JP2004309357A - Drag calibration method in magnetic suspension and balance system - Google Patents

Drag calibration method in magnetic suspension and balance system Download PDF

Info

Publication number
JP2004309357A
JP2004309357A JP2003104552A JP2003104552A JP2004309357A JP 2004309357 A JP2004309357 A JP 2004309357A JP 2003104552 A JP2003104552 A JP 2003104552A JP 2003104552 A JP2003104552 A JP 2003104552A JP 2004309357 A JP2004309357 A JP 2004309357A
Authority
JP
Japan
Prior art keywords
drag
wind tunnel
tunnel model
force
pitch angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003104552A
Other languages
Japanese (ja)
Other versions
JP3760181B2 (en
Inventor
Hideo Sawada
秀夫 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP2003104552A priority Critical patent/JP3760181B2/en
Publication of JP2004309357A publication Critical patent/JP2004309357A/en
Application granted granted Critical
Publication of JP3760181B2 publication Critical patent/JP3760181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drag calibration method in a simple magnetic suspension and balance system by acquiring a force in the direction of an air current flow equivalent to a drag due to air current using the load and the pitch angle of a wind tunnel model which can be measured. <P>SOLUTION: The weight mg of the wind tunnel model 1 and the minute pitch angle θ around the reference pitch angle θ0 (may be zero) of the wind tunnel model 1 to the direction of the air current when the wind tunnel model 1 is magnetically suspended by the magnetic suspension and balance system can be measured. The same situation is generated as the drag as air force acted on the wind tunnel model 1 by changing the pitch angle posture of the wind tunnel model 1. The correspondence relationship between the drag and drag coil current can be calibrated by measuring drag coil current in the state of balance. The drag calibration can be simply and efficiently executed in the viewpoint of time or cost without needing complicated works such as the assembly, the adjustment, the preparation and the weight exchange of an apparatus. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、磁石を内部に有する風洞模型を風洞中に磁力支持する磁力支持天秤装置における抗力較正方法に関する。
【0002】
【従来技術】
従来、物体の空力的な特性を模型で得るため風洞設備の測定部において模型を支持体で支持することが一般的に行われてきたが、支持体自体が模型表面における空気流れに影響を及ぼすので、試験結果をそのまま模型の空力特性として採用することができない。そこで、風洞試験において、模型を磁力で支持することが提案されている。模型を磁力支持することによって支持体が不要となるので、支持体が存在することによる、模型周りの空力的な影響を取り除くことができる。
【0003】
模型を磁力支持する磁力支持天秤装置は、風洞試験において模型の周りを流れる気流が模型に作用する抗力等の空気力を、模型の内部に設けられる磁石と相互作用する磁気力を生じさせるために設けられているコイルに流す電流の大きさに置き換えて測定する装置である。こうした空気力とコイル電流の大きさとの関係を調べて予めマップ、関数、表等の対応関係を用意しておき、この対応関係をコイル電流の測定値に当てはめることによって、模型に作用する抗力等の空気力を知ることができる。
【0004】
図3及び図4を参照して、磁力支持型風洞及びそれにおける磁力支持天秤装置の概要を説明する。磁力支持天秤装置20は、模型支持に伴う支持装置と気流との干渉を避けるため風洞模型1を磁気の力で気流中に支持する装置であり、支持干渉のない風洞試験を実現することができる。風洞模型1には磁化された物質、超伝導コイルのような電流を流し続けているコイル、或いは永久磁石等から成る磁石体が搭載される。風洞模型1の磁石体には、風洞の測定部の周りに配置したコイルに電流を通じることにより生じた外部磁場との磁気作用によって磁気力が生じ、風洞模型1を磁気的に浮上支持させることができる。外部磁場は、コイル23〜26と、コイル27〜30から成る二つの磁気回路21,22と、その外側の空芯コイル31,32とによって発生され、磁気回路21,22の各コイルに流れる電流を調節することにより、磁気回路21,22内のy−z面内での磁場の強さと方向及びそれらのx軸方向の変化率を連続的に変化させることができる。また、空芯コイル31,32に流れる電流を調節することによりx軸方向磁場の強さのx軸方向で見た変化率を制御でき、都合5軸の制御が可能である。即ち、磁気回路21,22は、風洞模型1に働く揚力と縦揺れモーメントとに対抗する磁気力を与える揚力コイルとして機能し、空芯コイル31,32は風洞模型1に働く抗力に対抗する磁気力を与える抗力コイルとして機能している。
【0005】
風洞には、風洞模型1とコイル23〜32の他に、各コイルを駆動する電源系、風洞模型1の位置と姿勢とを計測する計測系(図1に示す測定装置36)、風洞模型1の位置と姿勢とを制御する制御系が組み込まれている。図4に示すように、計測系であるカメラ33が検出した風洞模型1の位置姿勢に関する計測データは、パソコン等の計算機34に送信され、計算機34での演算結果をアンプ35にて増幅した後、各コイル23〜32に制御された駆動電流を通じている。
【0006】
ところで、風洞試験の重要な試験項目の一つとして、風洞模型に気流の流れ方向に働く抵抗力を測定する抗力測定がある。流体中を移動するときに物体に作用する抗力を僅かでも低減させることができれば、移動に要するエネルギーが少なからず改善されて省エネルギーに貢献することができるので、抗力測定を極力正確に行うことが求められている。しかしながら、模型内に設けられる磁石の強さは経年変化によって少なからず劣化するので、時間の経過に伴って、当初得られている対応関係が実際の対応関係とは必ずしも一致しなくなるおそれがある。抗力測定においても、経年変化によって、磁石の強さとコイルに流す電流との間の対応関係も異なってくるので、磁力支持天秤装置の抗力較正を行う必要がある。
【0007】
磁力支持天秤装置の抗力較正は、通常、流れを止めた風洞の中に風洞模型を置き、仮に気流を流したとしたときに気流の流れ方向に生じるであろう抗力を何らかの方法で外力として加え、この力に釣り合う磁気力を発生させる抗力コイルに流される抗力コイル電流値を計測し、加えた力と抗力コイル電流値との対応関係を得ることによって可能となる。この対応関係に基づいて、実際に気流を流して行われる風洞試験で磁力支持中の模型に加わる抗力の評価を、釣合い状態での抗力コイルに流される抗力コイル電流値を測定することで行うことができる。
【0008】
抗力較正を含む縦三分力の較正方法の概略が図5に示されている。風洞測定部において磁力支持天秤装置20によって風洞模型1を磁力支持した状態で、抗力D、揚力L、縦揺れモーメントmに相当する力やモーメントを重りによって付加し、対応する各コイル電流が測定される。質量Mdの重りに働く重力Md・g(抗力Dに相当、gは重力加速度(以下同じ))は、抗力コイル31に流れる抗力コイル電流Ixに比例する。揚力Lは、質量Mlの重りに働く重力Ml・gと釣り合っており、揚力コイル21に流れる揚力コイル電流Iz1と揚力コイル22に流れる揚力コイル電流Iz2との和に比例し、縦揺れモーメントmは、質量Mmの重りに働く重力Mm・gと腕の長さs/2との積であって、揚力コイル21に流れる揚力コイル電流Iz1と揚力コイル22に流れる揚力コイル電流Iz2との差に比例している。
【0009】
抗力較正において、既知の力を加えるには、図5に示したように、そうした力を風洞模型1に与えるための機器の組立、調整、準備等の煩雑な作業が求められる。また、抗力に相当する力を変更するには、重りMd,Ml,Mmを交換し、その交換後、再度の釣り合い及び調整が必要であり、風洞模型1の動きが停止するまで待つ必要もある。このため、頻繁な抗力較正は現実には困難であり、較正時期の間隔が開き、抗力測定精度自体にも悪影響が出る虞れがある。
【0010】
【発明が解決しようとする課題】
そこで、磁力支持天秤装置の抗力較正において、抗力は気流によって模型に作用する他の空気力よりも比較的小さいことに着目し、重りに依らずとも、抗力と同等の気流流れ方向の力を得ることを可能にする点で解決すべき課題がある。
【0011】
この発明の目的は、重りを用いる場合に避けることができなかった、機器の組立、調整、準備、重りの交換等の煩雑な作業をなくし、時間やコストの観点で簡便で効率的に抗力較正を実施することを可能にする磁力支持天秤装置における抗力較正方法を提供することである。
【0012】
【課題を解決するための手段】
上記の課題を解決するため、この発明による磁力支持天秤装置における抗力較正方法は、気流によって風洞模型に作用する抗力に釣り合わせるため通電することにより磁気力を発生させる抗力コイルを備えた磁力支持天秤装置に関して、前記抗力に相当する力として前記風洞模型に作用される大きさが既知の力に釣り合わせるために前記抗力コイルに流される電流を求めることによって、前記抗力と前記電流との対応関係を較正する抗力較正方法において、前記風洞模型の重さをmgとし、重力のみが作用している前記風洞模型を前記磁力支持天秤装置で釣合い状態に磁力支持したときの前記風洞模型の基準ピッチ角及び前記基準ピッチ角の周りの微小ピッチ角をそれぞれθ ,θとしたとき、下式で定められる力Fdを前記風洞模型に作用する前記抗力に相当する力であると見なすことを特徴としている。
【数3】

Figure 2004309357
【0013】
この磁力支持天秤装置における抗力較正方法によれば、風洞模型の重さmgは、磁力支持天秤装置外において十分高い精度で測定可能であり、また、重力のみが作用している風洞模型を磁力支持天秤装置で釣合い状態に磁力支持したときの気流の流れ方向に対する風洞模型の基準ピッチ角θ 、及び基準ピッチ角θ の周りの微小ピッチ角θも、風洞模型が磁力支持天秤装置内に置かれているとしても、光学的に十分な精度で測定可能である。従って、風洞模型の姿勢を変更するだけで、大きさが分かった異なる抗力が風洞模型に作用したのと同じ状況が生じ、釣合い状態において、上記式で定められる力Fdを試験時に風洞模型に作用する空気力の一つである抗力に相当する力であると見なすことができ、そのときの抗力コイル電流を計測することにより、抗力と前記電流との対応関係を較正することが可能になる。
【0014】
この磁力支持天秤装置における抗力較正方法において、前記基準ピッチ角θ が零であるとき、下式で定められる力Fd’を前記風洞模型に作用する前記抗力に相当する力であると見なすことを特徴としている。
【数4】
Figure 2004309357
この抗力較正方法によれば、風洞模型が飛行機等の飛翔体であるときに最も普通に採り得る姿勢の近傍である基準ピッチ角θ が零である状態に対して、試験時に風洞模型に空気力の一つとして作用する抗力に相当する力を、より簡単な式で得ることが可能である。
【0015】
【発明の実施の形態】
以下、図面を参照して、この発明による磁力支持天秤装置における抗力較正方法の実施の態様を説明する。図1はこの発明による磁力支持天秤装置における抗力較正方法における座標と関連する物理量の概要を示す説明図である。
【0016】
図1に示すように、風洞模型1の重心を原点とする直交座標が縦面内に定められ、z軸を鉛直上方、x軸を風洞における気流の流れ方向に、またy軸はこれら両軸と右手系を成す方向に設定される。x軸は、基準ピッチ角θ が零であるとき、模型長軸方向と一致する方向に取るのが好ましい。ここで用いる物理量等の記号の定義は、以下のとおりであり、括弧内はその単位である。
F : 風洞模型1に働く力(N)
M : 風洞模型1に内蔵される磁石2の磁気モーメント(Wbm)
: 風洞模型1に内蔵される磁石2の磁気モーメント(Wbm)
H : 磁力支持天秤装置が生じる磁場の強さ(AT/m)
m : 風洞模型1の質量
θ : 風洞模型1のピッチ角(rad)
なお、M,F,Hはベクトル量、M ,m,θはスカラー量であり、磁力支持天秤装置20は図3に示すのと同じ構造のものでよく再度の説明を省略する。
【0017】
上記の物理量の間には、以下の関係式がある。
【数5】
Figure 2004309357
Figure 2004309357
即ち、Myが零であるので、気流の流れに沿った縦面を横切る磁気モーメント成分はない。式(1)に上記のMを当てはめると次のようになる。
【数6】
Figure 2004309357
【数7】
Figure 2004309357
【0018】
ここで、電流は測定部内部を流れていないので、次の式(4)の関係がある。
【数8】
Figure 2004309357
磁気支持天秤装置20では、浮揚させる風洞模型1は略水平の姿勢を有しており、基準ピッチ角θ は零の近傍にある。
また、磁場については、多くの場合、風洞模型1を浮揚させるために、コイル系21,22,31,32を|∂Hz/∂x|が大きな値となるように駆動している。即ち、
【数9】
Figure 2004309357
更に、抗力は、多くの風洞実験では、他の空力荷重の3つの方向成分中、最も小さい値であり、それゆえ、較正の範囲は狭い。抗力は、本磁力支持天秤装置でも最大で風洞模型1の重さmgの5分の1であるので、ここでは、実用上の抗力較正範囲として模型模型1の重さmgの10分の1とする。
【0019】
風洞模型1について、鉛直方向の力の釣り合い、及びピッチ角θが小さい値であること、更に式(3)は、式(5)から、第2項が第1項に比べて十分小さく無視可能であるので、次のようになる。
【数10】
Figure 2004309357
【0020】
一方、風洞模型1は静止流れの中に置かれており、流れがあるとしたときの流れ方向(x軸方向、図5でU∞で示す)については風洞模型1に働く力は釣り合っているから、式(2)自体は次のように表され、また式(4)及び式(6)を用いて更に変形すれば、式(7)が得られる。
【数11】
Figure 2004309357
【0021】
式(7)の左辺第2項は、風洞模型1の重さmgとピッチ角θの正接の積である。しかも、重さmgについては磁力支持天秤装置20外で測定可能であり、またピッチ角θについても、風洞模型1が磁力支持天秤装置20で浮揚支持されていても光学的に測定可能である。即ち、風洞模型1が磁気力で浮揚支持されて釣合い状態にあるときには、磁気の作用に基づく流れ方向(x軸方向)の力の成分であるM ・cosθ・(∂Hx/∂x)を、風洞模型1の測定可能な重さmgとピッチ角θから求めることができる。即ち、ピッチ角θの変化が上記の狭い範囲内で抑まるように抗力コイル電流Ixを変更していくとき、釣合い状態では、抗力コイル(図5の抗力コイル31,32を参照)の磁気作用によって生じる力であるM ・cosθ・(∂Hx/∂x)の値はmg・tanθに等しく、mg・tanθは釣合い状態にあるときの流れ方向(x軸方向)力、即ち試験時に風洞模型1に作用する抗力に相当する力と見なすことができる。そのようにして得られた釣合い状態において、抗力コイル電流Ixの値と抗力(mg・tanθ)の値との組データは、磁石劣化等の場合には、抗力較正となり、即ち古い対応関係に取って代わる新しい対応関係を定めることができる。
【0022】
ピッチ角θが零の近傍でない場合には、ピッチ角は零でない有意の値の基準ピッチ角θ の周りに微小ピッチ角θで変動しているとして、次のように、x軸方向の荷重を近似することができる。即ち、式(6)に対応する式として、
【数12】
Figure 2004309357
式(2)に対応する式として、
【数13】
Figure 2004309357
式(8)と式(9)から式(7)に対応する式として、式(10)が得られる。
【数14】
Figure 2004309357
ここで、θは微小であるとすると、
cos(θ +θ)≒cosθ ・cosθであるので、式(10)は次の式(11)となる。
【数15】
Figure 2004309357
【0023】
式(11)において、その狭い範囲内でピッチ角の変動分θ内で、抗力コイル電流Ixを変更して風洞模型1を釣合い状態にもたらすと、抗力コイル31,32の磁気作用によって生じさせた力であるM ・cosθ ・(∂Hx/∂x)の値は−mg・tan(θ +θ)/cosθに等しい。即ち、ピッチ角の変動分θが小さい場合に、流れ方向(x軸方向)に風洞模型1に働く力を釣り合わせたときには、計測可能な値から求まるmg・tan(θ +θ)/cosθは、釣合い状態にあるときの流れ方向(x軸方向)力、即ち試験時に風洞模型1に空気力の一つとして作用する抗力に相当する力であると見なすことができる。そうした釣合い状態から得られた抗力コイル電流Ixの値と、抗力(mg・tan(θ +θ)/cosθ)の値との組データは、磁石劣化等の場合には、新しい対応関係を定める抗力較正を提供することができる。
【0024】
図2(A)は重りを用いて行う抗力較正の結果を示す図であり、図2(B)は模型の傾斜を利用して行う抗力較正の結果を示す図である。両図とも、横軸は抗力コイル電流Ix(アンペアA)、縦軸は抗力Fd(ニュートンN)であり、大きい抗力が生じているときには、当然ながら抗力コイル電流Ixが大きくなっている。図中、R は測定値の分散に対応する値であり、値1が分散ゼロに対応する。重りを用いた較正において図2(A)に示すような抗力コイル電流Ixと抗力Fdとの対応関係に現れる直線性が、模型の傾きに基づいた図2(B)に示す抗力Fdの較正においても良く得られている。両者の抗力コイル電流Ixと抗力Fdとの線型的な対応関係において、傾き及び切片の各値において良く近似しており、模型の傾きを利用した対応関係によって抗力較正を行うことの有用性を確認することができる。
【0025】
【発明の効果】
以上説明したように、この発明による磁力支持天秤装置における抗力較正方法によれば、風洞模型の重さについては、磁力支持天秤装置外において十分高い精度で測定可能であり、また、重力のみが作用している風洞模型を磁力支持天秤装置で釣合い状態に磁力支持したときの気流の流れ方向に対する風洞模型の基準ピッチ角θ 、及び基準ピッチ角θ の周りの微小ピッチ角θも、光学的に十分な精度で測定可能である。風洞模型を重りで引っ張るということをしなくても、風洞模型のピッチ角姿勢を変更するだけで、抗力に相当する力と見なすことができる大きさが既知の力が風洞模型に作用したのと同じ状況が生じる。その釣合い状態を維持するために抗力コイルに流される抗力コイル電流を計測することにより、両者間に新しい対応関係が定められ、例えば磁石劣化に起因した抗力と抗力コイル電流との間でずれを生じた対応関係を較正することができる。従って、重りを用いた抗力較正では避けることができなかった、機器の組立、調整、準備、重りを交換等の煩雑な作業も必要なくなり、時間やコストの観点で簡便で効率的な抗力較正を行うことができる。
【図面の簡単な説明】
【図1】この発明による磁力支持天秤装置における抗力較正方法における座標と関連する物理量の概要を示す説明図である。
【図2】この発明による磁力支持天秤装置における抗力較正方法の有用性を示す図である。
【図3】この発明による磁力支持用風洞模型が用いられる磁力支持天秤装置の概略図である。
【図4】磁力支持天秤装置の概念図である。
【図5】磁力支持天秤装置における従来の抗力較正方法を示す概略図である。
【符号の説明】
1 風洞模型
2 磁石
20 磁力支持天秤装置
31,32抗力コイル
Ix 抗力コイル電流
mg 風洞模型の重さ
θ 風洞模型の基準ピッチ角
θ 微小ピッチ角
D 風洞模型に作用する抗力
Fd,Fd’ 風洞模型に作用する抗力相当力[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drag calibration method for a magnetic force supporting balance device that magnetically supports a wind tunnel model having a magnet therein in the wind tunnel.
[0002]
[Prior art]
Conventionally, in order to obtain the aerodynamic characteristics of an object with a model, it has been common practice to support the model with a support at the measurement part of the wind tunnel equipment, but the support itself affects the air flow on the model surface Therefore, the test results cannot be directly used as the aerodynamic characteristics of the model. Therefore, it has been proposed to support the model by magnetic force in a wind tunnel test. Since the support is unnecessary by magnetically supporting the model, the aerodynamic influence around the model due to the presence of the support can be eliminated.
[0003]
A magnetic force supporting balance device that magnetically supports a model is a method for generating a magnetic force that interacts with a magnet provided inside the model in a wind tunnel test by causing airflow flowing around the model to generate aerodynamic force such as a drag acting on the model. This is a device that measures the magnitude of the current flowing through the provided coil. By examining the relationship between the aerodynamic force and the magnitude of the coil current and preparing a correspondence such as a map, a function, and a table in advance, and applying the correspondence to the measured value of the coil current, a drag acting on the model can be obtained. You can know the aerodynamic force.
[0004]
With reference to FIG. 3 and FIG. 4, an outline of the magnetic force supporting wind tunnel and the magnetic force supporting balance device therein will be described. The magnetic force support balance device 20 is a device that supports the wind tunnel model 1 in the airflow by magnetic force in order to avoid interference between the support device accompanying the model support and the airflow, and can realize a wind tunnel test without support interference. . The wind tunnel model 1 is mounted with a magnetized material, a coil such as a superconducting coil that keeps flowing current, or a magnet body made of a permanent magnet or the like. A magnetic force is generated in the magnet body of the wind tunnel model 1 by a magnetic action with an external magnetic field generated by passing an electric current through a coil arranged around a measurement portion of the wind tunnel, and the wind tunnel model 1 is magnetically levitated and supported. Can be. The external magnetic field is generated by the two magnetic circuits 21 and 22 including the coils 23 to 26 and the coils 27 to 30 and the air core coils 31 and 32 outside the magnetic circuits 21 and 22, and the current flowing through each coil of the magnetic circuits 21 and 22 is generated. , The strength and direction of the magnetic field in the yz plane in the magnetic circuits 21 and 22 and the rate of change thereof in the x-axis direction can be continuously changed. Further, the rate of change of the intensity of the magnetic field in the x-axis direction as viewed in the x-axis direction can be controlled by adjusting the current flowing through the air-core coils 31 and 32, so that control of five axes is possible. That is, the magnetic circuits 21 and 22 function as lift coils that provide a magnetic force that opposes the lift and the pitching moment acting on the wind tunnel model 1, and the air-core coils 31 and 32 function as a magnet that opposes the drag acting on the wind tunnel model 1. It functions as a drag coil that gives force.
[0005]
In the wind tunnel, in addition to the wind tunnel model 1 and the coils 23 to 32, a power supply system for driving each coil, a measurement system for measuring the position and orientation of the wind tunnel model 1 (a measuring device 36 shown in FIG. 1), a wind tunnel model 1 A control system for controlling the position and posture of the camera is incorporated. As shown in FIG. 4, measurement data on the position and orientation of the wind tunnel model 1 detected by the camera 33 serving as a measurement system is transmitted to a computer 34 such as a personal computer, and the calculation result of the computer 34 is amplified by an amplifier 35. , A controlled drive current is passed through each of the coils 23 to 32.
[0006]
Incidentally, as one of the important test items of the wind tunnel test, there is a drag measurement for measuring a resistance force acting on a wind tunnel model in a flow direction of an airflow. If the drag acting on an object can be reduced even slightly when moving in a fluid, the energy required for the movement can be improved to a considerable extent and contribute to energy saving.Therefore, it is necessary to measure the drag as accurately as possible. Have been. However, since the strength of the magnet provided in the model deteriorates to a considerable extent due to aging, the correspondence obtained at the beginning may not always coincide with the actual correspondence over time. In the drag measurement as well, the correspondence between the strength of the magnet and the current flowing through the coil differs due to aging, so it is necessary to calibrate the drag of the magnetic force supporting balance device.
[0007]
Drag calibration of a magnetically supported balance device usually involves placing a wind tunnel model in a wind tunnel where the flow is stopped, and adding the drag that would occur in the direction of the air flow as an external force in some way if the air flow was to flow. This can be achieved by measuring the value of the drag coil current flowing through the drag coil that generates a magnetic force corresponding to this force, and obtaining the correspondence between the applied force and the drag coil current value. Based on this correspondence, the evaluation of the drag applied to the model supporting the magnetic force in the wind tunnel test actually performed by flowing the air current by measuring the value of the drag coil current flowing through the drag coil in a balanced state Can be.
[0008]
A schematic of the longitudinal three-component calibration method, including drag calibration, is shown in FIG. While the wind tunnel model 1 is magnetically supported by the magnetic force support balance device 20 in the wind tunnel measuring unit, a force or moment corresponding to the drag D, the lift L, and the pitching moment m is added by a weight, and the corresponding coil current is measured. You. The gravitational force Md · g (corresponding to the drag force D, g is the same hereinafter) acting on the weight of the mass Md is proportional to the drag coil current Ix flowing through the drag coil 31. The lift L is in proportion to the gravity Ml · g acting on the weight of the mass Ml, and is proportional to the sum of the lift coil current Iz1 flowing through the lift coil 21 and the lift coil current Iz2 flowing through the lift coil 22. Is the product of gravity Mm · g acting on the weight of mass Mm and arm length s / 2, and is proportional to the difference between lift coil current Iz1 flowing through lift coil 21 and lift coil current Iz2 flowing through lift coil 22. are doing.
[0009]
In the drag calibration, to apply a known force, as shown in FIG. 5, complicated operations such as assembly, adjustment, and preparation of equipment for applying such force to the wind tunnel model 1 are required. Further, in order to change the force corresponding to the drag, the weights Md, Ml, and Mm are exchanged, and after the exchange, it is necessary to rebalance and adjust again, and it is necessary to wait until the movement of the wind tunnel model 1 stops. . For this reason, frequent drag calibration is actually difficult, and there is a possibility that the interval between the calibration periods is widened and the drag measurement accuracy itself is adversely affected.
[0010]
[Problems to be solved by the invention]
Therefore, in the drag calibration of the magnetic force supporting balance device, paying attention to the fact that the drag is relatively smaller than other aerodynamic forces acting on the model by the airflow, we obtain a force in the airflow direction equivalent to the drag, regardless of the weight There are issues to be solved in making it possible.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the complicated work of assembling, adjusting, preparing, and replacing a weight, which could not be avoided when using a weight, and to simply and efficiently perform a drag calibration in terms of time and cost. Is to provide a drag calibration method in a magnetically supported balance device which enables to carry out the following.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a drag calibration method in a magnetic force supporting balance device according to the present invention is directed to a magnetic force supporting balance having a drag coil that generates a magnetic force by energizing to balance a drag acting on a wind tunnel model by an air flow. With respect to the device, the magnitude of the force acting on the wind tunnel model as a force corresponding to the drag is obtained by calculating a current flowing through the drag coil in order to balance the force with a known force, so that the correspondence between the drag and the current is determined. In the drag calibration method to calibrate, the weight of the wind tunnel model is mg, and the reference pitch angle of the wind tunnel model when the wind tunnel model on which only gravity acts is magnetically supported in a balanced state by the magnetic force supporting balance device and each theta 0 minute pitch angle around the reference pitch angle, when a theta, a force Fd defined by the following formula in the wind tunnel It is characterized in that considered as the a force corresponding to the drag that.
[Equation 3]
Figure 2004309357
[0013]
According to the drag calibration method in the magnetic force supporting balance device, the weight mg of the wind tunnel model can be measured with sufficiently high accuracy outside the magnetic force supporting balance device, and the wind tunnel model in which only gravity acts is magnetically supported. The reference pitch angle θ 0 of the wind tunnel model with respect to the flow direction of the air flow when the balance device is magnetically supported in a balanced state, and the minute pitch angle θ around the reference pitch angle θ 0 are also set in the magnetic force support balance device by the wind tunnel model. Even if it is, it can be measured optically with sufficient accuracy. Therefore, just by changing the attitude of the wind tunnel model, the same situation occurs in which a different drag of a known magnitude acts on the wind tunnel model. In a balanced state, the force Fd determined by the above equation acts on the wind tunnel model during the test. It can be regarded as a force corresponding to the drag which is one of the aerodynamic forces generated, and by measuring the drag coil current at that time, the correspondence between the drag and the current can be calibrated.
[0014]
In the drag calibration method in the magnetic force supporting balance device, when the reference pitch angle θ 0 is zero, it is assumed that a force Fd ′ defined by the following equation is regarded as a force corresponding to the drag acting on the wind tunnel model. Features.
(Equation 4)
Figure 2004309357
According to this drag calibration method, when the reference pitch angle θ 0, which is in the vicinity of the attitude that can be taken most commonly when the wind tunnel model is a flying object such as an airplane, is zero, the wind tunnel model applies air to the wind tunnel model during the test. A force corresponding to the drag acting as one of the forces can be obtained with a simpler formula.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a drag calibration method in a magnetically supported balance device according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of coordinates and related physical quantities in a drag calibration method in a magnetic force supporting balance device according to the present invention.
[0016]
As shown in FIG. 1, orthogonal coordinates having the origin at the center of gravity of the wind tunnel model 1 are defined in the vertical plane, the z axis is vertically upward, the x axis is in the flow direction of the air flow in the wind tunnel, and the y axis is both axes. And the right hand direction. When the reference pitch angle θ 0 is zero, it is preferable to take the x-axis in a direction coinciding with the longitudinal direction of the model. The definitions of symbols such as physical quantities used here are as follows, and the unit in parentheses is the unit.
F: Force acting on wind tunnel model 1 (N)
M: magnetic moment (Wbm) of magnet 2 built in wind tunnel model 1
M 0 : Magnetic moment (Wbm) of magnet 2 built in wind tunnel model 1
H: magnetic field strength (AT / m) generated by the magnetic force supporting balance device
m: mass of wind tunnel model 1 θ: pitch angle of wind tunnel model 1 (rad)
Note that M, F, and H are vector quantities, and M 0 , m, and θ are scalar quantities, and the magnetic force supporting balance device 20 has the same structure as that shown in FIG. 3 and will not be described again.
[0017]
There is the following relational expression between the above physical quantities.
(Equation 5)
Figure 2004309357
Figure 2004309357
That is, since My is zero, there is no magnetic moment component crossing the vertical surface along the flow of the airflow. When the above M is applied to the equation (1), the following is obtained.
(Equation 6)
Figure 2004309357
(Equation 7)
Figure 2004309357
[0018]
Here, since the current does not flow through the inside of the measurement unit, the following equation (4) is established.
(Equation 8)
Figure 2004309357
In the magnetic suspension and balance system 20, wind tunnel 1 levitate has a substantially horizontal orientation, the reference pitch angle theta 0 is in the vicinity of zero.
Regarding the magnetic field, in many cases, in order to levitate the wind tunnel model 1, the coil systems 21, 22, 31, and 32 are driven so that | ∂Hz / ∂x | has a large value. That is,
(Equation 9)
Figure 2004309357
In addition, drag is the smallest of the three directional components of other aerodynamic loads in many wind tunnel experiments, and therefore has a narrow range of calibration. Since the drag force is at most 1/5 of the weight mg of the wind tunnel model 1 in this magnetic force supporting balance device, here, the drag calibration range for practical use is 1/10 of the weight mg of the model model 1. I do.
[0019]
Regarding the wind tunnel model 1, the balance of the vertical force and the pitch angle θ are small values. Further, in the equation (3), from the equation (5), the second term is sufficiently smaller than the first term and can be ignored. Therefore, it becomes as follows.
(Equation 10)
Figure 2004309357
[0020]
On the other hand, the wind tunnel model 1 is placed in a stationary flow, and the forces acting on the wind tunnel model 1 are balanced in the flow direction (x-axis direction, indicated by U in FIG. 5) when there is a flow. Therefore, equation (2) itself is expressed as follows, and equation (7) can be obtained by further modifying equation (4) and equation (6).
(Equation 11)
Figure 2004309357
[0021]
The second term on the left side of Expression (7) is the product of the tangent of the weight mg of the wind tunnel model 1 and the pitch angle θ. In addition, the weight mg can be measured outside the magnetically supported balance device 20, and the pitch angle θ can be optically measured even if the wind tunnel model 1 is levitated and supported by the magnetically supported balance device 20. That is, when the wind tunnel model 1 is levitated and supported by the magnetic force and is in a balanced state, M 0 · cos θ · (∂Hx / ∂x) which is a component of the force in the flow direction (x-axis direction) based on the action of magnetism is calculated. From the measurable weight mg of the wind tunnel model 1 and the pitch angle θ. That is, when the drag coil current Ix is changed so that the change in the pitch angle θ is suppressed within the above narrow range, in a balanced state, the magnetic action of the drag coil (see the drag coils 31 and 32 in FIG. 5) is performed. equal to the value in mg · tan .theta force M 0 · cosθ · a resulting (∂Hx / ∂x) by the flow direction (x-axis direction) when mg · tan .theta are in a balanced state forces, ie wind tunnel during the test 1 can be regarded as a force corresponding to the drag acting on the first element. In the thus obtained balanced state, the set data of the value of the drag coil current Ix and the value of the drag (mg · tan θ) becomes drag calibration in the case of magnet deterioration or the like, that is, the old correspondence is taken. New correspondence relationships can be defined.
[0022]
If the pitch angle θ is not close to zero, it is assumed that the pitch angle fluctuates at a small pitch angle θ around the reference pitch angle θ 0 of a significant value that is not zero, and the load in the x-axis direction is as follows. Can be approximated. That is, as an equation corresponding to equation (6),
(Equation 12)
Figure 2004309357
As an equation corresponding to equation (2),
(Equation 13)
Figure 2004309357
From Expressions (8) and (9), Expression (10) is obtained as an expression corresponding to Expression (7).
[Equation 14]
Figure 2004309357
Here, if θ is very small,
Since cos (θ 0 + θ) ≒ cos θ 0 · cos θ, Expression (10) becomes Expression (11) below.
(Equation 15)
Figure 2004309357
[0023]
In the equation (11), when the drag coil current Ix is changed to bring the wind tunnel model 1 into a balanced state within the pitch angle variation θ within the narrow range, the wind coil model 1 is generated by the magnetic action of the drag coils 31 and 32. The value of the force M 0 · cos θ 0 · (∂Hx / ∂x) is equal to -mg · tan (θ 0 + θ) / cos θ. That is, when the variation θ of the pitch angle is small and the force acting on the wind tunnel model 1 in the flow direction (x-axis direction) is balanced, mg · tan (θ 0 + θ) / cos θ obtained from a measurable value is It can be regarded as a force in the flow direction (x-axis direction) when in a balanced state, that is, a force corresponding to a drag acting as one of the pneumatic forces on the wind tunnel model 1 during the test. The set data of the value of the drag coil current Ix and the value of the drag (mg · tan (θ 0 + θ) / cos θ) obtained from such a balanced state is a drag that determines a new correspondence in the case of magnet deterioration or the like. Calibration can be provided.
[0024]
FIG. 2A is a diagram illustrating a result of a drag calibration performed using a weight, and FIG. 2B is a diagram illustrating a result of a drag calibration performed using a tilt of a model. In both figures, the horizontal axis is the drag coil current Ix (ampere A), and the vertical axis is the drag Fd (Newton N). When a large drag is generated, the drag coil current Ix is naturally large. In the figure, R 2 is a value corresponding to the measurement value dispersion, the value 1 corresponds to the dispersion zero. In the calibration using the weight, the linearity appearing in the correspondence between the drag coil current Ix and the drag Fd as shown in FIG. 2A is the result of the calibration of the drag Fd shown in FIG. 2B based on the inclination of the model. Has also been obtained well. In the linear correspondence between the drag coil current Ix and the drag Fd, both values of the slope and intercept are well approximated, confirming the usefulness of performing the drag calibration by the correspondence using the slope of the model. can do.
[0025]
【The invention's effect】
As described above, according to the drag calibration method in the magnetic force support balance device according to the present invention, the weight of the wind tunnel model can be measured with sufficiently high accuracy outside the magnetic force support balance device, and only gravity acts. The reference pitch angle θ 0 of the wind tunnel model with respect to the flow direction of the air current when the wind tunnel model is magnetically supported in a balanced state by the magnetic force supporting balance device, and the minute pitch angle θ around the reference pitch angle θ 0 are also optical. Can be measured with sufficient accuracy. Even if the wind tunnel model is not pulled by the weight, just by changing the pitch angle attitude of the wind tunnel model, the force whose magnitude can be regarded as the force equivalent to the drag applied to the wind tunnel model The same situation occurs. By measuring the drag coil current flowing through the drag coil to maintain the balanced state, a new correspondence is defined between the two, for example, a shift occurs between the drag due to magnet deterioration and the drag coil current. Can be calibrated. Therefore, complicated operations such as assembly, adjustment, preparation and replacement of weights, which cannot be avoided by drag calibration using weights, become unnecessary, and simple and efficient drag calibration can be performed in terms of time and cost. It can be carried out.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of coordinates and physical quantities in a drag calibration method in a magnetic force supporting balance device according to the present invention.
FIG. 2 is a diagram showing the usefulness of a drag calibration method in a magnetically supported balance device according to the present invention.
FIG. 3 is a schematic diagram of a magnetic force supporting balance device using the magnetic force supporting wind tunnel model according to the present invention.
FIG. 4 is a conceptual diagram of a magnetic force supporting balance device.
FIG. 5 is a schematic view showing a conventional drag calibration method in a magnetically supported balance device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wind tunnel model 2 Magnet 20 Magnetic support balance device 31, 32 Drag coil Ix Drag coil current mg Weight of wind tunnel model θ 0 Reference pitch angle of wind tunnel model θ Small pitch angle D Drag Fd, Fd 'acting on wind tunnel model Wind tunnel model Drag equivalent force acting on

Claims (2)

気流によって風洞模型に作用する抗力に釣り合わせるため通電することにより磁気力を発生させる抗力コイルを備えた磁力支持天秤装置に関して、前記抗力に相当する力として前記風洞模型に作用される大きさが既知の力に釣り合わせるために前記抗力コイルに流される電流を求めることによって、前記抗力と前記電流との対応関係を較正する抗力較正方法において、前記風洞模型の重さをmgとし、重力のみが作用している前記風洞模型を前記磁力支持天秤装置で釣合い状態に磁力支持したときの前記風洞模型の基準ピッチ角及び前記基準ピッチ角の周りの微小ピッチ角をそれぞれθ ,θとしたとき、下式で定められる力Fdを前記風洞模型に作用する前記抗力に相当する力であると見なすことを特徴とする磁力支持天秤装置における抗力較正方法。
Figure 2004309357
Regarding a magnetic force supporting balance device provided with a drag coil that generates a magnetic force by energizing in order to balance the drag acting on the wind tunnel model by the airflow, the magnitude acting on the wind tunnel model as a force corresponding to the drag is known. In the drag calibration method of calibrating the correspondence between the drag and the current by obtaining the current flowing through the drag coil to balance the force of the wind, the weight of the wind tunnel model is set to mg, and only gravity acts. When the wind tunnel model is magnetically supported in a balanced state by the magnetic force supporting balance device, and the reference pitch angle of the wind tunnel model and the minute pitch angles around the reference pitch angle are θ 0 and θ, respectively, Wherein the force Fd determined by the equation is regarded as a force corresponding to the drag acting on the wind tunnel model. Calibration method.
Figure 2004309357
前記基準ピッチ角θ が零であるとき、下式で定められる力Fd’を前記風洞模型に作用する前記抗力に相当する力であると見なすことを特徴とする請求項1に記載の磁力支持天秤装置における抗力較正方法。
Figure 2004309357
2. The magnetic force support according to claim 1, wherein when the reference pitch angle θ 0 is zero, a force Fd ′ defined by the following equation is regarded as a force corresponding to the drag acting on the wind tunnel model. 3. Drag calibration method for a balance device.
Figure 2004309357
JP2003104552A 2003-04-08 2003-04-08 Drag calibration method in magnetic support balance device Expired - Lifetime JP3760181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104552A JP3760181B2 (en) 2003-04-08 2003-04-08 Drag calibration method in magnetic support balance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104552A JP3760181B2 (en) 2003-04-08 2003-04-08 Drag calibration method in magnetic support balance device

Publications (2)

Publication Number Publication Date
JP2004309357A true JP2004309357A (en) 2004-11-04
JP3760181B2 JP3760181B2 (en) 2006-03-29

Family

ID=33467343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104552A Expired - Lifetime JP3760181B2 (en) 2003-04-08 2003-04-08 Drag calibration method in magnetic support balance device

Country Status (1)

Country Link
JP (1) JP3760181B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556821A (en) * 2018-11-12 2019-04-02 中国航天空气动力技术研究院 A kind of device measuring the balance school heart and model in wind tunnel relative position
CN111537184A (en) * 2020-06-05 2020-08-14 中国人民解放军国防科技大学 Embedded magnetic suspension wind tunnel balance and aerodynamic force testing method
CN113295367A (en) * 2021-04-29 2021-08-24 中国航天空气动力技术研究院 Electromagnetic balance device for high-precision measurement of wind tunnel test model resistance
CN114397050A (en) * 2021-12-10 2022-04-26 西安理工大学 Magnetic suspension type friction resistance measuring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644365B (en) * 2016-12-29 2018-12-21 中国航天空气动力技术研究院 A kind of low speed wind tunnel thrust vector balance calibration device
CN112577710B (en) * 2021-02-25 2021-05-11 中国空气动力研究与发展中心低速空气动力研究所 Angle of attack motion mechanism and angle of attack adjustment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556821A (en) * 2018-11-12 2019-04-02 中国航天空气动力技术研究院 A kind of device measuring the balance school heart and model in wind tunnel relative position
CN111537184A (en) * 2020-06-05 2020-08-14 中国人民解放军国防科技大学 Embedded magnetic suspension wind tunnel balance and aerodynamic force testing method
CN113295367A (en) * 2021-04-29 2021-08-24 中国航天空气动力技术研究院 Electromagnetic balance device for high-precision measurement of wind tunnel test model resistance
CN113295367B (en) * 2021-04-29 2022-08-12 中国航天空气动力技术研究院 Electromagnetic balance device for high-precision measurement of wind tunnel test model resistance
CN114397050A (en) * 2021-12-10 2022-04-26 西安理工大学 Magnetic suspension type friction resistance measuring device
CN114397050B (en) * 2021-12-10 2023-10-20 西安理工大学 Magnetic suspension type friction resistance measuring device

Also Published As

Publication number Publication date
JP3760181B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
CN107076604B (en) Balance with a free-floating weighing pan
CN110413015A (en) Micro- ox magnitude microthrust dynamic testboard and test method based on closed-loop control
CN110058186B (en) Magnetic sensor calibration system and method
US9689934B2 (en) Method for providing force information in a magnetic field environment using remote measurement of flux
JP2008249527A (en) Method for easily evaluating drag of model receiving aerodynamic lift in magnetic suspension and balance system
CN107907272B (en) Calibration device and method suitable for electromagnetic force measuring device of micro-thruster test system
KR100687999B1 (en) Method and device for measuring a parameter of a metal bed
JP2009506305A (en) Test stand and method for aerodynamic measurement of objects
Zhang et al. Actively controlled manipulation of a magnetic microbead using quadrupole magnetic tweezers
JP3760181B2 (en) Drag calibration method in magnetic support balance device
JP2007315924A (en) Non contact measurement of impact and impulse using magnetic force supported balance device
JP2020076608A (en) Magnetic force support balance device, wind tunnel model, method for controlling magnetic force support balance device, and program
CN109387796A (en) Improved backlash compensation for magnetostrictive torque sensor
JP4135954B2 (en) Magnetically supported balance device for automobiles
JP4790802B2 (en) Actuator
CN107966266B (en) Forced motion guide multi-day flat dynamic corrector
CN210466940U (en) Electric excitation magnetic suspension experimental device
CN114527298B (en) Active/passive vibration suppression fusion nano platform
US11831256B2 (en) Short-travel nanoscale motion stage and method for measuring thermally-related hysteresis data
JP3855065B2 (en) Load reducing device and model used for it
RU2677942C2 (en) Method of decontamination and excitation of vibrations in modal tests and device for its implementation
JP3491041B2 (en) Wind tunnel model for magnetic force support
JP3702341B2 (en) Wind tunnel model magnetic support balance device
JP2004347342A (en) Magnetic support balance system
JP4265771B2 (en) Magnetic support device for feedback control of magnetic field

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Ref document number: 3760181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term