JP2007057305A - Internal inspection device of cylinder - Google Patents

Internal inspection device of cylinder Download PDF

Info

Publication number
JP2007057305A
JP2007057305A JP2005240938A JP2005240938A JP2007057305A JP 2007057305 A JP2007057305 A JP 2007057305A JP 2005240938 A JP2005240938 A JP 2005240938A JP 2005240938 A JP2005240938 A JP 2005240938A JP 2007057305 A JP2007057305 A JP 2007057305A
Authority
JP
Japan
Prior art keywords
cylinder
conical mirror
optical system
wall
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005240938A
Other languages
Japanese (ja)
Inventor
Norio Furubayashi
寛夫 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Priority to JP2005240938A priority Critical patent/JP2007057305A/en
Publication of JP2007057305A publication Critical patent/JP2007057305A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To take in a stable image by eccentrically arranging the center axis of a conical mirror, the optical axis of an optical system and the center axis of a cylinder. <P>SOLUTION: In this internal inspection device of the cylinder equipped with the conical mirror 1 installed in the cylinder 8 being an inspection target and reflecting the image of the inner wall 9 of the cylinder 8 to convert the same to parallel light advancing in the axial direction of the cylinder 8 and the optical system 4 for forming the parallel light obtained by the conical mirror 1 into an image to form the photographed image data of the inner wall 9 of the cylinder 8, the center axis 5 of the conical mirror 1 and the optical axis 6 of the optical system 4 are allowed to match each other while the center axis 7 of the cylinder 8 is eccentrically installed with respect to the center axis 5 of the conical mirror 1 and the optical axis 6 of the optical system 4, and the cylinder 8 is rotated in its peripheral direction to photograph the inner wall 9 to inspect its state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は筒内検査装置に関し、特に、鏡や光学系のレンズやカメラを用いて筒内の状態検査をするための筒内検査装置に関する。   The present invention relates to an in-cylinder inspection apparatus, and more particularly to an in-cylinder inspection apparatus for inspecting an in-cylinder state using a mirror, a lens of an optical system, or a camera.

図4は従来の装置を示す図であり、図4(a)はカメラの配置状態を示した説明図、図4(b)は、円筒8の内壁9を円筒8の軸方向から見た図である。図4に示すように、従来の装置は、円錐形鏡1と光学系4とを備えている。光学系4は、レンズ系2と撮像素子から成るカメラ3とから構成されている。図4において、5は円錐形鏡1の中心軸、6はレンズ系2とカメラ3とからなる光学系4の光軸、7は円筒8の中心軸である。このように構成された従来の装置は、円筒8内に設置されて、円筒8の内壁9の状態検査を行う。   FIG. 4 is a view showing a conventional apparatus, FIG. 4 (a) is an explanatory view showing an arrangement state of the camera, and FIG. 4 (b) is a view of the inner wall 9 of the cylinder 8 seen from the axial direction of the cylinder 8. It is. As shown in FIG. 4, the conventional apparatus includes a conical mirror 1 and an optical system 4. The optical system 4 includes a lens system 2 and a camera 3 including an image sensor. In FIG. 4, 5 is the central axis of the conical mirror 1, 6 is the optical axis of the optical system 4 composed of the lens system 2 and the camera 3, and 7 is the central axis of the cylinder 8. The conventional apparatus configured as described above is installed in the cylinder 8 and inspects the state of the inner wall 9 of the cylinder 8.

次に動作について説明する。円筒8の内壁9を検査する場合、画像の情報は、円錐形鏡1およびレンズ系2を経て、カメラ3の撮像素子に結像する。レンズ系2とカメラ3とから成る光学系4の光軸6は、円錐形鏡1の中心軸5と一致するように配置されており、また、この一致させた2つの軸は、円筒8の中心軸7と一致するように配置されている。また、画像は円筒8の内壁9を周方向に円形輪切りした状態となっており、円錐形鏡1と光学系4とを一体化した装置を円筒8の中心軸7に沿って移動させると、連続した輪切りの映像信号を得ることができ、円筒8の内壁9が検査できる。   Next, the operation will be described. When the inner wall 9 of the cylinder 8 is inspected, the image information is imaged on the image sensor of the camera 3 through the conical mirror 1 and the lens system 2. The optical axis 6 of the optical system 4 composed of the lens system 2 and the camera 3 is arranged so as to coincide with the central axis 5 of the conical mirror 1, and these two coincident axes are They are arranged so as to coincide with the central axis 7. Further, the image is in a state where the inner wall 9 of the cylinder 8 is circularly cut in the circumferential direction, and when the device in which the conical mirror 1 and the optical system 4 are integrated is moved along the central axis 7 of the cylinder 8, A continuous circular image signal can be obtained, and the inner wall 9 of the cylinder 8 can be inspected.

特開平6−241760号公報JP-A-6-241760

従来の装置は以上のように構成されているので、円錐形鏡1の中心軸5と光学系4の光軸6とを一致させ、この一致させた2つの軸を円筒8の中心軸7の軸方向に精度良く合致させる必要がある。   Since the conventional apparatus is configured as described above, the central axis 5 of the conical mirror 1 and the optical axis 6 of the optical system 4 are made to coincide with each other, and these two coincident axes are connected to the central axis 7 of the cylinder 8. It is necessary to match the axial direction with high accuracy.

図5について説明する。このような画像による検査の場合はその目的から高い分解能が求められるため、円筒8の内壁9の径に近接し、被写体距離の短い光学系4が用いられる。その結果、被写界深度10は浅いものとなっている。なお、ここで、被写界深度とは、レンズの先端から対象物までの距離が多少前後にずれてもピントが合っている許容範囲のことである。すなわち、被写界深度10内であればピントが合って撮影を行うことができる。一般に、対象物までの距離が長いほど深度が深くなる性質がある。ところが、図5(a)に示すように、円筒8の中心軸7が、円錐形鏡1の中心軸5および光学系4の光軸6からずれると、被写界深度10が浅いことから、図中のα、βの部分では、被写界深度10から外れたピントが合わない領域があり、検査の目的が果たせないという問題点があった。   FIG. 5 will be described. In the case of such an inspection using an image, high resolution is required for that purpose, and therefore the optical system 4 that is close to the diameter of the inner wall 9 of the cylinder 8 and has a short subject distance is used. As a result, the depth of field 10 is shallow. Here, the depth of field is an allowable range that is in focus even if the distance from the front end of the lens to the object is slightly shifted back and forth. That is, if the depth of field is within 10, it is possible to focus and take a picture. Generally, the longer the distance to the object, the deeper the depth. However, as shown in FIG. 5A, when the center axis 7 of the cylinder 8 is shifted from the center axis 5 of the conical mirror 1 and the optical axis 6 of the optical system 4, the depth of field 10 is shallow. In the portions α and β in the figure, there is a region out of focus that is out of the depth of field 10, and there is a problem that the purpose of the inspection cannot be achieved.

さらに、円筒8の内壁9の大きさは常に一定ではないので、円筒8の内壁9の径が異なる場合の検査には、図5(b)、図5(c)および図5(d)に示すように、そのたびごとに円筒8の内壁9の径に合わせた被写体距離の異なる光学系4を使い分けなければならないなどの問題点があった。   Further, since the size of the inner wall 9 of the cylinder 8 is not always constant, the inspection in the case where the diameter of the inner wall 9 of the cylinder 8 is different is shown in FIGS. 5 (b), 5 (c) and 5 (d). As shown, there is a problem in that the optical systems 4 having different subject distances corresponding to the diameter of the inner wall 9 of the cylinder 8 must be used for each time.

この発明はかかる問題点を解決するためになされたものであり、円錐形鏡の中心軸および光学系の光軸とを一致させ、筒の中心軸と偏心して配置することにより、安定した画像を取り込むことができる筒内検査装置を得ることを目的とする。   The present invention has been made to solve such a problem, and by aligning the central axis of the conical mirror and the optical axis of the optical system and decentering the central axis of the cylinder, a stable image can be obtained. It is an object to obtain an in-cylinder inspection device that can be loaded.

この発明は、検査対象の筒内に設置されて、前記筒の内壁を映し、得られた画像を反射させて前記筒の軸方向に直進する平行光線に変換する円錐形鏡と、前記円錐形鏡により得られる前記平行光線による画像を結像させて、前記筒の内壁の撮影画像データを生成する光学系とを備え、前記円錐形鏡の中心軸と前記光学系の光軸とを一致させ、前記筒の中心軸を、前記円錐形鏡の中心軸及び前記光学系の光軸に対して偏心させた筒内検査装置である。   The present invention provides a conical mirror that is installed in a cylinder to be inspected, reflects the inner wall of the cylinder, reflects the obtained image, and converts it into parallel rays that go straight in the axial direction of the cylinder, and the cone And an optical system that forms an image of the inner wall of the cylinder by forming an image of the parallel rays obtained by a mirror, and makes the central axis of the conical mirror coincide with the optical axis of the optical system In-cylinder inspection apparatus in which the central axis of the cylinder is decentered with respect to the central axis of the conical mirror and the optical axis of the optical system.

この発明は、検査対象の筒内に設置されて、前記筒の内壁を映し、得られた画像を反射させて前記筒の軸方向に直進する平行光線に変換する円錐形鏡と、前記円錐形鏡により得られる前記平行光線による画像を結像させて、前記筒の内壁の撮影画像データを生成する光学系とを備え、前記円錐形鏡の中心軸と前記光学系の光軸とを一致させ、前記筒の中心軸を、前記円錐形鏡の中心軸及び前記光学系の光軸に対して偏心させた筒内検査装置であるので、円錐形鏡の中心軸および光学系の光軸と筒の中心軸とを偏心して配置することにより、安定した画像を取り込むことができる。   The present invention provides a conical mirror that is installed in a cylinder to be inspected, reflects the inner wall of the cylinder, reflects the obtained image, and converts it into parallel rays that go straight in the axial direction of the cylinder, and the cone And an optical system that forms an image of the inner wall of the cylinder by forming an image of the parallel rays obtained by a mirror, and makes the central axis of the conical mirror coincide with the optical axis of the optical system Since the in-cylinder inspection device has the center axis of the cylinder decentered with respect to the center axis of the conical mirror and the optical axis of the optical system, the center axis of the conical mirror and the optical axis and cylinder of the optical system A stable image can be captured by disposing the center axis of the lens in an eccentric manner.

実施の形態1.
以下、この発明の実施の形態1に係る筒内検査装置について図1に基づいて説明する。図1(a)は本実施の形態1に係る筒内検査装置の構成を円筒8の所定の周方向から見た透視図であり、図1(b)は円筒8の内壁9を円筒8の軸方向から見た図である。図1に示すように、本実施の形態1に係る筒内検査装置は、円錐形鏡1と光学系4とを備えて、例えば円筒8等の検査対象の筒内に設置されて、当該筒内の状態検査をする装置である。光学系4は、円錐形鏡1からの平行光線を集光するためのレンズ系2と、撮像素子からなるカメラ3とから構成されている。また、本実施の形態1に係る筒内検査装置には、円筒8を周方向に回転させるための回転手段11が設けられている。回転手段11は、円筒8の径方向への大きさの調整が可能なように構成されており、円筒8の外径(または内壁径)の大きさに合わせて調節してセットすることができるので、設計範囲内であればどんな大きさの筒でも対応可能であるので、内壁の径の大きさが異なる筒の検査が容易に可能である。回転手段11は手動で駆動させて円筒8を回転させるようにしてもよいが、モータ等の駆動手段(図示せず)を設けて、それにより一定速度または可変速度に駆動させるようにしてもよい。なお、図1において、5は円錐形鏡1の中心軸、6はレンズ系2とカメラ3とから成る光学系4の光軸、7は円筒8の中心軸である。
Embodiment 1 FIG.
Hereinafter, an in-cylinder inspection apparatus according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1A is a perspective view of the configuration of the in-cylinder inspection apparatus according to the first embodiment viewed from a predetermined circumferential direction of the cylinder 8, and FIG. 1B is a perspective view of the inner wall 9 of the cylinder 8. It is the figure seen from the axial direction. As shown in FIG. 1, the in-cylinder inspection apparatus according to the first embodiment includes a conical mirror 1 and an optical system 4, and is installed in a cylinder to be inspected, such as a cylinder 8, for example. It is a device that checks the condition inside. The optical system 4 includes a lens system 2 for condensing parallel rays from the conical mirror 1 and a camera 3 including an image sensor. Further, the in-cylinder inspection apparatus according to the first embodiment is provided with a rotating means 11 for rotating the cylinder 8 in the circumferential direction. The rotating means 11 is configured such that the size of the cylinder 8 in the radial direction can be adjusted, and can be adjusted and set according to the size of the outer diameter (or inner wall diameter) of the cylinder 8. Therefore, any size cylinder can be used as long as it is within the design range. Therefore, it is possible to easily inspect cylinders having different inner wall diameters. The rotating means 11 may be driven manually to rotate the cylinder 8, but a driving means (not shown) such as a motor may be provided to drive the cylinder 8 at a constant speed or a variable speed. . In FIG. 1, 5 is the central axis of the conical mirror 1, 6 is the optical axis of the optical system 4 composed of the lens system 2 and the camera 3, and 7 is the central axis of the cylinder 8.

本実施の形態1においては、レンズ系2とカメラ3とから成る光学系4の光軸6は、円錐形鏡1の中心軸5と一致するように配置されている。一方、円筒8の中心軸7は、これらの一致するように配置されている光軸6および中心軸5に対して、偏心して配置されている。ここで、偏心とは、互いに軸が一致(合致)してはいないが、平行な状態のことをいう。なお、円錐形鏡1と光学系4とは一体化して組立てられ、円錐形鏡1の中心軸5と光学系4の光軸6とは製造工程において一致するように設置されるので、ユーザが設定する必要はないのでユーザの手間がかかることがない。また、必要に応じて、微調整が可能なように、ダイヤル式等の微調整手段(図示省略)を設けておいて、円錐形鏡1の中心軸5と光学系4の光軸6とが万一ずれてしまったときのみにユーザが調節するようにしてもよい。また、本実施の形態1においては、円錐形鏡1の中心軸5と光学系4の光軸6に対して、円筒8の中心軸7を偏心して設置するようにしたので、従来においてはずれないように精度高くこれらの軸を一致させる必要があったが、本実施の形態1においては、そのような高い精度が要求される手間がユーザに要求されることなく、扱いが容易で利便性に優れている。   In the first embodiment, the optical axis 6 of the optical system 4 including the lens system 2 and the camera 3 is disposed so as to coincide with the central axis 5 of the conical mirror 1. On the other hand, the central axis 7 of the cylinder 8 is arranged eccentrically with respect to the optical axis 6 and the central axis 5 that are arranged so as to coincide with each other. Here, eccentricity means a state in which axes are not coincident with each other but are in parallel. The conical mirror 1 and the optical system 4 are assembled and integrated, and the central axis 5 of the conical mirror 1 and the optical axis 6 of the optical system 4 are installed so as to coincide with each other in the manufacturing process. Since there is no need to set, there is no need for the user. Further, if necessary, fine adjustment means (not shown) such as a dial type is provided so that fine adjustment is possible, and the central axis 5 of the conical mirror 1 and the optical axis 6 of the optical system 4 are arranged. The user may make adjustments only when they have shifted. In the first embodiment, since the central axis 7 of the cylinder 8 is eccentrically set with respect to the central axis 5 of the conical mirror 1 and the optical axis 6 of the optical system 4, it does not deviate conventionally. In the first embodiment, it is necessary to match these axes with high accuracy. However, in the first embodiment, the user is not required to have the trouble of requiring such high accuracy, and the handling is easy and convenient. Are better.

円錐形鏡1は、例えば、円錐体の側面がメタルメッキされて鏡状になっており、頂角が90度のものが望ましい。図1(c)に示すように、円錐形鏡1の側面に円筒8の内壁9が映し出され、そうして得られた内壁9の画像が円錐形鏡1の側面で反射されて、円筒8の軸方向に直進する平行光線に変換される。当該平行光線はレンズ2により集光され、カメラ3の撮像素子により結像されて電気信号に変換される。このようにして得られた電気信号による内壁9の撮影画像データを必要に応じて表示し、それに基づいて、被写体であるトンネルの内壁や水道管の内壁等の状態を検出および分析して、ひび割れや腐食などの発生があるか否か等の検査を行うことができる。なお、当該撮影画像データをコンピュータのディスプレイ等の表示手段に表示してユーザが目視により内壁の状態を検出するようにしてもよいが、コンピュータに予めひび割れや腐食を検出するための基準値を設定しておいて、撮影画像データの中から当該基準値以上になっている箇所があるか否かを自動検出して、検出結果を表示手段に表示するようにしてもよい。   For example, the conical mirror 1 is preferably a mirror having a side surface of a cone that is metal-plated and having a vertex angle of 90 degrees. As shown in FIG. 1 (c), the inner wall 9 of the cylinder 8 is projected on the side surface of the conical mirror 1, and the image of the inner wall 9 obtained in this way is reflected on the side surface of the conical mirror 1, so that the cylinder 8 It is converted into parallel rays that go straight in the axial direction. The parallel rays are collected by the lens 2, imaged by the image pickup device of the camera 3, and converted into an electric signal. The captured image data of the inner wall 9 based on the electrical signal obtained in this way is displayed as necessary, and based on this, the state of the inner wall of the tunnel or the water pipe as the subject is detected and analyzed, and cracks are detected. It is possible to inspect whether or not there is occurrence of corrosion or corrosion. The photographed image data may be displayed on a display means such as a computer display so that the user can visually detect the state of the inner wall. However, a reference value for detecting cracks and corrosion is set in the computer in advance. In addition, it is possible to automatically detect whether or not there is a portion that is equal to or greater than the reference value in the captured image data, and display the detection result on the display means.

次に、本実施の形態1に係る筒内検査装置の動作について説明する。図2(a)および(b)は、同じ内壁径の場合の動作説明図である。なお、図2において、10は被写界深度であり、被写界深度10内においては被写体である円筒8の内壁9にピントが合って精度の高い安定した画像を取り込むことができる。なお、ここで、被写界深度とは、上述したように、レンズの先端から対象物までの距離が多少前後にずれてもピントが合っている許容範囲のことである。一般に、対象物までの距離が長いほど深度が深くなる性質がある。本発明においては、その目的から高い分解能が求められるため、円筒8の内壁9の径に近接し、被写体距離の短い光学系4が用いられるため、下記のいずれの場合においても、被写界深度10は比較的浅いものとなる。   Next, the operation of the in-cylinder inspection device according to the first embodiment will be described. 2 (a) and 2 (b) are operation explanatory diagrams in the case of the same inner wall diameter. In FIG. 2, reference numeral 10 denotes a depth of field. Within the depth of field 10, a stable image with high accuracy can be captured by focusing on the inner wall 9 of the cylinder 8 that is a subject. Here, as described above, the depth of field is an allowable range that is in focus even if the distance from the tip of the lens to the object is slightly shifted back and forth. Generally, the longer the distance to the object, the deeper the depth. In the present invention, since a high resolution is required for that purpose, the optical system 4 that is close to the diameter of the inner wall 9 of the cylinder 8 and has a short subject distance is used. Therefore, in any of the following cases, the depth of field 10 is relatively shallow.

図2(a)は、円筒8の内壁9の径に比して被写体距離が短い場合を示したものであり、円錐形鏡1の中心軸5と光学系4の光軸6とは一致するように設置されているが、円筒の中心軸7は、それらの中心軸5および光軸6に対して偏心させて設置されている。図2(a)の場合は、図中のθ2aの範囲でピントが合うので、円筒8を周方向に回転させることにより、全周にわたって円形帯状の内壁9の画像を取り込むことが出来、また、円筒8の軸方向に移動させることにより、円筒8の内壁9の全てを検査することが出来る。 FIG. 2A shows a case where the subject distance is shorter than the diameter of the inner wall 9 of the cylinder 8, and the central axis 5 of the conical mirror 1 coincides with the optical axis 6 of the optical system 4. However, the central axis 7 of the cylinder is eccentric with respect to the central axis 5 and the optical axis 6. In the case of FIG. 2A, since the focus is in the range of θ 2a in the figure, the image of the circular belt-like inner wall 9 can be captured over the entire circumference by rotating the cylinder 8 in the circumferential direction. By moving the cylinder 8 in the axial direction, the entire inner wall 9 of the cylinder 8 can be inspected.

図2(b)は、円筒8の内壁9の径に比して被写体距離が長い場合を示したものであり、図2(a)と同様に、円錐形鏡1の中心軸5と光学系4の光軸6とは一致するように設置されているが、円筒8の中心軸7は、それらの中心軸5および光軸6に対して偏心させて設置されている。図2(b)の場合は、図中のθ2bの範囲でピントが合うので、円筒8を周方向に回転させることにより、全周にわたって円形帯状の内壁9の画像を取り込むことが出来、また、円筒8の軸方向に移動させることにより、円筒8の内壁9の全てを検査することが出来、図2(a)の場合と同様の効果を奏する。 FIG. 2B shows a case where the subject distance is longer than the diameter of the inner wall 9 of the cylinder 8, and as in FIG. 2A, the central axis 5 of the conical mirror 1 and the optical system. However, the center axis 7 of the cylinder 8 is installed eccentrically with respect to the center axis 5 and the optical axis 6. In the case of FIG. 2B, since the focus is in the range of θ 2b in the figure, by rotating the cylinder 8 in the circumferential direction, an image of the circular inner wall 9 can be captured over the entire circumference. By moving the cylinder 8 in the axial direction, the entire inner wall 9 of the cylinder 8 can be inspected, and the same effect as in the case of FIG.

なお、このようにして得られた内壁9の撮影画像データは、コンピュータ内で、自動的に結合されて、全周にわたる画像が連続した1枚の画像になるように処理される。これにより、ユーザは、内壁9のどこにひび割れや腐食等の異常が発生しているかを容易に特定することができる。   The captured image data of the inner wall 9 obtained in this way is automatically combined in the computer and processed so that the image over the entire circumference becomes one continuous image. Thereby, the user can easily identify where an abnormality such as cracking or corrosion has occurred in the inner wall 9.

図3は、同一被写体距離の光学系の場合の動作説明図である。
図3(a)は、被写体距離に比し円筒8の内壁9の径が大きい場合で図中のθ3aの範囲でピントが合い、図3(b)は被写体距離に円筒8の内壁9の径が合っている場合で全周にわたってピントが合い、図3(c)は被写体距離に比し円筒8の内壁9の径が小さい場合で図中のθ3cの範囲でピントが合うので、同一の円錐形鏡1と光学系4とで、全ての異なる径の円筒8の内壁9を検査することができ、図2の場合と同様の効果を奏する。
FIG. 3 is an operation explanatory diagram in the case of an optical system having the same subject distance.
FIG. 3A shows a case where the diameter of the inner wall 9 of the cylinder 8 is larger than the subject distance, and the focus is in the range of θ 3a in the figure. FIG. 3B shows the subject distance of the inner wall 9 of the cylinder 8. In the case where the diameter is the same, the entire periphery is in focus, and FIG. 3C is the same because the diameter of the inner wall 9 of the cylinder 8 is smaller than the subject distance, and the focus is in the range of θ 3c in the figure. The conical mirror 1 and the optical system 4 can inspect the inner walls 9 of the cylinders 8 having different diameters, and the same effect as in the case of FIG.

以上のように、この発明の実施の形態1によれば、円錐形鏡1の中心軸5と光学系4の光軸6とを一致するように設置し、これらの2つの軸5および6と円筒8の中心軸7とを偏心させて配置し、円筒8を回転するように構成したので、円筒8の径の大きさに拠らず、同一の円錐形鏡1と光学系とにより径の異なる全ての円筒8の内壁9を検査することができるので、複数の検査装置を用意しなくてもよいなど、費用を抑制できる効果がある。   As described above, according to Embodiment 1 of the present invention, the central axis 5 of the conical mirror 1 and the optical axis 6 of the optical system 4 are installed so as to coincide with each other. Since the center axis 7 of the cylinder 8 is eccentrically arranged and the cylinder 8 is configured to rotate, the diameter of the cylinder 8 can be reduced by the same conical mirror 1 and the optical system regardless of the diameter of the cylinder 8. Since the inner walls 9 of all the different cylinders 8 can be inspected, there is an effect that costs can be suppressed, such as not having to prepare a plurality of inspection devices.

なお、上記の説明においては、円筒8を例に挙げて説明したが、この場合に限らず、四角筒や六角筒などの多角筒にも、本発明が実施できることは言うまでもなく、また、その場合も同様の効果を得ることができる。   In the above description, the cylinder 8 has been described as an example. However, the present invention can be applied not only to this case but also to a polygonal cylinder such as a square cylinder or a hexagonal cylinder. The same effect can be obtained.

実施の形態2.
なお、上記の実施の形態1では、回転手段11をセットして円筒8を回転させることを示したが、円錐形鏡1および光学系4に回転手段(図示せず)をセットさせてこれらを回転させるようにしてもよい。検査対象物がトンネル等のように固定されていて回転できない場合に有効である。
Embodiment 2. FIG.
In the first embodiment, the rotating means 11 is set and the cylinder 8 is rotated. However, the rotating means (not shown) is set on the conical mirror 1 and the optical system 4 to set them. You may make it rotate. This is effective when the inspection object is fixed like a tunnel and cannot be rotated.

さらに、円筒8に回転手段11を設け、円錐形鏡1および光学系4にも回転手段(図示せず)を設けて、それらを同時に回転させるようにしてもよい。   Further, the rotating means 11 may be provided in the cylinder 8, and the rotating means (not shown) may be provided in the conical mirror 1 and the optical system 4 so as to rotate them simultaneously.

いずれを回転させるかについては使用目的に合わせて適宜決定すれば、効率のよい検査を実施することができる。   As to which one is to be rotated, if it is appropriately determined according to the purpose of use, an efficient inspection can be carried out.

この発明の実施の形態1に係る筒内検査装置の構成を示した説明図である。It is explanatory drawing which showed the structure of the in-cylinder inspection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る筒内検査装置の同一径円筒の場合の動作を示した説明図である。It is explanatory drawing which showed operation | movement in the case of the cylinder of the same diameter of the in-cylinder inspection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る筒内検査装置の同一被写体距離の場合の動作を示した説明図である。It is explanatory drawing which showed the operation | movement in the case of the same subject distance of the in-cylinder inspection apparatus which concerns on Embodiment 1 of this invention. 従来装置の構成を示した説明図である。It is explanatory drawing which showed the structure of the conventional apparatus. 従来装置の動作を示した説明図である。It is explanatory drawing which showed operation | movement of the conventional apparatus.

符号の説明Explanation of symbols

1 円錐形鏡、2 レンズ系、3 カメラ、4 光学系、5 円錐形鏡1の中心軸、6 光学系4の光軸、7 円筒8の中心軸、8 円筒、9 円筒8の内壁、10 被写界深度、11 回転手段。   DESCRIPTION OF SYMBOLS 1 Conical mirror, 2 Lens system, 3 Camera, 4 Optical system, 5 Center axis of the conical mirror 1, 6 Optical axis of the optical system 4, 7 Center axis of the cylinder 8, 8 Cylinder, 9 Inner wall of the cylinder 8 10 Depth of field, 11 rotation means.

Claims (2)

検査対象の筒内に設置されて、前記筒の内壁を映し、得られた画像を反射させて前記筒の軸方向に直進する平行光線に変換する円錐形鏡と、
前記円錐形鏡により得られる前記平行光線による画像を結像させて、前記筒の内壁の撮影画像データを生成する光学系と
を備え、
前記円錐形鏡の中心軸と前記光学系の光軸とを一致させ、
前記筒の中心軸を、前記円錐形鏡の中心軸及び前記光学系の光軸に対して偏心させた
ことを特徴とする筒内検査装置。
A conical mirror that is installed in the cylinder to be inspected, reflects the inner wall of the cylinder, reflects the obtained image, and converts it into parallel rays that go straight in the axial direction of the cylinder;
An optical system that forms an image of the parallel rays obtained by the conical mirror and generates captured image data of the inner wall of the cylinder;
The center axis of the conical mirror and the optical axis of the optical system are matched,
The in-cylinder inspection apparatus characterized in that the central axis of the cylinder is decentered with respect to the central axis of the conical mirror and the optical axis of the optical system.
前記筒を周方向に回転させるための回転手段をさらに備えたことを特徴とする請求項1に記載の筒内検査装置。   The in-cylinder inspection apparatus according to claim 1, further comprising a rotating means for rotating the cylinder in the circumferential direction.
JP2005240938A 2005-08-23 2005-08-23 Internal inspection device of cylinder Pending JP2007057305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240938A JP2007057305A (en) 2005-08-23 2005-08-23 Internal inspection device of cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240938A JP2007057305A (en) 2005-08-23 2005-08-23 Internal inspection device of cylinder

Publications (1)

Publication Number Publication Date
JP2007057305A true JP2007057305A (en) 2007-03-08

Family

ID=37920937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240938A Pending JP2007057305A (en) 2005-08-23 2005-08-23 Internal inspection device of cylinder

Country Status (1)

Country Link
JP (1) JP2007057305A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035823B2 (en) 2008-09-05 2011-10-11 3Dm Devices Inc. Hand-held surface profiler
WO2013118911A1 (en) * 2012-02-09 2013-08-15 株式会社Ihi Inside-diameter measurement device
US9145924B2 (en) 2012-02-09 2015-09-29 Ihi Corporation Rotation restricting device for rotation machine
US9372073B2 (en) 2012-02-09 2016-06-21 Ihi Corporation Inner diameter measuring device
US9372061B2 (en) 2012-02-09 2016-06-21 Ihi Corporation Inner diameter measuring device
US9429409B2 (en) 2012-02-09 2016-08-30 Ihi Corporation Inner diameter measuring device
US9470509B2 (en) 2012-02-09 2016-10-18 Ihi Corporation Inner diameter measuring device and inner diameter measuring method
US9518817B2 (en) 2012-02-09 2016-12-13 Ihi Corporation Inner diameter measuring device
US9612109B2 (en) 2012-02-09 2017-04-04 Ihi Corporation Inner diameter measuring device
WO2019219956A1 (en) * 2018-05-18 2019-11-21 Ab Sandvik Materials Technology Tube inspection system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035823B2 (en) 2008-09-05 2011-10-11 3Dm Devices Inc. Hand-held surface profiler
WO2013118911A1 (en) * 2012-02-09 2013-08-15 株式会社Ihi Inside-diameter measurement device
JP2013164271A (en) * 2012-02-09 2013-08-22 Ihi Corp Inner diameter measuring apparatus
US9145924B2 (en) 2012-02-09 2015-09-29 Ihi Corporation Rotation restricting device for rotation machine
US9372073B2 (en) 2012-02-09 2016-06-21 Ihi Corporation Inner diameter measuring device
US9372061B2 (en) 2012-02-09 2016-06-21 Ihi Corporation Inner diameter measuring device
US9410795B2 (en) 2012-02-09 2016-08-09 Ihi Corporation Inner diameter measuring device
US9429409B2 (en) 2012-02-09 2016-08-30 Ihi Corporation Inner diameter measuring device
US9470509B2 (en) 2012-02-09 2016-10-18 Ihi Corporation Inner diameter measuring device and inner diameter measuring method
US9518817B2 (en) 2012-02-09 2016-12-13 Ihi Corporation Inner diameter measuring device
US9612109B2 (en) 2012-02-09 2017-04-04 Ihi Corporation Inner diameter measuring device
WO2019219956A1 (en) * 2018-05-18 2019-11-21 Ab Sandvik Materials Technology Tube inspection system

Similar Documents

Publication Publication Date Title
JP2007057305A (en) Internal inspection device of cylinder
US6342946B1 (en) Device for determining the axial position of hollow cylinders
CN108072335B (en) Three-dimensional shape measuring device
JP2000331168A (en) Device and method for processing image of internal surface of conduit
WO2017154945A1 (en) Optical inspection device, lens, and optical inspection method
TW201011281A (en) Hole inspection method and apparatus
US7880798B2 (en) Apparatus and method for optically converting a three-dimensional object into a two-dimensional planar image
CN102884421A (en) Bore inspection system and method of inspection therewith
JP2009303053A (en) Omnidirectional imaging apparatus
TWI442166B (en) A single-camera panoramic stereo system
JP2000031245A (en) Wafer notch position detector
KR101850336B1 (en) System of rotational vision inspection and method of the same
JP2010210292A (en) Apparatus and method for measuring screw shape
JP3941730B2 (en) Wide-field imaging device
JP5146181B2 (en) Device for setting the position of the starting point in the circumferential direction in oil well pipe thread shape all-round measurement
CA2930037A1 (en) Apparatus for laser profiling inspection
JP2009098069A (en) Apparatus and method of measuring deflection of rotating body
JP2017083404A (en) Inner surface inspection system and optical system of the same
CN111045220A (en) Method for aligning optical axis and visual axis of zoom optical system
JP6881032B2 (en) Roller bearing behavior measuring device and behavior measuring method
JPH0375544A (en) Apparatus for inspecting inside of laser tube
JP2015137977A (en) Pipeline imaging device and image processor of image data obtained by the same
JPH10221021A (en) Size measurement, shape inspection device and inspection method
JP3554106B2 (en) Image processing device
US20220390384A1 (en) Product Inspection System, Imaging System and Mirror