【0001】
【発明の属する利用分野】
本発明は、例えば車両用灯具などにも採用可能な照明装置の構成に係るものであり、詳細には照明装置の発光面を見るときには、比較的に幅の狭いリング状など、特異な発光面形状が得られる照明装置の構成に係るものである。
【0002】
【従来の技術】
従来の特異な発光面形状を得るための照明装置の構成としては、LEDランプの前方に、このLEDランプの発光点に第一焦点を略一致させ、第二焦点を前記LEDランプの斜め後方に位置させる楕円系反射面を設置し、この楕円系反射面の第二焦点の位置に焦点を有し軸を照射方向とするリング状の放物系反射面を設置し、約リング状の発光面形状を得るものがある。(例えば、特許文献1参照)
【0003】
【特許文献1】
特開2002−382253号公報(「0007」〜「0023」項、図1〜図4)
【0004】
【発明が解決しようとする課題】
しかしながら、上記した従来の構成では、先ず、LEDランプと楕円系反射面とが特許文献1の図1でも明らかなように空間を介在させて設置されるものであり、且つ、両者の位置合わせがLEDランプの発光点と楕円系反射面の第一焦点とを合致させるというように、一方がLEDランプの内部に存在し、他方が見えないものであり、例えば目視など簡便な方法では両者が所定位置に設定されていることを確認できないものである。
【0005】
同様に、前記楕円系反射面と放物系反射面との相互関係も、お互いが空間を介在させて設置されるものであり、位置も楕円系反射面の第二焦点と放物系反射面の焦点を一致させるというように目視不可能なもの同士を合致させるものであるので、前記楕円系反射面に対しLEDランプを設置するホルダ、或いは、前記楕円系反射面と放物系反射面とを取付けるハウジングなどには高精度のものが要求され、また、組立にも高精度の作業が要求され、結果としては照明装置がコストアップするなどの問題点を生じていた。
【0006】
【課題を解決するための手段】
本発明は前記した従来の課題を解決するための具体的手段として、光源に対し、この光源から放射される光を入射側端部から取り込み、側面では大気との境界面において内面全反射させて前記光源から任意の側方且つ前方に設定され前記光源と略同一方向に向かい設定された出射側端部まで導光し、前記出射側端部において光を大気中に放出する光導路を二次平面上に設定し、この光導路を前記光源の中心軸で回転させることで得られる略カップ状の形状が高屈折部材で形成されたライトガイドが設けられていることを特徴とする照明装置を提供することで課題を解決するものである。
【0007】
【発明の実施の形態】
つぎに、本発明を図に示す実施形態に基づいて詳細に説明する。図1および図2に符号1で示すものは本発明に係る照明装置であり、この照明装置1は代表的な例としてはLEDランプを光源2とし、この光源2からの光をもって略リング状とした発光面1A(図1参照)を構成するものである点は従来例で説明した照明装置とほぼ同様である。
【0008】
ここで、本発明においては、前記照明装置1を、光源2とライトガイド3とからで構成するものであり、このように照明装置1を構成することで、従来例で必要とされていた、例えば、2つの反射面の焦点同士を一致させるなど、目視不能であり実質的には確認することが困難で、且つ、高い精度が要求される工程を不要とするものである。
【0009】
ここで、前記ライトガイド3の形状を形成するに当たっては、まず、前記光源2の中心を通る平面上に光導路13を作図する。この光導路13は入射側端部13aと出射側端部13bとを平行線状とした側面13cで接続したものである。
【0010】
そして、前記入射側端部13aは、前記光源2からの光を光導路13中に効率よく取り込むのに適する形状、例えば凹面などして形成されている。また、前記出射側端部13bは、前記入射側端部13aに対して適宜の前方で、且つ、適宜の外側となる位置に設定されている。そして、この出射側端部13bは、光源2と同一方向に光を放射するように方向が設定されている。
【0011】
よって、前記側面13cは、お互いが等距離の関係を保つ状態で適宜に湾曲させられている。尚、実際の前記出射側端部13bの位置の設定にあたっては、前記側面13cの長さの変更の必要性も生じるが、これは、以下に説明する側面13cに与える曲線形状とも考慮して最適な長さに調整する。
【0012】
このときに、前記側面13cに与えられる曲線の適宜な形状(線種)として、具体的には、P(t)=(1−t)3Q0+3(1−t)2Q1+3(1−t)t2Q2+t3Q3(0≦t≦1)なる式で表されるベジェ曲線(3次ベジェ曲線)があげられる。尚、前記出射側端部13bにおいては配光特性などとの関係を生じるので、ここでは、光の射出方向と直角な平面として設定されている。
【0013】
上記のようにして得られた光導路13は、前記光源2の中心線Xを軸として回転が行われ、その回転時の軌跡をもってライトガイド3の形状とされる。従って、前記ライトガイド3は1箇所の入射側端部13aから略リング状となる出射側端部13bにつながる略カップ状の形状が得られるものとなる。
【0014】
そして、上記のようにして得られた形状を、例えばアクリル樹脂、ポリカーボネート樹脂など透明度が高く、且つ、空気よりも屈折率が大きい樹脂で形成することで、本発明のライトガイド3が得られるものとなるのであり、前記入射側端部13aに相当するランプ取付部3aに光源2を対峙させ点灯することで、ライトガイド3内を光が伝播し出射側端部13bに相当する発光部3bに達し、この発光部3bから照明装置1の照射方向に向け大気中に放射されるものとなる。
【0015】
即ち、本発明の照明装置1によれば、ライトガイド3を上記の構成としたことで、光源2から発光部3bまでの光路がアクリル樹脂など空気よりも屈折率の大きい固体で形成されるものとなり、且つ、側面13cの部分は曲率変化が滑らかなベジェ曲線で形成されているのでライトガイド3内で内面全反射を行うものとなる。
【0016】
これにより、ランプ取付部3aからライトガイド3内に入射された光源2の光は発光部3b以外の部分から外部に漏出することがなくなり、即ち、従来例のように空間(気体)を実質的に介すことなく、いわゆるソリッドステート(固体化)の状態で光源2とライトガイド3の発光部3bとを接続できるものとなるのである。
【0017】
よって、組立時において、例えば一方の反射面の焦点と他方の反射面の焦点とが一致してるか否かなど、目視などの簡便な検査手段では確認が不可能な状況を生じることもなく、また、光源2とライトガイド3との相互の組合わせに格別の精度も要求されないものとなるので、照明装置1の組立工程は極度に簡素化するものとなる。
【0018】
尚、上記の説明において、発光部3bの部分は平坦な面であるとして図示、および、説明を行ったが、実際の実施に当たっては、照明装置1の用途、例えば車両用灯具などとして要望される配光特性を得るための、魚眼レンズ状などとしたレンズカットを施すなどは自在である。
【0019】
図3は、本発明に係る照明装置1の別の実施形態であり、前の実施形態では前記ライトガイド3は、二次元の平面上に設定したと光導路13を光源2の中心を通る中心線Xで回転して得られる形状としているので、照明装置1を照射方向の正面から観視するときの形状は、眞円のリング状であった。
【0020】
しかしながら、本発明により前記ライトガイド3を採用した目的は、光源2からの光を、他の部分で外部になるべく漏れることなくランプ取付部3aから発光部3bへ伝播させる構成の簡素化であるので、側面13cに顕著に光モレの増加を生じない範囲においては、上記中心軸Xによる回転時に出射側端部13bの軌跡に適宜な変更を行い、例えば、楕円系状、長円形状(小判形状、図3参照)のリング状など発光部3bの正面形状を適宜に設定を行うことは自在である。
【0021】
図4は、本発明に係る照明装置1の更に別な実施形態であり、前の何れの実施形態においても、照明装置1は光源2とライトガイド3とから構成され、前記光源2からの光は、ほぼ全てがライトガイド3の発光部3bから放射されるものであり、即ち、照明装置1としての点灯時の形状は大半が発光部3bにより決定されるものであった。
【0022】
ここで、この実施形態においては、点灯時の形状に一層の自由度を与えようとするものであり、この目的を達するために、この実施形態のライトガイド3においては、外側の側面13cに相当する部分に適宜数の光取出しカット3cを設けるものであり、この光取出しカット3cは図5に示すようにライトガイド3内を伝播する光に対して、内面反射を生じない角度に大気との境界面を設定することでライトガイド3外に光を取り出す。
【0023】
そして、ライトガイド3の外周を覆っては、例えば不透明な樹脂で略椀状に形成され、内面にアルミニウム蒸着などで反射面4aが形成された外周反射鏡4が設けられ、更に前記ライトガイド3の発光部3bと外周反射鏡4の開口部とにかけてはレンズ5が設けられている。
【0024】
このようにすることで、外周反射鏡4、および、レンズ5の形状を変更することで、照明装置1の形状を自由に設定できるものとなり、このときに明るさ、配光特性など灯具としての性能は大部分がライトガイド3の発光部3bにより設定されるので、この部分に変更を加えないこの実施形態によれば、形状変更の自由度は一層に高いものとなる。
【0025】
【発明の効果】
以上に説明したように本発明により、光源に対し、この光源から放射される光を入射側端部から取り込み、側面では大気との境界面において内面全反射させて前記光源から任意の側方且つ前方に設定され前記光源と略同一方向に向かい設定された出射側端部まで導光し、前記出射側端部において光を大気中に放出する光導路を二次平面上に設定し、この光導路を前記光源の中心軸で回転させることで得られる略カップ状の形状が高屈折部材で形成されたライトガイドが設けられている照明装置としたことで、光源(LEDランプ)からの光をこの照明装置の発光面まで導くにあたり、前記光源から発光面までの間を透明高屈折部材により充填された構成とするものであり、これにより、照明装置の組立を行う際に光源から発光面までを機械的に接続可能なものとして、部品に高精度が要求されないものとすると共に、組立作業も容易化して照明装置の生産性の向上とコストダウンとに極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明に係る照明装置の実施形態を示す正面図である。
【図2】同じく本発明に係る照明装置におけるライトガイドを形成するときの手順を示す説明図である。
【図3】同じく本発明に係る照明装置の別の実施形態を示す正面図である。
【図4】同じく本発明に係る照明装置の更に別の実施形態を示す断面図である。
【図5】更に別の実施形態における要部を拡大して示す説明図である。
【符号の説明】
1……照明装置
2……光源
3……ライトガイド
3a……ランプ取付部
3b……発光部
3c……光取出しカット
4……外周反射鏡
4a……反射面
5……レンズ
13……光導路
13a……入射側端部
13b……出射側端部
13c……側面[0001]
FIELD OF THE INVENTION
The present invention relates to a configuration of a lighting device that can be used for, for example, a vehicular lamp, and more specifically, when looking at the light emitting surface of the lighting device, a unique light emitting surface such as a relatively narrow ring shape is used. The present invention relates to a configuration of a lighting device capable of obtaining a shape.
[0002]
[Prior art]
As a configuration of a conventional lighting device for obtaining a unique light emitting surface shape, a first focus is substantially coincident with a light emitting point of the LED lamp in front of the LED lamp, and a second focus is obliquely rearward of the LED lamp. An elliptical reflecting surface to be positioned is installed, a ring-shaped parabolic reflecting surface having a focal point at the position of the second focal point of the elliptical reflecting surface and having an axis as an irradiation direction is installed, and an approximately ring-shaped light emitting surface Some get the shape. (For example, see Patent Document 1)
[0003]
[Patent Document 1]
JP 2002-382253 A (“0007” to “0023”, FIGS. 1 to 4)
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, first, the LED lamp and the elliptical reflecting surface are installed with a space interposed therebetween, as is clear from FIG. One is present inside the LED lamp and the other is invisible, such that the light emitting point of the LED lamp matches the first focal point of the elliptical reflecting surface. It cannot be confirmed that the position is set.
[0005]
Similarly, the mutual relationship between the elliptical reflecting surface and the parabolic reflecting surface is also such that they are installed with a space therebetween, and the positions are also the second focal point of the elliptical reflecting surface and the parabolic reflecting surface. Since the invisible objects are matched so as to match the focal point, a holder for installing an LED lamp with respect to the elliptical reflecting surface, or the elliptical reflecting surface and the parabolic reflecting surface A high-precision one is required for a housing and the like to be mounted, and a high-precision work is also required for assembling. As a result, there have been problems such as an increase in cost of a lighting device.
[0006]
[Means for Solving the Problems]
As a specific means for solving the above-mentioned conventional problems, the present invention captures light emitted from the light source from an incident side end to a light source, and on the side surface, performs total internal reflection at a boundary surface with the atmosphere. A light guide that guides light from the light source to an emission side end that is set at an arbitrary side and forward and is directed substantially in the same direction as the light source, and that emits light to the atmosphere at the emission side end is a secondary light guide. A lighting device characterized by being provided on a plane, and provided with a light guide having a substantially cup-like shape formed of a high refractive member obtained by rotating the light guide path about the central axis of the light source. The problem is solved by providing.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail based on an embodiment shown in the drawings. 1 and 2 is a lighting device according to the present invention. As a typical example, the lighting device 1 uses an LED lamp as a light source 2 and uses the light from the light source 2 in a substantially ring shape. The light emitting surface 1A (see FIG. 1) is substantially the same as the lighting device described in the conventional example.
[0008]
Here, in the present invention, the lighting device 1 is configured by the light source 2 and the light guide 3, and by configuring the lighting device 1 in this manner, it is necessary in the conventional example. For example, it is not possible to visually confirm that the focal points of the two reflecting surfaces are coincident with each other, and it is difficult to confirm the position, and a process that requires high accuracy is not required.
[0009]
Here, in forming the shape of the light guide 3, first, the light guide 13 is drawn on a plane passing through the center of the light source 2. The light guide path 13 is formed by connecting an incident side end 13a and an output side end 13b by a side surface 13c having a parallel line shape.
[0010]
The incident side end 13a is formed in a shape suitable for efficiently taking in the light from the light source 2 into the light guide 13, such as a concave surface. In addition, the emission side end 13b is set to a position that is appropriately in front of the incident side end 13a and is appropriately outside. The direction of the emission side end 13b is set so as to emit light in the same direction as the light source 2.
[0011]
Therefore, the side surfaces 13c are appropriately curved in a state where the side surfaces 13c maintain an equidistant relationship with each other. In setting the actual position of the emission side end portion 13b, it is necessary to change the length of the side surface 13c, but this is optimal in consideration of the curved shape given to the side surface 13c described below. Adjust to a suitable length.
[0012]
At this time, as appropriate shape of the curve applied to said side surface 13c (linetype), specifically, P (t) = (1 -t) 3 Q 0 +3 (1-t) 2 Q 1 +3 ( 1-t) A Bezier curve (cubic Bezier curve) represented by an equation of t 2 Q 2 + t 3 Q 3 (0 ≦ t ≦ 1) is given. Since the light exit side end 13b has a relationship with light distribution characteristics and the like, it is set here as a plane perpendicular to the light emission direction.
[0013]
The light guide 13 obtained as described above is rotated about the center line X of the light source 2 as an axis, and has a shape of the light guide 3 with a locus of the rotation. Accordingly, the light guide 3 has a substantially cup-like shape that is connected from one incident-side end 13a to a substantially ring-shaped exit-side end 13b.
[0014]
The light guide 3 of the present invention can be obtained by forming the shape obtained as described above from a resin having high transparency, such as an acrylic resin or a polycarbonate resin, and having a refractive index larger than that of air. When the light source 2 is turned on with the light source 2 facing the lamp mounting portion 3a corresponding to the incident side end portion 13a, the light propagates in the light guide 3 to the light emitting portion 3b corresponding to the emission side end portion 13b. Then, the light is emitted from the light emitting unit 3b into the atmosphere in the irradiation direction of the lighting device 1.
[0015]
That is, according to the illuminating device 1 of the present invention, the light guide 3 having the above-described configuration allows the optical path from the light source 2 to the light emitting portion 3b to be formed of a solid such as acrylic resin having a refractive index larger than that of air. In addition, since the portion of the side surface 13c is formed by a Bezier curve having a smooth change in curvature, total internal reflection is performed in the light guide 3.
[0016]
Thus, the light of the light source 2 that has entered the light guide 3 from the lamp mounting portion 3a does not leak to the outside from portions other than the light emitting portion 3b, that is, substantially eliminates the space (gas) as in the conventional example. Thus, the light source 2 and the light-emitting portion 3b of the light guide 3 can be connected in a so-called solid state (solidification) state.
[0017]
Therefore, at the time of assembling, for example, whether or not the focus of one reflection surface and the focus of the other reflection surface coincide with each other, a situation that cannot be confirmed by simple inspection means such as visual observation does not occur, Further, since no particular precision is required for the mutual combination of the light source 2 and the light guide 3, the assembling process of the illumination device 1 is extremely simplified.
[0018]
In the above description, the light emitting portion 3b is illustrated and described as a flat surface, but in actual implementation, it is required as a use of the lighting device 1, for example, as a vehicle lamp. It is possible to freely form a lens cut into a fisheye lens shape or the like to obtain light distribution characteristics.
[0019]
FIG. 3 shows another embodiment of the lighting device 1 according to the present invention. In the previous embodiment, when the light guide 3 is set on a two-dimensional plane, the light guide 13 passes through the center passing through the center of the light source 2. Since the shape obtained by rotating with the line X was obtained, the shape when the illuminating device 1 was viewed from the front in the irradiation direction was a true ring shape.
[0020]
However, the purpose of adopting the light guide 3 according to the present invention is to simplify the configuration for transmitting the light from the light source 2 from the lamp mounting portion 3a to the light emitting portion 3b without leaking to the outside as much as possible in other portions. In a range where light leakage does not significantly increase on the side surface 13c, an appropriate change is made to the trajectory of the emission side end portion 13b during rotation about the central axis X, for example, an elliptical shape, an elliptical shape (an oval shape). The front shape of the light emitting portion 3b such as a ring shape shown in FIG. 3 can be appropriately set.
[0021]
FIG. 4 shows still another embodiment of the lighting device 1 according to the present invention. In any of the above embodiments, the lighting device 1 includes the light source 2 and the light guide 3, and the light from the light source 2 is provided. Almost all are emitted from the light emitting portion 3b of the light guide 3, that is, the shape of the lighting device 1 at the time of lighting is mostly determined by the light emitting portion 3b.
[0022]
Here, in this embodiment, the shape at the time of lighting is given more flexibility, and in order to achieve this purpose, in the light guide 3 of this embodiment, the light guide 3 corresponds to the outer side surface 13c. The light extraction cut 3c is provided with an appropriate number of light extraction cuts 3c at a portion where the light propagating through the light guide 3 does not cause internal reflection with the atmosphere as shown in FIG. Light is extracted outside the light guide 3 by setting a boundary surface.
[0023]
The outer periphery of the light guide 3 is provided with an outer peripheral reflecting mirror 4 formed of, for example, an opaque resin in a substantially bowl shape and having an inner surface provided with a reflecting surface 4a by aluminum evaporation or the like. A lens 5 is provided between the light emitting unit 3b and the opening of the outer peripheral reflecting mirror 4.
[0024]
By doing so, the shape of the illumination device 1 can be freely set by changing the shapes of the outer peripheral reflecting mirror 4 and the lens 5, and at this time, the brightness, light distribution characteristics, etc. Since most of the performance is set by the light emitting portion 3b of the light guide 3, according to this embodiment in which this portion is not changed, the degree of freedom of shape change is further increased.
[0025]
【The invention's effect】
As described above, according to the present invention, for a light source, light emitted from the light source is taken in from an incident side end, and the side surface is totally internally reflected at a boundary surface with the atmosphere, and any side and from the light source A light guide that is set forward and guides light to an emission end that is set in substantially the same direction as the light source and that emits light to the atmosphere at the emission end is set on a secondary plane. Light from a light source (LED lamp) is provided by using a lighting device provided with a light guide having a substantially cup-shaped shape obtained by rotating a path around the central axis of the light source and formed of a high refractive member. In leading to the light-emitting surface of the lighting device, the space between the light source and the light-emitting surface is filled with a transparent high-refractive member. The mechanical As may be connected, as well as to those high precision components are not required, in which assembly work even easier to achieve the excellent effects in the improvement and cost reduction of the productivity of the illumination device.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of a lighting device according to the present invention.
FIG. 2 is an explanatory view showing a procedure when forming a light guide in the lighting device according to the present invention.
FIG. 3 is a front view showing another embodiment of the lighting device according to the present invention.
FIG. 4 is a sectional view showing still another embodiment of the lighting device according to the present invention.
FIG. 5 is an explanatory diagram showing a main part in still another embodiment in an enlarged manner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Illuminating device 2 ... Light source 3 ... Light guide 3a ... Lamp mounting part 3b ... Light emitting part 3c ... Light extraction cut 4 ... Outer peripheral reflecting mirror 4a ... Reflective surface 5 ... Lens 13 ... Light guide Path 13a ... Incoming end 13b ... Outgoing end 13c ... Side