JP2004311557A - Solid-state imaging device for linear sensor - Google Patents

Solid-state imaging device for linear sensor Download PDF

Info

Publication number
JP2004311557A
JP2004311557A JP2003100105A JP2003100105A JP2004311557A JP 2004311557 A JP2004311557 A JP 2004311557A JP 2003100105 A JP2003100105 A JP 2003100105A JP 2003100105 A JP2003100105 A JP 2003100105A JP 2004311557 A JP2004311557 A JP 2004311557A
Authority
JP
Japan
Prior art keywords
color
color filter
state imaging
imaging device
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003100105A
Other languages
Japanese (ja)
Other versions
JP4513273B2 (en
Inventor
Tomohito Kitamura
智史 北村
Kenzo Fukuyoshi
健蔵 福吉
Keisuke Ogata
啓介 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003100105A priority Critical patent/JP4513273B2/en
Publication of JP2004311557A publication Critical patent/JP2004311557A/en
Application granted granted Critical
Publication of JP4513273B2 publication Critical patent/JP4513273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear sensor solid-state imaging device which is equipped with color filters that are kept free from separation of patterns and chipping of edges, hardly produce noises and irregular sensitivity, and are excellent in shape even when a line pitch is 10 μm or below. <P>SOLUTION: The solid state imaging device is equipped with three primary color stripe-like filters. A first color filter G is located above the second or center row b of photodetectors, and the planar shape g of the filter G is a planar shape composed of the stripe-like part f of the first color filter and a frame-shaped part e surrounding the extended stripe-like parts of a second and a third color filter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スキャナーやコピーなどに使われるリニアセンサからなる固体撮像素子に関する。
【0002】
【従来の技術】
リニアセンサからなる固体撮像素子は、すでにファクシミリやスキャナー、複写機等の分野において実用化されている。
図4(a)は、従来の固体撮像素子の一例の構造を説明する平面図である。図4(b)は、(a)に示す固体撮像素子のX−X’線における断面図である。また、図5(a)は、他の例の構造を説明する平面図である。(b)は、その断面図である。
【0003】
図4、及び図5に示すように、入射光のパターンを電気信号に変換する受光素子を一次元的に配置した受光素子列が3列(a、b、c)、平行に設けられている。各受光素子列の上方には、図4、及び図5上では省略しているが絶縁層やパッシベーション層がある。さらに透明樹脂からなる平坦化層(3)と、3原色の色信号を得るための赤(R)、緑(G)、青(B)のカラ−フィルタ(4)がある。
【0004】
カラーフィルタの分光特性は、図3に示すような色再現性や色特性を重視した色分離型を採用する場合が多い。色分離型は、赤色、緑色、青色の3原色の分光特性において各色の分光特性における、図3中斜線で示す、重なり部分が少ないことが特徴である。
従って、各色の可視域における吸収帯(青色は500〜700nm、緑色は400〜500nm、及び590〜700nm、赤色は400〜590nm)の透過率はゼロに近い方が望ましく、各色の分光特性におけるクロスポイント(CP)は低い方が良い。
【0005】
一方、カラーフィルタは,耐熱性や耐光性などの信頼性観点から顔料分散型であることが一般的でフォトリソグラフィーを利用した形成方法を用いている。詳しくは、顔料、樹脂、感光剤、溶剤、添加剤からなる1色目の顔料分散型カラーレジストを、透明樹脂からなる平坦化層(3)に覆われた固体撮像素子デバイス上にスピン塗布し、露光、現像、そして200〜250℃程度の熱処理を経て、1色目のカラーフィルタを形成する。
2色目、3色目も同様にして3色のカラーフィルターを形成する。
【0006】
【特許文献1】
特公平7−118523号公報
【0007】
【発明が解決しようとする課題】
ところで、近年、固体撮像素子は小型化が加速し、ラインピッチ(図4中(LPで示す)が狭くなる傾向にあり、そのサイズは10μm前後と小さいものである。また、カラーフィルタの位置精度についても±0.5μm以下が求められ、露光機は従来のアライナーやミラープロジェクタ−ではなく、位置精度の優れるi線(波長:365nm)ステッパーを用いる必要がある。
【0008】
ところが、リニアセンサー用カラーフィルタは前記したように色分離型を採用するため、露光波長領域での透過率がほとんどない。図3に示すカラーフィルタのi線透過率は緑色が約0.5%、赤色が約2%、青色が約0.1%である。
従って、i線のステッパーで露光を実施した場合、青色は露光波長であるi線透過率が0.1%と低いため、底部まで露光がほとんど達せず、その結果現像でパターン剥がれやエッジ欠けが生じ易くなる。
【0009】
また、例えば、緑色、赤色、青色の配列で、入色をその順で実施した場合、後に入色する赤色、青色は、図4(b)及び図5(b)に示すように、前色の影響で膜厚に傾斜がつくため、狙いの膜厚に形成する際の膜厚制御性に欠けることや、1個のリニアセンサー内での、或いは多面付けしたリニアセンサー間のバラツキといったマクロ的な膜厚分布が悪くなり、ノイズや感度ムラの発生によりラインセンサとしての特性が著しく劣化する原因になっていた。
【0010】
本発明は、かかる問題点に鑑みてなされたもので、その課題は、10μm以下のラインピッチあっても、パターン剥がれやエッジ欠けがなく、ノイズや感度ムラが生じにくい形状の良好なカラ−フィルタを有するリニアセンサー用固体撮像素子を提供するものである。
【0011】
【課題を解決するための手段】
本発明は、受光素子を一次元配列した受光素子列を平行に3列設け、列順に各受光素子列の上方に緑色、赤色、青色、或いは赤色、緑色、青色の3原色のストライプ状のカラーフィルタを形成したリニアセンサー用固体撮像素子において、第1色目に形成したカラーフィルタが第2列である中央列の受光素子列の上方であり、その平面形状が第1色目のカラーフィルタのストライプ状部と、該ストライプ状部を延長した、第2色目及び第3色目のカラーフィルタのストライプ状部を囲む額縁状部とで構成する平面形状であることを特徴とするリニアセンサー用固体撮像素子である。
【0012】
また、本発明は、上記発明によるリニアセンサー用固体撮像素子において、前記第2色目又は第3色目のカラーフィルタが青色であり、該カラーフィルタのストライプ状部の周縁部が、第1色目のカラーフィルタの額縁状部に重ね合っていることを特徴とするリニアセンサー用固体撮像素子である。
【0013】
また、本発明は、上記発明によるリニアセンサー用固体撮像素子において、前記第2色目及び第3色目のカラーフィルタの膜厚が、第1色目のカラーフィルタの膜厚の1.3倍以上であることを特徴とするリニアセンサー用固体撮像素子である。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
図1(a)は、本発明によるリニアセンサー用固体撮像素子の一実施例の平面図である。また、図1(b)は、(a)に示すリニアセンサー用固体撮像素子のX−X’線における断面図である。
図2(a)は、本発明によるリニアセンサー用固体撮像素子の他の例の平面図、(b)は、(a)のX−X’線における断面図である。
【0015】
図1及び図2に示すように、半導体基板内には、フォトダイオード等より構成された複数の受光素子を一次元配列してなる受光素子列(a、b、c)と、図1及び図2上では省略しているがCCDによる転送レジスタ部や転送電極部等が形成されている。また、半導体基板の上面には絶縁膜とパッシベーション層が形成されている。そして、このパッシベーション層上にアクリル樹脂などの透明樹脂からなる平坦化層(3)が設けられ、この平坦化層の上面にカラーフィルタ(14)が設けられている。
カラーフィルタは赤色(R)、緑色(G)、青色(B)の3原色から構成されており、図1及び図2のように、複数の受光素子を一次元配列してなる3列の受光素子列(a、b、c)に対し、カラーフィルタを図1に示す緑色(G)、赤色(R)、青色(B)、或いは図2に示す赤色(R)、緑色(G)、青色(B)の順で設けている。
【0016】
図1(c)は、図1(a)に示すカラーフィルタ(14)の緑色(G)の平面形状の説明図である。
図1(c)に示すように、第1色目となる緑色(G)の平面形状(g)は、第1色目のカラーフィルタのストライプ状部(e)と、第2色目及び第3色目のカラーフィルタのストライプ状部を囲む額縁状部(f)とで構成されている。
そして、第1色目に形成するカラーフィルタは、受光素子列の第2列である中央列の受光素子列の上方であるので、2色目,3色目のカラーフィルタは1色目に囲まれた額縁状の中を埋めるように形成されることになる。
【0017】
これにより2色目以降であっても膜厚のバラツキが小さく、良好な形状のカラーフィルタが得られる。
つまり、前色の影響で膜厚に傾斜がつくことにより、膜厚制御性に欠けることや、マクロ的な膜厚分布が悪くなり色ムラ等の発生によりリニアセンサとしての特性が著しく劣化することを防止できる。
【0018】
また、第2色目、第3色目に入色するカラーフィルタにおいて、ストライプ状部の全周縁部を1色目に形成するカラーフィルタの額縁部と重ね合わせることで、ストライプ状部の重ね合わせた部分はストライプ状部の中央の膜厚よりもかなり薄くなる。
これにより、パターン剥がれやエッジ欠けがなく、ノイズや感度ムラが生じにくい形状の良好なカラ−フィルタを得ることができる。
【0019】
すなわち、表1は、青色のカラーフィルタを形成する際に用いる青色レジストの膜厚に対する、露光波長の365nmにおける透過率を示すものであるが、青色のカラーフィルタの膜厚は図3に示す分光特性の際に2.0μmであるため、そのまま形成した場合には露光波長の透過率は0.01%しかなく、パターン剥がれや欠けが生じてしまう。
しかし、1色目と青色のカラーフィルタの周縁部を重ね合わせれば、重ねた部分の第2色目のカラーフィルタの膜厚は重ねていないカラーフィルタの膜厚よりも薄くなる。
【0020】
よって、図1に示すように、第2色目のカラーフィルタの第1色目と重ねている部分(Y−Y)と,重ねていない部分(Z−Z)において露光波長域の透過率に差が生じ、重ねている部分(Y−Y)の露光波長の透過率が確保できるのでカラーフィルタに色分離型を採用し、露光を合わせ精度の高いi線ステッパーを用いたとしても、パターン剥がれやエッジ欠けがない良好な形状のカラーフィルタを得ることができる。つまり、パターン剥がれやエッジ欠けがない良好な形状のカラーフィルタを収率よく、廉価に製造することができるものとなる。
【0021】
【表1】

Figure 2004311557
【0022】
さらに、第2色目、第3色目に入色するカラーフィルタの膜厚を第1色目のカラーフィルタの膜厚の1.3倍以上とすれば、有効画素内での膜厚に勾配がつくことなく、その周縁部を1色目のカラーフィルタと重ね合わせても、重ねた部分と画素中央部分との膜厚差を抑えることができる。
表2は、1色目の1.8μmの膜厚の緑色のカラーフィルタに対し、2色目に赤色のカラーフィルタを5水準の膜厚で形成した時の、赤色のカラーフィルタにおける周縁部と中央部の膜厚差を示すものである。
【0023】
【表2】
Figure 2004311557
【0024】
赤色及び青色のカラーフィルタは第1色目である緑色のカラーフィルタが額縁状にその周囲を囲んでいるので、ミクロ的には均一な膜厚であるが、表2の通り第2色目、第3色目の膜厚が1色目の緑色のカラーフィルタよりも薄いと中央部と周縁部とで膜厚差が生じ、その断面形状はすりばち状になり、また、周縁部においては角状になるなど形状がいびつになりやすく、ムラの原因になりやすいといった問題がある。
表2に示すように、1色目の緑色のカラーフィルタの膜厚1.8μmに対して、2色目の赤色のカラーフィルタの膜厚を2.35μmと設定した場合、赤色のカラーフィルタにおける膜厚差は0.08μmとなり、ストライプ状部内の膜厚分布が向上する。また、その垂直断面形状はほぼ直角となり、均一な形状となるため、ムラの少ない良好な赤色のカラーフィルタを得ることができる。
【0025】
【実施例】
以下に実施例により具体的に説明する。
<実施例1>
図6(イ)〜(ハ)に示すように、半導体基板(1)の表面を平滑にする平坦化層(3)を形成した上に、第1色目なる緑色の顔料カラーレジスト(5)をスピンナー装置を用いて回転塗布形成した。次いで、ホットプレート上において80℃、1分間の加熱処理を行った。次いで、ニコン製i線ステッパーを用いて、マスクを介しながら所定の露光量を照射した。次いで、有機アルカリ現像液(TMAHを主成分とする水溶液)を用いて、現像を行い、純水によるリンス後、回転による仮乾燥を行った。
【0026】
次いで、ホットプレート上において220℃、6minの条件で加熱処理をおこない、緑色のカラーフィルタ(6)を得た。この緑色のカラ−フィルタの平面形状は、図1(c)のように、緑色のストライプ状部(e)を中心として、その上下に赤色及び青色を入色する部分を除いて額縁状部(f)が連なっている。画素ピッチは12μm,膜厚1.8μmであった。
【0027】
次に、第2色目となる青色の顔料カラーレジストを用い、第1色目の緑色のカラーフィルタ同様にフォトリソグラフィによって形成した。この第2色目の青色のカラーフィルタ(7)の周縁部を、第1色目の緑色のカラ−フィルタの額縁状部に約1μmオーバーラップさせた。
また、青色のカラ−フィルタの中央膜厚は1色目の緑色のカラーフィルタの膜厚である1.8μmの約1.3倍にあたる2.4μmであり、緑色と重ね合わせた部分のトータル膜厚は2.5μmでありその膜厚差は0.1μmであった(図6(ニ)〜(ヘ))。
【0028】
次に、第3色目となる赤色の顔料カラーレジストを用い、緑色や青色のカラーフィルタ同様にフォトリソグラフィによって形成した。この第3色目の赤色のカラーフィルタ(8)の周縁部を、第1色目の緑色のカラ−フィルタの額縁状部に約1μmオーバーラップさせた。
その時のカラ−フィルタの中央膜厚は2.5μmであり緑色と重ね合わせた部分のトータル膜厚は2.55μmでありその膜厚差は0.05μmであった(図6(ト)〜(チ))。
【0029】
得られたカラーフィルタは、2色目以降に入色した青色と赤色の垂直断面形状が、ストライプ状部の垂直方向に対してほぼ同等であり、平面性が高く形状の優れたムラのないカラーフィルタであった。
【0030】
<比較例1>
半導体基板上に平坦化層を形成した後、第1色目となる緑色のカラーフィルタを形成した(図示せず)。この緑色のカラ−フィルタはストライプ状であり、画素ピッチは12μm,膜厚1.7μmであった。
次に、第2色目となる青色の顔料カラーレジストを第1色目の緑色のカラーフィルタ同様にフォトリソグラフィを使って形成した。この第2色目の青色のカラーフィルタは、1色目の緑色に対し平行に配置したものであり、その中央膜厚は2.0μmであったが、1色目の緑色周縁部側の膜厚は2.3μmであり、その一方の周縁部側の膜厚は1.9μmであり、ストライプ状部に対し垂直方向の膜厚差は0.4μmであった。また、緑色と接しない側の青色周縁部については、パターン欠けや現像による剥がれが一部生じ外観検査において、著しいムラが生じた。
【0031】
次に、第3色目となる赤色の顔料カラーレジストも青色のカラーフィルタと同様にフォトリソグラフィを使って形成した。この第3色目の赤色のカラーフィルタの中央膜厚は2.1μmであったが、1色目の緑色周縁部側の膜厚は2.3μmであり、その一方の周縁部側の膜厚は2.05μmであり、ストライプ状部に対し垂直方向の膜厚差は0.35μmであった。
比較例1により得られたカラ−フィルタは、図4に示すように、2色目以降に入色した青色と赤色の断面形状が傾斜しているため、基板内における膜厚(分光)にバラツキがあり、さらに青色のパターン欠けや剥がれがあるためにムラや欠陥が多数生じた。
【0032】
【発明の効果】
本発明は、3原色のストライプ状のカラーフィルタを形成した固体撮像素子において、第1色目に形成したカラーフィルタが第2列である中央列の受光素子列の上方であり、その平面形状が第1色目のカラーフィルタのストライプ状部と、該ストライプ状部を延長した、第2色目及び第3色目のカラーフィルタのストライプ状部を囲む額縁状部とで構成する平面形状であるので、10μm以下のラインピッチあっても、パターン剥がれやエッジ欠けがなく、ノイズや感度ムラが生じにくい形状の良好なカラ−フィルタを有するリニアセンサー用固体撮像素子となる。
【0033】
また、本発明は、第2色目,第3色目に入色するカラーフィルタにおいて、周縁部を1色目に形成したカラーフィルタと重ね合わせることで、重ね合わせた周縁部は中央の膜厚よりも薄くなり露光波長域の透過率が確保できるので、カラーフィルタに色分離型を採用し、露光を合わせ精度の高いi線ステッパーを用いたとしてもパターン剥がれがなく、位置精度の優れた良好な形状のカラーフィルターが得られる。
さらに、第2色目、第3色目に入色するカラーフィルタの膜厚が第1色目のカラーフィルタの膜厚の1.3倍以上であるので、1色目のカラーフィルターと重ねた2色目、3色目の周縁部に勾配がつくことはなく、ムラを抑えることができる。また、2色目、3色目のパターン内の膜厚、及び基板内における膜厚を均一に形成できるので、膜厚(分光)分布が良好なカラーフィルタを提供することができる。
【図面の簡単な説明】
【図1】(a)は、本発明によるリニアセンサー用固体撮像素子の一実施例の平面図である。
(b)は、(a)のX−X’線における断面図である。
(c)は、a)に示すカラーフィルタの緑色の平面形状の説明図である。
【図2】(a)は、本発明によるリニアセンサー用固体撮像素子の他の例の平面図である。
(b)は、(a)のX−X’線における断面図である。
【図3】色分離型カラーフィルタの分光特性である。
【図4】(a)は、従来の固体撮像素子の一例の構造を説明する平面図である。
(b)は、(a)のX−X’線における断面図である。
【図5】(a)は、他の例の構造を説明する平面図である。
(b)は、その断面図である。
【図6】(イ)〜(チ)は、実施例1の工程説明図である。
【符号の説明】
1・・・半導体基板
2・・・
3・・・平坦化層
4、14・・・カラ−フィルタ
5・・・緑色の顔料カラーレジスト
6・・・緑色のカラーフィルタ
7・・・青色のカラーフィルタ
8・・・赤色のカラーフィルタ
e・・・ストライプ状部
f・・・額縁状部
g・・・緑色(G)の平面形状[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid-state imaging device including a linear sensor used for a scanner, a copy, and the like.
[0002]
[Prior art]
Solid-state imaging devices composed of linear sensors have already been put to practical use in fields such as facsimile machines, scanners, and copiers.
FIG. 4A is a plan view illustrating the structure of an example of a conventional solid-state imaging device. FIG. 4B is a cross-sectional view of the solid-state imaging device shown in FIG. FIG. 5A is a plan view illustrating a structure of another example. (B) is a sectional view thereof.
[0003]
As shown in FIGS. 4 and 5, three light receiving element rows (a, b, c) in which light receiving elements for converting a pattern of incident light into an electric signal are arranged one-dimensionally are provided in parallel. . Above each light receiving element row, there are an insulating layer and a passivation layer, which are omitted in FIGS. 4 and 5. Further, there are a flattening layer (3) made of a transparent resin and a color filter (4) of red (R), green (G) and blue (B) for obtaining color signals of three primary colors.
[0004]
As a spectral characteristic of the color filter, a color separation type which emphasizes color reproducibility and color characteristics as shown in FIG. 3 is often used. The color separation type is characterized in that, in the spectral characteristics of the three primary colors of red, green, and blue, there are few overlapping portions in the spectral characteristics of each color, which are indicated by oblique lines in FIG.
Therefore, it is desirable that the transmittance of the absorption band of each color in the visible region (blue: 500 to 700 nm, green: 400 to 500 nm, and 590 to 700 nm, red: 400 to 590 nm) be close to zero, and the cross-section in the spectral characteristics of each color The lower the point (CP), the better.
[0005]
On the other hand, the color filter is generally a pigment dispersion type from the viewpoint of reliability such as heat resistance and light resistance, and uses a formation method utilizing photolithography. Specifically, the first color pigment-dispersed color resist composed of a pigment, a resin, a photosensitive agent, a solvent, and an additive is spin-coated on a solid-state imaging device covered with a flattening layer (3) made of a transparent resin, The first color filter is formed through exposure, development, and heat treatment at about 200 to 250 ° C.
For the second and third colors, three color filters are formed in the same manner.
[0006]
[Patent Document 1]
Japanese Patent Publication No. Hei 7-118523
[Problems to be solved by the invention]
Meanwhile, in recent years, the miniaturization of solid-state imaging devices has been accelerated, and the line pitch (indicated by LP in FIG. 4) tends to be narrow, and the size is as small as about 10 μm. Is required to be ± 0.5 μm or less, and it is necessary to use an i-line (wavelength: 365 nm) stepper having excellent positional accuracy instead of a conventional aligner or mirror projector.
[0008]
However, since the color filter for the linear sensor employs the color separation type as described above, there is almost no transmittance in the exposure wavelength region. The i-ray transmittance of the color filter shown in FIG. 3 is about 0.5% for green, about 2% for red, and about 0.1% for blue.
Therefore, when exposure is performed using an i-line stepper, blue has a low i-line transmittance of 0.1%, which is the exposure wavelength, so that exposure hardly reaches the bottom, resulting in pattern peeling and edge chipping during development. It is easy to occur.
[0009]
Further, for example, when the input colors are performed in the order of green, red, and blue, the red and blue colors that will be input later are, as shown in FIG. 4B and FIG. Because of the influence of the film thickness, the film thickness is graded, so there is a lack of film thickness controllability when forming the target film thickness, and there is macro-variation within a single linear sensor or variation between multiple mounted linear sensors. The film thickness distribution deteriorates, and noise and unevenness in sensitivity cause the characteristics of the line sensor to deteriorate significantly.
[0010]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a color filter having a shape that is free from pattern peeling and edge chipping and has little noise or sensitivity unevenness even with a line pitch of 10 μm or less. It is intended to provide a solid-state imaging device for a linear sensor having the following.
[0011]
[Means for Solving the Problems]
According to the present invention, three light receiving element rows in which light receiving elements are arranged one-dimensionally are provided in parallel, and three primary colors of green, red, blue, or red, green, and blue are arranged above the light receiving element rows in the column order. In the solid-state imaging device for a linear sensor in which a filter is formed, the color filter formed in the first color is above the light receiving element row in the center row which is the second row, and the planar shape thereof is a stripe shape of the color filter in the first color. A solid-state imaging device for a linear sensor, wherein the solid-state imaging device has a planar shape including a portion and a frame portion surrounding the stripe portion of the second and third color filters, which is obtained by extending the stripe portion. is there.
[0012]
Further, according to the present invention, in the solid-state imaging device for a linear sensor according to the present invention, the color filter of the second color or the third color is blue, and the peripheral portion of the stripe-shaped portion of the color filter is the color of the first color. This is a solid-state imaging device for a linear sensor, which is superimposed on a frame portion of a filter.
[0013]
According to the present invention, in the solid-state imaging device for a linear sensor according to the present invention, the thickness of the color filters of the second and third colors is 1.3 times or more the thickness of the color filter of the first color. This is a solid-state imaging device for a linear sensor.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1A is a plan view of one embodiment of a solid-state imaging device for a linear sensor according to the present invention. FIG. 1B is a cross-sectional view taken along line XX ′ of the solid-state imaging device for a linear sensor shown in FIG.
FIG. 2A is a plan view of another example of the solid-state imaging device for a linear sensor according to the present invention, and FIG. 2B is a cross-sectional view taken along line XX ′ of FIG.
[0015]
As shown in FIGS. 1 and 2, in a semiconductor substrate, a light receiving element array (a, b, c) in which a plurality of light receiving elements constituted by photodiodes and the like are arranged one-dimensionally, Although not shown in FIG. 2, a transfer register section, a transfer electrode section, and the like using a CCD are formed. An insulating film and a passivation layer are formed on the upper surface of the semiconductor substrate. Then, a flattening layer (3) made of a transparent resin such as an acrylic resin is provided on the passivation layer, and a color filter (14) is provided on the upper surface of the flattening layer.
The color filter is composed of three primary colors of red (R), green (G), and blue (B). As shown in FIGS. 1 and 2, three rows of light-receiving elements are arranged in a one-dimensional array. For the element rows (a, b, c), the color filters are green (G), red (R), blue (B) shown in FIG. 1, or red (R), green (G), blue shown in FIG. (B) are provided in this order.
[0016]
FIG. 1C is an explanatory diagram of a green (G) planar shape of the color filter (14) shown in FIG. 1A.
As shown in FIG. 1C, the planar shape (g) of the green color (G) as the first color is the stripe-shaped portion (e) of the color filter of the first color, and the second color and the third color. A frame portion (f) surrounding the stripe portion of the color filter.
Since the color filters formed in the first color are above the light receiving element row in the central row, which is the second row of the light receiving element rows, the color filters of the second and third colors are frame-shaped surrounded by the first color. Will be formed to fill the inside.
[0017]
As a result, even in the second and subsequent colors, variation in film thickness is small, and a color filter having a good shape can be obtained.
In other words, the film thickness is tilted due to the influence of the previous color, so that the film thickness lacks controllability, and the macro film thickness distribution is deteriorated, and the characteristics as a linear sensor are significantly deteriorated due to the occurrence of color unevenness or the like. Can be prevented.
[0018]
Further, in the color filters entering the second color and the third color, the entire peripheral portion of the stripe portion is overlapped with the frame portion of the color filter formed in the first color, so that the overlapping portion of the stripe portion is reduced. It is considerably thinner than the film thickness at the center of the stripe portion.
As a result, it is possible to obtain a color filter having a good shape with no peeling of the pattern or chipped edge and hardly causing noise and uneven sensitivity.
[0019]
That is, Table 1 shows the transmittance at an exposure wavelength of 365 nm with respect to the thickness of a blue resist used when forming a blue color filter, and the thickness of the blue color filter is as shown in FIG. Since the characteristic is 2.0 μm, the transmittance at the exposure wavelength is only 0.01% when formed as it is, and pattern peeling or chipping occurs.
However, when the peripheral portions of the first color and the blue color filter are overlapped, the film thickness of the second color filter in the overlapped portion becomes smaller than the film thickness of the color filter not overlapped.
[0020]
Therefore, as shown in FIG. 1, there is a difference in the transmittance in the exposure wavelength range between the portion (YY) overlapping the first color of the second color filter and the portion (ZZ) not overlapping. Since the transmittance of the exposure wavelength at the overlapping portion (Y-Y) can be ensured, even if a color separation type is adopted as the color filter and an i-line stepper with high accuracy for exposure is used, pattern peeling or edge separation occurs. It is possible to obtain a color filter having a good shape without chipping. In other words, a color filter having a good shape without pattern peeling or edge chipping can be manufactured in good yield and at low cost.
[0021]
[Table 1]
Figure 2004311557
[0022]
Further, if the film thickness of the color filters entering the second and third colors is set to be 1.3 times or more the film thickness of the color filter of the first color, a gradient is formed in the film thickness in the effective pixel. In addition, even when the peripheral portion is overlapped with the first color filter, the difference in film thickness between the overlapped portion and the pixel central portion can be suppressed.
Table 2 shows the peripheral portion and the central portion of the red color filter when the red color filter of the second color is formed at five levels of film thickness with respect to the green color filter of 1.8 μm thickness of the first color. 3 shows the difference in film thickness.
[0023]
[Table 2]
Figure 2004311557
[0024]
The red and blue color filters have a uniform microscopic film thickness because a green color filter, which is the first color, surrounds the frame in a frame shape. If the film thickness of the color is thinner than the green color filter of the first color, there is a difference in film thickness between the central portion and the peripheral portion, and the cross-sectional shape becomes a sliver-like shape, and the peripheral portion has a square shape. However, there is a problem that it is easy to be distorted and cause unevenness.
As shown in Table 2, when the thickness of the red color filter of the second color is set to 2.35 μm with respect to the thickness of 1.8 μm of the green color filter of the first color, the thickness of the red color filter is The difference is 0.08 μm, and the film thickness distribution in the stripe portion is improved. Further, the vertical cross-sectional shape is substantially a right angle and becomes a uniform shape, so that a good red color filter with less unevenness can be obtained.
[0025]
【Example】
Hereinafter, a specific description will be given with reference to examples.
<Example 1>
As shown in FIGS. 6 (a) to 6 (c), after forming a flattening layer (3) for smoothing the surface of the semiconductor substrate (1), a first color green pigment color resist (5) is formed. Spin coating was performed using a spinner device. Next, heat treatment was performed at 80 ° C. for 1 minute on a hot plate. Next, using a Nikon i-line stepper, a predetermined exposure amount was irradiated through a mask. Next, development was performed using an organic alkali developer (aqueous solution containing TMAH as a main component), rinsed with pure water, and then temporarily dried by rotation.
[0026]
Next, heat treatment was performed on a hot plate at 220 ° C. for 6 minutes to obtain a green color filter (6). As shown in FIG. 1 (c), the planar shape of the green color filter has a frame-like portion (e) with the green stripe-like portion (e) as the center, except for the portions where red and blue colors enter above and below the green stripe-like portion (e). f) are connected. The pixel pitch was 12 μm and the film thickness was 1.8 μm.
[0027]
Next, a blue pigment color resist serving as a second color was formed by photolithography similarly to the first color green color filter. The periphery of the second color blue color filter (7) was overlapped by about 1 μm with the frame of the first color green color filter.
The center film thickness of the blue color filter is 2.4 μm, which is about 1.3 times the film thickness of 1.8 μm which is the film thickness of the first green color filter. Was 2.5 μm and the difference in film thickness was 0.1 μm (FIGS. 6 (d) to 6 (f)).
[0028]
Next, using a red pigment color resist serving as a third color, photolithography was performed similarly to the green and blue color filters. The periphery of the third color red color filter (8) was overlapped by about 1 μm with the frame of the first color green color filter.
At that time, the central film thickness of the color filter was 2.5 μm, and the total film thickness of the portion overlapped with the green color was 2.55 μm, and the film thickness difference was 0.05 μm (FIG. 6 (g) to (g)). J)).
[0029]
The obtained color filter has a vertical cross-sectional shape of the blue and red colors that have entered the second and subsequent colors is substantially equal to the vertical direction of the stripe-shaped portion, and has a high flatness and an excellent shape without unevenness. Met.
[0030]
<Comparative Example 1>
After forming the planarization layer on the semiconductor substrate, a green color filter serving as a first color was formed (not shown). This green color filter had a stripe shape, a pixel pitch of 12 μm, and a film thickness of 1.7 μm.
Next, a blue pigment color resist serving as a second color was formed using photolithography in the same manner as the first color green color filter. The second color blue color filter was arranged in parallel with the first color green, and had a center film thickness of 2.0 μm, but the first color green color peripheral side had a thickness of 2 μm. 0.3 μm, the film thickness on one side of the peripheral portion was 1.9 μm, and the difference in film thickness in the direction perpendicular to the stripe portion was 0.4 μm. Further, with respect to the blue peripheral portion on the side not in contact with the green color, part of the pattern was chipped or peeled off due to development, and marked unevenness occurred in the appearance inspection.
[0031]
Next, a red pigment color resist serving as a third color was formed by photolithography in the same manner as the blue color filter. The center thickness of the red color filter of the third color was 2.1 μm, but the thickness of the green color side of the first color was 2.3 μm and the thickness of one of the green color sides was 2 μm. The thickness difference in the direction perpendicular to the stripe-shaped portion was 0.35 μm.
In the color filter obtained in Comparative Example 1, as shown in FIG. 4, since the cross-sectional shapes of the blue and red colors that have entered the second and subsequent colors are inclined, the film thickness (spectral) in the substrate varies. In addition, a number of irregularities and defects occurred due to chipping and peeling of the blue pattern.
[0032]
【The invention's effect】
According to the present invention, in a solid-state imaging device in which striped color filters of three primary colors are formed, a color filter formed in a first color is above a light receiving element row in a central row which is a second row, and its planar shape is a second color. 10 μm or less because it is a planar shape composed of a stripe portion of the first color filter and a frame portion surrounding the stripe portions of the second and third color filters, which is an extension of the stripe portion. Even if the line pitch is, the solid-state imaging device for a linear sensor has a color filter having a good shape without pattern peeling or edge chipping and hardly causing noise and sensitivity unevenness.
[0033]
Further, according to the present invention, in the color filters entering the second color and the third color, the peripheral portion is overlapped with the color filter formed in the first color, so that the overlapped peripheral portion is thinner than the central film thickness. Since the transmittance in the exposure wavelength range can be ensured, even if a color separation type is used for the color filter, patterning does not occur even if an i-line stepper with high accuracy is used for exposure alignment, a good shape with excellent positional accuracy is obtained. A color filter is obtained.
Further, since the thickness of the color filters entering the second color and the third color is at least 1.3 times the thickness of the color filter of the first color, the thicknesses of the second color and the third color superimposed on the color filter of the first color are further reduced. There is no gradient at the periphery of the color, and unevenness can be suppressed. In addition, since the film thickness in the patterns of the second and third colors and the film thickness in the substrate can be formed uniformly, a color filter having a favorable film thickness (spectral) distribution can be provided.
[Brief description of the drawings]
FIG. 1A is a plan view of an embodiment of a solid-state imaging device for a linear sensor according to the present invention.
(B) is a sectional view taken along line XX 'of (a).
(C) is an explanatory view of a green planar shape of the color filter shown in (a).
FIG. 2A is a plan view of another example of the solid-state imaging device for a linear sensor according to the present invention.
(B) is a sectional view taken along line XX 'of (a).
FIG. 3 shows spectral characteristics of a color separation type color filter.
FIG. 4A is a plan view illustrating a structure of an example of a conventional solid-state imaging device.
(B) is a sectional view taken along line XX 'of (a).
FIG. 5A is a plan view illustrating a structure of another example.
(B) is a sectional view thereof.
FIGS. 6A to 6H are process explanatory views of Example 1. FIGS.
[Explanation of symbols]
1 ... semiconductor substrate 2 ...
3 Flattening layers 4, 14 Color filter 5 Green pigment color resist 6 Green color filter 7 Blue color filter 8 Red color filter e ... Stripe-shaped part f ... Frame-shaped part g ... Green (G) plane shape

Claims (3)

受光素子を一次元配列した受光素子列を平行に3列設け、列順に各受光素子列の上方に緑色、赤色、青色、或いは赤色、緑色、青色の3原色のストライプ状のカラーフィルタを形成したリニアセンサー用固体撮像素子において、第1色目に形成したカラーフィルタが第2列である中央列の受光素子列の上方であり、その平面形状が第1色目のカラーフィルタのストライプ状部と、該ストライプ状部を延長した、第2色目及び第3色目のカラーフィルタのストライプ状部を囲む額縁状部とで構成する平面形状であることを特徴とするリニアセンサー用固体撮像素子。Three light receiving element rows in which light receiving elements are arranged one-dimensionally are provided in parallel, and striped color filters of three primary colors of green, red, blue, or red, green, and blue are formed above each light receiving element row in the column order. In the solid-state imaging device for a linear sensor, the color filter formed for the first color is above the light receiving element row in the center row, which is the second row, and its planar shape is a stripe-shaped portion of the color filter for the first color; A solid-state imaging device for a linear sensor, wherein the solid-state imaging device has a planar shape including a striped portion and a frame portion surrounding the striped portions of the second and third color filters. 前記第2色目又は第3色目のカラーフィルタが青色であり、該カラーフィルタのストライプ状部の周縁部が、第1色目のカラーフィルタの額縁状部に重ね合っていることを特徴とする請求項1に記載のリニアセンサー用固体撮像素子。The color filter of the second color or the third color is blue, and a peripheral portion of a stripe portion of the color filter overlaps a frame portion of the color filter of the first color. 2. The solid-state imaging device for a linear sensor according to 1. 前記第2色目及び第3色目のカラーフィルタの膜厚が、第1色目のカラーフィルタの膜厚の1.3倍以上であることを特徴とする請求項1、又は請求項2に記載のリニアセンサー用固体撮像素子。3. The linear device according to claim 1, wherein the thickness of the color filters of the second and third colors is at least 1.3 times the thickness of the color filter of the first color. Solid-state imaging device for sensors.
JP2003100105A 2003-04-03 2003-04-03 Solid-state image sensor for linear sensor Expired - Fee Related JP4513273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100105A JP4513273B2 (en) 2003-04-03 2003-04-03 Solid-state image sensor for linear sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100105A JP4513273B2 (en) 2003-04-03 2003-04-03 Solid-state image sensor for linear sensor

Publications (2)

Publication Number Publication Date
JP2004311557A true JP2004311557A (en) 2004-11-04
JP4513273B2 JP4513273B2 (en) 2010-07-28

Family

ID=33464334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100105A Expired - Fee Related JP4513273B2 (en) 2003-04-03 2003-04-03 Solid-state image sensor for linear sensor

Country Status (1)

Country Link
JP (1) JP4513273B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196532A (en) * 2005-01-11 2006-07-27 Toppan Printing Co Ltd Color solid state imaging device
JP2008205167A (en) * 2007-02-20 2008-09-04 Toppan Printing Co Ltd Linear sensor
US7622392B2 (en) 2005-02-18 2009-11-24 Tokyo Electron Limited Method of processing substrate, method of manufacturing solid-state imaging device, method of manufacturing thin film device, and programs for implementing the methods
US8786739B2 (en) 2008-09-17 2014-07-22 Canon Kabushiki Kaisha Photoelectric conversion device and imaging system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582766A (en) * 1991-09-20 1993-04-02 Nec Corp Solid image pickup device
JPH1169081A (en) * 1997-08-11 1999-03-09 Rohm Co Ltd Sensor ic and image sensor provided with it
JPH11150252A (en) * 1997-11-19 1999-06-02 Sony Corp Color solid-state image-pickup element and its manufacturing method
JPH11354763A (en) * 1998-06-04 1999-12-24 Toshiba Corp Solid state image sensor and fabrication of color filter array
JP2000156485A (en) * 1998-11-19 2000-06-06 Sony Corp Solid-state image sensing device and manufacture thereof
JP2001033619A (en) * 1999-07-23 2001-02-09 Sony Corp Method for forming color filter and manufacture of solidstate image picking-up element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582766A (en) * 1991-09-20 1993-04-02 Nec Corp Solid image pickup device
JPH1169081A (en) * 1997-08-11 1999-03-09 Rohm Co Ltd Sensor ic and image sensor provided with it
JPH11150252A (en) * 1997-11-19 1999-06-02 Sony Corp Color solid-state image-pickup element and its manufacturing method
JPH11354763A (en) * 1998-06-04 1999-12-24 Toshiba Corp Solid state image sensor and fabrication of color filter array
JP2000156485A (en) * 1998-11-19 2000-06-06 Sony Corp Solid-state image sensing device and manufacture thereof
JP2001033619A (en) * 1999-07-23 2001-02-09 Sony Corp Method for forming color filter and manufacture of solidstate image picking-up element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196532A (en) * 2005-01-11 2006-07-27 Toppan Printing Co Ltd Color solid state imaging device
JP4725108B2 (en) * 2005-01-11 2011-07-13 凸版印刷株式会社 Color solid-state image sensor
US7622392B2 (en) 2005-02-18 2009-11-24 Tokyo Electron Limited Method of processing substrate, method of manufacturing solid-state imaging device, method of manufacturing thin film device, and programs for implementing the methods
JP2008205167A (en) * 2007-02-20 2008-09-04 Toppan Printing Co Ltd Linear sensor
US8786739B2 (en) 2008-09-17 2014-07-22 Canon Kabushiki Kaisha Photoelectric conversion device and imaging system

Also Published As

Publication number Publication date
JP4513273B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
US8853758B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP4857569B2 (en) Solid-state imaging device and manufacturing method thereof
WO2013121742A1 (en) Image pickup element
JP2010034141A (en) Solid-state imaging device and method for manufacturing the same
JP2004200360A (en) Solid-state imaging device and method of manufacturing the same
JP2001208902A (en) Solid-state image pickup element and its manufacturing method
TW200539436A (en) Solid-state imaging device, method for manufacturing the same and camera
JP2007134511A (en) Solid state imaging device and method of manufacturing same
JP3711211B2 (en) Solid-state imaging device
US6136481A (en) Color filter manufacturing method capable of assuring a high alignment accuracy of color filter and alignment mark therefor
US20200258929A1 (en) Solid-state imaging device and method of manufacturing the same
JP4725108B2 (en) Color solid-state image sensor
JP7088174B2 (en) Manufacturing method of solid-state image sensor and solid-state image sensor
TWI749137B (en) Solid-state imaging element and its manufacturing method
JP2004311557A (en) Solid-state imaging device for linear sensor
JP2004228398A (en) Solid-state imaging element and manufacturing method thereof
KR100293719B1 (en) Image sensor with improved light transmission for short wavelength light and its manufacturing method
JP2011123111A (en) Method for forming color filter and method for producing solid-state image pickup apparatus by using the same
JP2004335598A (en) Solid state imaging device and its manufacturing method
JP3919671B2 (en) Color filter manufacturing method and alignment mark
US20090152661A1 (en) Image sensor and method for manufacturing the same
JP5874209B2 (en) On-chip color filter for color solid-state image sensor
JPS6336203A (en) Solid-state color image pickup element and its production
JP2005005419A (en) Solid-state imaging element
JPH04225278A (en) Image sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Ref document number: 4513273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees