center portion is colder than the edge portion.
[0026]
Specific examples of rolling roll grinding to cope with the occurrence of the above temperature deviation are as follows: (1) If the steel sheet surface temperature difference is higher than the target temperature (set temperature), grinding is performed to roll surface roughness. Is made uniform in the roll axis direction. It is preferable that the degree of grinding is adjusted by the difference between the temperature difference and the target temperature, that is, the degree of grinding is increased when the difference is large, and the degree of grinding is decreased when the difference is small. The degree of grinding refers to the amount of grinding or the number of times of grinding.
[0027]
(2) When the steel plate surface temperature is higher than the edge part, the roll surface roughness of the edge part is decreased to reduce the cooling ability of the edge part, or the roll surface roughness of the center part is reduced. Increase the cooling capacity of the center part. Also, when the steel plate surface temperature is lower than the edge part, the edge part roll surface roughness is increased to increase the edge cooling ability, or the center part roll surface roughness is reduced. Reduce the cooling capacity of the center part.
[0028]
When applying roughness to the rolling rolls, the grinding time can be shortened by selecting the one that requires less grinding from the temperature distribution of the rolled steel sheet, so the restrictions on the grinding conditions are eased. This is preferable. Therefore, what is necessary is just to employ | adopt and implement the suitable one according to the rolling condition at that time.
[0029]
The present invention is based on the steel sheet that has been rolled and cooled last time, and performs control such that the result is fed back to the steel sheet to be rolled next time. Those that are suitable to be performed and that have similar dimensions etc. within the lot are preferred.
[0030]
When measuring the steel plate after cooling, if a plurality of thermometers are installed in the width direction of the steel plate and the temperature is continuously measured, the steel plate is conveyed through the cooling device, so the total length of the steel plate Therefore, the temperature can be measured and the temperature distribution on the entire surface of the steel sheet can be easily known.
If the temperature distribution on the entire surface of the steel plate is known, the temperature difference between the edge portion and the center portion can be easily calculated. Therefore, a plurality of (for example, 3 to 7) thermometers across the width of the steel plate. May be provided.
[0031]
In the present invention, the allowable limit of the temperature deviation value of the steel sheet that requires roll grinding is determined by the inventors as a limit value of 50 ° C. or less in view of the past data accumulation result, and the temperature deviation exceeds the limit value. If you are going to apply it.
[0032]
【Example】
In the example of the present invention, a temperature difference exceeding the allowable limit occurred on the surface of the steel sheet with respect to the target temperature after cooling the steel sheet. Table 1 shows the steel plate temperature and temperature difference before roll grinding, roll grinding conditions, temperature difference and wave height of the steel plate after roll grinding, together with conventional examples. In addition, the wave height of the steel plate is represented by a height difference (mm) between the lowest position and the highest position on the steel plate surface.
[0033]
The preconditions in the examples are steel plate dimensions: 20 × 4000 × 22000 (mm), temperature measurement: five units arranged at equal intervals in the plate width direction with a radiation thermometer, wave height measurement: measured with a flatness meter, temperature difference Set value: 40 ° C., grinding wheel width: 30 mm, grinding wheel type: resin bonded CBN grinding wheel with particle size # 120, (A) with 20% volume ratio of abrasive grains and resin bonding CBN grinding wheel with particle size # 120 The volume ratio of the abrasive grains was 30% (B), the dimensions of the rolling roll: diameter 735 mm, length 2500 mm, material: nickel grain, and roll peripheral speed: 1000 mpm.
[0034]
[Table 1]
[0035]
As is apparent from the examples, the temperature difference after cooling of the steel sheet rolled next time was small by the roll subjected to roll grinding according to the present invention, whereas, on the other hand, in the conventional example in which the roll was not ground The temperature difference of the steel sheet rolled next time was not improved and was an inconvenient result.
[0036]
【The invention's effect】
As described above, in the present invention, by detecting the steel sheet surface temperature after cooling, performing appropriate roll grinding based on the value, adjusting the roll surface roughness, and cooling the rolled steel sheet The steel plate can be precisely and uniformly cooled, and a steel plate having an excellent shape can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state in which cooling water comes into contact with a steel plate.
FIG. 2 is a view showing the relationship between the roughness of the rolling roll surface and the surface roughness of the steel sheet.
FIG. 3 is a view showing a measurement state of a steel sheet after rolling the steel sheet by a rolling roll and cooling the steel sheet along the manufacturing process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Cooling water 3 Steam film 4 Roll roll 5 Cooling device 6 Thermometer 7 Flatness meter 8 Arithmetic device 9 Roll grinding device
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003107238A JP3881632B2 (en) | 2003-04-11 | 2003-04-11 | Method for producing steel sheet by adjusting surface roughness of rolling roll |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003107238A JP3881632B2 (en) | 2003-04-11 | 2003-04-11 | Method for producing steel sheet by adjusting surface roughness of rolling roll |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004314080A true JP2004314080A (en) | 2004-11-11 |
JP3881632B2 JP3881632B2 (en) | 2007-02-14 |
Family
ID=33469122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003107238A Expired - Fee Related JP3881632B2 (en) | 2003-04-11 | 2003-04-11 | Method for producing steel sheet by adjusting surface roughness of rolling roll |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3881632B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834191A (en) * | 2010-03-31 | 2012-12-19 | 住友金属工业株式会社 | Method for producing and device for producing hot-rolled steel sheet |
WO2018110946A1 (en) * | 2016-12-12 | 2018-06-21 | 주식회사 포스코 | Rolling facility and rolling method |
CN109127739A (en) * | 2018-10-23 | 2019-01-04 | 中冶京诚工程技术有限公司 | Method and device for detecting and processing temperature of rolled piece of wire controlled cooling system |
-
2003
- 2003-04-11 JP JP2003107238A patent/JP3881632B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834191A (en) * | 2010-03-31 | 2012-12-19 | 住友金属工业株式会社 | Method for producing and device for producing hot-rolled steel sheet |
EP2554283A1 (en) * | 2010-03-31 | 2013-02-06 | Nippon Steel & Sumitomo Metal Corporation | Method for producing and device for producing hot-rolled steel sheet |
EP2554283A4 (en) * | 2010-03-31 | 2014-09-17 | Nippon Steel & Sumitomo Metal Corp | Method for producing and device for producing hot-rolled steel sheet |
US9358594B2 (en) | 2010-03-31 | 2016-06-07 | Nippon Steel & Sumitomo Metal Corporation | Manufacturing apparatus and manufacturing method of hot-rolled steel sheet |
WO2018110946A1 (en) * | 2016-12-12 | 2018-06-21 | 주식회사 포스코 | Rolling facility and rolling method |
CN109127739A (en) * | 2018-10-23 | 2019-01-04 | 中冶京诚工程技术有限公司 | Method and device for detecting and processing temperature of rolled piece of wire controlled cooling system |
Also Published As
Publication number | Publication date |
---|---|
JP3881632B2 (en) | 2007-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3397877B2 (en) | Rolling method of rolled strip | |
GB2051641A (en) | Rolling strip material | |
KR20100046012A (en) | Method and equipment of flatness control in cooling a stainless steel strip | |
WO2019087284A1 (en) | Roll wear dispersion method for rolling stand and rolling system | |
JP3881632B2 (en) | Method for producing steel sheet by adjusting surface roughness of rolling roll | |
WO2011042934A1 (en) | Cooling apparatus and cooling method for hot rolling | |
JP4289480B2 (en) | Straightening method to obtain steel plate with good shape with little variation in residual stress | |
JP3596460B2 (en) | Heat treatment method for thick steel plate and heat treatment equipment | |
JP3503571B2 (en) | Hot rolling steel sheet rolling method and hot rolling device | |
JPH08108208A (en) | Pinch roll equipment for sheet manufacturing/processing line and its controller | |
EP0487274B1 (en) | Strip elongation control in continuous annealing furnaces | |
KR101050792B1 (en) | Cooling Control Method Using Dynamic Reset | |
JPS6254507A (en) | Cooling method for hot steel sheet | |
JP3464378B2 (en) | Strip crown control method and apparatus | |
JP3275705B2 (en) | Manufacturing method of hot rolled steel sheet | |
JP3112112B2 (en) | Hot roll grinding method | |
JP2003305502A (en) | Method for producing hot rolled steel plate and hot rolling equipment | |
JP3282714B2 (en) | Cooling method for hot steel sheet | |
JPH1119724A (en) | Preheating device and preheating method in cold straightening | |
JP3238569B2 (en) | Method for controlling winding temperature of hot rolled steel sheet | |
JP2851990B2 (en) | Hot finish rolling method | |
JP3329297B2 (en) | Hot rolling method | |
JPH08267113A (en) | Method for controlling plate camber in plate rolling | |
JP2004001031A (en) | Method for cold-rolling metal plate | |
US5230857A (en) | Strip elongation control in continuous annealing furnaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060815 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060815 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061110 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3881632 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |