JP2004311185A - Method of drying catalyst layer membrane for fuel cell - Google Patents

Method of drying catalyst layer membrane for fuel cell Download PDF

Info

Publication number
JP2004311185A
JP2004311185A JP2003102396A JP2003102396A JP2004311185A JP 2004311185 A JP2004311185 A JP 2004311185A JP 2003102396 A JP2003102396 A JP 2003102396A JP 2003102396 A JP2003102396 A JP 2003102396A JP 2004311185 A JP2004311185 A JP 2004311185A
Authority
JP
Japan
Prior art keywords
catalyst
catalyst layer
drying
solvent
layer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102396A
Other languages
Japanese (ja)
Inventor
Yuji Tsutsui
裕二 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003102396A priority Critical patent/JP2004311185A/en
Publication of JP2004311185A publication Critical patent/JP2004311185A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of drying a catalyst layer membrane for a fuel cell reducing the concentration of impurities contained in the catalyst layer membrane to the specified concentration or less. <P>SOLUTION: In order to forming the catalyst layer membrane in which the concentration of impurities contained in the catalyst layer membrane is reduced to the specified concentration or less, an appropriate catalyst is added to a catalyst coating material producing the catalyst layer membrane, a substance easy to removing by evaporation is selectively produced, and dried by controlling ambient temperature to remove organic compounds. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高分子系イオン交換膜(以下、高分子膜)の両面にアノード電極及びカソード電極となる触媒層膜を接合して固体高分子型燃料電池を製造する前記触媒層膜を形成するための燃料電池用触媒層膜の乾燥方法に関するものである。
【0002】
【従来の技術】
燃料電池は基本的に電解質とこれを挟む2つの電極から構成され、白金などの触媒化学反応によって燃料となる水素分子を負極側で電子と水素イオンとに解離させた後、水素イオンが電解質中を移動し、正極側で酸素と反応させて水を得ることで正極−負極間に電子が流れ、起電力が発生するように構成される。
【0003】
燃料電池は電解質の種類によって、固体酸化物型、溶融炭酸塩型、燐酸型、アルカリ型、固体高分子型などに大別され、それぞれが適正な動作温度を有している。中でも固体高分子型燃料電池は、その動作温度がおおよそ50〜100℃と他の燃料電池に比して低く、家庭用電力給湯システム、電気自動車用電源、携帯電話機などの携帯電子機器などの新エネルギー源として期待されている。
【0004】
この固体高分子型燃料電池の基本要素は、図4に示すように、固体電解質としての高分子膜1の両側に負極(アノード)及び正極(カソード)となる触媒層膜2,3を接合して構成されている。各触媒層膜2,3は、白金単体あるいはその合金を主体としたものが一般的で、例えば、担体となる炭素粒子に白金もしくはその合金の微粒子を担持させた触媒粒子を用いている。負極触媒層膜2側には燃料となる水素分子が、正極触媒層膜3側には酸素分子もしくは空気が供給され、負極触媒層膜2側で水素分子は触媒によって水素イオンと電子とに解離され、水素イオンは高分子膜1を透過して正極触媒層膜3側に移動し、正極触媒層膜3側で酸素と反応して水が生成される。このとき負極側と正極側との間の回路が閉じていれば、負極側から正極側に電子が移動して起電力が発生する。この高分子膜−触媒層電極接合体(以下、触媒電極接合体)から発生する起電力は、1ボルト前後(通常0.7〜0.8V)であり、触媒電極接合体からなる複数の基本構成要素を直列に重ね合わせることにより、実際に利用できる起電力が得られる。
【0005】
前記触媒電極接合体のように、シート状の部材上に厚膜状に物質を付着させる手段として、フィルムなどの基材上に塗工や蒸着等によって付着させた所定厚さの物質をその性状に適した加圧と温度条件下で所定時間部材に接触させることにより、物質のみをフィルム基材上から剥離させ、部材上に付着接合させる転写法が知られている。
【0006】
また、所定の特性(例えば、粘度や密度、表面張力等)に調整された塗料を用いて部材表面に所定の形状を形成するためにパターン加工したマスクによる手段(スクリーン)や、所定形状に加工された表面上に均一に塗料を付着させ、これを部材の表面に接触させて部材に塗料を付着させる手段(例えば、オフセット)に代表される印刷法が知られている。更に、所定の特性に調整された塗料を高圧ガスやポンプを用いて加圧し、筒状の吐出穴やスリットから塗料を噴霧して、部材の表面に塗料を付着させる直接塗布法も知られている。この印刷法及び直接塗布法の技術は、活字文書や電子部品などのデバイス製造技術などの分野に用いられていることは周知のところであるが、燃料電池の製造分野においても、高分子膜に触媒層膜を形成する方法として適用されている。
【0007】
特に、燃料電池の触媒電極接合体の一般的な製造方法として、白金を担持した所定粒径分布をもつ炭素粒子からなる触媒粒子を均一な膜厚に形成した触媒層膜を高分子膜と重ね合わせ、デバイス特性に悪影響を与えない加工条件下(温度、圧力、時間等)で、触媒層膜と高分子膜とを付着接合している。
【0008】
上記触媒層膜を製造するための転写法、印刷法、塗布法の各膜形成方法において用いられる触媒塗料は、炭素粒子を担体として白金微粒子を担持させた触媒粒子を主原料として、触媒塗料の特性がそれぞれの膜形成方法に適した塗料にするため溶媒が加えられる。その溶媒が主に水である塗料の場合、塗布状態が不安定なスラリー状になることが多く、印刷法や塗布法では水分変化や塗料特性(粘度、密度、表面張力、粒径等)の経時変化が原因となって安定した品質の触媒層膜の形成が困難となる問題があった。例えば、分散状態の変化や触媒粒子の凝縮等によりスクリーンメッシュやノズルに目詰まりが生じ、高分子膜のキズや印刷ムラが発生しやすくなる。また、オフセット印刷においては、塗料の付着量のバラツキにより均一な触媒層膜厚が形成できない。
【0009】
そこで、安定した塗料特性を得るための手段として、有機系化合物の溶媒を加え、粘度調整や触媒粒子の分散性をよくして塗工性を向上させることが一般的に行われている。しかし、これらの溶媒は製造過程において必要なものではあるが、最終製品である触媒電極接合体の構成材料として全く不要なものが多い。また、この溶媒は製造過程で完全に除去されるものではなく、触媒層膜中に不純物として残留するものであり、触媒電極接合体の特性に対して好ましくないものである。
【0010】
この触媒層膜中に残留する有機系化合物を高速で低濃度に除去する効果的な方法が望まれており、塗膜の乾燥速度を大きくして生産性を向上させる手段が様々に提案されている。
【0011】
例えば、燐酸型燃料電池の電極接合体の電池性能を向上させるために、様々な特徴のある組成の材料と良好な触媒層膜を形成するために加えられた溶媒を混合した触媒塗料を用いて電極支持体上にコーティングし、これを225℃の不活性ガス雰囲気中で30分間乾燥し、触媒層膜内部の溶媒を除去した後、乾燥した電極をローリング装置内を通過させてローリングを行い、続いて350℃の不活性ガス雰囲気中で30分間焼成する製造方法が開示されている(特許文献1参照)。
【0012】
また、燃料電池用ガス拡散電極の製造方法として、界面活性剤を添加した分散溶媒中に触媒粉末とPTFE(ポリテトラフルオロエチレン)ディスパージョンを混入した分散溶液を多孔質電極基材上に塗布し、不活性ガスに低濃度酸素を混合した雰囲気中において300℃で焼成する方法が開示されている(特許文献2参照)。このような不活性ガス雰囲気中で塗膜などを乾燥または焼成することは、様々な製造分野で数多く利用されている。
【0013】
その他、共沸点現象を利用した組成物(水切り乾燥剤)を用いた乾燥方法(特許文献3参照)や、1,1−ジクロロ−1−フルオロエタンと界面活性剤からなる乾燥促進材料を用いた乾燥方法(特許文献4参照)や、乾燥気体に周波数50Hzの振動を印加する加熱手段を用いた乾燥方法(特許文献5参照)などが知られている。
【0014】
【特許文献1】
特開平10−302807号
【0015】
【特許文献2】
特開昭63−259966号
【0016】
【特許文献3】
特開平10−195080号
【0017】
【特許文献4】
特開平05−004004号
【0018】
【特許文献5】
特開平10−274475号
【0019】
【発明が解決しようとする課題】
白金触媒の担体として使われる炭素粒子は化学物質を吸着しやすい多孔質構造を有しているため、塗料に含まれる溶媒などの有機系化合物を長期にわたって吸収吸着し、燃料電池システムとして組み込まれた時点においても触媒層膜中に有機系化合物が残留していることが、本願発明者らによる化学分析により発見された。更に、触媒層膜中に残留した溶媒等の有機系化合物に一部または全部が酸化反応を生じ、その反応過程の中で不完全酸化物である一酸化炭素を発生させることも見出された。
【0020】
このような有機系化合物が残留する触媒層膜を用いた燃料電池システムを運転させると、触媒層膜に含まれていた有機系化合物は水素と酸素の化学反応により生成された生成水によって幾分かは洗い流され、触媒層膜中の有機系化合物の濃度は低下する傾向にあるが、生成水の再利用(ガス加湿)による長期にわたる暴露や、初期の段階で高濃度に存在することから、触媒電極接合体への影響が大きく作用し、触媒電極接合体の劣化を促進するきっかけになっている。
【0021】
また、生成水は有機系化合物を含んでいるため、燃料電池システムが運転停止した温度低下時に、有機系化合物を栄養源とする微生物が繁殖し、高濃度の有機系化合物が発生しやすい状態となる。この微生物の生命活動で生じる新たな物質や死骸などの有機系化合物の生成により、燃料電池システムの不安定な運転や触媒劣化を加速させることも課題の1つである。
【0022】
触媒層膜中の有機系生成物の成分が所定濃度以上になると、電圧劣化率が急激に上昇する傾向がみられる。電圧劣化率の低下を示す触媒層膜に残留する成分を分析したところ、低濃度であるが有機系溶媒成分を起源とするケトン基及びカルボニル基を有する低濃度(約50〜300ppm)の有機系化合物が検出された。更に、水素ガスがアノード電極となる触媒層膜側に供給され、触媒電極接合体で消費されて排出された未反応水素ガスを含む排気ガス中に数ppm程度の微量な一酸化炭素と二酸化炭素が検出された。このように一酸化炭素の触媒毒は、都市ガスやアルコール系の燃料ガスの改質により生成するものばかりでなく、燃料電池の製造過程で使用する様々な有機系の化学物質の酸化反応によっても発生し、燃料電池システムの品質性能に大きく影響していることが見出された。
【0023】
触媒層膜を形成するための触媒塗料に含まれる溶媒は、白金触媒の酸化作用によって様々な種類の成分が生成されるために、溶媒や触媒反応により生成された生成物を触媒層膜中から除去することができれば、不純物の少ない触媒層膜を形成することができる。触媒層膜中に残留する有機系化合物を短時間の処理により効果的に除去できる方法が要求されている。
【0024】
本発明が目的とするところは、溶媒等の様々な材料を含む塗料によって形成された塗布膜に対して触媒作用を利用して所望の生成物を選択的に生成させることにより、塗布膜に残留する有機系化合物を効率的に除去する燃料電池用触媒層膜の乾燥方法を提供することにある。
【0025】
【課題を解決するための手段】
上記目的を達成するための本発明は、所要の機能を有する触媒原材料と溶媒とを混合した触媒塗料をイオン交換膜上に塗布して乾燥させることにより、イオン交換膜に接合して高分子膜−触媒層膜電極接合体を形成する燃料電池用触媒層膜の乾燥方法において、前記溶媒に作用して所望の反応生成物を選択的に生成する触媒材料を添加して触媒塗料を作製し、前記触媒塗料をイオン交換膜上に塗布して塗布膜を形成し、前記塗布膜を所定の処理条件に制御しながら乾燥処理することを特徴とする。
【0026】
上記乾燥方法によれば、触媒による酸化反応を利用して塗布膜中の有機化合物の沸点温度を溶媒よりも低沸点の性質を示す有機形化合物へ多く反応生成されるように制御することで、触媒層膜中の有機系化合物の成分を高速乾燥処理することができる。例えば、白金の酸化触媒機能により触媒塗料に添加された有機系溶媒を酸化反応させ、沸点温度の低い組成の異なる物質に変換できるよう触媒反応を制御することにより、触媒塗料に添加された有機系溶媒よりも蒸気圧の高い有機系化合物を選択的に生成させ、有機系溶媒及び生成物とその混合物の蒸気圧を高くすることで乾燥速度を大きくすることが可能になる。
【0027】
上記所定の処理条件は、塗布膜を配置した空間の酸素濃度及び雰囲気温度であり、これを制御することにより、有機系溶媒あるいはそれを基に触媒反応により生成された生成物の性質に対応する処理制御ができる。
【0028】
また、雰囲気温度は、溶媒及び反応生成物のうち最も沸点が低い物質に対応する温度に制御することにより、よりエネルギーの少ない乾燥が可能である。
【0029】
また、雰囲気の酸素濃度は、0〜5%とするのが好適である。
【0030】
【発明の実施の形態】
固体高分子型燃料電池の触媒電極接合体を構成する触媒層膜中には、その製造過程で使用される様々な材料によって有機系化合物が残留する。この触媒層膜中に残留した有機系化合物成分による燃料電池性能(電圧特性及び電池寿命)の影響について実験検証した。その結果、触媒層膜中には白金等の触媒成分による酸化反応によって様々な種類の有機系化合物成分が含まれていることが判明した。
【0031】
例えば、触媒塗料の塗布特性を調整するために添加される溶媒(混合する原材料の溶液も含む)が純エタノールまたはエタノールを含む混合液や水溶液である場合、室温付近の温度条件下でも酸化反応によってエタノールはアセトアルデヒドから酢酸へと変化した。また、溶媒が純メタノールまたはメタノールを含む混合液や水溶液である場合においても、メタノールは酸化反応によってホルムアルデヒドから蟻酸へと変化した。
【0032】
図2は、触媒層膜中における蟻酸、酢酸、蓚酸それぞれの成分濃度と、触媒電極接合体の電圧劣化率との関係を示すものである。このグラフは、触媒層膜中の有機系溶媒成分の反応生成物濃度に対し、電池特性の評価方法として、それぞれの有機系溶媒の初期濃度が既知である触媒層膜からなる触媒電極接合体を用いて加湿した純水素と純酸素とを燃料及び支援ガスとする所定の条件下にて電気化学反応を起こさせ、カソード触媒電極とアノード触媒電極との間に発生した初期電圧を基準として、経時的な電圧低下の変化率を示す電圧低下率を示したものである。
【0033】
このエタノールやメタノールばかりでなく、これ以外の有機系溶媒を用いた場合でも触媒による化学反応によって様々な有機系化合物の成分が生成され、この勇気系化合物成分が触媒層膜中に残留することにより、長期にわたって触媒に対して影響を及ぼし、電池特性の劣化をまねいている。
【0034】
この問題を解決するために、触媒塗料から形成される触媒層膜から、その中に残留する有機系化合物を効率的に除去する必要がある。触媒層膜中の有機系化合物成分やその生成物成分を限られた製造時間内で除去して低濃度にするために、触媒層膜中に存在する白金の触媒作用を利用して、ある条件下で所望の生成物を選択的に生成させ、生成された物質を乾燥により蒸発させることにより、効率的に残留する有機系化合物を除去する。
【0035】
図1は、触媒による触媒作用を利用した乾燥方法を説明する概念図である。触媒塗料に添加された溶媒である物質Aが触媒5による触媒作用により中間生成物である物質Bに変化し、更に、添加した触媒6により物質Bが最終生成物である物質Cに変化する反応があり、物質A、物質B、物質Cそれぞれの沸点が異なることを利用して、最も低い沸点を有する物質を選択的に生成して、その物質を乾燥により蒸発させると、より少ないエネルギーで効率的に有機系化合物を除去することができる。
【0036】
物質Aの沸点がTs、物質Bの沸点がTm、物質Cの沸点がTeとして、いま、生成された各物質A,B,Cそれぞれの沸点がTs>Tm<Teであり、物質Bの沸点が最も低い場合、中間生成物である物質Bが生成されるように、触媒の材料量や処理条件を制御し、物質Bが蒸発しやすい乾燥雰囲気下で乾燥処理することにより、エネルギーの少ない状態で溶媒を短時間で除去することができる。
【0037】
また、触媒6の作用により生成された最終生成物である物質Cの沸点Teが中間生成物である物質Bの沸点Tmより更に低い場合には、更に触媒6を添加して沸点を低下させ、ほとんどが物質Cになるように反応制御し、物質Cを蒸発させる乾燥雰囲気下で乾燥処理すると、エネルギーの少ない状態で物質A,B,Cを短時間で除去することができる。
【0038】
また、中間生成物である物質Bの沸点Tmが最も高く、最終生成物の物質Cの沸点Teが物質Aの沸点Tsより低い場合には、触媒5及び触媒6を混合添加することにより、物質Aは物質Bを経て物質Cに生成されるので、物質Cを蒸発させる乾燥雰囲気下で乾燥処理すると、エネルギーの少ない状態で溶媒を短時間で除去することができる。
【0039】
また、触媒塗料中に既に存在した触媒によって物質Aが反応しやすく、その生成物である物質B,Cの沸点Tm,Teが物質Aの沸点Tsより高くなる場合は、触媒作用が働かないように雰囲気の状態、例えば、触媒反応が酸化反応であれば反応雰囲気の酸素濃度を低濃度に制御して触媒反応を抑制することにより、物質Aのままの状態にして溶媒である物質Aを短時間で除去することができる。
【0040】
上記乾燥方法をより具体的な例によって以下に説明する。触媒層膜を形成する触媒塗料に添加する有機系溶媒がエタノールである場合である。
【0041】
前述したように、エタノールは酸素雰囲気下において白金の酸化作用によってアセトアルデヒドや酢酸を生成する。それぞれの沸点は大気圧下において、エタノールが78℃、アセトアルデヒドが20℃、酢酸が118℃である。つまり、エタノールの中間生成物であるアセトアルデヒドの沸点が最も低く、触媒反応を利用して反応生成物の主成分がアセトアルデヒドになるように選択的に制御すると、少ない熱エネルギー且つ短時間で溶媒やその生成物を蒸発除去することができる。
【0042】
そこで、10重量%の白金触媒を含む炭素粉末と、5重量%のフッ素系高分子材料を含む溶液を主材料とする触媒原材料に、70重量%のエタノール溶媒を添加した触媒塗料を作製し、これを高分子系電解質機能膜である基材上に塗布した触媒電極塗布膜に対し、酸素濃度0〜21体積%の雰囲気下で、10℃±3〜120℃±5℃の間で酸素濃度及び温度制御された熱風を3分間吹き付け、触媒電極塗布膜を熱風乾燥処理する。この乾燥特性の結果を図3に示す。
【0043】
図3に示す乾燥条件は、乾燥雰囲気の酸素濃度を0〜5%、雰囲気温度を30〜90℃の範囲に制御している。この結果、所望するアセトアルデヒドを主成分とする低沸点有機系化合物が選択的に生成され、触媒層膜は安定した状態で乾燥速度を大きくすることができた。
【0044】
上記実施の形態は、触媒を含まない塗料に対しても応用できるもので、塗料に乾燥促進のために適正な触媒を添加することにより、その触媒作用を利用しながら塗布膜の乾燥速度を制御することで、省エネルギーで且つ高速に乾燥処理を実現することができる。
【0045】
【発明の効果】
以上の説明の通り本発明によれば、触媒層膜を形成する触媒塗料に含有する触媒によって生成される生成物やその原材料である溶媒が、形成された触媒層膜に有機系化合物として残留する濃度を所定濃度以下になるように制御して乾燥することができるので、不純物濃度が少ない触媒層膜を用いて高品質の燃料電池を製造することができる。
【図面の簡単な説明】
【図1】触媒を利用した乾燥方法を説明する概念図。
【図2】触媒層膜中の有機系化合物の濃度と電圧劣化率の関係を示す管理濃度特性図。
【図3】所定の条件下で乾燥処理した塗布膜の乾燥速度を示す特性図。
【図4】触媒電極接合体の基本的構成を示す模式図。
【符号の説明】
1 高分子系イオン交換膜(高分子膜)
2、3触媒層膜
5,6 触媒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention forms the catalyst layer membrane for manufacturing a polymer electrolyte fuel cell by bonding a catalyst layer membrane serving as an anode electrode and a cathode electrode to both sides of a polymer ion exchange membrane (hereinafter, polymer membrane). For drying a catalyst layer film for a fuel cell.
[0002]
[Prior art]
A fuel cell basically consists of an electrolyte and two electrodes sandwiching the electrolyte. After dissociating hydrogen molecules that serve as a fuel into electrons and hydrogen ions on the negative electrode side by a catalytic chemical reaction such as platinum, the hydrogen ions remain in the electrolyte. Is moved to react with oxygen on the positive electrode side to obtain water, whereby electrons flow between the positive electrode and the negative electrode, and an electromotive force is generated.
[0003]
Fuel cells are roughly classified into a solid oxide type, a molten carbonate type, a phosphoric acid type, an alkali type, a solid polymer type, etc., depending on the type of electrolyte, and each has an appropriate operating temperature. Among them, the polymer electrolyte fuel cell has an operating temperature of about 50 to 100 ° C. lower than other fuel cells, and is used in new home electronic hot water systems, electric vehicle power supplies, and portable electronic devices such as mobile phones. It is expected as an energy source.
[0004]
As shown in FIG. 4, a basic element of this polymer electrolyte fuel cell is that a catalyst film 2, 3 serving as a negative electrode (anode) and a positive electrode (cathode) is joined to both sides of a polymer film 1 as a solid electrolyte. It is configured. Each of the catalyst layer films 2 and 3 is generally composed mainly of platinum alone or an alloy thereof. For example, catalyst particles in which fine particles of platinum or an alloy thereof are supported on carbon particles serving as a carrier are used. Hydrogen molecules serving as fuel are supplied to the anode catalyst layer film 2 side, oxygen molecules or air are supplied to the cathode catalyst layer film 3 side, and the hydrogen molecules are dissociated into hydrogen ions and electrons by the catalyst at the anode catalyst layer film 2 side. Then, the hydrogen ions pass through the polymer membrane 1 and move to the cathode catalyst layer film 3 side, and react with oxygen on the cathode catalyst layer film 3 side to generate water. At this time, if the circuit between the negative electrode side and the positive electrode side is closed, electrons move from the negative electrode side to the positive electrode side to generate an electromotive force. The electromotive force generated from the polymer membrane-catalyst layer electrode assembly (hereinafter, referred to as the catalyst electrode assembly) is about 1 volt (usually 0.7 to 0.8 V). By superimposing the components in series, an electromotive force that can be actually used is obtained.
[0005]
As a means for adhering a substance in a thick film on a sheet-like member, such as the above-mentioned catalyst electrode assembly, a substance having a predetermined thickness adhered to a base material such as a film by coating or vapor deposition is used. A transfer method is known in which only a substance is peeled off from a film base material by being brought into contact with a member for a predetermined time under conditions of pressure and temperature suitable for the above, and is adhered and bonded to the member.
[0006]
Further, a mask (pattern) using a mask that is patterned to form a predetermined shape on the member surface using a paint adjusted to predetermined characteristics (for example, viscosity, density, surface tension, etc.), or processed into a predetermined shape There is known a printing method typified by means (for example, offset) for applying a paint uniformly on a surface of a member and bringing the paint into contact with the surface of the member to cause the paint to adhere to the member. Further, there is also known a direct coating method in which a coating material adjusted to predetermined characteristics is pressurized using a high-pressure gas or a pump, and the coating material is sprayed from a cylindrical discharge hole or a slit to adhere the coating material to the surface of the member. I have. It is well known that the printing method and the direct coating method are used in fields such as device manufacturing technology for printed documents and electronic components. It is applied as a method for forming a layer film.
[0007]
In particular, as a general method of manufacturing a catalyst electrode assembly for a fuel cell, a catalyst layer film in which catalyst particles composed of carbon particles having a predetermined particle size distribution carrying platinum are formed in a uniform thickness is laminated with a polymer film. In addition, the catalyst layer film and the polymer film are adhered and bonded under processing conditions (temperature, pressure, time, etc.) that do not adversely affect device characteristics.
[0008]
The transfer method for producing the catalyst layer film, the printing method, the catalyst coating used in each film forming method of the coating method, the catalyst particles having platinum particles supported on carbon particles as a carrier as a main raw material, the catalyst coating Solvents are added to make the coating properties suitable for the respective film forming method. In the case of a paint in which the solvent is mainly water, the coating state often becomes an unstable slurry, and in a printing method or a coating method, a change in moisture or a property of the paint (viscosity, density, surface tension, particle size, etc.) There has been a problem that it is difficult to form a stable quality catalyst layer film due to a change over time. For example, screen meshes and nozzles are clogged due to changes in the dispersion state, condensation of catalyst particles, and the like, so that scratches and uneven printing on the polymer film are likely to occur. Further, in offset printing, a uniform catalyst layer thickness cannot be formed due to variations in the amount of paint applied.
[0009]
Therefore, as a means for obtaining stable coating properties, it is common practice to add a solvent of an organic compound to improve the coating properties by adjusting the viscosity and improving the dispersibility of the catalyst particles. However, although these solvents are necessary in the manufacturing process, many of them are completely unnecessary as constituent materials of the catalyst electrode assembly which is the final product. Further, this solvent is not completely removed during the manufacturing process, but remains as an impurity in the catalyst layer film, which is not preferable for the characteristics of the catalyst electrode assembly.
[0010]
An effective method for removing organic compounds remaining in the catalyst layer film at a high speed and at a low concentration is desired, and various means for increasing the drying speed of the coating film and improving the productivity have been proposed. I have.
[0011]
For example, in order to improve the cell performance of an electrode assembly of a phosphoric acid fuel cell, using a catalyst paint in which a material having various compositions and a solvent added to form a good catalyst layer film are mixed. After coating on an electrode support, drying this in an inert gas atmosphere at 225 ° C. for 30 minutes to remove the solvent inside the catalyst layer film, the dried electrode was passed through a rolling device to perform rolling, Subsequently, a manufacturing method is disclosed in which firing is performed in an inert gas atmosphere at 350 ° C. for 30 minutes (see Patent Document 1).
[0012]
As a method for producing a gas diffusion electrode for a fuel cell, a dispersion solution obtained by mixing a catalyst powder and PTFE (polytetrafluoroethylene) dispersion in a dispersion solvent containing a surfactant is applied on a porous electrode substrate. A method of firing at 300 ° C. in an atmosphere in which low-concentration oxygen is mixed with an inert gas is disclosed (see Patent Document 2). Drying or baking a coating film or the like in an inert gas atmosphere is widely used in various manufacturing fields.
[0013]
In addition, a drying method using a composition (water draining desiccant) utilizing an azeotropic point phenomenon (see Patent Document 3), or a drying promoting material composed of 1,1-dichloro-1-fluoroethane and a surfactant is used. There are known a drying method (see Patent Document 4) and a drying method using a heating means for applying a vibration having a frequency of 50 Hz to a dry gas (see Patent Document 5).
[0014]
[Patent Document 1]
JP-A-10-302807
[Patent Document 2]
JP-A-63-259966
[Patent Document 3]
JP-A-10-195080
[Patent Document 4]
JP-A-05-400004
[Patent Document 5]
JP-A-10-274475
[Problems to be solved by the invention]
Carbon particles used as a carrier for platinum catalysts have a porous structure that easily adsorbs chemical substances, so they absorb and adsorb organic compounds such as solvents contained in paints over a long period of time, and have been incorporated into fuel cell systems. It was discovered by the present inventors that chemical compounds remained in the catalyst layer film even at the time. Furthermore, it has been found that some or all of the organic compounds such as the solvent remaining in the catalyst layer film undergo an oxidation reaction, and in the course of the reaction, carbon monoxide which is an incomplete oxide is generated. .
[0020]
When a fuel cell system using a catalyst layer film in which such an organic compound remains remains, the organic compound contained in the catalyst layer film is somewhat changed by water generated by a chemical reaction between hydrogen and oxygen. The water is washed away, and the concentration of organic compounds in the catalyst layer film tends to decrease. However, because of long-term exposure due to the reuse of generated water (gas humidification) and the presence of high concentrations in the initial stage, The effect on the catalyst electrode assembly has a large effect, which is a trigger for promoting the deterioration of the catalyst electrode assembly.
[0021]
In addition, since the generated water contains organic compounds, when the temperature of the fuel cell system is shut down and the temperature drops, microorganisms that use the organic compounds as a nutrient source will proliferate, creating a state in which high concentrations of organic compounds are likely to be generated. Become. One of the problems is to accelerate the unstable operation of the fuel cell system and the deterioration of the catalyst by generating organic substances such as new substances and dead bodies generated by the life activity of the microorganism.
[0022]
When the concentration of the organic product in the catalyst layer film exceeds a predetermined concentration, the voltage deterioration rate tends to increase sharply. Analysis of the components remaining in the catalyst layer film showing a decrease in the voltage degradation rate revealed that the organic solvent was low in concentration but low in concentration (about 50 to 300 ppm) having ketone groups and carbonyl groups originating from organic solvent components. Compound was detected. Further, hydrogen gas is supplied to the catalyst layer film side serving as the anode electrode, and a small amount of about several ppm of carbon monoxide and carbon dioxide is contained in exhaust gas containing unreacted hydrogen gas consumed and discharged by the catalyst electrode assembly. Was detected. As described above, the catalyst poison of carbon monoxide is generated not only by reforming city gas and alcohol fuel gas, but also by the oxidation reaction of various organic chemical substances used in the fuel cell manufacturing process. It has been found that they occur and greatly affect the quality performance of the fuel cell system.
[0023]
The solvent contained in the catalyst paint for forming the catalyst layer film is composed of various components generated by the oxidizing action of the platinum catalyst. If it can be removed, a catalyst layer film with few impurities can be formed. There is a demand for a method capable of effectively removing organic compounds remaining in the catalyst layer film by a short-time treatment.
[0024]
An object of the present invention is to selectively generate a desired product by utilizing a catalytic action on a coating film formed of a coating material containing various materials such as a solvent, thereby remaining on the coating film. An object of the present invention is to provide a method for drying a catalyst layer film for a fuel cell, which efficiently removes organic compounds.
[0025]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a polymer film which is bonded to an ion exchange membrane by applying a catalyst paint obtained by mixing a catalyst raw material having a required function and a solvent on the ion exchange membrane and drying the coating. -In a method of drying a catalyst layer membrane for a fuel cell forming a catalyst layer membrane electrode assembly, to prepare a catalyst paint by adding a catalyst material that acts on the solvent to selectively generate a desired reaction product, The catalyst paint is applied on the ion-exchange membrane to form a coating film, and the coating film is dried while controlling the coating film under predetermined processing conditions.
[0026]
According to the above-mentioned drying method, by controlling the boiling point temperature of the organic compound in the coating film using the oxidation reaction by the catalyst so that the organic compound having a lower boiling point than the solvent is generated more frequently, The components of the organic compound in the catalyst layer film can be dried at a high speed. For example, the organic solvent added to the catalyst paint is oxidized by the oxidation catalyst function of platinum, and the catalyst reaction is controlled so that the organic solvent can be converted into a different substance having a low boiling point composition. An organic compound having a higher vapor pressure than the solvent is selectively generated, and the drying rate can be increased by increasing the vapor pressure of the organic solvent, the product, and a mixture thereof.
[0027]
The above-mentioned predetermined processing conditions are the oxygen concentration and the ambient temperature of the space where the coating film is arranged. By controlling these, the organic solvent or the property of the product generated by the catalytic reaction based on the organic solvent is controlled. Processing can be controlled.
[0028]
By controlling the ambient temperature to a temperature corresponding to the substance having the lowest boiling point among the solvent and the reaction product, drying with less energy is possible.
[0029]
The oxygen concentration of the atmosphere is preferably set to 0 to 5%.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Organic compounds remain in the catalyst layer film constituting the catalyst electrode assembly of the polymer electrolyte fuel cell due to various materials used in the production process. The effect of the organic compound component remaining in the catalyst layer film on the fuel cell performance (voltage characteristics and battery life) was experimentally verified. As a result, it was found that various types of organic compound components were contained in the catalyst layer film by an oxidation reaction with a catalyst component such as platinum.
[0031]
For example, when the solvent (including the solution of the raw materials to be mixed) added to adjust the coating characteristics of the catalyst paint is pure ethanol or a mixed solution or aqueous solution containing ethanol, the oxidation reaction occurs even under temperature conditions near room temperature. Ethanol changed from acetaldehyde to acetic acid. Also, when the solvent was pure methanol or a mixed solution or aqueous solution containing methanol, the methanol changed from formaldehyde to formic acid by the oxidation reaction.
[0032]
FIG. 2 shows the relationship between the respective component concentrations of formic acid, acetic acid, and oxalic acid in the catalyst layer film and the voltage deterioration rate of the catalyst electrode assembly. This graph shows the relationship between the concentration of the reaction product of the organic solvent component in the catalyst layer film and the method for evaluating the battery characteristics, in which the catalyst electrode assembly composed of the catalyst layer film having the known initial concentration of each organic solvent was used. An electrochemical reaction is caused under predetermined conditions using pure hydrogen and pure oxygen humidified as fuel and a support gas, and with reference to an initial voltage generated between the cathode catalyst electrode and the anode catalyst electrode, a time lapse is performed. 5 shows a voltage drop rate indicating a typical voltage drop change rate.
[0033]
When using not only ethanol and methanol but also other organic solvents, various organic compound components are generated by the chemical reaction with the catalyst, and this courageous compound component remains in the catalyst layer film. This has a long-term effect on the catalyst, leading to deterioration of battery characteristics.
[0034]
In order to solve this problem, it is necessary to efficiently remove the organic compounds remaining in the catalyst layer film formed from the catalyst paint. In order to remove the organic compound components and their product components in the catalyst layer film to a low concentration within a limited production time, using the catalytic action of platinum present in the catalyst layer film under certain conditions The desired product is selectively produced underneath and the produced material is evaporated by drying, thereby efficiently removing the remaining organic compounds.
[0035]
FIG. 1 is a conceptual diagram illustrating a drying method utilizing the catalytic action of a catalyst. Reaction in which substance A, which is a solvent added to the catalyst coating material, is changed to substance B, which is an intermediate product, by the catalysis of catalyst 5, and further, substance B is changed to substance C, which is a final product, by addition of catalyst 6. By utilizing the fact that the boiling points of the substance A, substance B and substance C are different, the substance having the lowest boiling point is selectively generated and the substance is evaporated by drying, so that the efficiency can be reduced with less energy. The organic compound can be removed effectively.
[0036]
Assuming that the boiling point of the substance A is Ts, the boiling point of the substance B is Tm, and the boiling point of the substance C is Te, the respective boiling points of the generated substances A, B, and C are Ts> Tm <Te, and the boiling point of the substance B Is the lowest, the amount of the catalyst and the processing conditions are controlled so that the intermediate B, a substance B, is generated, and the substance B is dried under a dry atmosphere in which the substance B easily evaporates, so that a state with low energy is obtained. Can remove the solvent in a short time.
[0037]
Further, when the boiling point Te of the substance C which is the final product generated by the action of the catalyst 6 is lower than the boiling point Tm of the substance B which is an intermediate product, the catalyst 6 is further added to lower the boiling point, When the reaction is controlled so that almost all of the substance C becomes a substance and the drying treatment is performed in a dry atmosphere for evaporating the substance C, the substances A, B, and C can be removed in a short time with less energy.
[0038]
When the boiling point Tm of substance B, which is an intermediate product, is the highest, and the boiling point Te of substance C, which is the final product, is lower than the boiling point Ts of substance A, the catalyst 5 and the catalyst 6 are mixed and added. Since A is formed into the substance C via the substance B, when the drying treatment is performed in a dry atmosphere in which the substance C is evaporated, the solvent can be removed in a short time with less energy.
[0039]
Further, when the substance A easily reacts with the catalyst already present in the catalyst paint and the boiling points Tm and Te of the products B and C are higher than the boiling point Ts of the substance A, the catalytic action does not work. If the catalytic reaction is an oxidation reaction, for example, if the catalytic reaction is an oxidizing reaction, the oxygen concentration in the reaction atmosphere is controlled to a low concentration to suppress the catalytic reaction, thereby keeping the substance A as it is and shortening the substance A as a solvent. Can be removed in time.
[0040]
The drying method will be described below with a more specific example. This is the case where the organic solvent added to the catalyst paint for forming the catalyst layer film is ethanol.
[0041]
As described above, ethanol generates acetaldehyde and acetic acid by the oxidizing action of platinum in an oxygen atmosphere. The respective boiling points are 78 ° C. for ethanol, 20 ° C. for acetaldehyde, and 118 ° C. for acetic acid at atmospheric pressure. In other words, when the boiling point of acetaldehyde, which is an intermediate product of ethanol, is the lowest, and the main component of the reaction product is selectively controlled to be acetaldehyde using a catalytic reaction, the solvent or its solvent can be reduced in a small amount of heat energy and in a short time. The product can be removed by evaporation.
[0042]
Therefore, a catalyst paint was prepared by adding 70% by weight of an ethanol solvent to a catalyst raw material mainly containing a solution containing 10% by weight of a platinum catalyst and a solution containing 5% by weight of a fluoropolymer material, This was applied to a catalyst electrode coating film coated on a base material, which is a polymer electrolyte functional membrane, in an atmosphere having an oxygen concentration of 0 to 21% by volume at an oxygen concentration of 10 ° C. ± 3 to 120 ° C. ± 5 ° C. Then, hot air whose temperature is controlled is blown for 3 minutes, and the catalyst electrode coating film is subjected to hot air drying treatment. The results of the drying characteristics are shown in FIG.
[0043]
The drying conditions shown in FIG. 3 are such that the oxygen concentration of the drying atmosphere is controlled in the range of 0 to 5% and the temperature of the atmosphere is controlled in the range of 30 to 90 ° C. As a result, a desired low-boiling organic compound containing acetaldehyde as a main component was selectively generated, and the drying speed could be increased in a stable state of the catalyst layer film.
[0044]
The above embodiment can be applied to a paint containing no catalyst. By adding an appropriate catalyst to the paint to promote drying, the drying speed of the coating film is controlled while utilizing the catalytic action. By doing so, the drying process can be realized at high speed with energy saving.
[0045]
【The invention's effect】
As described above, according to the present invention, a product produced by a catalyst contained in a catalyst coating material for forming a catalyst layer film and a solvent as a raw material thereof remain as an organic compound in the formed catalyst layer film. Since the drying can be performed while controlling the concentration to be equal to or lower than the predetermined concentration, a high-quality fuel cell can be manufactured using the catalyst layer film having a low impurity concentration.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram illustrating a drying method using a catalyst.
FIG. 2 is a control concentration characteristic diagram showing a relationship between the concentration of an organic compound in a catalyst layer film and a voltage deterioration rate.
FIG. 3 is a characteristic diagram showing a drying speed of a coating film dried under a predetermined condition.
FIG. 4 is a schematic view showing a basic configuration of a catalyst electrode assembly.
[Explanation of symbols]
1 polymer ion exchange membrane (polymer membrane)
2,3 catalyst layer film 5,6 catalyst

Claims (4)

所要の機能を有する触媒材料と溶媒とを混合した触媒塗料をイオン交換膜上に塗布して乾燥させることにより、イオン交換膜に接合して高分子膜−触媒層膜電極接合体を形成する燃料電池用触媒層膜の乾燥方法において、前記溶媒に作用して所望の反応生成物を選択的に生成する触媒材料を添加して触媒塗料を作製し、前記触媒塗料をイオン交換膜上に塗布して塗布膜を形成し、前記塗布膜を所定の処理条件に制御しながら乾燥処理することを特徴とする燃料電池用触媒層膜の乾燥方法。A fuel for forming a polymer membrane-catalyst layer membrane electrode assembly by bonding a catalyst paint, in which a catalyst material having a required function and a solvent are mixed, onto an ion exchange membrane and drying it, thereby forming a polymer membrane-catalyst layer membrane electrode assembly In the method for drying a catalyst layer membrane for a battery, a catalyst material that acts on the solvent to selectively generate a desired reaction product is added to prepare a catalyst paint, and the catalyst paint is applied on an ion exchange membrane. A method for drying a catalyst layer film for a fuel cell, comprising: forming a coating film by drying the coating film while controlling the coating film under predetermined processing conditions. 所定の処理条件は、雰囲気の酸素濃度及び雰囲気温度である請求項1に記載の燃料電池用触媒層膜の乾燥方法。The method for drying a catalyst layer film for a fuel cell according to claim 1, wherein the predetermined processing conditions are an oxygen concentration of an atmosphere and an atmosphere temperature. 雰囲気温度は、溶媒及び反応生成物のうち最も沸点が低い物質に対応する温度に制御する請求項2に記載の燃料電池用触媒層膜の乾燥方法。The method according to claim 2, wherein the ambient temperature is controlled to a temperature corresponding to a substance having the lowest boiling point among the solvent and the reaction product. 雰囲気の酸素濃度は、0〜5%である請求項2に記載の燃料電池用触媒層膜の乾燥方法。3. The method according to claim 2, wherein the oxygen concentration in the atmosphere is 0 to 5%.
JP2003102396A 2003-04-07 2003-04-07 Method of drying catalyst layer membrane for fuel cell Pending JP2004311185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102396A JP2004311185A (en) 2003-04-07 2003-04-07 Method of drying catalyst layer membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102396A JP2004311185A (en) 2003-04-07 2003-04-07 Method of drying catalyst layer membrane for fuel cell

Publications (1)

Publication Number Publication Date
JP2004311185A true JP2004311185A (en) 2004-11-04

Family

ID=33465837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102396A Pending JP2004311185A (en) 2003-04-07 2003-04-07 Method of drying catalyst layer membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP2004311185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265752A (en) * 2006-03-28 2007-10-11 Dainippon Printing Co Ltd Catalyst layer for solid polymer type fuel cell and catalyst layer-electrolyte membrane laminate
JP2012099464A (en) * 2010-11-01 2012-05-24 Samsung Sdi Co Ltd Secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265752A (en) * 2006-03-28 2007-10-11 Dainippon Printing Co Ltd Catalyst layer for solid polymer type fuel cell and catalyst layer-electrolyte membrane laminate
JP2012099464A (en) * 2010-11-01 2012-05-24 Samsung Sdi Co Ltd Secondary battery
US9543562B2 (en) 2010-11-01 2017-01-10 Samsung Sdi Co., Ltd. Secondary battery

Similar Documents

Publication Publication Date Title
KR101804714B1 (en) Supporting carbon material for solid polymer fuel cell, metal-catalyst-particle-supporting carbon material, and method for manufacturing said materials
KR20070048246A (en) Method and apparatus for electrostatically coating an ion-exchange membrane or fluid diffusion layer with a catalyst layer
EP2124275A1 (en) Apparatus for manufacturing electrode for polymer electrolyte fuel cell, and method of manufacturing the same
JP2008021647A (en) Low cost bipolar board coating for polymer electrolyte membrane fuel cell
US20240058749A1 (en) Device and method for degrading gaseous organic pollutant through electrochemical process
JP2001068119A (en) Polymer electrolyte fuel cell and method of manufacturing its electrode
JP4861025B2 (en) Electrode for solid polymer electrolyte fuel cell and method for producing the same
JP4833860B2 (en) Membrane electrode assembly prepared by spraying catalyst directly onto membrane
WO2005057698A1 (en) Fuel cell
RU2456717C1 (en) Method of forming catalyst layer for solid-polymer fuel cell
JP4233051B2 (en) Manufacturing method of electrode layer for fuel cell
JP2004311163A (en) Catalyst layer membrane of fuel cell and its manufacturing method
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
JP2004311185A (en) Method of drying catalyst layer membrane for fuel cell
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
EP1059686A2 (en) Polymer electrolyte fuel cell
JP2009289623A (en) Method for manufacturing catalyst layer in membrane electrode assembly
JP2006252938A (en) Electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP2003297392A (en) Proton conductor, its manufacturing method and fuel cell
JP2003282074A (en) Electrode for fuel cell, and manufacturing method of the same
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JP2004152593A (en) Manufacturing method of membrane for solid polymer fuel cell and electrode junction
US20130126072A1 (en) Fabrication of catalyst coated electrode substrate with low loadings using direct spray method
JP2006210181A (en) Method of manufacturing electrode catalyst layer for fuel cell and fuel cell having electrode catalyst layer
JP2003282075A (en) Fuel cell, and manufacturing method of the same