JP2004312593A - Wide field-of-view imaging apparatus - Google Patents

Wide field-of-view imaging apparatus Download PDF

Info

Publication number
JP2004312593A
JP2004312593A JP2003106331A JP2003106331A JP2004312593A JP 2004312593 A JP2004312593 A JP 2004312593A JP 2003106331 A JP2003106331 A JP 2003106331A JP 2003106331 A JP2003106331 A JP 2003106331A JP 2004312593 A JP2004312593 A JP 2004312593A
Authority
JP
Japan
Prior art keywords
mirror
mirror surface
imaging device
image
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003106331A
Other languages
Japanese (ja)
Other versions
JP3941730B2 (en
Inventor
Akihito Takeya
章仁 竹家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003106331A priority Critical patent/JP3941730B2/en
Publication of JP2004312593A publication Critical patent/JP2004312593A/en
Application granted granted Critical
Publication of JP3941730B2 publication Critical patent/JP3941730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wide field-of-view imaging apparatus in which deviation of video is reduced even when a moving speed is accelerated, and an examination time is shortened, and which is suitable for confirming and examining cracking on an inner wall of a sewer pipe or a tunnel. <P>SOLUTION: The wide field-of-view imaging apparatus is equipped with a main mirror 1 that includes an opening in the middle and is composed of a convex mirror, a sub mirror 2 that faces the main mirror 1 and includes an opening in the middle, a lens 3 disposed in the opening of the sub mirror 2, an imaging apparatus 5 for picking up an image by receiving light reflected on the main mirror 1 and the sub mirror 2 and light incident through the lens 3, a video information output means for outputting video information from the imaging apparatus 5 toward a display device 6, and a moving means with the main mirror 1, the sub mirror 2 and the lens 3 packaged therein. The main mirror 1 includes a first mirror surface 1a outside of a moving diameter direction and a second mirror surface 1b inside of the moving diameter direction, and a curvature radius of the second mirror surface 1b is smaller than that of the first mirror surface 1a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、下水管やトンネル等の内壁のひび割れなどを視認検査するのに適した広視野撮像装置に関するものである。
【0002】
【従来の技術】
従来の広視野撮像装置は、相互に対向し中央に貫通孔を有する主鏡及び副鏡、副鏡の中央に固着された凹レンズ、主鏡の貫通孔内部には凸レンズとその直後に配列された光ファイバーとを備えている。主鏡に反射した光は、副鏡でも反射したのち、主鏡の貫通孔を通過して凸レンズに到達する。凹レンズを通過した光は、そのまま主鏡の貫通孔を通過して凸レンズに到達する。凸レンズに到達したこれら2経路の光は、ここで平行光線となって光ファイバーに入射された映像情報となり、CCDカメラに送られる。このようにして、管内の全内周を撮像している。(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2002−14292号公報(段落0084−0100、図6)
【0004】
【発明が解決しようとする課題】
しかしながら、従来の技術では、広視野撮像装置を管内に進行させて視認検査する際、一般に被写体の管路長が長いために検査時間が長い。また、検査時間を短縮させようとして広視野撮像装置の移動速度を速めると、撮像した映像のぶれが大きくなる問題がある。
【0005】
この発明は、上記のような問題点を解決するためになされたものであり、移動速度を速めても映像のぶれが小さく検査時間の短縮を図った広視野撮像装置を提供する。
【0006】
【課題を解決するための手段】
この発明における広視野撮像装置は、中央に開口部を有し凸鏡面からなる回転対称形状の主鏡と、前記主鏡と対向し中央に開口部を有する回転対称形状の副鏡と、前記副鏡の開口部に設置されたレンズと、前記主鏡によって副鏡方向へ反射されたのち前記副鏡によって主鏡開口部方向へ反射された反射光と前記レンズを透過し主鏡開口部方向へ入射した入射光とを受光することにより撮像する撮像装置と、撮像装置からの映像情報を表示装置に向けて出力するための映像情報出力手段と、前記主鏡と前記副鏡と前記レンズとを搭載した移動手段とを備え、前記主鏡は動径方向外側の第1鏡面と前記第1鏡面より勾配が緩やかな動径方向内側の第2鏡面とを有し、前記第2鏡面の曲率半径は前記第1鏡面の曲率半径に比べて小さいものである。
【0007】
【発明の実施の形態】
実施の形態1.
図1は、本発明が適用される広視野撮像装置の実施の形態1を説明するための主要部断面図である。図1において、中央に開口部を有し凹鏡面からなる回転対称形状の主鏡1と、主鏡1に対向し中央に開口部を有する回転対称形状の副鏡2とが、透明性の支持部材4としてのアクリルカバーによって支持されている。主鏡1と副鏡2とは共通の回転対称軸7に対して回転対称である。主鏡1の開口部には撮像装置5としてのCCDカメラ、副鏡2の開口部にはレンズ3がそれぞれ設置されている。撮像装置5は、主鏡1によって副鏡方向へ反射されたのち副鏡2によって主鏡開口部方向へ反射された反射光と、レンズ3を透過し主鏡開口部方向へ入射した入射光とを受光することにより撮像する。
【0008】
ここで、主鏡1は動径方向外側の第1鏡面1aと動径方向内側の第2鏡面1bとを有する。第2鏡面1bは、鏡面としての勾配が第1鏡面1aより緩やかである。また、第1鏡面1a及び第2鏡面1bはともに凸鏡面であるためにそれぞれ曲率半径を有する。第1鏡面1aと第2鏡面1bの境界部は、勾配の変曲点であるとともに曲率半径の変曲点でもあり、第2鏡面1bの曲率半径は第1鏡面1aの曲率半径に比べて小さいものとする。
【0009】
回転対称軸7を基準(0°方向)とすると、レンズ3は入射角0°〜θの入射光を透過するものである。同様に、主鏡1の第2鏡面1bは入射角θ〜θの入射光を副鏡方向へ反射するものであり、第1鏡面1aは入射角θ〜θの入射光を副鏡方向へ反射するものである。ただし、θ<90°<θとする。
【0010】
また、撮像装置5には、撮像された映像情報を表示装置6に向けて出力するための例えば映像情報出力端子が備えられている。被写体が金属のように電磁波遮蔽性を有する場合でも、この映像情報出力端子に所定の配線を接続すれば、有線方式で表示装置6に映像情報が伝送される。ただし、被写体が電磁波遮蔽性を有していない場合には無線方式を採用してもよい。
【0011】
図2は、この実施の形態における広視野撮像装置の概略構成図であり、広視野撮像装置が管内に装入された状態を例示している。図2において、移動手段8としての走行車の先頭部に、主鏡1と副鏡2とレンズ3とを含む光学系を搭載している。走行車8は、撮像時において主鏡1から副鏡2に向かう方向に進行し、モータ及びブレーキの遠隔操作によって移動速度を調節できる。すなわち、主鏡1の第2鏡面1bを介して撮像された被写体が第1鏡面1aを介して撮像されるまでの間に、走行車8の減速または停止が可能である。
【0012】
図3は、この実施の形態において撮像された映像を表示装置6に表示したときの表示画面の模式図である。表示画面には、同心円環状の映像が表示される。中央の映像はレンズ3入射角0°〜θの視野に関するもので、これを前方視野映像とする。前方視野映像によって管の奥の状況を視認し、広視野撮像装置を奥に進行させることができる。前方視野映像に隣接する円環状の映像は主鏡1の第2鏡面1bによる入射角θ〜θの視野に関するもので、これを斜前方視野映像とする。最外周の円環状の映像は主鏡1の第1鏡面1aによる入射角θ〜θの視野に関するもので、これを側方視野映像とする。それぞれの視野範囲は適宜設計できるが、例えばθ=20°、θ=70°、θ=110°とすると、前方視野映像、斜前方視野映像および側方視野映像がバランスよく表示される。
【0013】
ここで、管壁に例えば正方形状の模様があるとすると、図3に示すように側方視野映像はほぼ正方形状に表示されるが、斜前方視野映像は側方視野映像に比べて動径方向に圧縮されたように表示される。図4は、動径方向における映像の圧縮度合を、入射角と円環状映像中心からの距離とに関する特性図として表現したものである。このように斜前方視野映像と側方視野映像とで動径方向への圧縮度合が異なるのは、映像の動径方向への圧縮度合は凸鏡面の曲率半径に関係し、第2鏡面1bの曲率半径が第1鏡面1aの曲率半径に比べて小さいためである。
【0014】
広視野撮像装置を管の奥方向に進行させると、視野の移動に伴なって表示映像も変化する。ここで、表示画面上における斜前方視野及び側方視野の単位速度ベクトルは、図3の矢印のごとく表示された映像の動径方向への圧縮度合に比例する。すなわち、広視野撮像装置を任意速度で進行させた場合、斜前方視野映像は側方視野映像に比べて変化の程度が少なく、ぶれも小さい。
【0015】
このため、斜前方視野映像に関してはぶれが小さいので、広視野撮像装置の移動速度を速めても管壁の状況を視認できる。したがって、斜前方視野映像を用いて管壁の異常探索を行なえば、異常探索時間の短縮ひいては検査時間の短縮を図ることができる。
【0016】
さらに、斜前方視野映像によって発見された疑異常箇所について、側方視野映像を用いて詳細に検査する。すなわち、ぶれが小さい斜前方視野映像を用いることにより広視野映像装置の移動速度を速めて検査時間の短縮を図るとともに、斜前方視野映像で発見した疑異常箇所については解像度の高い側方視野映像で詳細に検査するため、検査時間を短縮したとしても検査精度を低下させることがない。さらに望ましくは、側方視野映像で詳細に検査する際に側方視野映像のぶれを抑制するため、走行車8の移動速度調節機能によって広視野撮像装置を減速あるいは停止させることである。例えば入射角60°方向で疑異常箇所を発見した場合、広視野撮像装置の速度を調節しながら、この疑異常箇所が入射角90°方向に映るまで進行して詳細に検査する。このように、進行方向に対して斜前方視野映像で異常探索し、側方視野映像で詳細検査を行なうため、広視野撮像装置を後退させることなく円滑な視認検査を実施できる。
【0017】
また、主鏡1の第2鏡面1bの曲率半径は、第1鏡面1aの曲率半径の半分から3分の1程度が好ましい。この範囲であれば、斜前方視野映像が過度に圧縮されることなく、異常探索に適した映像が得られる。
【0018】
なお、第1鏡面1aと第2鏡面1bの境界部において、鏡面の勾配を連続的に変化させ、斜前方視野映像と側方視野映像とが滑らかに繋がっているようにしてもよい。さらに、管内が暗い場合を想定して広視野撮像装置に照明を装備すること、ならびにこの広視野撮像装置で得られた同心円環状の映像を矩形状の映像に変換することは適宜実施できる。矩形状の映像に変換すると、映像全体にわたり被写体の縦横比の歪みを低減できる。
【0019】
実施の形態2.
図5は、実施の形態2を説明するための表示画面に表示された円環状映像の模式図である。この実施の形態は、実施の形態1における側方視野映像のうち入射角90°方向の映像について、被写体の縦横比を正確に表示したものである。円環状映像において、入射角θ方向が映る円の半径をL、入射角90°方向が映る円の半径をL90、入射角θ方向が映る円の半径をLとする。また、θ=90°−α、θ=90°+βとする。Aは入射角θ方向が映る円上の点、Bは入射角θ方向が映る円上の点であり、ABは入射角差がα+βである動径方向長さを示し、AB=L−Lである。また、C及びDは入射角90°方向が映る円上の点であり、CDは主鏡径一周360°のうち角度α+βに相当する円周上長さを示し、CD=2πL90(α+β)/360°である。
【0020】
入射角90°方向の映像について、被写体の縦横比を歪みなく正確に表示するには、線分ABと線分CDが等しくなればよい。よって、(1)式が成り立つ。
【0021】
【数1】

Figure 2004312593
【0022】
また、図6に示すように、円環状映像中心から被写体までの長さLと被写体からの入射光の入射角θが比例関係にあると、(2)式が成り立つ。
【0023】
【数2】
Figure 2004312593
【0024】
(1)式に(2)式を代入して整理すると、(3)式が得られる。これより、LとLの比は(4)式の通りとなる。
【0025】
【数3】
Figure 2004312593
【0026】
【数4】
Figure 2004312593
【0027】
このようにして、第1鏡面1aの内径Lと外径Lを形成すると、側方視野映像のうち入射角90°方向の映像について、被写体の縦横比を正確に表示できる。したがって、この実施の形態では、側方視野映像に表示された疑異常箇所の形状を正確に把握できる。
【0028】
実施の形態3.
図7は、実施の形態3を説明するための広視野撮像装置の概略構成図であり、広視野撮像装置が管内に装入された状態を例示している。この実施の形態は、実施の形態2と異なる手法によって、側方視野映像のうち入射角90°方向の映像について被写体の縦横比を正確に表示したものである。さらに、表示画面上の側方視野映像における被写体の長さの比を動径方向に正確に表示するようにしたものである。
【0029】
図7において、管の内半径をr、入射光の入射角90°方向を原点として管内壁上における広視野撮像装置の進行方向側への任意の距離をDとする。図8に示すように、距離Dと映像中心から被写体までの長さLが比例関係にあるとすると、(5)式が成り立つ。このとき、入射角90°方向ではD=0であるから、L90は(6)式のようになる。
【0030】
【数5】
Figure 2004312593
【0031】
【数6】
Figure 2004312593
【0032】
ここで、入射角90°方向の映像の縦横比が正確に表示されるときの第1鏡面1aの内径Lと外径Lの比を求めるため、(6)式を(1)式に代入して整理すると、(7)式が得られる。これより、LとLの比は(8)式の通りとなる。
【0033】
【数7】
Figure 2004312593
【0034】
【数8】
Figure 2004312593
【0035】
この関係が成り立つように主鏡の形状を形成することにより、表示画面上において、管の内壁の映像における被写体の長さの比を動径方向に正確に表示できるとともに、入射角90°方向の被写体の縦横比も正確に表示できる。したがって、この実施の形態では、側方視野映像に表示された疑異常箇所の形状を正確に把握できることに加え、例えば側方視野映像に複数の疑異常箇所が表示されている場合、それぞれの疑異常箇所の大きさを比較することができる。
【0036】
【発明の効果】
この発明によれば、広視野撮像装置の移動速度を速めてもぶれが小さい斜前方視野映像を用いて被写体の異常探索を行なえるため、検査時間の短縮を図ることができる。
【図面の簡単な説明】
【図1】実施の形態1を説明するための主要部断面図である。
【図2】実施の形態1を説明するための概略構成図である。
【図3】実施の形態1を説明するための表示画面の模式図である。
【図4】実施の形態1を説明するための特性図である。
【図5】実施の形態2を説明するための表示画面の模式図である。
【図6】実施の形態2を説明するための特性図である。
【図7】実施の形態3を説明するための概略構成図である。
【図8】実施の形態3を説明するための特性図である。
【符号の説明】
1 主鏡、1a 第1鏡面、1b 第2鏡面、2 副鏡、3 レンズ、4 支持部材、5 撮像装置、6 表示装置、7 回転対称軸、8 移動手段。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wide-field imaging device suitable for visually inspecting a crack or the like on an inner wall of a sewer pipe or a tunnel.
[0002]
[Prior art]
The conventional wide-field imaging device has a primary mirror and a secondary mirror that face each other and have a through-hole at the center, a concave lens fixed to the center of the secondary mirror, a convex lens inside the through-hole of the primary mirror, and an array immediately after it. Optical fiber. The light reflected by the primary mirror is also reflected by the secondary mirror, and then passes through the through-hole of the primary mirror to reach the convex lens. The light that has passed through the concave lens passes through the through hole of the primary mirror and reaches the convex lens. The light of these two paths that has reached the convex lens becomes parallel light rays here, becomes image information incident on the optical fiber, and is sent to the CCD camera. In this way, the entire inner periphery of the tube is imaged. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-14292 (paragraph 0084-0100, FIG. 6)
[0004]
[Problems to be solved by the invention]
However, in the related art, when a wide-field imaging device is advanced into a tube to perform a visual inspection, the inspection time is generally long due to a long pipe length of a subject. In addition, if the moving speed of the wide-field imaging device is increased in order to shorten the inspection time, there is a problem that the blurring of the captured image increases.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and provides a wide-field imaging apparatus in which the blurring of an image is small and the inspection time is reduced even when the moving speed is increased.
[0006]
[Means for Solving the Problems]
A wide-field imaging apparatus according to the present invention includes a rotationally symmetric main mirror having an opening in the center and having a convex mirror surface, a rotationally symmetric sub mirror having an opening in the center opposite to the main mirror, and the sub mirror. A lens installed in the opening of the mirror, and reflected light reflected by the primary mirror in the direction of the secondary mirror, and then reflected by the secondary mirror in the direction of the primary mirror, and transmitted through the lens toward the primary mirror; An imaging device that captures an image by receiving incident light, an image information output unit for outputting image information from the imaging device to a display device, and the primary mirror, the secondary mirror, and the lens. The primary mirror has a first mirror surface radially outward and a second mirror surface radially inward with a gentler gradient than the first mirror surface, and a radius of curvature of the second mirror surface. Is smaller than the radius of curvature of the first mirror surface.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a main part sectional view for describing Embodiment 1 of a wide-field imaging device to which the present invention is applied. In FIG. 1, a rotationally symmetric main mirror 1 having a concave mirror surface having an opening at the center and a rotationally symmetric sub-mirror 2 facing the main mirror 1 and having an opening at the center are transparently supported. It is supported by an acrylic cover as the member 4. The primary mirror 1 and the secondary mirror 2 are rotationally symmetric with respect to a common rotational symmetry axis 7. A CCD camera as an imaging device 5 is provided in an opening of the main mirror 1, and a lens 3 is provided in an opening of the sub-mirror 2. The imaging device 5 includes reflected light reflected by the primary mirror 1 in the direction of the secondary mirror and then reflected by the secondary mirror 2 in the direction of the primary mirror opening, and incident light transmitted through the lens 3 and incident on the primary mirror opening. To capture an image.
[0008]
Here, the primary mirror 1 has a first mirror surface 1a on the outer side in the radial direction and a second mirror surface 1b on the inner side in the radial direction. The second mirror surface 1b has a gentler gradient as a mirror surface than the first mirror surface 1a. Further, the first mirror surface 1a and the second mirror surface 1b each have a radius of curvature since they are convex mirror surfaces. The boundary between the first mirror surface 1a and the second mirror surface 1b is both an inflection point of the gradient and an inflection point of the radius of curvature, and the radius of curvature of the second mirror surface 1b is smaller than the radius of curvature of the first mirror surface 1a. Shall be.
[0009]
When the rotational symmetry axis 7 as a reference (0 ° direction), the lens 3 is to transmit the incident light of the incident angle 0 ° through? 1. Similarly, the second mirror surface 1b of the primary mirror 1 reflects the incident light at the incident angles θ 1 to θ 2 toward the sub-mirror, and the first mirror surface 1a reflects the incident light at the incident angles θ 2 to θ 3. It reflects in the mirror direction. However, θ 2 <90 ° <θ 3 is satisfied.
[0010]
Further, the imaging device 5 is provided with, for example, a video information output terminal for outputting captured video information to the display device 6. Even when the subject has an electromagnetic wave shielding property like a metal, if predetermined wiring is connected to the video information output terminal, the video information is transmitted to the display device 6 in a wired manner. However, when the subject does not have an electromagnetic wave shielding property, a wireless system may be adopted.
[0011]
FIG. 2 is a schematic configuration diagram of the wide-field imaging device according to the present embodiment, and illustrates a state where the wide-field imaging device is inserted in a tube. In FIG. 2, an optical system including a primary mirror 1, a secondary mirror 2, and a lens 3 is mounted at the head of a traveling vehicle as a moving unit 8. The traveling vehicle 8 travels in the direction from the primary mirror 1 to the secondary mirror 2 at the time of imaging, and can adjust the moving speed by remote control of a motor and a brake. That is, the traveling vehicle 8 can be decelerated or stopped before the subject imaged via the second mirror surface 1b of the primary mirror 1 is imaged via the first mirror surface 1a.
[0012]
FIG. 3 is a schematic diagram of a display screen when a video image captured in this embodiment is displayed on the display device 6. On the display screen, a concentric annular image is displayed. Central video relates the field of view of lens 3 incident angle 0 ° through? 1, which is referred to as forward field of view image. The situation behind the tube can be visually recognized by the front-view video, and the wide-field imaging device can be advanced to the back. The ring-shaped image adjacent to the front view image relates to the field of view at the incident angles θ 1 to θ 2 by the second mirror surface 1b of the primary mirror 1 and is referred to as the oblique front view image. The outermost ring-shaped image relates to the field of view of the incident angles θ 2 to θ 3 by the first mirror surface 1a of the primary mirror 1 and is referred to as a side view image. The respective visual field ranges can be appropriately designed. For example, when θ 1 = 20 °, θ 2 = 70 °, and θ 3 = 110 °, the front visual field image, the oblique front visual field image, and the side visual field image are displayed in a well-balanced manner. .
[0013]
Here, assuming that the tube wall has, for example, a square pattern, the side view image is displayed in a substantially square shape as shown in FIG. 3, but the oblique forward view image is more radial than the side view image. Displayed as compressed in the direction. FIG. 4 shows the degree of image compression in the radial direction as a characteristic diagram relating to the incident angle and the distance from the center of the annular image. The difference in the degree of compression in the radial direction between the oblique front view image and the side view image is that the degree of compression in the radial direction of the image is related to the radius of curvature of the convex mirror surface, and the second mirror surface 1b This is because the radius of curvature is smaller than the radius of curvature of the first mirror surface 1a.
[0014]
When the wide-field imaging device advances in the depth direction of the tube, the display image changes as the visual field moves. Here, the unit velocity vectors of the oblique forward visual field and the lateral visual field on the display screen are proportional to the degree of compression in the radial direction of the image displayed as indicated by the arrow in FIG. That is, when the wide-field imaging device is advanced at an arbitrary speed, the oblique front-view video has a smaller degree of change and less blur than the side-view video.
[0015]
For this reason, since the blur is small in the oblique forward visual field image, the situation of the tube wall can be visually recognized even if the moving speed of the wide visual field imaging device is increased. Therefore, if an abnormal search for the tube wall is performed using the obliquely forward visual field image, it is possible to shorten the abnormal search time and, consequently, the inspection time.
[0016]
In addition, a suspicious abnormal spot found in the oblique front view image is inspected in detail using the side view image. In other words, by using the oblique front view image with small blur, the moving speed of the wide view image device is increased to shorten the inspection time, and the suspicious abnormal spots found in the oblique front view image have a high resolution side view image. Therefore, even if the inspection time is shortened, the inspection accuracy does not decrease. More preferably, the wide-field imaging device is decelerated or stopped by the moving speed adjusting function of the traveling vehicle 8 in order to suppress the blur of the side-view image when performing a detailed inspection with the side-view image. For example, when a suspicious abnormal location is found in the direction of the incident angle of 60 °, the inspection proceeds in detail while adjusting the speed of the wide-field imaging device until the suspicious abnormal location is reflected in the direction of the incident angle of 90 °. As described above, since the abnormal search is performed using the oblique forward visual field image in the traveling direction and the detailed inspection is performed using the side visual field image, a smooth visual inspection can be performed without retreating the wide-field imaging device.
[0017]
The radius of curvature of the second mirror surface 1b of the primary mirror 1 is preferably about half to one third of the radius of curvature of the first mirror surface 1a. Within this range, an image suitable for an abnormal search can be obtained without excessively compressing the oblique front view image.
[0018]
Note that, at the boundary between the first mirror surface 1a and the second mirror surface 1b, the gradient of the mirror surface may be continuously changed so that the oblique forward visual field image and the side visual field image are smoothly connected. Further, assuming that the inside of the tube is dark, it is possible to appropriately provide illumination to the wide-field imaging device and to convert concentric annular images obtained by the wide-field imaging device into rectangular images. When the image is converted to a rectangular image, distortion of the aspect ratio of the subject can be reduced over the entire image.
[0019]
Embodiment 2 FIG.
FIG. 5 is a schematic diagram of an annular image displayed on a display screen for explaining the second embodiment. In this embodiment, the aspect ratio of the subject is accurately displayed for the image in the direction of the incident angle of 90 ° among the side view images in the first embodiment. In an annular image, the radius of the circle is the incident angle theta 2 direction reflected L 2, the radius of a circle the angle of incidence 90 ° direction reflected L 90, the radius of the circle is the incident angle theta 3 direction reflected and L 3. Also, θ 2 = 90 ° −α and θ 3 = 90 ° + β. A point on the circle which is the incident angle theta 2 direction reflected, B is a point on a circle is the incident angle theta 3 direction reflected, AB denotes a radial length difference incidence angle is α + β, AB = L 3 is a -L 2. C and D are points on a circle reflecting the direction of the incident angle of 90 °, CD is a circumferential length corresponding to the angle α + β out of 360 ° around the main mirror diameter, and CD = 2πL 90 (α + β) / 360 °.
[0020]
In order to accurately display the aspect ratio of a subject without distortion for an image in the direction of the incident angle of 90 °, the line segment AB and the line segment CD may be equal. Therefore, equation (1) holds.
[0021]
(Equation 1)
Figure 2004312593
[0022]
Also, as shown in FIG. 6, when the length L from the center of the toric image to the subject and the incident angle θ of the incident light from the subject are in a proportional relationship, the expression (2) is established.
[0023]
(Equation 2)
Figure 2004312593
[0024]
Substituting equation (2) into equation (1) and rearranging yields equation (3). Than this, the ratio of L 2 and L 3 is as in (4) below.
[0025]
[Equation 3]
Figure 2004312593
[0026]
(Equation 4)
Figure 2004312593
[0027]
In this manner, by forming the inner diameter L 2 and the outer diameter L 3 of the first mirror surface 1a, the incidence angle 90 ° direction of the video out of the side view image can accurately display the aspect ratio of the object. Therefore, in this embodiment, it is possible to accurately grasp the shape of the suspicious abnormal portion displayed in the side view video.
[0028]
Embodiment 3 FIG.
FIG. 7 is a schematic configuration diagram of a wide-field imaging device for describing Embodiment 3, and illustrates a state in which the wide-field imaging device is inserted in a tube. In this embodiment, the aspect ratio of a subject is accurately displayed for an image in a direction of an incident angle of 90 ° in a side view image by a method different from that of the second embodiment. Furthermore, the ratio of the length of the subject in the lateral visual field image on the display screen is accurately displayed in the radial direction.
[0029]
In FIG. 7, r is the inner radius of the tube, and D is an arbitrary distance on the inner wall of the tube in the traveling direction of the wide-field imaging device with the direction of the incident angle of 90 ° of the incident light as the origin. As shown in FIG. 8, if the distance D and the length L from the center of the image to the subject are in a proportional relationship, the expression (5) is established. At this time, since D = 0 in the direction of the incident angle of 90 °, L 90 is represented by the equation (6).
[0030]
(Equation 5)
Figure 2004312593
[0031]
(Equation 6)
Figure 2004312593
[0032]
Here, for obtaining the ratio of the inner diameter L 2 and the outer diameter L 3 of the first mirror surface 1a when the aspect ratio of the image of the incident angle of 90 ° direction is correctly displayed, the expression (6) (1) to By substituting and substituting, equation (7) is obtained. Than this, the ratio of L 2 and L 3 is as in (8).
[0033]
(Equation 7)
Figure 2004312593
[0034]
(Equation 8)
Figure 2004312593
[0035]
By forming the shape of the primary mirror so that this relationship is satisfied, the ratio of the length of the subject in the image of the inner wall of the tube can be accurately displayed in the radial direction on the display screen, and the angle of incidence at the 90 ° direction can be displayed. The aspect ratio of the subject can also be displayed accurately. Therefore, in this embodiment, in addition to being able to accurately grasp the shape of the suspicious abnormal portion displayed on the side view image, for example, when a plurality of suspicious abnormal portions are displayed on the side view image, each suspected abnormal portion is displayed. The size of the abnormal part can be compared.
[0036]
【The invention's effect】
According to the present invention, even when the moving speed of the wide-field imaging device is increased, an abnormal search for the subject can be performed using the oblique front-view image with small blur, so that the inspection time can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part for describing Embodiment 1.
FIG. 2 is a schematic configuration diagram for explaining Embodiment 1.
FIG. 3 is a schematic diagram of a display screen for explaining Embodiment 1;
FIG. 4 is a characteristic diagram for explaining the first embodiment;
FIG. 5 is a schematic diagram of a display screen for explaining Embodiment 2;
FIG. 6 is a characteristic diagram for explaining the second embodiment.
FIG. 7 is a schematic configuration diagram for explaining Embodiment 3;
FIG. 8 is a characteristic diagram for explaining the third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Primary mirror, 1a 1st mirror surface, 1b 2nd mirror surface, 2 sub mirrors, 3 lenses, 4 support members, 5 imaging devices, 6 display devices, 7 rotational symmetry axis, 8 moving means.

Claims (3)

中央に開口部を有し凸鏡面からなる回転対称形状の主鏡と、前記主鏡と対向し中央に開口部を有する回転対称形状の副鏡と、前記副鏡の開口部に設置されたレンズと、前記主鏡によって副鏡方向へ反射されたのち前記副鏡によって主鏡開口部方向へ反射された反射光と前記レンズを透過し主鏡開口部方向へ入射した入射光とを受光することにより撮像する撮像装置と、撮像装置からの映像情報を表示装置に向けて出力するための映像情報出力手段と、前記主鏡と前記副鏡と前記レンズとを搭載した移動手段とを備え、前記主鏡は動径方向外側の第1鏡面と前記第1鏡面より勾配が緩やかな動径方向内側の第2鏡面とを有し、前記第2鏡面の曲率半径は前記第1鏡面の曲率半径に比べて小さいことを特徴とする広視野撮像装置。A rotationally symmetrical primary mirror having an opening at the center and comprising a convex mirror surface, a rotationally symmetrical secondary mirror facing the primary mirror and having an opening at the center, and a lens installed at the opening of the secondary mirror Receiving reflected light reflected by the primary mirror toward the secondary mirror and then reflected by the secondary mirror toward the primary mirror opening, and incident light transmitted through the lens and incident toward the primary mirror opening. An imaging device for capturing an image by the imaging device, a video information output unit for outputting video information from the imaging device to a display device, and a moving unit equipped with the primary mirror, the secondary mirror, and the lens, The primary mirror has a first mirror surface on the outer side in the radial direction and a second mirror surface on the inner side in the radial direction having a gentler gradient than the first mirror surface, and the radius of curvature of the second mirror surface is equal to the radius of curvature of the first mirror surface. A wide-field imaging device characterized by being smaller than that. 前記移動手段は、撮像時において前記主鏡から前記副鏡に向かう方向に進行し、前記第2鏡面を介して撮像された被写体が前記第1鏡面を介して撮像されるまでの間に減速または停止できることを特徴とする請求項1記載の広視野撮像装置。The moving means travels in a direction from the primary mirror to the secondary mirror at the time of imaging, and decelerates or moves until the subject imaged via the second mirror surface is imaged via the first mirror surface. The wide-field imaging device according to claim 1, wherein the device can be stopped. 前記第1鏡面は、前記撮像装置によって撮像された映像のうち入射角90度方向の映像における主鏡径の単位角度あたりの円周上長さと入射光の前記単位角度あたりの動径方向長さとが等しくなるように形成されたことを特徴とする請求項1記載の広視野撮像装置。The first mirror surface has a circumferential length per unit angle of a main mirror diameter and a radial length per unit angle of incident light in an image in a direction of an incident angle of 90 degrees among images captured by the imaging device. 2. The wide-field imaging device according to claim 1, wherein the widths are equal to each other.
JP2003106331A 2003-04-10 2003-04-10 Wide-field imaging device Expired - Lifetime JP3941730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106331A JP3941730B2 (en) 2003-04-10 2003-04-10 Wide-field imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106331A JP3941730B2 (en) 2003-04-10 2003-04-10 Wide-field imaging device

Publications (2)

Publication Number Publication Date
JP2004312593A true JP2004312593A (en) 2004-11-04
JP3941730B2 JP3941730B2 (en) 2007-07-04

Family

ID=33468553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106331A Expired - Lifetime JP3941730B2 (en) 2003-04-10 2003-04-10 Wide-field imaging device

Country Status (1)

Country Link
JP (1) JP3941730B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041332A1 (en) * 2007-09-27 2009-04-02 Olympus Corp. Optical system and endoscope using same
CN102057311A (en) * 2009-04-06 2011-05-11 松下电器产业株式会社 Light-emitting system and imaging device
JP2012055561A (en) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp Endoscope
WO2013085125A1 (en) * 2011-12-09 2013-06-13 Lee Jeonghwan Omnidirectional camera lens
RU2505843C1 (en) * 2012-07-26 2014-01-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" Double-channel space telescope for simultaneous observation of earth and stars with image spectral spreading
RU2505844C2 (en) * 2012-03-30 2014-01-27 Открытое акционерное общество "Научно-исследовательский институт телевидения" Method of forming images of different fields of view
CN104434001A (en) * 2014-11-18 2015-03-25 中国科学院半导体研究所 Monocular endoscope system based on omnibearing three-dimensional stereovision
US9427140B2 (en) 2008-11-14 2016-08-30 Olympus Corporation Optical system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041332A1 (en) * 2007-09-27 2009-04-02 Olympus Corp. Optical system and endoscope using same
US9427140B2 (en) 2008-11-14 2016-08-30 Olympus Corporation Optical system
CN102057311A (en) * 2009-04-06 2011-05-11 松下电器产业株式会社 Light-emitting system and imaging device
US8503109B2 (en) 2009-04-06 2013-08-06 Panasonic Corporation Optical system and imaging device
JP2012055561A (en) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp Endoscope
WO2013085125A1 (en) * 2011-12-09 2013-06-13 Lee Jeonghwan Omnidirectional camera lens
RU2505844C2 (en) * 2012-03-30 2014-01-27 Открытое акционерное общество "Научно-исследовательский институт телевидения" Method of forming images of different fields of view
RU2505843C1 (en) * 2012-07-26 2014-01-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" Double-channel space telescope for simultaneous observation of earth and stars with image spectral spreading
CN104434001A (en) * 2014-11-18 2015-03-25 中国科学院半导体研究所 Monocular endoscope system based on omnibearing three-dimensional stereovision

Also Published As

Publication number Publication date
JP3941730B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
JP4990630B2 (en) Surface inspection apparatus and surface inspection method
JP3549898B2 (en) Wide angle image forming system and method
JPH10186462A (en) Device for picking up image of internal surface
CN103018883A (en) Optical element, imaging lens unit, image pickup apparatus
JP2007057305A (en) Internal inspection device of cylinder
JP3941730B2 (en) Wide-field imaging device
US8456762B2 (en) Observation optical system
US6003998A (en) System and method for panoramic imaging using concentric spherical mirrors
KR100657226B1 (en) Method and device for a forward side simultaneous image output of in-pipe
JP2006506925A5 (en)
KR101436232B1 (en) Optical Lens System and Imaging Device Using the Same.
JP3631718B2 (en) Optical device
JP2000322564A (en) Omnidirectional visual sensor
JP2000004383A (en) Multidirectional image taking-in device
JPH0570101B2 (en)
JP3872250B2 (en) Wide angle imaging device
JP2010087996A (en) Imaging apparatus
JPH06241760A (en) Cylinder inner face state inspection camera device
JP4325910B2 (en) Appearance image developing mirror device and appearance image automatic inspection system
JP7240060B1 (en) Appearance inspection device for long objects
JP2004309568A (en) Omnidirectional photographing device
CN215067516U (en) Endoscope and endoscopic detection system
JPH04309834A (en) Lens inspection device
CN109698897A (en) The All-in-One optical system of dynamic zoom lens
JP2009198345A (en) Method and apparatus for measuring in-bore shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R151 Written notification of patent or utility model registration

Ref document number: 3941730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250