JP4135954B2 - Magnetically supported balance device for automobiles - Google Patents

Magnetically supported balance device for automobiles Download PDF

Info

Publication number
JP4135954B2
JP4135954B2 JP2006019339A JP2006019339A JP4135954B2 JP 4135954 B2 JP4135954 B2 JP 4135954B2 JP 2006019339 A JP2006019339 A JP 2006019339A JP 2006019339 A JP2006019339 A JP 2006019339A JP 4135954 B2 JP4135954 B2 JP 4135954B2
Authority
JP
Japan
Prior art keywords
magnetic
wind tunnel
magnetic flux
vehicle
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006019339A
Other languages
Japanese (ja)
Other versions
JP2007198964A (en
Inventor
秀夫 澤田
信一 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2006019339A priority Critical patent/JP4135954B2/en
Publication of JP2007198964A publication Critical patent/JP2007198964A/en
Application granted granted Critical
Publication of JP4135954B2 publication Critical patent/JP4135954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

本発明は、超電導物質の磁束拘束の性質を利用して風洞試験模型を風洞測定部中に磁力支持する技術を車輪を用いた地上輸送機器の車輪部分に適用する技術に関する。   The present invention relates to a technique for applying a technique for magnetically supporting a wind tunnel test model in a wind tunnel measurement section to a wheel portion of a ground transportation device using wheels by utilizing the magnetic flux restraint property of a superconducting material.

自動車や鉄道車両の風洞試験では、移動体と地面の相対速度を作り出すために、測定部床に移動地面板と呼ばれる装置を取り付け、風洞気流速さと同じ速さで移動させる形態がとられている。このため、移動体模型は地面板に置くことができず、図3(非特許文献1)に示されるように支柱(若しくはワイヤー)により風洞測定部内で模型を支えていた。このような支持装置で車体を支えた場合、支持構造体と風洞気流との間に干渉を誘発するため、実際の走行時の流れを正しく模擬できていないことが知られている。また、車輪は測定部の側部からシャフトにより支持しながら駆動する形態が取られるため、そのシャフトと風洞気流の間でも大きな干渉を誘発し、精度の高い測定ができなかった。このため、干渉を起こすこれらの部材を用いない航空分野で開発された磁力支持天秤装置で模型を支持する方法が提案されている。   In wind tunnel tests for automobiles and railway vehicles, a device called a moving ground plate is attached to the measurement unit floor to create the relative speed between the moving body and the ground, and it is moved at the same speed as the wind tunnel air velocity. . For this reason, the moving body model cannot be placed on the ground plate, and the model is supported in the wind tunnel measuring unit by the support (or wire) as shown in FIG. 3 (Non-Patent Document 1). It is known that when the vehicle body is supported by such a support device, interference between the support structure and the wind tunnel airflow is induced, so that the flow during actual traveling cannot be correctly simulated. In addition, since the wheel is driven while being supported by the shaft from the side of the measurement unit, large interference is induced between the shaft and the wind tunnel air flow, and high-precision measurement cannot be performed. For this reason, a method of supporting a model with a magnetic support balance device developed in the aviation field that does not use these members that cause interference has been proposed.

図4(特許文献1)に示されたものは本発明者らが開発提示したもので、磁力支持天秤装置20は、風洞模型1を磁気の力で気流中に支持する装置であり、支持干渉のない風洞試験を実現することができる。風洞模型1には磁化された物質、超伝導コイルのような電流を流し続けているコイル、或いは永久磁石等から成る強力な磁石体が搭載される。風洞模型1の磁石体には、風洞の測定部の周りに配置したコイル23乃至32に通電することにより生じた外部磁場との相互磁気作用によって磁気力を受け、風洞模型1を磁気的に浮上支持させることができる。外部磁場は、磁気支持コイルとしてのコイル23〜26とコイル27〜30とから成る風洞内軸方向に所定距離間隔を持った二つの磁気回路21,22、及びその外側に配置され前記二つの磁気回路21,22と直交した同じく磁気支持コイルとしての空芯コイル31,32によって発生される。風洞内気流方向をx軸にとり重力の作用する鉛直方向をz軸、前記x軸とz軸に直交する方向にy軸をとるようにしたとき、磁気回路21はz軸方向磁場を発生させる1対のコイル23,25とy軸方向に磁場を発生させる1対のコイル24,26とから構成され、磁気回路22はZ方向磁場を発生させる1対のコイル27,29とY方向に磁場を発生させる1対のコイル28,30とから構成される。磁気回路21,22の各コイルに流れる電流を調節することにより、磁気回路21,22内のy−z面内での磁場の強さと方向及びそれらのx軸方向の変化率を連続的に変化させることができる。また、空芯コイル31,32に流れる電流を調節することによりx軸方向磁場の強さのx軸方向で見た変化率を制御でき、都合5軸の制御が可能である。即ち、磁気回路21,22のコイル23〜30は、風洞模型1に働く揚力と縦揺れモーメントとに対抗する磁気力を与える揚力用コイルとして機能し、空芯コイル31,32は風洞模型1に働く抗力に対抗する磁気力を与える抗力対抗用コイルとして機能している。この方式を大型模型の自動車用に応用しようとすると、必要となる磁力支持天秤装置は大規模となり、模型も非磁性体で外形を作る専用のものが必要となり、製作費が膨大となって実施は困難である。特に、自動車業界から要望の強い実車風洞試験においては実車が鋼鉄製のため、通常の航空機模型用の磁力支持天秤装置を適用することは困難である。   The one shown in FIG. 4 (Patent Document 1) was developed and presented by the present inventors, and the magnetic support balance device 20 is a device that supports the wind tunnel model 1 in the air current by magnetic force, and supports interference. A wind tunnel test without any noise can be realized. The wind tunnel model 1 is equipped with a strong magnet body made of a magnetized material, a coil that continues to pass a current such as a superconducting coil, or a permanent magnet. The magnetic body of the wind tunnel model 1 receives a magnetic force due to a mutual magnetic action with an external magnetic field generated by energizing the coils 23 to 32 arranged around the measurement unit of the wind tunnel, and the wind tunnel model 1 is magnetically levitated. Can be supported. The external magnetic field is composed of two magnetic circuits 21 and 22 each having a predetermined distance in the axial direction of the wind tunnel including coils 23 to 26 and coils 27 to 30 as magnetic support coils, and the two magnetic circuits arranged outside the two magnetic circuits 21 and 22. It is generated by air-core coils 31 and 32 which are also perpendicular to the circuits 21 and 22 and are also magnetic support coils. When the airflow direction in the wind tunnel is taken as the x-axis, the vertical direction in which gravity acts is the z-axis, and the y-axis is taken in the direction perpendicular to the x-axis and z-axis, the magnetic circuit 21 generates a z-axis direction magnetic field 1 A pair of coils 23 and 25 and a pair of coils 24 and 26 for generating a magnetic field in the y-axis direction, and a magnetic circuit 22 generates a magnetic field in the Y direction with a pair of coils 27 and 29 for generating a Z-direction magnetic field. It comprises a pair of coils 28 and 30 to be generated. By adjusting the current flowing in each coil of the magnetic circuits 21 and 22, the strength and direction of the magnetic field in the yz plane in the magnetic circuits 21 and 22 and the rate of change in the x-axis direction are continuously changed. Can be made. In addition, by adjusting the current flowing through the air-core coils 31 and 32, the rate of change of the strength of the magnetic field in the x-axis direction as viewed in the x-axis direction can be controlled, so that 5-axis control is possible. That is, the coils 23 to 30 of the magnetic circuits 21 and 22 function as a lift coil that applies a magnetic force that opposes the lift and pitching moment acting on the wind tunnel model 1, and the air-core coils 31 and 32 are provided on the wind tunnel model 1. It functions as a drag-resistance coil that provides a magnetic force against the working drag. If this method is applied to a large model automobile, the required magnetic support balance device will be large-scale, and the model will also need a dedicated one to make the outer shape with a non-magnetic material, making the production cost enormous. It is difficult. In particular, in an actual vehicle wind tunnel test that is strongly requested by the automobile industry, since the actual vehicle is made of steel, it is difficult to apply a normal magnetic support balance device for an aircraft model.

ところで、超電導物質の磁束拘束の性質を利用した車両等輸送機器の磁力支持装置は数多く提案されている。本発明者らはこの車両磁気浮上技術を自動車の実車風洞試験の磁力支持装置に応用することに想到し、研究に着手した。従来技術ではその超電導物質はどれも輸送機器本体への装着であって、これら車両の磁気浮上機構は、車体に相当する移動体に超電導物質を搭載し、軌道部分に磁束発生源の永久磁石を配置するものである。これは、極低温に維持しなければならない超電導物質の部分を極力少なくするために取られた当然の手法であった。しかし、自動車などの地上輸送機器の風洞試験においては、空力抵抗を測定するという特殊性から風洞試験模型は車輪も移動地面板と非接触、床面から離れている必要があるという特殊事情を伴う。また、小型模型のようなの場合には限られた大きさの試験体の内部スペースに極低温状態を保持する冷却装置と共に超電導物質を取り付けるのは困難という事情がある。また、磁力支持の観点からすれば、移動地面板に最も近い車輪内部に極低温超電導物質を取り付けるのが有利であるが、工作上は車体の内部に配置するより更に困難である。反面、自動車など車両の風洞試験においては自動車は風洞内部で移動するものではないため、自動車と軌道のどちらに極低温超電導物質を取り付けるかには優劣が無くなるという利点もある。
特開2005−249614号公報 「荷重軽減装置とそれに用いられる模型」 平成17年9月15日公開 英国の技術雑誌“RACETECH”2003年8,9月号 No.49 P.56 RACETECH社発行
By the way, many magnetic support devices for transportation equipment such as vehicles using the magnetic flux restraining property of superconducting materials have been proposed. The present inventors conceived that this vehicle magnetic levitation technology is applied to a magnetic support device for an actual vehicle wind tunnel test, and started research. In the prior art, all of the superconducting materials are mounted on the transportation equipment body, and the magnetic levitation mechanism of these vehicles mounts the superconducting material on the moving body corresponding to the vehicle body, and the permanent magnet of the magnetic flux generating source is installed on the track part. Is to be placed. This was a natural approach taken to minimize the portion of superconducting material that had to be kept at very low temperatures. However, in wind tunnel testing of ground transportation equipment such as automobiles, the wind tunnel test model is not in contact with the moving ground plate and needs to be separated from the floor surface due to the peculiarity of measuring aerodynamic resistance. . Also, in the case of a small model, it is difficult to attach a superconducting material together with a cooling device that maintains a cryogenic state in the internal space of a test specimen of a limited size. From the standpoint of supporting the magnetic force, it is advantageous to attach the cryogenic superconducting material inside the wheel closest to the moving ground plate, but it is more difficult in terms of work than placing it inside the vehicle body. On the other hand, in a wind tunnel test of a vehicle such as an automobile, since the automobile does not move inside the wind tunnel, there is an advantage that there is no advantage in whether the cryogenic superconducting material is attached to the automobile or the track.
JP, 2005-249614, A "Load reducing device and model used for it" Published on September 15, 2005 British technical magazine “RACETECH” August / September 2003 No.49 56 Published by RACETECH

本発明の課題は、これらの自動車などの地上輸送機器の風洞試験の特殊事情の下で、自動車や鉄道車両の風洞試験において、被試験体を支承するワイヤーや支柱といった気流に影響を及ぼす部材を測定部に配置することのない磁力支持が可能な方法およびその装置を提供すること、更には鋼鉄製車体の実車でも磁力支持が可能な、また車種や模型に依存しにくい磁気浮上装置を提案することにある。   An object of the present invention is to provide a member that affects the air current such as a wire or a column that supports a test object in a wind tunnel test of an automobile or a railway vehicle under the special circumstances of a wind tunnel test of a ground transportation device such as an automobile. Providing a method and apparatus capable of supporting magnetic force without being placed in the measuring section, and further proposing a magnetic levitation device that can support magnetic force even in an actual steel body and is less dependent on the vehicle type and model. There is.

本発明の車両の風洞実験方法は、前輪および後輪の中に永久磁石のような磁束発生源を格納し、該車輪と対峙する位置に超電導物質と冷却装置を配置し、超電導物質の磁束拘束の性質を利用し車体の磁力支持をはかるようにした。
本発明の車両用風洞磁力支持天秤装置は、風洞内測定部に、床面と所定間隔離れた位置に移動地面板を配置し、前輪および後輪の中には永久磁石のような磁束発生源を格納し、前輪位置と後輪位置に対峙する床面には超電導物質と冷却装置を配置し、該超電導物質の磁束拘束の性質を利用して車体の磁力支持を行うようにした。
また、磁束供給源は車輪の軸受けを介して保持する構成を採用し、磁束を保持する超電導物質とそれを支える床面との間に天秤を取り付け、磁束源に加わる力とモーメントを車輪の外部から計測するようにした。
更に、複数の車輪にそれぞれ対峙する超電導物質の支持台はそれぞれの位置姿勢を独立に調整できる機構を備えることにより、風洞内車両模型あるいは実車を風の状態変化に対して所定の位置姿勢に支持可能とした。
In the vehicle wind tunnel test method of the present invention, a magnetic flux generation source such as a permanent magnet is housed in the front and rear wheels, a superconducting material and a cooling device are arranged at positions facing the wheels, and the magnetic flux restraint of the superconducting material is performed. By using the characteristics of the body, the magnetic support of the car body was measured.
In the wind tunnel magnetic force support balance device for a vehicle according to the present invention, a moving ground plate is arranged at a position spaced apart from the floor surface in the wind tunnel measuring unit, and a magnetic flux generation source such as a permanent magnet is provided in the front and rear wheels. The superconducting material and the cooling device are arranged on the floor facing the front wheel position and the rear wheel position, and the magnetic force of the vehicle body is supported by utilizing the magnetic flux restraint property of the superconducting material.
In addition, the magnetic flux supply source adopts a structure that holds it through the wheel bearing, and a balance is installed between the superconducting material that holds the magnetic flux and the floor that supports it, and the force and moment applied to the magnetic flux source are external to the wheel. It was made to measure from.
In addition, the superconducting material support that faces each of the wheels is equipped with a mechanism that can independently adjust the position and orientation of each wheel, thereby supporting the vehicle model in the wind tunnel or the actual vehicle in a predetermined position and orientation with respect to changes in wind conditions. It was possible.

本発明の車両の風洞実験方法は、前輪および後輪の中に永久磁石のような磁束発生源を格納し、該車輪と対峙する位置に超電導物質と冷却装置を配置し、超電導物質の磁束拘束の性質を利用し車体の磁力支持をはかったものであるから、様々な実車の風洞試験が容易に且つ迅速に実施できるようになる。また、支持干渉が無くなり、風洞試験の精度が上がる。
本発明の車両用風洞磁力支持天秤装置は、風洞内測定部に、床面と所定間隔離れた位置に移動地面板を配置し、前輪および後輪の中には永久磁石のような磁束発生源を格納し、前輪位置と後輪位置に対峙する床面には超電導物質と冷却装置を配置し、該超電導物質の磁束拘束の性質を利用して車体の磁力支持を行うものであるから、車種に関わらず実車や模型での風洞試験が支持干渉の無い状態で容易に且つ迅速に実施できる設備を提供できる。
また、本発明の車両用風洞磁力支持天秤装置は、磁束発生源は車輪の軸受けを介して保持することにより、車輪を回転させても車体が移動したり、揺動することがない。
磁束を保持する超電導物質とそれを支える床面との間に天秤を取り付けた構成を採用したことにより、磁束源に加わる力とモーメントを車輪の外部から計測することができる。
複数の車輪にそれぞれ対峙する超電導物質の支持台はそれぞれの位置姿勢を独立に調整できる機構を備えることにより、風洞内車両模型あるいは実車を風の状態変化に対して所定の位置姿勢に支持することを可能とした。
In the vehicle wind tunnel test method of the present invention, a magnetic flux generation source such as a permanent magnet is housed in the front and rear wheels, a superconducting material and a cooling device are arranged at positions facing the wheels, and the magnetic flux restraint of the superconducting material is performed. This makes it possible to easily and quickly carry out various wind tunnel tests on actual vehicles. In addition, the support interference is eliminated and the accuracy of the wind tunnel test is improved.
In the wind tunnel magnetic force support balance apparatus for a vehicle according to the present invention, a moving ground plate is disposed at a position spaced apart from the floor surface in the wind tunnel measuring unit, and a magnetic flux generation source such as a permanent magnet is provided in the front and rear wheels. The superconducting material and the cooling device are arranged on the floor surface facing the front wheel position and the rear wheel position, and the magnetic force of the vehicle body is supported using the magnetic flux restraint property of the superconducting material. Regardless of this, it is possible to provide a facility that allows a wind tunnel test on an actual vehicle or model to be easily and quickly performed without any support interference.
Further, in the vehicle wind tunnel magnetic force support balance apparatus of the present invention, the vehicle body does not move or swing even if the wheel is rotated by holding the magnetic flux generating source via the wheel bearing.
By adopting a configuration in which a balance is attached between the superconducting material that holds the magnetic flux and the floor that supports it, the force and moment applied to the magnetic flux source can be measured from the outside of the wheel.
The superconducting material support table facing each of the wheels is equipped with a mechanism capable of independently adjusting the position and orientation of each wheel, thereby supporting the vehicle model in the wind tunnel or the actual vehicle in a predetermined position and orientation with respect to changes in wind conditions. Made possible.

図1は本発明の自動車用磁力支持天秤装置の基本構成を模式的に示したものである。1は車体であり、鉄製車体の実車を用いることができる。2は車輪であって、通常の自動車の様に車軸3に取り付けられ、車体1を支える構造が採用されるが、その内部には永久磁石等の磁束発生源4が軸受5を介して回転自在の形態で車軸3に取り付けられた本発明特有のものを用いる。磁束発生源4はなるべく遠方にまで強い磁束が到達するような磁石の配置と組合せを取ることが重要で、この実施形態では、図2に示すように所定間隔をあけた2つの棒磁石4a,4bを磁極を反対方向にして配置し、上方の両磁極は磁性体4cを用いて磁気回路で結ぶようにすると共に下側の磁極は解放とし、丁度馬蹄形磁石の形態を採るようにしている。風洞側の構成は、まず、台座6に天秤装置7が配置される。この天秤装置7は必要とされる力の成分が測定可能なもの、例えば6分力型天秤が用いられ、測定部に設置された自動車の各車輪に対峙する位置にそれぞれ配置される。該天秤装置7の上方には位置姿勢調整装置8を介して超電導物質10が取り付けられる。そして、この超電導物質10にはその超電導特性を維持するため、低温状態を維持するための冷却装置9がセットで備えられている。11は移動地面板であり、測定時には風洞気流速さと同じ速さで移動させるもので、測定部床を構成するものとなる。   FIG. 1 schematically shows a basic configuration of a magnetic force support balance apparatus for an automobile according to the present invention. Reference numeral 1 denotes a vehicle body, and an actual vehicle made of iron can be used. Reference numeral 2 denotes a wheel which is mounted on an axle 3 like a normal automobile and supports the vehicle body 1. A magnetic flux generation source 4 such as a permanent magnet is freely rotatable through a bearing 5 inside the wheel. The thing peculiar to this invention attached to the axle shaft 3 in the form of this is used. It is important that the magnetic flux generation source 4 is combined with a magnet arrangement that allows a strong magnetic flux to reach as far as possible. In this embodiment, two bar magnets 4a, 4a, 4b is arranged with the magnetic poles in opposite directions, the upper magnetic poles are connected by a magnetic circuit using a magnetic body 4c, and the lower magnetic pole is released, so that it takes the form of a horseshoe magnet. As for the configuration on the wind tunnel side, first, the balance device 7 is arranged on the pedestal 6. The balance device 7 is a device capable of measuring a required force component, for example, a 6-component force balance, and is disposed at a position facing each wheel of an automobile installed in the measurement unit. A superconducting material 10 is attached above the balance device 7 via a position and orientation adjustment device 8. The superconducting material 10 is provided with a cooling device 9 for maintaining a low temperature state in order to maintain the superconducting characteristics. Reference numeral 11 denotes a moving ground plate, which is moved at the same speed as the wind tunnel air velocity at the time of measurement, and constitutes a measuring unit floor.

本実施形態で採用した磁束発生源4の具体的構成は、2つの棒磁石4a,4bを磁極を反対方向にして並列配置し、上方の両磁極は磁性体4cを介して連結し磁気回路とし、2つの棒磁石4a,4bの間隙には非磁性材である樹脂4dを充填して固定した。棒磁石4aと磁性体4c更に棒磁石4bとで、馬蹄形の永久磁石と同じような形態となる。車軸3に軸受5を介してこの磁力発生部材4を回転自在に取り付けてあるので、車輪2の回転の影響はなく車体1を支持することができる機構となっている。   The specific configuration of the magnetic flux generation source 4 employed in the present embodiment is that two bar magnets 4a and 4b are arranged in parallel with their magnetic poles in opposite directions, and both upper magnetic poles are connected via a magnetic body 4c to form a magnetic circuit. The gap between the two bar magnets 4a and 4b was filled and fixed with a resin 4d which is a non-magnetic material. The bar magnet 4a, the magnetic body 4c, and the bar magnet 4b have the same form as a horseshoe-shaped permanent magnet. Since the magnetic force generating member 4 is rotatably attached to the axle 3 via the bearing 5, the mechanism can support the vehicle body 1 without being affected by the rotation of the wheel 2.

試験を行う際には、まず、被試験体の車軸3に本発明に係る車輪2を取り付ける。次に台座6に配置された天秤装置7上に載置されている超電導物質10が、被試験体の車輪2内に配置された棒磁石4a,4bの下側の磁極と対峙するように位置姿勢調整装置8によって位置姿勢を調整する。測定部に被試験体が設置された当初の状態では超電導物質10は超電導状態にはせず、棒磁石4a,4bからの磁束がこの超電導物質10の中を貫通するようにしておく。また、棒磁石4a,4bの下方磁極と超電導物質10の間には移動地面板11が存在するが、その移動地面板11と前記超電導物質10の上面間には適当な間隙が確保されるように台座6の位置を低くしておき、試験体である車体1は地面板11に載せた状態にしておく。この状態で、冷却装置9を作動させ、超電導物質10の温度を下げていき超電導状態になるようにもっていく。超電導状態になると該超電導物質10中を貫通していた磁束は拘束状態となってそのままそこに移動できなくなる。この磁束拘束状態にした後、台座6全体を上げていくと、被試験体の重量分だけ磁束はちょうどバネの様に僥み、被試験体の車輪2は移動地面板11から浮き上がりある距離を保ってバランスした状態になる。また、紙面に垂直方向の力が加わっても、バネの様に擁んだ分の復元力が働き元に戻る。他の方向の力やトルクに関しても同様な復元力が働く。このようにして、被試験体の車体1は安定に一定の距離と姿勢を保った状態で空中に磁力支持されることになる。磁性体4cを介し馬蹄形の永久磁石形態となった棒磁石4a,4bは、磁束により超電導物質10と一定の距離と姿勢で保持されることになる。被試験体の車軸3に固定されている車輪2のタイヤ部分が車軸3の回転により回転しても、軸受5を介して結合されているので、馬蹄形の永久磁石形態となった棒磁石4a,4bと超電導物質10とはその位置姿勢を変えることは無い。   When performing the test, first, the wheel 2 according to the present invention is attached to the axle 3 of the device under test. Next, the superconducting material 10 placed on the balance device 7 placed on the pedestal 6 is positioned so as to face the lower magnetic poles of the bar magnets 4a and 4b placed in the wheel 2 of the device under test. The position / orientation is adjusted by the attitude adjusting device 8. The superconducting material 10 is not brought into the superconducting state in the initial state in which the device under test is installed in the measuring section, and the magnetic flux from the bar magnets 4a and 4b penetrates the superconducting material 10. A moving ground plate 11 exists between the lower magnetic poles of the bar magnets 4 a and 4 b and the superconducting material 10, but an appropriate gap is secured between the moving ground plate 11 and the upper surface of the superconducting material 10. In addition, the position of the pedestal 6 is lowered, and the vehicle body 1 as the test body is placed on the ground plate 11. In this state, the cooling device 9 is operated, and the temperature of the superconducting material 10 is lowered so as to be in a superconducting state. In the superconducting state, the magnetic flux penetrating through the superconducting material 10 is in a restrained state and cannot move there as it is. When the entire pedestal 6 is lifted after this magnetic flux restraint state is reached, the magnetic flux swells just like a spring by the weight of the device under test, and the wheel 2 of the device under test rises from the moving ground plate 11 to a certain distance. Keep in balance. In addition, even if a vertical force is applied to the paper, the restoring force retained like a spring works and returns to the original state. A similar restoring force works for forces and torques in other directions. In this way, the vehicle body 1 of the device under test is magnetically supported in the air while maintaining a constant distance and posture. The bar magnets 4a and 4b, which are in the form of horseshoe-shaped permanent magnets via the magnetic body 4c, are held at a certain distance and posture from the superconducting material 10 by the magnetic flux. Even if the tire portion of the wheel 2 fixed to the axle 3 of the device under test is rotated by the rotation of the axle 3, it is coupled via the bearing 5, so that the bar magnet 4a in the form of a horseshoe-shaped permanent magnet, The position and orientation of 4b and the superconducting material 10 do not change.

このようにして、被試験体の車体1は上記の超電導物質の磁束拘束の性質を利用した磁力支持機構に載った状態でタイヤを回転させることができる。被試験体が実車である場合仮に、自動車内部に人が乗ってアクセルを吹かして、タイヤが高速に回転したとしても内蔵されている磁束発生源4は回転せず、車体1は測定部内で移動しないことになる。これは磁束拘束による磁力支持が作動中でのことであり、車輪2と移動地面板11が接触状態にあるときはそのようなことができないことは当然である。超電導物質10が受ける力は位置姿勢調整装置8を介して天秤装置7に作用する。天秤装置7には被試験体の車体1が受ける力の他、位置姿勢調整装置8や電導物質10そして、冷却装置9等様々な装置の重力が加わるが、風洞試験の前後でこれを測ってデータとして持っておけば、その分の影響はデータ処理して除去することができる。すなわち、風を付加した時の天秤装置7の出力と初期状態での値との間で差を取ることにより、気流によって作用した空気力を評価できる。   In this way, the vehicle body 1 of the device under test can rotate the tire in a state where it is placed on the magnetic force support mechanism using the magnetic flux restraining property of the superconducting material. If the DUT is an actual vehicle, even if a person gets inside the vehicle and blows the accelerator, the built-in magnetic flux generation source 4 does not rotate even if the tire rotates at high speed, and the vehicle body 1 moves within the measuring section. Will not. This is because the magnetic force support by the magnetic flux restraint is in operation, and naturally it cannot be done when the wheel 2 and the moving ground plate 11 are in contact. The force received by the superconducting material 10 acts on the balance device 7 via the position / orientation adjustment device 8. In addition to the force received by the body 1 of the device under test, the balance device 7 is subjected to the gravity of various devices such as the position / orientation adjusting device 8, the conductive material 10, and the cooling device 9, and this is measured before and after the wind tunnel test. If it is stored as data, the effect can be removed by data processing. That is, the aerodynamic force exerted by the airflow can be evaluated by taking a difference between the output of the balance device 7 when the wind is applied and the value in the initial state.

本発明の自動車用磁力支持天秤装置の基本構成を模式的に示した図である。It is the figure which showed typically the basic composition of the magnetic force support balance apparatus for motor vehicles of this invention. 磁束発生源を内蔵した車輪と超電導物質間の部分構成の実施形態を詳細に示した図である。It is the figure which showed in detail the embodiment of the partial structure between the wheel incorporating a magnetic flux generation source, and a superconducting substance. 従来の自動車を被試験体とした風洞試験の形態を説明する図である。It is a figure explaining the form of the wind tunnel test which used the conventional motor vehicle as the to-be-tested body. 航空機用に開発された風洞用磁力支持天秤装置を説明する図である。It is a figure explaining the magnetic support balance apparatus for wind tunnels developed for aircrafts.

符号の説明Explanation of symbols

1 車体 2 車輪
3 車軸 4 磁束発生源
4a,4b 棒磁石 4d 磁性体
4d 充填樹脂 5 軸受
6 台座 7 天秤装置
8 位置姿勢調整装置 9 冷却装置
10 超電導物質 11 移動地面板
DESCRIPTION OF SYMBOLS 1 Car body 2 Wheel 3 Axle 4 Magnetic flux generation source 4a, 4b Bar magnet 4d Magnetic body 4d Filling resin 5 Bearing 6 Pedestal 7 Balance device 8 Position and orientation adjustment device 9 Cooling device 10 Superconducting substance 11 Moving ground plate

Claims (5)

前輪および後輪の中に永久磁石のような磁束発生源を格納し、該車輪と対峙する位置に超電導物質と冷却装置を配置し、超電導物質の磁束拘束の性質を利用し車体の磁力支持をはかったことを特徴とする車両の風洞実験方法。   A magnetic flux generation source such as a permanent magnet is stored in the front and rear wheels, a superconducting material and a cooling device are arranged at the position facing the wheel, and the magnetic support of the vehicle body is supported by utilizing the magnetic flux restraint property of the superconducting material. A wind tunnel test method for a vehicle characterized in that it was fast. 風洞内測定部に、床面と所定間隔離れた位置に移動地面板を配置し、前輪および後輪の中には永久磁石のような磁束発生源を格納し、前輪位置と後輪位置に対峙する床面には超電導物質と冷却装置を配置し、該超電導物質の磁束拘束の性質を利用して車体の磁力支持を行うことを特徴とする車両用風洞磁力支持天秤装置。   A moving ground plate is placed in the wind tunnel measurement section at a predetermined distance from the floor, and a magnetic flux generation source such as a permanent magnet is stored in the front and rear wheels to confront the front and rear wheel positions. A wind tunnel magnetic force support balance device for a vehicle, wherein a superconducting material and a cooling device are arranged on a floor surface to be supported, and magnetic support of the vehicle body is performed using the magnetic flux restraining property of the superconducting material. 磁束供給源は車輪の軸受けを介して保持することにより、車輪を回転させても車体が移動したり、揺動したりしないことを特徴とする請求項2に記載の車両用風洞磁力支持天秤装置。   3. The vehicle wind tunnel magnetic force support balance apparatus according to claim 2, wherein the magnetic flux supply source is held via a wheel bearing so that the vehicle body does not move or swing even when the wheel is rotated. . 磁束を保持する超電導物質とそれを支える床面との間に天秤を取り付け、磁束源に加わる力とモーメントを車輪の外部から計測することを特徴とする請求項2又は3に記載の車両用風洞磁力支持天秤装置。   The vehicle wind tunnel according to claim 2 or 3, wherein a balance is attached between the superconducting material holding the magnetic flux and the floor surface supporting the same, and the force and moment applied to the magnetic flux source are measured from outside the wheel. Magnetic support balance device. 複数の車輪にそれぞれ対峙する超電導物質の支持台はそれぞれの位置姿勢を独立に調整できる機構を備えることにより、風洞内車両模型あるいは実車を風の状態変化に対して所定の位置姿勢に支持可能としたことを特徴とする請求項2乃至4のいずれかに記載の車両用風洞磁力支持天秤装置。   The superconducting material support table that faces each of the plurality of wheels has a mechanism that can independently adjust the position and orientation of each wheel so that the vehicle model in the wind tunnel or the actual vehicle can be supported in a predetermined position and orientation with respect to changes in wind conditions. The wind tunnel magnetic force support balance apparatus for vehicles according to any one of claims 2 to 4 characterized by things.
JP2006019339A 2006-01-27 2006-01-27 Magnetically supported balance device for automobiles Expired - Fee Related JP4135954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019339A JP4135954B2 (en) 2006-01-27 2006-01-27 Magnetically supported balance device for automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019339A JP4135954B2 (en) 2006-01-27 2006-01-27 Magnetically supported balance device for automobiles

Publications (2)

Publication Number Publication Date
JP2007198964A JP2007198964A (en) 2007-08-09
JP4135954B2 true JP4135954B2 (en) 2008-08-20

Family

ID=38453707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019339A Expired - Fee Related JP4135954B2 (en) 2006-01-27 2006-01-27 Magnetically supported balance device for automobiles

Country Status (1)

Country Link
JP (1) JP4135954B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230288B2 (en) * 2008-07-01 2013-07-10 日章電機株式会社 Method for measuring fluid force generated in vehicle and wind tunnel balance device
CN102944434B (en) * 2012-11-30 2015-03-25 中南大学 U-shaped wind tunnel test train accelerating system
CN102998086B (en) * 2012-12-11 2015-04-15 长沙理工大学 Aerodynamic force testing device for moving vehicles
CN110146248B (en) * 2018-02-12 2021-02-12 上汽通用汽车有限公司 Suspension mechanism for scaling model and vehicle scaling wind tunnel test equipment
CN111307476A (en) * 2018-12-12 2020-06-19 中车唐山机车车辆有限公司 Railway vehicle bogie area ice and snow test device
CN112665816B (en) * 2021-01-05 2022-06-28 中国空气动力研究与发展中心超高速空气动力研究所 Hypersonic wind tunnel heavy-calibre spray pipe strutting arrangement

Also Published As

Publication number Publication date
JP2007198964A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4135954B2 (en) Magnetically supported balance device for automobiles
CN103592099B (en) Measuring method for the measurement apparatus of wind-tunnel free roll oscillation test
US8186207B2 (en) Strut assembly for transfering load from a movable belt
CN103998925B (en) Adaptability Electromagnetic Coupling System
CN100559143C (en) Five-freedom active control magnetic suspension free rolling system
JP2009506305A (en) Test stand and method for aerodynamic measurement of objects
Amoskov et al. Modelling EMS maglev systems to develop control algorithms
WO2009111011A1 (en) Restraint system for vehicles
CN108982130A (en) A kind of high-speed maglev train brake system test platform
CN106327947A (en) Flight motion simulator
CN106354030B (en) Mars gravitation ground simulator and its analogy method
CN106184833B (en) A kind of horizontal multiple degrees of freedom air-floation follow-up device
JP2009271025A (en) Chassis dynamometer
CN105466371B (en) The device and measuring method of survey aircraft undercarriage wheel shaft end position
JP2011208999A (en) Device for testing vehicle in water tank
CN114812986A (en) Vibration test system of superconducting maglev train suspension frame
CN113848751A (en) Ground simulation system of drag-free spacecraft
CN110481819B (en) Micro-gravity experiment platform based on halbach array permanent magnet
JP3855065B2 (en) Load reducing device and model used for it
JP2009016678A5 (en)
EP1328786B1 (en) Tire testing machine
CN106931035B (en) A kind of permanent magnet bias low-power consumption spherical shape magnetic suspension bearing apparatus
CN103344445B (en) Detecting platform of medium-low speed magnetic levitation line feed unit
JP3760181B2 (en) Drag calibration method in magnetic support balance device
JP2004061188A (en) Aerodynamic testing method of moving object model, and moving object model for aerodynamic testings

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees