JP2004307952A - METHOD FOR ADDING Cr IN CONVERTER - Google Patents

METHOD FOR ADDING Cr IN CONVERTER Download PDF

Info

Publication number
JP2004307952A
JP2004307952A JP2003104456A JP2003104456A JP2004307952A JP 2004307952 A JP2004307952 A JP 2004307952A JP 2003104456 A JP2003104456 A JP 2003104456A JP 2003104456 A JP2003104456 A JP 2003104456A JP 2004307952 A JP2004307952 A JP 2004307952A
Authority
JP
Japan
Prior art keywords
oxide
amount
slag
blowing
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003104456A
Other languages
Japanese (ja)
Other versions
JP4184855B2 (en
Inventor
Kiminori Hajika
公則 羽鹿
Koji Kasuya
康二 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003104456A priority Critical patent/JP4184855B2/en
Publication of JP2004307952A publication Critical patent/JP2004307952A/en
Application granted granted Critical
Publication of JP4184855B2 publication Critical patent/JP4184855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for adding Cr, which can adjust a Cr content with a high Cr yield even when manufacturing a high-Cr steel through refining it under a condition of a small amount of slag in a converter, without causing any trouble in a refining operation. <P>SOLUTION: The method for adding Cr in the converter comprises, in the refinement step in the converter, adding Cr oxides after starting oxygen blowing, and charging a Cr-containing ferroalloy after having added the Cr oxides. The method preferably comprises charging the Cr oxides, then supplying particularly a specified amount of oxygen in the following expression 1: (0.28×S-3)≤V≤(0.28×S+10) (1), wherein V is a supplied amount of oxygen (Nm<SP>3</SP>/t) after charging of the Cr oxides and before charging of the Cr-containing ferroalloy; and S is S(%)=[(mass of Cr<SB>2</SB>O<SB>3</SB>forming FeO-Cr<SB>2</SB>O<SB>3</SB>out of charged Cr oxides)/(mass of Cr<SB>2</SB>O<SB>3</SB>on the assumption that all charged oxides are Cr<SB>2</SB>O<SB>3</SB>)] ×100, subsequently charging the Cr-containing ferroalloy, and afterwards supplying oxygen of 2 to 10 Nm<SP>3</SP>/t to finish the blowing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、転炉におけるCr添加方法に関するものであり、高Cr鋼を製造する場合でも、少量スラグ下で行う精錬操業に支障をきたすことなく、高いCr歩留りで溶鋼中のCr量を確保することのできる、有用なCr添加方法に関するものである。
【0002】
【従来の技術】
転炉操業工程で溶鋼にCrを添加する方法として、精錬後にFe−Cr系合金を添加する方法が挙げられる。しかし該Fe−Cr系合金は高価であり、かつFe−Cr系合金の一部は、吹錬時に酸化されてスラグ(Cr)となるためCr歩留りが悪く経済的でない。
【0003】
そこで、該Fe−Cr系合金の代わりに安価なCr鉱石を用いることが提案されている。特許文献1には、スラグ中の酸化Crの還元回収において、該還元反応に用いるFe−Siの脱炭、脱窒処理等への悪影響を抑制するため、溶融還元精錬時のスラグ塩基度、スラグ中残留炭素、溶鉄中炭素および溶鉄温度を制御するとともに、精錬終了後のSi量を一定範囲内にしてスラグ中の酸化クロムを回収することが提案されている。
【0004】
また、リサイクルされた酸化クロム含有スラグやクロム鉱石等の酸化クロム原料を用いてステンレス鋼を製造するにあたり、該スラグやクロム鉱石からクロムを効率良く回収する方法が提案されている(例えば、特許文献2〜9)。
【0005】
特許文献10には、溶融還元炉と脱炭炉の2炉を用いずに、炭素還元のみによるクロム未溶解の問題を解消し、脱炭期で用いる造滓剤を低減することができる方法が示されている。また特許文献11には、転炉吹酸脱炭精錬におけるクロム酸化抑制方法として、脱炭初期から中期おける、添加したフェロクロム合金鉄の酸化を効果的に抑制するとともに、脱炭後期で生成したクロム酸化物を溶鋼中に還元回収するための方法が提案されている。
【0006】
特許文献12には、スラグに含まれる酸化クロムを効率良く還元してクロム合金のコストを低減し、スラグの膨張性等の品質を改善して資源化を可能にする方法が示されている。
【0007】
上記技術では、スラグ等の酸化クロムをCr源として有効利用すべく、該スラグやCr鉱石の還元により溶銑中のCr量を確保する方法を検討したり、該Cr鉱石の還元反応の際に生じる問題の解決を図っている。しかしこの様にスラグやCr鉱石のみ使用して溶鋼中のCr量を調整する場合、該Cr量を高めるべくCr鉱石の添加量等を増加させると、スラグ量が増加してCr歩留りが低下する他、該スラグの増加によりフォーミング等が生じて精錬操業に支障をきたす。従って、高いCr歩留りで溶鋼中のCr量を効率よく高めるには更なる改善が求められる。
【0008】
【特許文献1】
特公平4−31015号公報
【特許文献2】
特許第2947063号公報
【特許文献3】
特開平10−46225号公報
【特許文献4】
特開平7−216429号公報
【特許文献5】
特開平8−295914号公報
【特許文献6】
特開平9−31514号公報
【特許文献7】
特開平9−31515号公報
【特許文献8】
特開平9−67608号公報
【特許文献9】
特開平9−87722号公報
【特許文献10】
特開平8−319508号公報
【特許文献11】
特開平11−172317号公報
【特許文献12】
特開2001−294926号公報
【0009】
【発明が解決しようとする課題】
本発明は、この様な事情に鑑みてなされたものであって、その目的は、高Cr鋼を製造する場合においても、転炉での少量スラグ下で行う精錬操業に支障をきたすことなく、高いCr歩留りで溶鋼中のCr量を調整することのできる、有用なCr添加方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明に係る転炉におけるCr添加方法とは、吹錬開始後にCr酸化物を添加し、且つ該Cr酸化物の添加後にCr含有合金鉄を投入するところに特徴を有し、前記Cr酸化物として、Cr鉱石またはCr含有スラグを使用することができる。また、
(A)前記Cr酸化物を投入した後、下記式(1)を満たす量(V)の酸素を供給してから前記Cr含有合金鉄を投入し、かつ
(0.28×S−3)≦V≦(0.28×S+10) (但しV≧0) …(1)
{式(1)中、
V:Cr酸化物投入後Cr含有合金鉄投入までの酸素供給量(Nm/t)
S(%)=[(投入Cr酸化物中のFeO・Crを形成するCr質量)/(投入全Cr酸化物をCrと仮定した場合のCr質量)]×100}
(B)Cr含有合金鉄の投入後に酸素を2〜10Nm/t(Nは標準状態を意味し、tは溶鋼1トンあたりを意味する。以下同じ)供給して吹錬を終了するのがよい。
【0011】
また、前記Cr酸化物の投入量は、Cr純分換算で、下記式(2)を満たすようにするのがよい。
Cr酸化物の投入量(kg/t)=炉内スラグ量(kg/t)×1.46×BCr2O3 …(2)
(但し、BCr2O3はスラグ中のCr濃度の最適必要増加分を示し、2〜15質量%の範囲内とする)
尚、前記「Cr歩留り」とは、吹錬において転炉に装入されるCr分のうち、吹止時の溶鋼中に歩留るCr分、即ち[鋼浴中のCr(kg/チャージ)]/[(添加Cr合金鉄+添加Cr含有合金鉄+溶銑+スクラップ)に含まれるCr(kg/チャージ)]×100(%)をいうものとする(以下、同じ)。
【0012】
【発明の実施の形態】
本発明者らは、少量スラグ下で行う転炉精錬で、Cr含有物を添加して溶鋼中のCr量を調整するに際し、比較的Cr濃度の高い鋼を製造する場合でも該操業に支障をきたすことなく、高Cr歩留りで溶鋼中のCr量を調整することのできる方法を確立すべく様々な角度から検討を行った。
【0013】
その結果、特に、
▲1▼従来のようにCr酸化物のみまたはCr含有合金鉄のみを使用するのではなく、酸素吹き込み開始後にCr酸化物を予め投入してスラグ中のCr量を確保した上で、Cr含有合金鉄を投入することが重要であること、
▲2▼Cr歩留りを飛躍的に高めるには、これらCr酸化物とCr含有合金鉄の投入時期としてそれぞれ最適なタイミングが存在すること、具体的には、目標とするCr濃度に応じてスラグ中のCr濃度を適正範囲まで高めた時点で、Cr含有合金鉄を投入するのがよいこと、
▲3▼Cr酸化物は、所定量を投入するのがよいこと
を見出し上記本発明に想到した。以下、本発明で上記要件を規定した理由について詳述する。
【0014】
本発明者らは、上述の通り、Cr酸化物とCr含有合金鉄を併用し、吹錬開始後に(好ましくは吹錬中期以降に)Cr酸化物を予め投入して、溶鋼の目標Cr量と熱平衡状態にあるスラグ中のCr量を確保した上でCr含有合金鉄を投入すれば、精錬操業に支障をきたすことなく高Cr鋼を高Cr歩留りで製造できるとの知見を得た。
【0015】
特にCr歩留りを飛躍的に高めるには、これらCr酸化物とCr含有合金鉄の投入時期としてそれぞれ最適なタイミングが存在し、Cr酸化物およびCr含有合金鉄は、下記の条件を満たすよう投入するのがよいことがわかった。
【0016】
(A)Cr含有合金鉄は、前記Cr酸化物を投入した後、下記式(1)を満たす量(V)の酸素を供給してから投入するのがよい。
【0017】
(0.28×S−3)≦V≦(0.28×S+10) (但しV≧0) …(1)
{式(1)中、
V:Cr酸化物投入後Cr含有合金鉄投入までの酸素供給量(Nm/t)
S(%)=[(投入Cr酸化物中のFeO・Crを形成するCr質量)/(投入全Cr酸化物をCrと仮定した場合のCr質量)]×100}
本発明で扱うCr酸化物として、Crの他に、耐火物としても使用される化学的に非常に安定なFeO・Crや、これらCrとFeO・Crの混合物が主要なものとして挙げられる。前記FeO・Crを投入してスラグ中のCr量を確保するには、下記化学式(3)に示す通り、FeOとの分離反応が必要であり、Cr単体を添加する場合よりも、下記化学式(3)の反応を経る分、スラグ中のCr濃度を高めるのに時間を要する。
【0018】
FeO・Cr→FeO+Cr …(3)
従って投入するCr酸化物が、Crを多く含みFeO・Crの割合が小さいものである場合には、スラグ中のCr濃度を最適値まで早期に高めることができるが、Cr酸化物が、Crが少なくFeO・Crの割合が大きいものである場合には、スラグ中のCr量確保に時間を要する。
【0019】
この様に、投入するCr酸化物中のFeO・Crの割合によって、スラグ中のCr濃度を一定濃度にまで高める所要時間が異なるため、Cr含有合金鉄を投入するスラグ中のCr濃度が最適値となる時期は、投入するCr酸化物に含まれるFeO・Crの割合に応じて決定するのがよいことを見出した。
【0020】
そこで本発明者らは、Cr酸化物に含まれるFeO・Crの割合を下記(4)に示す通りS(%)で表現し、該S値の異なるCr酸化物(S=0,50,100)を用いて、Cr酸化物投入後からCr含有合金鉄投入までの酸素供給量とCr歩留りとの関係を調べた。その結果を後述する図5に示す。
【0021】

Figure 2004307952
図5から次の様なことがわかる。
【0022】
(a)S=0の場合(Cr酸化物は、CrからなりFeO・Crを含まないものである場合)
Cr酸化物を投入した直後にCr含有合金鉄を投入すると、高いCr歩留りを達成できることがわかる。
【0023】
Cr酸化物がこの様にCrからなる場合、該Cr酸化物は投入してすぐに(若干のスラグ中に懸濁するための時間:1分間程度は必要であるが)スラグ中のCr濃度を高めることができるので、該Cr酸化物投入直後にCr含有合金鉄を添加しても、Cr含有合金鉄の酸化ロスはほとんどなく高いCr歩留りを達成できる。
【0024】
一方、過度に酸素を供給した後にCr含有合金鉄を投入すると、図1に示す通りスラグ中のCr濃度増加に伴いスラグ中のT.Fe濃度(スラグ中のFe酸化物であるFeOとFeの合計中の鉄純分濃度)も増大して滓化が促進され、スラグ酸化度の上昇を招き、図5に示す通りCr歩留りが低下するので好ましくない。
【0025】
S=0のCr酸化物の具体例として、例えば高Cr鋼を溶製した後に残るスラグ等が挙げられる。
【0026】
(b)S=100の場合(Cr酸化物は、FeO・CrからなりCrを含まないものである場合)
Cr酸化物を投入し、上記化学式(3)の反応に要する時間を十分確保した後にCr含有合金鉄を投入すると、高Cr歩留りを達成できることがわかる。上記S=0の場合の様に、Cr酸化物投入直後にCr含有合金鉄を投入すると、上記化学式(3)の反応が十分に進んでおらずスラグのCr量が確保されていないので、投入したCr含有合金鉄が酸化され易く、Cr歩留りが低下するおそれがある。
【0027】
一方、過度に酸素を供給してからCr含有合金鉄を投入すると、上記S=0の場合と同様にスラグの滓化が促進されてCr歩留りが低下するので好ましくない。
【0028】
Cr酸化物(S=100)の具体例として、例えば予備還元処理を施していないCr鉱石や同組成の耐火物廃材等が挙げられる。
【0029】
(c)S=50の場合(Cr酸化物は、CrとFeO・Crが1:1で混合したものである場合)
この場合には上記S=0の場合とS=100の場合の中間挙動を示す。Cr酸化物(S=50)の具体例として、例えば予備還元処理が完全に施されていない半還元Cr鉱石や、上記S値が0%のCr鉱石とS値が100%のCr鉱石をS値が50%となるように配合したもの等が挙げられる。
【0030】
前記図5の結果をもとに、上記S値とCr酸化物投入後からCr含有合金鉄投入までの酸素供給量との関係を求めた。その結果を図2に示す。
【0031】
図2から、スラグ中のCr濃度を高めて高いCr歩留りを達成するには、Cr酸化物投入後からCr含有合金鉄投入までの酸素供給量をS値に応じて決定すればよいことがわかる。本発明者らは、図2の結果から、Cr酸化物投入後からCr含有合金鉄投入までの酸素供給量(V)を、上記式(1)の範囲内とした。
【0032】
即ち、Cr酸化物投入後からCr含有合金鉄投入までの酸素供給量(V)が(0.28×S−3)Nm/tに満たない場合には、スラグ中のCr量が十分確保されておらず、この状態でCr含有合金鉄を投入しても該Cr含有合金鉄の酸化ロスが生じ易く高いCr歩留りを達成することができない。より好ましくは、上記式(1)において、前記図5でCr歩留りが最高値となるよう、Cr酸化物投入後の酸素供給量が(0.28×S+2)Nm/tの時点でCr含有合金鉄を投入するのがよい。
【0033】
一方、過剰に酸素を供給しても、上述した通り滓化促進によりCr歩留りが徐々に低下するため、酸素供給量は(0.28×S+10)Nm/t以下とするのが好ましい。
【0034】
Cr酸化物として微粉末状(粒径約5mm以下)のものを使用する場合には、上記式(1)を満たす範囲内で酸素供給量を比較的少なくすることができる。該微粉末状のCr酸化物であれば、すぐに溶解してスラグ中のCr濃度を高めたり、上記化学式(3)の反応が促進されるからである。しかし粒径約10mm以上のCr酸化物を投入する場合には、上記式(1)を満たす範囲内で酸素供給量を比較的多くして、該Cr酸化物を十分に溶融させるのがよい。
【0035】
(B)またCr含有合金鉄を投入した後の酸素供給量は2〜10Nm/tの範囲とするのがよい。
【0036】
転炉精錬では、酸素を吹き込むことで脱炭処理が行われるが、Cr含有合金鉄を投入した後に、多量の酸素を供給すると、添加したCr含有合金鉄中のCrが酸化されてCrとなりCr歩留りが低下するので好ましくない。
【0037】
従って、Cr歩留りの向上という観点からは、Cr含有合金鉄投入後の酸素供給時間を短くするのがよく、吹錬末期に投入するのがよい。また、スラグ中のCrからCrへの還元反応は吸熱反応であるため、溶鋼温度が高温となる吹錬末期に該還元反応は優位となる。従って、この吹錬末期にCr含有合金鉄を投入すれば、Crの酸化ロスも抑えられるので、この様な観点からも、Cr含有合金鉄を吹錬末期に投入するのが好ましい。いずれにしても本発明では、Cr含有合金鉄を溶鋼に投入後、吹錬終了までの酸素供給量を10Nm/t以下とするのがよい。Cr含有合金鉄の酸化を抑制して更にCr歩留りを高めるには、Cr含有合金鉄投入後、吹錬終了までの酸素供給量を8Nm/t以下とするのがより好ましい。
【0038】
しかし、Cr含有合金鉄投入後の吹錬時間が極端に短い(即ち、吹錬終了までの酸素供給量が少ない)と、次の様な問題が生じる。
【0039】
(i)吹錬終了間際には、転炉ダイナミックコントロール、即ち、吹錬中にサブランスでC濃度と溶鋼温度(T)を直接測定し、数秒毎にC濃度と溶鋼温度(T)を逐次計算表示して吹錬終了の判断が行われるが、この際、吹錬終了直前にCr含有合金鉄を添加すると、吹錬終了の判断基準であるC濃度と溶鋼温度(T)が目標設定値から外れ易くなる。
【0040】
(ii)Cr含有合金鉄を投入した後に吹錬を十分行うことによって、不純物であるCが脱炭処理され、水分が蒸発し、またTi等の不純物がスラグに捕捉されて除去される。
【0041】
しかし、吹錬終了直前にCr含有合金鉄を添加すると、Cr含有合金鉄中に含まれるこれらの不純物(C、HO、Ti等)が十分除去されず、溶鋼中に残存したままとなり、上述した様に吹錬終了時のC濃度が目標値から外れるといった不具合が生じる他、該不純物の除去処理を別途行う必要が生じてくる。例えば吹錬終了後に脱ガス工程等を設ける等の必要が生じ、連々鋳を実施する場合等に効率よく作業を進めることができない。
【0042】
(iii)Cr含有合金鉄が十分に攪拌・混合されない状態で吹錬を終了すると、添加したCr含有合金鉄の分散が不均一となって、成分バラツキ等が生じるおそれがある。
【0043】
従って、Cr含有合金鉄を投入した後は、少なくとも2Nm/tの酸素を供給して吹錬を行い、Cr含有合金鉄中の不純物の除去や攪拌等を行うのがよい。該不純物の除去等や攪拌を十分に行うには、Cr含有合金鉄を投入したのち3Nm/t以上の酸素を供給して吹錬を行うことがより好ましい。
【0044】
本発明では、この様な適正時期にCr酸化物およびCr含有合金鉄を投入することで、脱燐や脱炭等といった精錬操業に支障をきたすことなく高Cr歩留りで溶鋼中のCr量を確保することができる。
【0045】
図3は、Cr酸化物およびCr含有合金鉄のどちらも本発明で規定する時期に投入した場合(Cr酸化物の投入時期:精錬開始後,Cr含有合金鉄の投入時期:精錬中期以降)と、Cr含有合金鉄のみを規定の時期に投入し、Cr酸化物は精錬開始前に投入した場合(Cr酸化物の投入時期:精錬開始前,Cr含有合金鉄の投入時期:精錬中期以降)について、スラグ中のCr濃度とCr歩留りとの関係を示している。この図3から、本発明で規定する時期にCr酸化物およびCr含有合金鉄を投入することで、高いCr歩留りを達成できることがわかる。
【0046】
Cr酸化物は、上記適正時期に投入することに加えて、Cr純分換算で下記式(2)を満たす量を投入するのがよい。
Cr酸化物の投入量(kg/t)=炉内スラグ量(kg/t)×1.46×BCr2O3 …(2)
(但し、BCr2O3はスラグ中のCr濃度の最適必要増加分を示し、2〜15質量%の範囲内とする)
上記Cr酸化物の投入量は、例えば次の様にして求めることができる。通常行う操業下での溶鋼中のCr濃度[Cr]が0.5質量%、溶鋼中のFe濃度(T.Fe)が8質量%、スラグ中のCr濃度(Cr)が4質量%であり、目標値として溶鋼中のCr目標濃度[Cr]’を1.0質量%、溶鋼中のFe目標濃度(T.Fe)’を10質量%にしようとするとき、スラグ中のCr目標濃度(Cr)’は、平衡状態の関係から求まる下記式(5)より10質量%となる。
【0047】
(Cr) ’=[(T.Fe)’/(T.Fe)}×{[Cr]’/ [Cr]}×(Cr) …(5)
従ってBCr2O3(スラグ中のCr濃度の最適必要増加分)は、
Cr2O3=(Cr)’−(Cr)=6(質量%)となる。
【0048】
よって、この場合のCr酸化物の投入量は、[炉内スラグ量(kg/t)×1.46×6] (kg/t)とするのが最適であることがわかる。尚、スラグ中のCr濃度の最適必要増加分(質量%)は、この様に操業条件に応じて適宜設定することができるが、Cr酸化物を過剰に添加するとスラグが酸化性になりやすいので、Cr歩留りの低下の抑制を考慮すると2〜15質量%の範囲内とするのがよい。
【0049】
この様にCr酸化物を適正量投入して、スラグ中のCr濃度を最適濃度にした状態でCr含有合金鉄を投入することによって、より高いCr歩留りを達成することができる。
【0050】
尚、Cr酸化物の投入量が上記式(5)で規定した量を下回る場合には、スラグ中のCr濃度を、平衡時のCr濃度まで十分に高めることができず、Cr含有合金鉄を投入したときに、該Cr含有合金鉄中のCrの酸化反応が進行し易くCr歩留りを高めることが難しい。好ましくは前記Cr酸化物を少なくとも2kg/t以上投入するのがよい。
【0051】
一方、Cr酸化物の投入量が上記式(5)で規定した量を上回る場合には、スラグ中のCr量が過度に増加し、該Cr濃度の増加に伴い前記図1に示すようにスラグ中のT.Fe濃度(スラグ中のFe酸化物であるFeOとFeの合計中の鉄純分濃度)も増大しスラグが高酸化性となる。一旦、高酸化性のスラグが形成されると、該スラグを低酸化性に迅速に戻すのは、酸素を供給しつつ精錬する酸化精錬では非常に困難である。従ってこの様な状態になると、Cr歩留りが低下するばかりか溶鋼中のCr濃度を十分に高めることもできないので好ましくない。前記Cr酸化物の投入量は多くとも15kg/t以下とするのが好ましい。
【0052】
本発明ではこの様に、スラグ中のCr量確保にFeO・Crを用いる場合も考慮しているので、前記Cr酸化物としては、該FeO・Crを比較的多く含むCr鉱石を用いることができる他、Cr濃度の高い鋼種を溶製したときに生じるCr濃度やFeO・Cr濃度の高いスラグをリサイクルして使用することができる。
【0053】
尚、Cr酸化物としてCr鉱石を用いる場合には、粉砕された粉末状のCr鉱石(粒径約1〜5mm)が安価であり、かつ、効率的にスラグ中のCr濃度を高めて、投入するCr含有合金鉄の酸化を確実に抑制できるので好ましい。また、この様な粉末状のCr鉱石を転炉上部から添加すると、溶鋼まで到達せずスラグ中に留まって該スラグと混合するので、塊鉱石の場合より効率的にスラグ中のCr濃度を高めることができる。
【0054】
Cr含有合金鉄については、特にその投入量を限定するものでなく、目標Cr値に併せて適量添加することができる。投入するCr含有合金鉄中の不純物も精錬時に十分除去できるので、該Cr含有合金鉄として、Fe−Cr系合金を用いる場合に、不純物をあまり含まない高級品の他、不純物を比較的多く含むFe−Cr系合金の中級品や低級品を使用することもできる。
【0055】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0056】
<実施例1>
まず、本発明で定める如くCr酸化物とCr含有合金鉄を併用し、Cr酸化物を予め投入してスラグ中のCr量を確保した上でCr含有合金鉄を投入する方法として、Cr酸化物としてCr鉱石を酸素供給積算量が26.3Nm/tの時期に投入後、7.4Nm/tの酸素を供給してから、Cr含有合金鉄としてFe−Cr系合金を投入し、該Fe−Cr系合金の投入後に5.6Nm/tの酸素を供給して吹錬を終了した。
【0057】
またCr酸化物としてCr鉱石のみ用いて溶鋼中のCr量を調整する従来法として、Cr鉱石を酸素供給積算量が5.3Nm/tの時期に投入後、34.0Nm/tの酸素を供給して吹錬を終了した。それぞれの方法について、投入するCr鉱石またはFe−Cr系合金量を変化させて、溶鋼中のCr濃度を調整したときのCr歩留りを求めた。いずれの方法もその他の操業条件は下記の通りとした。
【0058】
Figure 2004307952
この様に夫々の方法でCr量を調整したときの、Cr投入量(投入したCr鉱石またはFe−Cr系合金量のCr純分換算量)とCr歩留りとの関係を図4に示す。
【0059】
この図4から、Cr酸化物のみ用いて溶鋼中Cr量を調整する場合には、Cr投入量を増加させるにつれてCr歩留りが低下するのに対し、本発明の方法によれば、Cr投入量に関係なく高いCr歩留りを達成できることがわかる。
【0060】
<実施例2>
Cr酸化物とCr含有合金鉄の投入時期の関係がCr歩留りに及ぼす影響について調べた。
【0061】
操業は次の様にして行った。即ち、前記S値が0%のCr酸化物として、Cr含有リサイクルスラグを、S値が50%のCr酸化物として、前記Cr含有リサイクルスラグと生クロム鉱石を半々の割合で配合したものを、またS値が10%のCr酸化物として生クロム鉱石を使用し、Cr酸化物投入後Cr含有合金鉄投入までの酸素供給量を変化させた。それ以外は上記実施例1と同様にした。その結果を、Cr酸化物の投入時からCr含有合金鉄の投入までの酸素供給量とCr歩留りとの関係として図5に示す。
【0062】
図5から、Cr酸化物の投入時からCr含有合金鉄の投入までの酸素供給量が本発明で好ましいとする範囲を外れると、Cr歩留りが低下しており、Cr含有合金鉄の投入は、Cr酸化物の投入後、規定量の酸素を供給してから行うのがよいことがわかる。
【0063】
<実施例3>
Cr含有合金鉄投入後の酸素供給量を変化させて、Cr歩留りおよび残存不純物量に与える影響を調べた。
【0064】
操業条件は、Cr含有合金鉄投入後吹錬終了までの酸素供給量を0〜18Nm/tの範囲で変化させ、Cr酸化物の投入した後Cr含有合金鉄を投入するまでの酸素供給量を2〜6Nm/tとする以外は、上記実施例1と同様の条件で操業した。この様にして操業したときの、Cr含有合金鉄投入後吹錬終了までの酸素供給量とCr歩留りとの関係を図6に示す。
【0065】
また、Cr含有合金鉄投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中の残存不純物量との関係として、図7にCr含有合金鉄投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中Ti濃度の関係を示し、図8にCr含有合金鉄投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中H(水素)濃度の関係を示し、図9にCr含有合金鉄投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中C(炭素)濃度の関係を示す。
【0066】
図6から、Cr含有合金鉄を投入後に多量の酸素を供給すると、Cr歩留りが低下することが分かる。Cr歩留りを90%以上とするには、Cr含有合金鉄を投入後の酸素供給量を10Nm/t以下に抑える、換言すれば、酸素供給量が10Nm/tを超えないうちに吹錬操業を終了するのがよいことがわかる。また、図7および図8から、特に安価なCr含有合金鉄に多く含まれている水分やTi等の不純物を十分除去して溶鋼中の残存不純物量を低減するには、Cr含有合金鉄を投入後、吹錬終了までに少なくとも2Nm/t以上の酸素を供給して吹錬処理を行うのがよいことがわかる。
【0067】
また低C濃度の鋼種を製造する場合には、投入するCr含有合金鉄に含まれるC量が多いと、吹錬終了時のC濃度が目標値より高くなるといった不具合が生じる。従って、図9に示す様に溶鋼中のC量を低減すべく、酸素を供給して吹錬処理を行うのがよいことがわかる。
【0068】
【発明の効果】
本発明は上記のように構成されており、本発明の方法で転炉にCrを添加すれば、高Cr鋼を製造する場合であっても脱炭や脱燐等といった精錬操業に支障をきたすことなく高Cr歩留りで溶鋼中のCr量を調整することができる。
【0069】
この様な方法を実施することで、更に、Cr酸化物として安価なCr鉱石等をFeO・Crの割合に関係なく使用した場合にも、高いCr歩留りを達成することができる。また、Cr酸化物を予め投入するため、Fe−Cr系合金等の高価なCr含有合金鉄を使用する場合であっても高いCr歩留りを達成することができ、該Cr含有合金鉄として、C、HO、Ti等の不純物量の多いFe−Cr系合金等の低級品を使用した場合でも、脱ガス等の工程をあらためて設ける必要なく効率良くCr量を調整することができる。
【図面の簡単な説明】
【図1】スラグ中のCr濃度とスラグ中のT.Fe濃度の関係を示したグラフである。
【図2】Cr酸化物投入後からCr含有合金鉄投入までの酸素供給量(V)とS値との関係を示したグラフ(スラグ量が40kg/t以下の場合)である。
【図3】Cr含有合金鉄投入時のスラグ中のCr濃度とCr歩留りとの関係を、Cr酸化物の投入時期別に示したグラフである。
【図4】本発明法または従来法で溶鋼中Cr量を調整した場合の、Cr投入量とCr歩留りの関係を示したグラフである。
【図5】Cr酸化物の投入時からCr含有合金鉄の投入までの酸素供給量とCr歩留りとの関係を示すグラフである。
【図6】Cr含有合金鉄(Fe−Cr系合金)投入後吹錬終了までの酸素供給量とCr歩留りとの関係を示したグラフである。
【図7】Cr含有合金鉄(Fe−Cr系合金)投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中のTi濃度との関係を示したグラフである。
【図8】Cr含有合金鉄(Fe−Cr系合金)投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中のH(水素)濃度との関係を示したグラフである。
【図9】Cr含有合金鉄(Fe−Cr系合金)投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中のC(炭素)濃度との関係を示したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for adding Cr in a converter, and secures the amount of Cr in molten steel at a high Cr yield without hindering the refining operation performed under a small amount of slag even when producing high Cr steel. And a useful method for adding Cr.
[0002]
[Prior art]
As a method of adding Cr to molten steel in a converter operation process, a method of adding an Fe—Cr alloy after refining is used. However, the Fe-Cr-based alloy is expensive, and part of the Fe-Cr-based alloy is oxidized at the time of blowing to form slag (Cr 2 O 3 ), The Cr yield is poor and not economical.
[0003]
Therefore, it has been proposed to use inexpensive Cr ore instead of the Fe-Cr alloy. Patent Literature 1 discloses that in the reduction and recovery of Cr oxide in slag, the slag basicity during smelting reduction refining, It has been proposed to control the medium residual carbon, the carbon content in the molten iron and the temperature of the molten iron, and to recover the chromium oxide in the slag by keeping the amount of Si after refining within a certain range.
[0004]
Further, in producing stainless steel using chromium oxide raw materials such as recycled chromium oxide-containing slag and chromium ore, there has been proposed a method of efficiently recovering chromium from the slag and chromium ore (for example, Patent Documents) 2-9).
[0005]
Patent Literature 10 discloses a method capable of solving the problem of undissolved chromium only by carbon reduction without using two furnaces, a smelting reduction furnace and a decarburization furnace, and reducing the amount of slag-making agent used in the decarburization period. It is shown. Patent Literature 11 also discloses a method of suppressing chromium oxidation in converter blowing acid decarburization refining, which effectively suppresses the oxidation of added ferrochrome alloy iron during the initial to middle stages of decarburization, and reduces the chromium generated in the later stage of decarburization. A method for reducing and recovering oxides in molten steel has been proposed.
[0006]
Patent Literature 12 discloses a method of efficiently reducing chromium oxide contained in slag, reducing the cost of a chromium alloy, improving the quality of the slag, such as its expandability, and enabling resource recycling.
[0007]
In the above technology, in order to effectively use chromium oxide such as slag as a Cr source, a method for securing the amount of Cr in the hot metal by reducing the slag or the Cr ore is examined, or the method occurs during the reduction reaction of the Cr ore. Trying to solve the problem. However, when the amount of Cr in molten steel is adjusted using only slag or Cr ore as described above, if the amount of Cr ore added is increased to increase the amount of Cr, the amount of slag increases and the Cr yield decreases. In addition, the increase in the slag causes forming or the like, which hinders the refining operation. Therefore, further improvement is required to efficiently increase the Cr content in molten steel with a high Cr yield.
[0008]
[Patent Document 1]
Japanese Patent Publication No. 4-31015
[Patent Document 2]
Japanese Patent No. 2947063
[Patent Document 3]
JP-A-10-46225
[Patent Document 4]
JP-A-7-216429
[Patent Document 5]
JP-A-8-295914
[Patent Document 6]
JP-A-9-31514
[Patent Document 7]
JP-A-9-31515
[Patent Document 8]
JP-A-9-67608
[Patent Document 9]
JP-A-9-87722
[Patent Document 10]
JP-A-8-319508
[Patent Document 11]
JP-A-11-172317
[Patent Document 12]
JP 2001-294926 A
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and its purpose is to prevent the refining operation performed under a small amount of slag in a converter even when producing high Cr steel, An object of the present invention is to provide a useful Cr addition method capable of adjusting the amount of Cr in molten steel with a high Cr yield.
[0010]
[Means for Solving the Problems]
The method for adding Cr in the converter according to the present invention is characterized in that a Cr oxide is added after the start of blowing, and a Cr-containing ferromagnetic iron is charged after the addition of the Cr oxide. Ore, Cr ore or Cr-containing slag can be used. Also,
(A) After charging the Cr oxide, supplying an amount (V) of oxygen satisfying the following formula (1), then charging the Cr-containing ferromagnetic iron, and
(0.28 × S-3) ≦ V ≦ (0.28 × S + 10) (where V ≧ 0) (1)
中 In equation (1),
V: The amount of oxygen supply (Nm 3 / T)
S (%) = [(FeO.Cr in input Cr oxide) 2 O 3 Forming Cr 2 O 3 Mass) / (All input Cr oxides are Cr 2 O 3 Cr assuming that 2 O 3 Mass)] x 100 mm
(B) Oxygen of 2 to 10 Nm after introduction of Cr-containing ferromagnetic iron 3 / T (N means a standard state, t means per ton of molten steel, the same applies hereinafter) and the blowing should be terminated.
[0011]
Further, it is preferable that the input amount of the Cr oxide satisfy the following formula (2) in terms of pure Cr content.
Cr oxide input (kg / t) = furnace slag (kg / t) x 1.46 x B Cr2O3 … (2)
(However, B Cr2O3 Is Cr in slag 2 O 3 It indicates the optimum necessary increase in the concentration, and is within the range of 2 to 15% by mass.)
The “Cr yield” refers to the Cr content in the molten steel at the time of blowing off, of the Cr content charged into the converter during blowing, ie, [Cr in steel bath (kg / charge)]. ] / [(Added Cr alloy iron + added Cr-containing alloy iron + hot metal + scrap) contained Cr (kg / charge)] × 100 (%) (the same applies hereinafter).
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have found that in converter refining performed under a small amount of slag, when adjusting the amount of Cr in molten steel by adding a Cr-containing material, even when producing steel having a relatively high Cr concentration, the operation is hindered. The study was conducted from various angles to establish a method capable of adjusting the amount of Cr in molten steel at a high Cr yield without any problem.
[0013]
As a result, in particular,
{Circle around (1)} Instead of using only Cr oxide or Cr-containing ferrous iron as in the past, Cr oxide in the slag is added in advance after oxygen blowing is started. 2 O 3 It is important to supply Cr-containing ferroalloys after securing the amount,
{Circle around (2)} In order to dramatically increase the Cr yield, there are optimal timings for the introduction of these Cr oxides and the Cr-containing ferroalloys. Cr 2 O 3 When the concentration is raised to an appropriate range, it is good to introduce Cr-containing ferroalloys,
(3) It is better to add a predetermined amount of Cr oxide
The present invention has been made. Hereinafter, the reason for defining the above requirements in the present invention will be described in detail.
[0014]
As described above, the present inventors use a combination of a Cr oxide and a Cr-containing ferromagnetic alloy, and before the blowing (preferably after the middle of the blowing), introduce the Cr oxide in advance to obtain a target Cr amount of molten steel and Cr in slag in thermal equilibrium 2 O 3 It has been found that if Cr-containing ferromagnetic iron is added after securing the amount, high Cr steel can be produced at a high Cr yield without hindering the refining operation.
[0015]
In particular, in order to dramatically increase the Cr yield, there are optimal timings for the introduction of the Cr oxide and the Cr-containing ferroalloy, respectively, and the Cr oxide and the Cr-containing ferroalloy are introduced so as to satisfy the following conditions. Turned out to be good.
[0016]
(A) The Cr-containing ferromagnetic iron is preferably charged after supplying the Cr oxide and then supplying oxygen in an amount (V) satisfying the following formula (1).
[0017]
(0.28 × S-3) ≦ V ≦ (0.28 × S + 10) (where V ≧ 0) (1)
中 In equation (1),
V: The amount of oxygen supply (Nm 3 / T)
S (%) = [(FeO.Cr in input Cr oxide) 2 O 3 Forming Cr 2 O 3 Mass) / (All input Cr oxides are Cr 2 O 3 Cr assuming that 2 O 3 Mass)] x 100 mm
Cr oxide used in the present invention is Cr 2 O 3 In addition, FeO.Cr, which is chemically very stable and is also used as a refractory 2 O 3 And these Cr 2 O 3 And FeO / Cr 2 O 3 Mixtures are mentioned as the main ones. The FeO · Cr 2 O 3 And the Cr in the slag 2 O 3 To secure the amount, a separation reaction with FeO is necessary as shown in the following chemical formula (3), 2 O 3 Compared to the case of adding a simple substance, the amount of Cr in the slag is reduced by the reaction of the following chemical formula (3). 2 O 3 It takes time to increase the concentration.
[0018]
FeO ・ Cr 2 O 3 → FeO + Cr 2 O 3 … (3)
Therefore, the input Cr oxide is Cr 2 O 3 FeO ・ Cr 2 O 3 Is small, the Cr in the slag 2 O 3 Although the concentration can be increased to the optimum value at an early stage, the Cr oxide 2 O 3 FeO ・ Cr 2 O 3 Is large, the Cr in the slag 2 O 3 It takes time to secure the amount.
[0019]
Thus, FeO.Cr in the input Cr oxide 2 O 3 Of Cr in the slag 2 O 3 Since the time required to increase the concentration to a certain concentration is different, the Cr 2 O 3 When the concentration reaches the optimum value, the FeO.Cr contained in the input Cr oxide 2 O 3 It has been found that it is better to determine according to the ratio of.
[0020]
Therefore, the present inventors have developed FeO.Cr contained in the Cr oxide. 2 O 3 Is expressed as S (%) as shown in the following (4), and using Cr oxides (S = 0, 50, 100) having different S values, the Cr-containing ferrous alloy is charged after the Cr oxide is charged. The relationship between the oxygen supply up to and the Cr yield was examined. The result is shown in FIG. 5 described later.
[0021]
Figure 2004307952
The following can be seen from FIG.
[0022]
(A) When S = 0 (Cr oxide is Cr 2 O 3 Consisting of FeO and Cr 2 O 3 Is not included)
It can be seen that a high Cr yield can be achieved by introducing the Cr-containing ferromagnetic iron immediately after the introduction of the Cr oxide.
[0023]
Cr oxide is thus Cr 2 O 3 , The Cr oxide is immediately charged (time for suspending in some slag: about 1 minute is necessary) 2 O 3 Since the concentration can be increased, even if the Cr-containing ferromagnetic iron is added immediately after the introduction of the Cr oxide, a high Cr yield can be achieved with almost no oxidation loss of the Cr-containing ferromagnetic iron.
[0024]
On the other hand, when the Cr-containing ferromagnetic iron is charged after excessively supplying oxygen, the Cr in the slag as shown in FIG. 2 O 3 T. in slag with increasing concentration Fe concentration (FeO, Fe oxide in slag and Fe 2 O 3 , The slag formation is promoted, the slag oxidation degree is increased, and the Cr yield is reduced as shown in FIG. 5, which is not preferable.
[0025]
As a specific example of the Cr oxide with S = 0, for example, slag or the like remaining after melting high Cr steel is given.
[0026]
(B) When S = 100 (Cr oxide is FeO.Cr 2 O 3 Consisting of Cr 2 O 3 Is not included)
It can be seen that a high Cr yield can be achieved by introducing a Cr oxide and then introducing a Cr-containing ferromagnetic alloy after sufficiently securing the time required for the reaction of the above chemical formula (3). As in the case of S = 0, when the Cr-containing ferromagnetic iron is introduced immediately after the introduction of the Cr oxide, the reaction of the chemical formula (3) has not sufficiently proceeded and the slag Cr 2 O 3 Since the amount is not ensured, the charged Cr-containing ferromagnetic iron is easily oxidized, and the Cr yield may be reduced.
[0027]
On the other hand, if the Cr-containing ferromagnetic iron is supplied after excessively supplying oxygen, slag formation is promoted as in the case of S = 0, and the Cr yield is undesirably reduced.
[0028]
Specific examples of the Cr oxide (S = 100) include, for example, Cr ore that has not been subjected to a preliminary reduction treatment, refractory waste materials having the same composition, and the like.
[0029]
(C) When S = 50 (Cr oxide is Cr 2 O 3 And FeO / Cr 2 O 3 Is a 1: 1 mixture)
In this case, an intermediate behavior between the case of S = 0 and the case of S = 100 is shown. Specific examples of the Cr oxide (S = 50) include, for example, a semi-reduced Cr ore that has not been completely subjected to a pre-reduction treatment, a Cr ore having an S value of 0%, and a Cr ore having an S value of 100%. And the like blended so that the value becomes 50%.
[0030]
Based on the results of FIG. 5, the relationship between the S value and the oxygen supply amount from the input of the Cr oxide to the input of the Cr-containing ferromagnetic iron was determined. The result is shown in FIG.
[0031]
From FIG. 2, it can be seen that Cr in slag 2 O 3 It can be seen that in order to achieve a high Cr yield by increasing the concentration, the oxygen supply amount from the input of the Cr oxide to the input of the Cr-containing ferromagnetic alloy should be determined according to the S value. From the results of FIG. 2, the present inventors set the oxygen supply amount (V) from the input of the Cr oxide to the input of the Cr-containing ferromagnetic iron within the range of the above formula (1).
[0032]
That is, the oxygen supply amount (V) from the input of the Cr oxide to the input of the Cr-containing ferromagnetic iron is (0.28 × S−3) Nm 3 / T, the Cr in the slag 2 O 3 The amount is not sufficiently secured, and even if the Cr-containing ferromagnetic iron is charged in this state, oxidation loss of the Cr-containing ferromagnetic iron easily occurs, and a high Cr yield cannot be achieved. More preferably, in the above formula (1), the oxygen supply amount after the introduction of the Cr oxide is (0.28 × S + 2) Nm so that the Cr yield in FIG. 3 It is preferable to introduce a Cr-containing ferromagnetic alloy at the time point of / t.
[0033]
On the other hand, even if oxygen is excessively supplied, the Cr yield is gradually reduced due to the promotion of slagging as described above, so the oxygen supply amount is (0.28 × S + 10) Nm 3 / T or less.
[0034]
When a fine powder (particle diameter of about 5 mm or less) is used as the Cr oxide, the oxygen supply amount can be relatively reduced as long as the above formula (1) is satisfied. If the fine powdery Cr oxide is used, it is immediately dissolved to remove the Cr in the slag. 2 O 3 This is because the concentration is increased or the reaction of the above chemical formula (3) is promoted. However, when introducing a Cr oxide having a particle size of about 10 mm or more, it is preferable to sufficiently increase the oxygen supply amount within a range satisfying the above formula (1) to sufficiently melt the Cr oxide.
[0035]
(B) In addition, the oxygen supply amount after charging the Cr-containing ferromagnetic iron is 2 to 10 Nm. 3 / T range.
[0036]
In converter refining, decarburization treatment is performed by blowing oxygen. However, if a large amount of oxygen is supplied after charging the Cr-containing ferromagnetic iron, Cr in the added Cr-containing ferromagnetic iron is oxidized and Cr is added. 2 O 3 And the Cr yield is undesirably reduced.
[0037]
Therefore, from the viewpoint of improving the Cr yield, it is preferable to shorten the oxygen supply time after the introduction of the Cr-containing ferromagnetic iron, and it is better to introduce the oxygen at the end of blowing. In addition, Cr in slag 2 O 3 Since the reduction reaction from iron to Cr is an endothermic reaction, the reduction reaction becomes dominant at the end of blowing, when the temperature of the molten steel becomes high. Therefore, if the Cr-containing ferromagnetic iron is charged at the end of the blowing, the oxidation loss of Cr can be suppressed, and from such a viewpoint, it is preferable to feed the Cr-containing ferroalloy at the end of the blowing. In any case, according to the present invention, the oxygen supply amount from the introduction of the Cr-containing ferromagnetic iron into the molten steel until the end of the blowing is 10 Nm. 3 / T or less. In order to further suppress the oxidation of the Cr-containing ferroalloys and further increase the Cr yield, the oxygen supply amount after the introduction of the Cr-containing ferroalloys until the end of blowing is 8 Nm 3 / T or less is more preferable.
[0038]
However, if the blowing time after the introduction of the Cr-containing ferroalloys is extremely short (that is, the amount of oxygen supplied until the end of the blowing is small), the following problem occurs.
[0039]
(I) Immediately before the end of blowing, converter dynamic control, that is, the C concentration and the molten steel temperature (T) are directly measured by a sublance during the blowing, and the C concentration and the molten steel temperature (T) are sequentially calculated every few seconds. In this case, if the Cr-containing ferromagnetic iron is added immediately before the end of the blowing, the C concentration and the molten steel temperature (T) which are the criteria for the end of the blowing are determined from the target set values. It is easy to come off.
[0040]
(Ii) By performing blowing sufficiently after charging the Cr-containing ferromagnetic iron, C, which is an impurity, is decarburized, moisture is evaporated, and impurities such as Ti are captured and removed by the slag.
[0041]
However, when Cr-containing ferromagnetic iron is added immediately before the end of blowing, these impurities (C, H) contained in the Cr-containing ferromagnetic iron are added. 2 O, Ti, etc.) are not sufficiently removed and remain in the molten steel, causing the problem that the C concentration at the end of the blowing deviates from the target value as described above. In addition, the impurity must be removed separately. Will occur. For example, there is a need to provide a degassing step or the like after the end of blowing, so that it is not possible to efficiently perform the work when performing continuous casting.
[0042]
(Iii) If the blowing is terminated in a state where the Cr-containing ferromagnetic iron is not sufficiently stirred and mixed, the dispersion of the added Cr-containing ferroalloy becomes non-uniform, and there is a possibility that component dispersion or the like may occur.
[0043]
Therefore, after charging the Cr-containing ferromagnetic iron, at least 2 Nm 3 It is preferable to perform blowing by supplying oxygen at / t to remove impurities in the Cr-containing ferromagnetic alloy, stir, and the like. In order to sufficiently remove the impurities and perform stirring, 3 Nm 3 It is more preferable to perform blowing by supplying oxygen of / t or more.
[0044]
In the present invention, by introducing Cr oxide and Cr-containing ferromagnetic iron at such an appropriate time, the Cr content in the molten steel can be secured at a high Cr yield without hindering the refining operations such as dephosphorization and decarburization. can do.
[0045]
FIG. 3 shows the case where both the Cr oxide and the Cr-containing ferromagnetic iron are charged at the time specified in the present invention (Cr oxide input timing: after refining starts, and Cr-containing ferroalloy input timing: after refining middle stage). When only Cr-containing ferro-alloy is charged at the prescribed time and Cr oxide is charged before refining starts (Cr-oxide feeding time: before refining starts, Cr-containing ferro-alloy input timing: after middle refining) Cr in slag 2 O 3 The relationship between the concentration and the Cr yield is shown. From FIG. 3, it can be seen that a high Cr yield can be achieved by introducing the Cr oxide and the Cr-containing ferroalloy at the time specified in the present invention.
[0046]
It is preferable that the amount of the Cr oxide be such that it satisfies the following expression (2) in terms of pure Cr in addition to the above-mentioned time.
Cr oxide input (kg / t) = furnace slag (kg / t) x 1.46 x B Cr2O3 … (2)
(However, B Cr2O3 Is Cr in slag 2 O 3 It indicates the optimum necessary increase in the concentration, and is within the range of 2 to 15% by mass.)
The input amount of the Cr oxide can be determined, for example, as follows. Under normal operation, the Cr concentration in molten steel [Cr] is 0.5% by mass, the Fe concentration in molten steel (T.Fe) is 8% by mass, and Cr in slag is 2 O 3 Density (Cr 2 O 3 ) Is 4% by mass, and when the target Cr concentration in molten steel [Cr] ′ is 1.0% by mass and the target Fe concentration (T.Fe) ′ in molten steel is 10% by mass as target values, Cr in slag 2 O 3 Target density (Cr 2 O 3 ) ′ Is 10% by mass from the following equation (5) obtained from the relation of the equilibrium state.
[0047]
(Cr 2 O 3 ) '= [(T.Fe)' / (T.Fe)} × {[Cr] '/ [Cr]} × (Cr 2 O 3 …… (5)
Therefore B Cr2O3 (Cr in slag 2 O 3 The optimal required increase in concentration)
B Cr2O3 = (Cr 2 O 3 ) '-(Cr 2 O 3 ) = 6 (% by mass).
[0048]
Therefore, it is found that the optimal amount of the Cr oxide in this case is [the amount of slag in the furnace (kg / t) × 1.46 × 6] (kg / t). In addition, Cr in slag 2 O 3 The optimum necessary increase (mass%) of the concentration can be appropriately set according to the operating conditions as described above. However, if the Cr oxide is added excessively, the slag tends to become oxidizable, and thus the decrease in the Cr yield is reduced. In consideration of suppression, the content is preferably in the range of 2 to 15% by mass.
[0049]
In this way, an appropriate amount of Cr oxide is charged, and Cr in slag is added. 2 O 3 By introducing the Cr-containing ferromagnetic iron in a state where the concentration is set to the optimum concentration, a higher Cr yield can be achieved.
[0050]
If the input amount of the Cr oxide is less than the amount specified by the above formula (5), the Cr in the slag is 2 O 3 When the concentration is 2 O 3 The concentration cannot be sufficiently increased, and when the Cr-containing ferromagnetic iron is charged, the oxidation reaction of Cr in the Cr-containing ferromagnetic iron easily proceeds, and it is difficult to increase the Cr yield. Preferably, the Cr oxide is added at least 2 kg / t or more.
[0051]
On the other hand, when the input amount of the Cr oxide exceeds the amount specified by the above equation (5), 2 O 3 The amount increases excessively and the Cr 2 O 3 As shown in FIG. 1, the T.C. Fe concentration (FeO, Fe oxide in slag and Fe 2 O 3 And the slag becomes highly oxidizable. Once a highly oxidizing slag is formed, it is very difficult to quickly return the slag to a low oxidizing property by oxidizing refining in which refining is performed while supplying oxygen. Therefore, such a state is not preferable because not only the Cr yield decreases but also the Cr concentration in the molten steel cannot be sufficiently increased. It is preferable that the input amount of the Cr oxide be at most 15 kg / t or less.
[0052]
In the present invention, as described above, 2 O 3 FeO / Cr to secure quantity 2 O 3 Since the case where Cr is used is taken into consideration, the Cr oxide may be FeO · Cr. 2 O 3 Cr ore containing a relatively large amount of Cr can be used. 2 O 3 Concentration and FeO / Cr 2 O 3 Highly concentrated slag can be recycled and used.
[0053]
When Cr ore is used as the Cr oxide, pulverized powdery Cr ore (having a particle size of about 1 to 5 mm) is inexpensive, and efficiently removes Cr in slag. 2 O 3 It is preferable because the concentration can be increased to reliably suppress the oxidation of the Cr-containing ferroalloys to be charged. Also, when such powdered ore is added from the upper part of the converter, it does not reach the molten steel but stays in the slag and mixes with the slag. 2 O 3 The concentration can be increased.
[0054]
The amount of Cr-containing ferromagnetic iron is not particularly limited, and an appropriate amount can be added in accordance with the target Cr value. Since impurities in the added Cr-containing ferromagnetic iron can be sufficiently removed at the time of refining, when a Fe-Cr alloy is used as the Cr-containing ferroalloy, it contains a relatively large amount of impurities in addition to a high-grade product containing little impurities. Intermediate or low-grade Fe-Cr alloys can also be used.
[0055]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following Examples, and may be appropriately modified within a range that can be adapted to the purpose of the preceding and the following. The present invention can be implemented, and all of them are included in the technical scope of the present invention.
[0056]
<Example 1>
First, as specified in the present invention, a Cr oxide and a Cr-containing ferromagnetic iron are used in combination, and a Cr oxide is added in advance and the Cr 2 O 3 As a method of charging the Cr-containing ferromagnetic iron after securing the amount, Cr ore is used as a Cr oxide and the integrated oxygen supply amount is 26.3 Nm. 3 / N after loading at the time of / t 3 / T of oxygen is supplied, and then a Fe-Cr-based alloy is charged as Cr-containing ferromagnetic alloy, and 5.6 Nm is added after the Fe-Cr-based alloy is charged. 3 The blowing was terminated by supplying / t of oxygen.
[0057]
As a conventional method of adjusting the amount of Cr in molten steel using only Cr ore as a Cr oxide, a Cr ore having an integrated oxygen supply of 5.3 Nm is used. 3 /4.0t after injection at the time of / t 3 The blowing was terminated by supplying / t of oxygen. For each method, the Cr yield was determined when the amount of Cr ore or Fe—Cr alloy was changed to adjust the Cr concentration in the molten steel. Other operating conditions of each method were as follows.
[0058]
Figure 2004307952
FIG. 4 shows the relationship between the amount of Cr input (the amount of the input Cr ore or the amount of the input Cr-Cr-based alloy in terms of pure Cr content) and the Cr yield when the amounts of Cr are adjusted by the respective methods.
[0059]
From FIG. 4, it can be seen that when the Cr content in molten steel is adjusted using only Cr oxide, the Cr yield decreases as the Cr input increases, whereas according to the method of the present invention, the Cr input is reduced. It can be seen that a high Cr yield can be achieved regardless of this.
[0060]
<Example 2>
The effect of the relationship between the charging time of the Cr oxide and the Cr-containing ferromagnetic iron on the Cr yield was investigated.
[0061]
The operation was performed as follows. That is, as the Cr oxide having the S value of 0%, 2 O 3 The recycled slag containing Cr is converted to a Cr oxide having an S value of 50%. 2 O 3 Using recycled slag containing raw chromium ore and raw chromium ore at a ratio of 50%, and using raw chromium ore as a Cr oxide with an S value of 10%, the amount of oxygen supplied from the input of the Cr oxide to the input of the Cr-containing ferroalloy Was changed. Otherwise, the procedure was the same as in Example 1 above. The results are shown in FIG. 5 as the relationship between the oxygen supply amount and the Cr yield from the introduction of the Cr oxide to the introduction of the Cr-containing ferromagnetic alloy.
[0062]
From FIG. 5, when the oxygen supply amount from the time of charging the Cr oxide to the time of charging the Cr-containing ferromagnetic iron is out of the preferable range in the present invention, the Cr yield decreases, and the charging of the Cr-containing ferromagnetic iron decreases. It can be seen that it is better to supply a specified amount of oxygen after charging the Cr oxide.
[0063]
<Example 3>
The effect on the Cr yield and the amount of residual impurities was examined by changing the amount of oxygen supply after the addition of the Cr-containing ferromagnetic iron.
[0064]
The operating conditions were such that the oxygen supply amount from 0 to 18 Nm after the addition of the Cr-containing ferroalloy until the end of blowing. 3 / T in the range of 2 to 6 Nm after the introduction of the Cr oxide until the introduction of the Cr-containing ferromagnetic iron. 3 The operation was carried out under the same conditions as in Example 1 except that / t was used. FIG. 6 shows the relationship between the oxygen supply amount and the Cr yield from the introduction of the Cr-containing ferrous alloy to the end of the blowing when the operation was performed in this manner.
[0065]
FIG. 7 shows the relationship between the oxygen supply amount from the input of the Cr-containing ferroalloy to the end of blowing and the amount of residual impurities in the molten steel at the end of the blowing. FIG. 8 shows the relationship between the oxygen supply amount and the H (hydrogen) concentration in the molten steel at the end of blowing, and FIG. FIG. 9 shows the relationship between the oxygen supply amount from the introduction of the Cr-containing ferroalloy to the end of blowing and the C (carbon) concentration in the molten steel at the end of blowing.
[0066]
FIG. 6 shows that when a large amount of oxygen is supplied after the addition of the Cr-containing ferromagnetic iron, the Cr yield decreases. In order to increase the Cr yield to 90% or more, the oxygen supply after adding the Cr-containing ferromagnetic alloy should be 10 Nm. 3 / T or less, in other words, the oxygen supply amount is 10 Nm 3 It can be seen that it is better to end the blowing operation within / t. From FIGS. 7 and 8, in order to sufficiently remove impurities such as moisture and Ti contained in particularly inexpensive Cr-containing ferroalloys to reduce the amount of residual impurities in the molten steel, it is necessary to use Cr-containing ferroalloys. After charging, at least 2 Nm by the end of blowing 3 It can be seen that it is preferable to perform the blowing process by supplying oxygen of / t or more.
[0067]
In the case of producing a steel type having a low C concentration, if the amount of C contained in the input Cr-containing ferromagnetic iron is large, there is a problem that the C concentration at the end of blowing is higher than a target value. Therefore, as shown in FIG. 9, it is found that it is better to supply oxygen to perform the blowing process in order to reduce the amount of C in the molten steel.
[0068]
【The invention's effect】
The present invention is configured as described above, and if Cr is added to a converter by the method of the present invention, even in the case of producing a high Cr steel, a smelting operation such as decarburization or dephosphorization is hindered. The Cr content in the molten steel can be adjusted at a high Cr yield without any increase.
[0069]
By carrying out such a method, it is possible to further reduce inexpensive Cr ore as Cr oxide by FeO.Cr 2 O 3 , A high Cr yield can be achieved. Further, since a Cr oxide is previously charged, a high Cr yield can be achieved even when an expensive Cr-containing ferromagnetic alloy such as an Fe-Cr alloy is used. , H 2 Even when a low-grade product such as an Fe-Cr alloy having a large amount of impurities such as O and Ti is used, the Cr amount can be adjusted efficiently without the need to newly provide a step of degassing or the like.
[Brief description of the drawings]
Fig. 1 Cr in slag 2 O 3 Concentration and T. in slag 4 is a graph showing a relationship between Fe concentrations.
FIG. 2 is a graph showing the relationship between the oxygen supply amount (V) and the S value from the input of a Cr oxide to the input of a Cr-containing ferromagnetic alloy (when the slag amount is 40 kg / t or less).
FIG. 3 Cr in slag when Cr-containing ferroalloys are charged 2 O 3 5 is a graph showing the relationship between the concentration and the Cr yield for each charging time of Cr oxide.
FIG. 4 is a graph showing the relationship between the amount of Cr input and the Cr yield when the amount of Cr in molten steel is adjusted by the method of the present invention or the conventional method.
FIG. 5 is a graph showing the relationship between the oxygen supply amount and the Cr yield from the time when a Cr oxide is charged to the time when a Cr-containing ferromagnetic iron is charged.
FIG. 6 is a graph showing the relationship between the oxygen supply amount and the Cr yield from the introduction of Cr-containing ferromagnetic alloy (Fe—Cr alloy) to the end of blowing.
FIG. 7 is a graph showing the relationship between the oxygen supply amount from the introduction of Cr-containing ferromagnetic alloy (Fe-Cr alloy) to the end of blowing and the concentration of Ti in molten steel at the end of blowing.
FIG. 8 is a graph showing the relationship between the oxygen supply amount from the introduction of a Cr-containing ferromagnetic alloy (Fe—Cr alloy) to the end of blowing and the H (hydrogen) concentration in molten steel at the end of blowing.
FIG. 9 is a graph showing the relationship between the oxygen supply amount from the introduction of Cr-containing ferromagnetic alloy (Fe—Cr alloy) to the end of blowing and the C (carbon) concentration in molten steel at the end of blowing.

Claims (4)

転炉で精錬を行うに際し、吹錬開始後にCr酸化物を添加し、且つ該Cr酸化物の添加後にCr含有合金鉄を投入することを特徴とする転炉におけるCr添加方法。When refining in a converter, a Cr oxide is added to the converter after the start of blowing and a Cr-containing ferromagnetic iron is charged after the addition of the Cr oxide. 前記Cr酸化物として、Cr鉱石またはCr含有スラグを使用する請求項1に記載の転炉におけるCr添加方法。The method for adding Cr in a converter according to claim 1, wherein Cr ore or Cr-containing slag is used as the Cr oxide. 前記Cr酸化物を投入した後下記式(1)を満たす量(V)の酸素を供給してから前記Cr含有合金鉄を投入し、かつ該Cr含有合金鉄の投入後に酸素を2〜10Nm/t(tは溶鋼1トンあたりを意味する。以下同じ)供給して吹錬を終了する請求項1または2に記載の転炉におけるCr添加方法。
(0.28×S−3)≦V≦(0.28×S+10) (但しV≧0) …(1)
{式(1)中、
V:Cr酸化物投入後Cr含有合金鉄投入までの酸素供給量(Nm/t)
S(%)=[(投入Cr酸化物中のFeO・Crを形成するCr質量)/(投入全Cr酸化物をCrと仮定した場合のCr質量)]×100}
After supplying the Cr oxide, an amount of oxygen (V) satisfying the following formula (1) is supplied, and then the Cr-containing ferromagnetic iron is charged. After the Cr-containing ferromagnetic iron is charged, oxygen is supplied to 2 to 10 Nm 3. The method for adding Cr in a converter according to claim 1 or 2, wherein the blowing is completed by supplying / t (t means per ton of molten steel; the same applies hereinafter).
(0.28 × S-3) ≦ V ≦ (0.28 × S + 10) (where V ≧ 0) (1)
中 In equation (1),
V: oxygen supply amount (Nm 3 / t) from the input of Cr oxide to the input of Cr-containing ferromagnetic iron
S (%) = [(Cr 2 O 3 by weight to form a FeO · Cr 2 O 3 in the turned Cr oxide) / (Cr 2 O 3 by weight in the case of a charged total Cr oxide was assumed Cr 2 O 3 )] × 100}
前記Cr酸化物の投入量を、Cr純分換算で下記式(2)を満たすようにする請求項1〜3のいずれかに記載の転炉におけるCr添加方法。
Cr酸化物の投入量(kg/t)=炉内スラグ量(kg/t)×1.46×BCr2O3 …(2)
(但し、BCr2O3はスラグ中のCr濃度の最適必要増加分を示し、2〜15質量%の範囲内とする)
The method for adding Cr in a converter according to any one of claims 1 to 3, wherein the input amount of the Cr oxide satisfies the following expression (2) in terms of Cr pure content.
Input amount of Cr oxide (kg / t) = Slag amount in furnace (kg / t) × 1.46 × B Cr2O3 (2)
(However, B Cr2 O3 show optimum required increase in Cr 2 O 3 concentration in the slag, in the range of 2 to 15 wt%)
JP2003104456A 2003-04-08 2003-04-08 Method for adjusting Cr content in molten steel Expired - Fee Related JP4184855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104456A JP4184855B2 (en) 2003-04-08 2003-04-08 Method for adjusting Cr content in molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104456A JP4184855B2 (en) 2003-04-08 2003-04-08 Method for adjusting Cr content in molten steel

Publications (2)

Publication Number Publication Date
JP2004307952A true JP2004307952A (en) 2004-11-04
JP4184855B2 JP4184855B2 (en) 2008-11-19

Family

ID=33467279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104456A Expired - Fee Related JP4184855B2 (en) 2003-04-08 2003-04-08 Method for adjusting Cr content in molten steel

Country Status (1)

Country Link
JP (1) JP4184855B2 (en)

Also Published As

Publication number Publication date
JP4184855B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP2003520899A5 (en)
JPH02236235A (en) Smelt reduction method of ni ore and smelting furnace thereof
JP3869270B2 (en) Method for dechroming and denicking liquid slag
JP4184855B2 (en) Method for adjusting Cr content in molten steel
JP2003049216A (en) Method for producing molten steel
JP3158912B2 (en) Stainless steel refining method
JP3996536B2 (en) Method of adding Mn in converter
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP4192503B2 (en) Manufacturing method of molten steel
JP3140256B2 (en) Slag reforming method
JP3063537B2 (en) Stainless steel manufacturing method
JP2002533566A (en) A method for denitrifying molten steel during its production.
JPH0437135B2 (en)
JPH0297611A (en) Method for melting cold iron source
JP3119015B2 (en) Smelting reduction of Ni ore
JP2882236B2 (en) Stainless steel manufacturing method
JP2000212635A (en) Melting of high carbon steel for wire rod
RU2186856C1 (en) Composite blend for smelting alloyed steels
JP2856103B2 (en) Hot metal dephosphorization method
JP2828489B2 (en) Production method of chromium-containing hot metal
JP2003512523A (en) Method of foaming steel ore tailings and use of calcium nitrate as blowing agent for steel ore tailings
JP2023123257A (en) Molten steel production method
JP2805815B2 (en) Smelting reduction of Ni ore
JP2000328121A (en) Dephosphorization method of molten iron
JPH11158525A (en) Method for melting nickel-contining steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees