JP2004306874A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2004306874A
JP2004306874A JP2003105708A JP2003105708A JP2004306874A JP 2004306874 A JP2004306874 A JP 2004306874A JP 2003105708 A JP2003105708 A JP 2003105708A JP 2003105708 A JP2003105708 A JP 2003105708A JP 2004306874 A JP2004306874 A JP 2004306874A
Authority
JP
Japan
Prior art keywords
tire
width direction
depth
sipe
tire width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003105708A
Other languages
Japanese (ja)
Other versions
JP4274356B2 (en
Inventor
Shinichi Kaji
眞一 梶
Tonki Bandai
敦基 萬代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2003105708A priority Critical patent/JP4274356B2/en
Publication of JP2004306874A publication Critical patent/JP2004306874A/en
Application granted granted Critical
Publication of JP4274356B2 publication Critical patent/JP4274356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure durability of shoulder parts and to improve wandering performance. <P>SOLUTION: In this tire, main grooves 2 connected in a tire peripheral direction R are cut on the surface of a tread 1, shoulder parts S are formed and at least one of the shoulder part S is formed into a round shape. Wavy sipes 5 extending in a tire width direction are cut on the surfaces of the round-shaped shoulder parts S. In the round-shaped shoulder parts S, two or more saw cuts 7 connected continuously or intermittently in the tire peripheral direction R are cut. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ショルダー部がラウンド形状である空気入りタイヤのショルダー部の耐久性を確保とワンダリング性能の向上に関する。
【0002】
【従来の技術】
従来、タイヤのショルダー部は角張ったスクエア形状を有していた。轍乗り越え時にはショルダー部の轍に対する接地面積が小さくなるので轍乗り越え性などのワンダリング性能が不十分であった。そのため、接地面積を増大するため、ショルダー部をテーパー形状や丸みを帯びたラウンド形状とすることにより、ワンダリング性能を向上させてきたが、形状のみで性能を向上させるには限界があった。そこで、ショルダー部にサイプを刻み当該ショルダー部の剛性を低下させることにより、ワンダリング性能を向上させると共にショルダー部が轍に接触したときの衝撃を緩和させる方法が採られてきた。例えば、特許文献1に記載された空気入りタイヤが知られている。
【0003】
【特許文献1】
特開平9−58223号公報(第1〜4頁、第1〜2図)。
【0004】
【発明が解決しようとする課題】
かかる従来の空気入りタイヤにおいては、サイプはストレートサイプであるため、サイプの深さが浅いと剛性低下が不十分であり、ワンダリング性能を向上できなかった。逆にサイプの深さが深いと、ショルダー部のサイプに亀裂や欠損が発生し、ショルダー部の耐久性が低下するおそれがあった。
【0005】
したがって、本発明の目的は、ショルダー部がラウンド形状である空気入りタイヤにおいて、ショルダー部の耐久性を確保しつつ、ワンダリング性能をすることにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、鋭意検討した結果、請求項1に記載の発明は、トレッド表面にタイヤ周方向に連なる主溝が刻まれ、ショルダー部が形成され、前記ショルダー部の少なくとも一方がラウンド形状である空気入りタイヤにおいて、前記ラウンド形状である前記ショルダー部の表面にタイヤ幅方向に延びる波形サイプが刻まれた空気入りタイヤとした。
【0007】
波形サイプであるためサイプがストレートサイプに比べて、実質的なサイプ長さを長くとることができ、ショルダー部の剛性を十分に低下させることができる。その結果、ショルダー部が轍に当たったときの衝撃を緩和することができ、ワンダリング性能が向上する。また、波形であるためサイプの開閉も抑えられるので、サイプの亀裂や欠損などの発生も抑えることができる。
【0008】
請求項2に記載の発明は、前記ラウンド形状は、タイヤ幅方向内側の第1部分と、タイヤ幅方向外側の第2部分とからなり、前記第2部分の仮想延長面と、トレッド表面の仮想延長面との交差部を仮想接地端Pとして、前記第2部分の曲率半径RBは2つの仮想接地端Pの間隔の5%〜30%であって、前記第1部分の曲率半径RAはRBの30%〜90%であり、
前記波形サイプはタイヤ周方向ピッチ当たり3本以上であって、仮想接地端Pからタイヤ幅方向内側に30mmの位置から仮想接地端Pからタイヤ回転軸に向かって垂直にタイヤ断面高さの20%の位置までの範囲に刻まれ、前記波形サイプの振幅は前記波形サイプのピッチの60%〜150%で、タイヤ幅方向内側の端部の深さは前記主溝の深さの40%以内で、タイヤ幅方向外側の端部の深さは前記主溝の深さの10%以内で、タイヤ幅方向内側から外側に向かって深さが減少しており、前記波形サイプの折り曲げ稜線がタイヤ中心線に対してタイヤ幅方向断面内で5度〜30度傾斜した請求項1に記載の空気入りタイヤとした。
【0009】
ショルダー部のラウンド形状を異なる曲率半径からなる部分に分割することにより、轍に対する接地面積を大きく取ることができる。また、波形サイプはショルダー部の周方向パターンの構成単位であるピッチ当たり少なくとも3本以上とすることで、効果的に剛性を低下させることができる。また、ラウンド形状であるため、トレッドの摩耗の進行に伴い接地端がタイヤ外側に移動する。そのため、仮想接地端Pからタイヤ幅方向内側に30mmの位置から仮想接地端Pからタイヤ回転軸に向かって垂直にタイヤ断面高さの20%の位置までの範囲に波形サイプを刻むことにより、摩耗が進行してもショルダー部の剛性を低下させることができる。
【0010】
波形サイプの振幅(隣り合う波の山のサイプに垂直な方向の距離)は、サイプのピッチ(隣り合う波の山のサイプに平行な方向の距離)に対して60%〜150%であることが好ましい。60%未満であるとストレートサイプに近づくので剛性を低下させる効果が低く、150%を超えると波の山の角度が小さくなり、極端に剛性が低くなって欠損などを招くことがある。
【0011】
波形サイプのタイヤ幅方向内側の端部の深さは前記主溝の深さの40%以内で、タイヤ幅方向外側の端部の深さは前記主溝の深さの10%以内で、タイヤ幅方向内側から外側に向かって深さが減少していることで、サイプの亀裂や欠損の発生が抑えられる。
【0012】
波形サイプの折り曲げ稜線がタイヤ中心線に対してタイヤ幅方向断面内で5度〜30度傾斜していることにより、外力を受けたとき波形サイプが閉じるので亀裂や欠損の発生が起こりにくくなる。また、加硫成型後の金型からの取り出しにおいても損傷の発生が少なくなる。
【0013】
請求項3に記載の発明は、前記ラウンド形状であるショルダー部に、タイヤ周方向に連続又は断続して連なるソーカットが2本以上刻まれた請求項1又は2に記載の空気入りタイヤとした。
【0014】
タイヤ周方向にソーカットを刻むことにより、ショルダー部の剛性はさらに低下する。そのため、同じ程度に剛性を低下させるならば、その分波形サイプの深さを浅くできるので、サイプの亀裂や欠損などの発生も抑えることができる。
【0015】
請求項4に記載の発明は、前記ソーカットは、仮想接地端Pからタイヤ幅方向内側に30mmの位置から、仮想接地端Pを中心とする前記主溝の深さの2倍を半径とする円と前記ショルダー部の表面とが交差する位置までの範囲に刻まれ、隣接する前記ソーカットの間隔は3mm以上であり、前記ソーカットの溝幅は0.3mm〜1mmであり、前記ソーカットの深さは溝幅の90%〜180%であり、前記ソーカットのタイヤ幅方向断面の傾斜角度はタイヤ中心線方向から前記ショルダー部の表面の法線方向までの範囲にある請求項3に記載の空気入りタイヤとした。
【0016】
仮想接地端Pからタイヤ幅方向内側に30mmの位置から、仮想接地端Pを中心とする前記主溝の深さの2倍を半径とする円と前記ショルダー部の表面とが交差する位置までの範囲にソーカットが刻まれているので、上述したように摩耗の進行により接地端がタイヤ外側へ移動しても、ソーカットによるショルダー部の剛性低下の効果が持続される。
【0017】
また、隣接する前記ソーカットの間隔は3mm以上とすることで、ソーカットの間の部分の欠損などを防止できる。さらに、前記ソーカットの溝幅は0.3mm〜1mmであり、前記ソーカットの深さは溝幅の90%〜180%としたことで、剛性が低下しすぎて偏摩耗が発生することもない。前記ソーカットのタイヤ幅方向断面の傾斜角度はタイヤ中心線方向から前記ショルダー部の表面の法線方向までの範囲にあるので、加硫成型後の金型からの取り出しにおいても損傷の発生が少なくなる。
【0018】
【発明の実施の形態】
以下、図面を用いて、本発明に係る空気入りタイヤの実施形態を説明する。図1は、本発明に係る空気入りタイヤのトレッドパターン展開図である。トレッド1の表面には、周方向Rに連なる複数の主溝2が刻まれ、主溝2によりリブ3が形成されている。ショルダー部Sには接地端4を跨いでタイヤ幅方向Aに延びる波形サイプ5が刻まれている。
【0019】
サイプ5は波形であるのでストレートサイプに比べて実質的に長く刻むことができるので、剛性低下の効果が大きくなり、轍乗り越え時の轍からの衝撃を緩和でき、ワンダリング性能を向上することができる。また、周方向Rのパターンの構成単位であるピッチP1当たり2本以上刻まれているので、ショルダー部Sの剛性を効果的に低下させることができる。なお、図においてピッチP1は切り欠き溝6の間隔となる。
【0020】
また、波形サイプ5の振幅W(隣り合う波の山のサイプに垂直な方向の距離)は、サイプ5のピッチPL(隣り合う波の山のサイプに平行な方向の距離)に対して60%〜150%であることが好ましい。60%未満であるとストレートサイプに近づくので実質的なサイプ長さは長くならず剛性を低下させる効果が低く、150%を超えると波の山の角度が小さくなり、極端に剛性が低くなって欠損などを招くことがある。
【0021】
次に、図2を用いて、ショルダー部Sのラウンド形状について説明する。ラウンド形状は曲率半径の異なるタイヤ幅方向A内側の第1部分R1と、タイヤ幅方向A外側の第2部分R2とからなる。そして、第2部分R2の仮想延長面R2’と、トレッド1の表面の仮想延長面Qとの交差部を仮想接地端Pとして、第2部分R2の曲率半径RBは2つの仮想接地端Pの間隔の5%〜30%であって、第1部分R1の曲率半径RAはRBの30%〜90%としている。
【0022】
図3はサイプ5を含むタイヤの幅方向断面図である。波形サイプ5は、仮想接地端Pからタイヤ幅方向A内側に30mmの位置T1から仮想接地端Pからタイヤ回転軸に向かって垂直にタイヤ断面高さHの20%の位置T2までの範囲に刻まれている。かかる範囲にあれば、摩耗の進行に伴って接地端4がタイヤ幅方向の外側に移動してもショルダー部の剛性を低下させることができる。なお、タイヤ断面高さHとは、トレッドの最大外径点からビード端までの垂直方向の距離である。
【0023】
また、サイプ5のタイヤ幅方向内側の端部の深さは主溝2の深さD1の40%以内で、サイプ5のタイヤ幅方向外側の端部の深さは主溝2の深さD1の10%以内で、タイヤ幅方向A内側から外側に向かって深さが減少するように刻まれている。その結果、サイプ5の端部での亀裂の発生を防止できる。さらに、波形サイプ5の折り曲げ稜線Lのタイヤ中心線CLに対するタイヤ幅方向断面での傾斜角度θ1を5度〜30度とすることで、外力を受けたとき波形サイプ5が閉じるので亀裂や欠損の発生が起こりにくくなる。また、加硫成型後の金型からの取り出しにおいても損傷の発生が少なくなる。
【0024】
図4は、他の実施形態におけるトレッドパターン展開図であり、図1に示したトレッドパターンに加え、タイヤ周方向Rに延びるソーカット7が刻まれ、ショルダー部Sの剛性はさらに低下する。そのため、同じ程度に剛性を低下させるならば、その分波形サイプ5の深さを浅くできるので、サイプ5の亀裂や欠損などの発生も抑えることができる。なお、ソーカット7は波形サイプ5に連通しても連通してなくてもよい。
【0025】
図5はソーカット7を含むタイヤの幅方向断面図である。ソーカット7は、仮想接地端Pからタイヤ幅方向A内側に30mmの位置T1から仮想接地端Pから仮想接地端Pを中心とする主溝2の深さD1の2倍を半径とする円Cとショルダー部Sの表面とが交差する位置T3までの範囲に刻まれている。かかる範囲にあれば、摩耗の進行に伴って接地端4がタイヤ幅方向の外側に移動してもショルダー部Sの剛性を低下させることができる。
【0026】
また、隣接するソーカット7の間隔は3mm以上とすることで、ソーカット7の間の部分の欠損などを防止できる。さらに、ソーカット7の溝幅は0.3mm〜1mmであり、ソーカット7の深さは溝幅の90%〜180%としたことで、剛性が低下しすぎて偏摩耗が発生することもない。ソーカット7のタイヤ幅方向A断面の傾斜角度θ2はタイヤ中心線方向CLからショルダー部Sの表面の法線方向Nまでの範囲にあるので、加硫成型後の金型からの取り出しにおいても損傷の発生が少なくなる。
【0027】
以上、リブを備えたショルダー部について説明したが、ブロック構造やリブラグ構造を備えたショルダー部であってもよい。例えば、図6に示すブロック構造を備えたタイヤとすることもできる。また、周方向に連なるソーカットのみをショルダー部を刻んでも、ショルダー部の剛性が低下するのでワンダリング性能が向上できる。
【0028】
【実施例】
実施例として本発明に係る波形サイプ及びソーカットを備えた空気入りタイヤ、比較例1としてショルダー部がラウンド形状であるがサイプが刻まれていないタイヤ、比較例2としてラウンド形状であるがショルダー部にストレートサイプが刻まれたタイヤを試作した。なお、実施例のトレッドパターンは図4に示したパターン、比較例1は図1に示したパターンより波形サイプを除いたパターン、比較例2は図1に示したパターンにおいて波形サイプをストレートサイプに置換したパターンである。いずれのタイヤサイズも195/85R16で、ラウンド形状の曲率半径RAは8mm、RBは20mmで、仮想接地端P間の距離は150mmである。
【0029】
また、主溝深さはD1は10mmで、実施例において波形サイプのタイヤ幅方向内側の端部の深さD2は2mm、タイヤ幅方向外側の端部のD3は0.5mmである。サイプのピッチPLは3.5mm、振幅Wは3mmである。比較例2のストレートサイプの深さは、1mmである。実施例及び比較例2のサイプは、仮想接地端Pよりタイヤ幅方向内側に10mmの位置からに仮想接地端Pからタイヤ回転軸に向かって垂直にタイヤ断面高さH(165mm)の15%である25mmの位置まで刻まれている。そして、実施例のソーカットの深さは0.5mmである。
【0030】
実施例、比較例1及び2のタイヤを小型トラックに装着して、操縦安定性及び耐久性の評価を行った。操縦安定性は、轍を乗り越えたときのドライバのフィーリング評価である。結果は表1に示す。表1において、ふらつき感は轍を乗り越えた時の車両のふらつきを感じるか否かのフィーリング評価である。轍乗越し性は、轍を乗り越えが容易か否かのフィーリング評価である。修正舵は、轍を乗り越える時の操舵の修正を度合いのフィーリング評価である。いずれの項目において、◎が一番評価が良く、○、△、×の順に評価が悪くなる。
【0031】
【表1】

Figure 2004306874
【0032】
耐久性評価では、実施例、比較例2のタイヤを小型トラックに装着して、一般路を9600km走行後、亀裂及び欠損の発生を目視で確認した。結果を表2に示す。表1、表2によれば、本発明のタイヤは、操縦安定性及び耐久性において優れている。
【0033】
【表2】
Figure 2004306874
【0034】
【発明の効果】
以上の通り、本発明の空気入りタイヤにおいて、ショルダー部に波形サイプを刻んだので、ショルダー部の耐久性が維持された状態で、剛性が低下する。その結果、轍越え時の衝撃が吸収されワンダリング性能が向上する。また、ショルダー部に周方向に延びるソーカットを刻むことによりショルダー部の剛性がさらに低下し、該波形サイプを浅く設定できるので、ショルダー部の耐久性が向上する。
【図面の簡単な説明】
【図1】本発明に係る空気入りタイヤのトレッドパターン概略展開図である。
【図2】ショルダー部の形状を示す断面図である。
【図3】サイプを含むタイヤ断面を示す図である。
【図4】本発明に係る空気入りタイヤのトレッドパターン概略展開図である。
【図5】ソーカットの断面を示す図である。
【図6】本発明に係る空気入りタイヤのトレッドパターン概略展開図である。
【符号の説明】
2 主溝
3 リブ
4 接地端
5 波形サイプ
7 ソーカット[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to ensuring durability of a shoulder portion of a pneumatic tire having a round shoulder portion and improving wandering performance.
[0002]
[Prior art]
Conventionally, a shoulder portion of a tire has an angular square shape. When crossing a rut, the contact area of the shoulder against the rut becomes smaller, so that the wandering performance such as the rutability is insufficient. For this reason, wandering performance has been improved by increasing the shoulder area by forming the shoulder portion into a tapered shape or a rounded round shape, but there is a limit to improving the performance only by the shape. Therefore, a method has been adopted in which a sipe is cut into the shoulder portion to reduce the rigidity of the shoulder portion, thereby improving the wandering performance and reducing the impact when the shoulder portion comes into contact with the rut. For example, a pneumatic tire described in Patent Document 1 is known.
[0003]
[Patent Document 1]
JP-A-9-58223 (pages 1-4, FIGS. 1-2).
[0004]
[Problems to be solved by the invention]
In such a conventional pneumatic tire, since the sipe is a straight sipe, if the sipe depth is small, the rigidity is insufficiently reduced, and the wandering performance cannot be improved. Conversely, if the depth of the sipe is large, cracks or defects may occur in the sipe at the shoulder portion, and the durability of the shoulder portion may be reduced.
[0005]
Therefore, an object of the present invention is to provide wandering performance in a pneumatic tire having a round shoulder portion while ensuring durability of the shoulder portion.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, as a result of intensive studies, the invention according to claim 1 has a main groove continuous on the tread surface in a tire circumferential direction, a shoulder portion formed, and at least one of the shoulder portions has a round shape. In the pneumatic tire, a wavy sipe extending in the tire width direction is formed on a surface of the shoulder portion having the round shape.
[0007]
Since the sipe is a waveform sipe, the sipe can have a substantially longer sipe length than the straight sipe, and the rigidity of the shoulder portion can be sufficiently reduced. As a result, the impact when the shoulder portion hits the rut can be reduced, and the wandering performance is improved. In addition, since the opening and closing of the sipe can be suppressed because of the waveform, the occurrence of cracks, breakage, and the like of the sipe can be suppressed.
[0008]
In the invention described in claim 2, the round shape includes a first portion on the inner side in the tire width direction and a second portion on the outer side in the tire width direction, and a virtual extension surface of the second portion and a virtual portion of the tread surface. A radius of curvature RB of the second portion is 5% to 30% of an interval between the two virtual grounding ends P, and a radius of curvature RA of the first portion is RB. 30% to 90% of
The waveform sipe is three or more per circumferential pitch of the tire, and 20% of the tire cross-sectional height from the virtual ground end P to the tire rotation axis at a position 30 mm inward in the tire width direction from the virtual ground end P. The amplitude of the waveform sipe is 60% to 150% of the pitch of the waveform sipe, and the depth of the inner end in the tire width direction is within 40% of the depth of the main groove. The depth of the outer end in the tire width direction is less than 10% of the depth of the main groove, and the depth decreases from the inner side to the outer side in the tire width direction. The pneumatic tire according to claim 1, wherein the tire is inclined at 5 to 30 degrees in a cross section in the tire width direction with respect to the line.
[0009]
By dividing the round shape of the shoulder portion into portions having different radii of curvature, it is possible to increase a contact area with the rut. In addition, the rigidity can be effectively reduced by providing at least three waveform sipes per pitch, which is a constituent unit of the circumferential pattern of the shoulder portion. In addition, because of the round shape, the ground contact edge moves to the outside of the tire as the tread wears. Therefore, by forming a waveform sipe in a range from a position 30 mm inward in the tire width direction from the virtual grounding end P to a position 20% of the tire sectional height from the virtual grounding end P to the tire rotation axis, wear is reduced. , The rigidity of the shoulder portion can be reduced.
[0010]
The amplitude of the waveform sipe (the distance in the direction perpendicular to the sipe of adjacent wave peaks) is 60% to 150% of the pitch of the sipe (the distance in the direction parallel to the sipe of adjacent wave peaks) Is preferred. If it is less than 60%, it approaches a straight sipe, so the effect of lowering the rigidity is low. If it exceeds 150%, the angle of the peak of the wave becomes small, and the rigidity becomes extremely low, which may cause breakage.
[0011]
The depth of the inner end of the corrugated sipe in the tire width direction is within 40% of the depth of the main groove, and the depth of the outer end of the corrugated sipe in the tire width direction is within 10% of the depth of the main groove. Since the depth decreases from the inner side to the outer side in the width direction, the occurrence of cracks and defects in the sipe can be suppressed.
[0012]
Since the bent ridge line of the waveform sipe is inclined at 5 to 30 degrees in the cross section in the tire width direction with respect to the tire center line, the waveform sipe closes when subjected to an external force, so that cracks and breakage are less likely to occur. In addition, the occurrence of damage is reduced in taking out from the mold after vulcanization molding.
[0013]
The invention according to claim 3 is the pneumatic tire according to claim 1 or 2, wherein two or more saw cuts that are continuous or intermittent and continuous in the tire circumferential direction are cut in the shoulder portion having the round shape.
[0014]
By cutting the saw cut in the tire circumferential direction, the rigidity of the shoulder portion is further reduced. Therefore, if the stiffness is reduced to the same extent, the depth of the corrugated sipe can be reduced by that amount, so that the occurrence of cracks or defects in the sipe can be suppressed.
[0015]
According to a fourth aspect of the present invention, the saw cut is a circle having a radius of twice the depth of the main groove centered on the virtual grounding end P from a position 30 mm inward in the tire width direction from the virtual grounding end P. And the surface of the shoulder portion is carved in a range up to the intersection, the interval between the adjacent saw cuts is 3 mm or more, the groove width of the saw cut is 0.3 mm to 1 mm, the depth of the saw cut is The pneumatic tire according to claim 3, wherein the groove width is 90% to 180%, and the inclination angle of the cross section in the tire width direction of the saw cut is in a range from a tire center line direction to a normal direction of the surface of the shoulder portion. And
[0016]
From the position 30 mm inward in the tire width direction from the virtual grounding end P to a position where a circle centered on the virtual grounding end P and having a radius of twice the depth of the main groove intersects the surface of the shoulder portion. Since the saw cut is engraved in the range, the effect of lowering the rigidity of the shoulder portion due to the saw cut is maintained even if the ground contact end moves to the outside of the tire due to the progress of wear as described above.
[0017]
Further, by setting the interval between the adjacent saw cuts to be 3 mm or more, it is possible to prevent loss of the portion between the saw cuts. Further, since the groove width of the saw cut is 0.3 mm to 1 mm and the depth of the saw cut is 90% to 180% of the groove width, rigidity is excessively reduced and uneven wear does not occur. Since the inclination angle of the cross section in the tire width direction of the saw cut is in a range from the center line direction of the tire to the normal direction of the surface of the shoulder portion, the occurrence of damage is reduced even in taking out from the mold after vulcanization molding. .
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a pneumatic tire according to the present invention will be described with reference to the drawings. FIG. 1 is a tread pattern developed view of the pneumatic tire according to the present invention. On the surface of the tread 1, a plurality of main grooves 2 extending in the circumferential direction R are cut, and ribs 3 are formed by the main grooves 2. A wavy sipe 5 extending in the tire width direction A across the ground end 4 is carved on the shoulder portion S.
[0019]
Since the sipe 5 has a waveform, the sipe 5 can be cut substantially longer than a straight sipe, so that the effect of the reduction in rigidity is increased, the impact from the rut when the vehicle crosses the rut can be reduced, and the wandering performance can be improved. it can. Further, since two or more pitches are formed per pitch P1, which is a structural unit of the pattern in the circumferential direction R, the rigidity of the shoulder portion S can be effectively reduced. In the drawing, the pitch P1 is the interval between the notch grooves 6.
[0020]
The amplitude W of the waveform sipe 5 (the distance in the direction perpendicular to the sipe of the adjacent wave peak) is 60% of the pitch PL of the sipe 5 (the distance in the direction parallel to the sipe of the adjacent wave peak). It is preferably about 150%. If it is less than 60%, it approaches a straight sipe, so the actual sipe length does not increase and the effect of reducing rigidity is low. If it exceeds 150%, the angle of the wave peak becomes small, and the rigidity becomes extremely low. Defects may occur.
[0021]
Next, the round shape of the shoulder portion S will be described with reference to FIG. The round shape includes a first portion R1 inside the tire width direction A having different radii of curvature and a second portion R2 outside the tire width direction A. The intersection between the virtual extension surface R2 'of the second portion R2 and the virtual extension surface Q of the surface of the tread 1 is defined as a virtual ground end P, and the radius of curvature RB of the second portion R2 is equal to the two virtual ground ends P. The interval is 5% to 30%, and the radius of curvature RA of the first portion R1 is 30% to 90% of RB.
[0022]
FIG. 3 is a cross-sectional view in the width direction of the tire including the sipe 5. The waveform sipe 5 is carved in a range from a position T1 of 30 mm inside the tire width direction A from the virtual ground end P to a position T2 of 20% of the tire section height H from the virtual ground end P to the tire rotation axis. It is rare. Within such a range, the rigidity of the shoulder portion can be reduced even when the ground contact end 4 moves outward in the tire width direction as wear progresses. The tire section height H is a vertical distance from the maximum outer diameter point of the tread to the bead end.
[0023]
The depth of the inner end of the sipe 5 in the tire width direction is 40% or less of the depth D1 of the main groove 2, and the depth of the outer end of the sipe 5 in the tire width direction is the depth D1 of the main groove 2. It is carved so that the depth decreases from inside to outside in the tire width direction A within 10%. As a result, the occurrence of cracks at the end of the sipe 5 can be prevented. Furthermore, by setting the inclination angle θ1 of the bent ridge line L of the waveform sipe 5 with respect to the tire center line CL in the cross section in the tire width direction to 5 degrees to 30 degrees, the waveform sipe 5 closes when subjected to an external force, so that cracks and defects It is less likely to occur. In addition, the occurrence of damage is reduced in taking out from the mold after vulcanization molding.
[0024]
FIG. 4 is a development view of a tread pattern according to another embodiment. In addition to the tread pattern shown in FIG. 1, a saw cut 7 extending in the tire circumferential direction R is cut, and the rigidity of the shoulder portion S is further reduced. Therefore, if the stiffness is reduced to the same extent, the depth of the waveform sipe 5 can be reduced by that much, so that the occurrence of cracks or defects in the sipe 5 can be suppressed. The saw cut 7 may or may not communicate with the waveform sipe 5.
[0025]
FIG. 5 is a cross-sectional view in the width direction of the tire including the saw cut 7. The saw cut 7 includes a circle C having a radius twice the depth D1 of the main groove 2 centered on the virtual grounding end P from the virtual grounding end P from a position T1 at a position 30 mm inside the tire width direction A from the virtual grounding end P. It is engraved in a range up to a position T3 where the surface of the shoulder portion S intersects. Within such a range, the rigidity of the shoulder portion S can be reduced even if the grounding end 4 moves outward in the tire width direction as wear progresses.
[0026]
Further, by setting the interval between the adjacent saw cuts 3 to 3 mm or more, it is possible to prevent loss of a portion between the saw cuts 7 and the like. Furthermore, since the groove width of the saw cut 7 is 0.3 mm to 1 mm and the depth of the saw cut 7 is 90% to 180% of the groove width, rigidity is not excessively reduced and uneven wear does not occur. Since the inclination angle θ2 of the cross section of the saw cut 7 in the tire width direction A is in the range from the tire center line direction CL to the normal direction N of the surface of the shoulder portion S, even when the mold is removed from the mold after vulcanization molding, damage is not caused. Occurrence is reduced.
[0027]
The shoulder portion having the rib has been described above, but the shoulder portion may have a block structure or a rib lug structure. For example, a tire having the block structure shown in FIG. 6 may be used. Even if the shoulder portion is cut only in the saw cut that is continuous in the circumferential direction, the rigidity of the shoulder portion is reduced, so that the wandering performance can be improved.
[0028]
【Example】
Examples are pneumatic tires provided with a corrugated sipe and a saw cut according to the present invention, Comparative Example 1 has a round shoulder but no sipe, and Comparative Example 2 has a round shape but has a shoulder. We prototyped a tire with a straight sipe. The tread pattern of the embodiment is the pattern shown in FIG. 4, the comparative example 1 is a pattern obtained by removing the waveform sipe from the pattern shown in FIG. 1, and the comparative example 2 is a straight sipe of the waveform sipe in the pattern shown in FIG. This is the replacement pattern. Each tire size is 195 / 85R16, the radius of curvature RA of the round shape is 8 mm, RB is 20 mm, and the distance between the virtual grounding ends P is 150 mm.
[0029]
The depth D1 of the main groove is 10 mm, the depth D2 at the inner end in the tire width direction of the waveform sipe in the embodiment is 2 mm, and the depth D3 at the outer end in the tire width direction is 0.5 mm. The sipe pitch PL is 3.5 mm and the amplitude W is 3 mm. The depth of the straight sipe of Comparative Example 2 is 1 mm. The sipe of the example and the comparative example 2 is 15% of the tire sectional height H (165 mm) perpendicularly from the virtual grounding end P toward the tire rotation axis from a position 10 mm inward in the tire width direction from the virtual grounding end P. It is carved to a certain 25 mm position. Then, the depth of the saw cut in the embodiment is 0.5 mm.
[0030]
The tires of the example and comparative examples 1 and 2 were mounted on a small truck, and steering stability and durability were evaluated. Driving stability is a driver's feeling evaluation when over a rut. The results are shown in Table 1. In Table 1, the sense of wobble is a feeling evaluation of whether or not the vehicle feels wobble when overcoming a rut. The ability to cross the rut is a feeling evaluation of whether it is easy to get over the rut. The correction rudder is a feeling evaluation of the degree of correction of steering when going over a rut. In any of the items, ◎ indicates the best evaluation, and ○, Δ, and × indicate poor evaluation.
[0031]
[Table 1]
Figure 2004306874
[0032]
In the durability evaluation, the tires of Example and Comparative Example 2 were mounted on a small truck, and after traveling on a general road for 9600 km, cracks and defects were visually observed. Table 2 shows the results. According to Tables 1 and 2, the tire of the present invention is excellent in steering stability and durability.
[0033]
[Table 2]
Figure 2004306874
[0034]
【The invention's effect】
As described above, in the pneumatic tire of the present invention, since the corrugated sipe is carved in the shoulder portion, the rigidity is reduced while the durability of the shoulder portion is maintained. As a result, the impact at the time of crossing the rut is absorbed, and the wandering performance is improved. Also, by cutting a saw cut extending in the circumferential direction on the shoulder portion, the rigidity of the shoulder portion is further reduced, and the waveform sipe can be set shallow, so that the durability of the shoulder portion is improved.
[Brief description of the drawings]
FIG. 1 is a schematic development view of a tread pattern of a pneumatic tire according to the present invention.
FIG. 2 is a sectional view showing a shape of a shoulder portion.
FIG. 3 is a diagram showing a tire cross section including a sipe.
FIG. 4 is a schematic development view of a tread pattern of the pneumatic tire according to the present invention.
FIG. 5 is a diagram showing a cross section of a saw cut.
FIG. 6 is a schematic development view of a tread pattern of the pneumatic tire according to the present invention.
[Explanation of symbols]
2 Main groove 3 Rib 4 Grounding end 5 Corrugated sipe 7 Saw cut

Claims (4)

トレッド表面にタイヤ周方向に連なる主溝が刻まれ、ショルダー部が形成され、前記ショルダー部の少なくとも一方がラウンド形状である空気入りタイヤにおいて、
前記ラウンド形状である前記ショルダー部の表面にタイヤ幅方向に延びる波形サイプが刻まれた空気入りタイヤ。
A main groove continuous in the tire circumferential direction is engraved on the tread surface, a shoulder portion is formed, and at least one of the shoulder portions is a pneumatic tire having a round shape,
A pneumatic tire in which a wavy sipe extending in a tire width direction is engraved on a surface of the shoulder portion having the round shape.
前記ラウンド形状は、タイヤ幅方向内側の第1部分と、タイヤ幅方向外側の第2部分とからなり、前記第2部分の仮想延長面と、トレッド表面の仮想延長面との交差部を仮想接地端Pとして、前記第2部分の曲率半径RBは2つの仮想接地端Pの間隔の5%〜30%であって、前記第1部分の曲率半径RAはRBの30%〜90%であり、
前記波形サイプはタイヤ周方向ピッチ当たり3本以上であって、仮想接地端Pからタイヤ幅方向内側に30mmの位置から仮想接地端Pからタイヤ回転軸に向かって垂直にタイヤ断面高さの20%の位置までの範囲に刻まれ、前記波形サイプの振幅は前記波形サイプのピッチの60%〜150%で、タイヤ幅方向内側の端部の深さは前記主溝の深さの40%以内で、タイヤ幅方向外側の端部の深さは前記主溝の深さの10%以内で、タイヤ幅方向内側から外側に向かって深さが減少しており、前記波形サイプの折り曲げ稜線がタイヤ中心線に対してタイヤ幅方向断面内で5度〜30度傾斜した請求項1に記載の空気入りタイヤ。
The round shape includes a first portion on the inner side in the tire width direction and a second portion on the outer side in the tire width direction. The intersection of the virtual extension surface of the second portion and the virtual extension surface of the tread surface is virtually grounded. As the end P, the radius of curvature RB of the second portion is 5% to 30% of the interval between the two virtual grounding ends P, the radius of curvature RA of the first portion is 30% to 90% of RB,
The waveform sipe is three or more per circumferential pitch of the tire, and 20% of the tire cross-sectional height from the virtual ground end P to the tire rotation axis at a position 30 mm inward in the tire width direction from the virtual ground end P. The amplitude of the waveform sipe is 60% to 150% of the pitch of the waveform sipe, and the depth of the inner end in the tire width direction is within 40% of the depth of the main groove. The depth of the outer end in the tire width direction is less than 10% of the depth of the main groove, and the depth decreases from the inner side to the outer side in the tire width direction. The pneumatic tire according to claim 1, wherein the tire is inclined at 5 to 30 degrees in a cross section in the tire width direction with respect to the line.
前記ラウンド形状であるショルダー部に、タイヤ周方向に連続又は断続して連なるソーカットが2本以上刻まれた請求項1又は2に記載の空気入りタイヤ。3. The pneumatic tire according to claim 1, wherein two or more saw cuts that are continuous or intermittent in the circumferential direction of the tire are cut in the shoulder portion having the round shape. 4. 前記ソーカットは、仮想接地端Pからタイヤ幅方向内側に30mmの位置から、仮想接地端Pを中心とする前記主溝の深さの2倍を半径とする円と前記ショルダー部の表面とが交差する位置までの範囲に刻まれ、
隣接する前記ソーカットの間隔は3mm以上であり、前記ソーカットの溝幅は0.3mm〜1mmであり、前記ソーカットの深さは溝幅の90%〜180%であり、前記ソーカットのタイヤ幅方向断面の傾斜角度はタイヤ中心線方向から前記ショルダー部の表面の法線方向までの範囲にある請求項3に記載の空気入りタイヤ。
In the saw cut, a circle having a radius of twice the depth of the main groove centered on the virtual grounding end P and a surface of the shoulder portion intersect from a position 30 mm inward in the tire width direction from the virtual grounding end P. Carved in the range up to
The interval between the adjacent saw cuts is 3 mm or more, the groove width of the saw cut is 0.3 mm to 1 mm, the depth of the saw cut is 90% to 180% of the groove width, and the cross section of the saw cut in the tire width direction. 4. The pneumatic tire according to claim 3, wherein the inclination angle ranges from a tire center line direction to a normal direction of the surface of the shoulder portion. 5.
JP2003105708A 2003-04-09 2003-04-09 Pneumatic tire Expired - Fee Related JP4274356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105708A JP4274356B2 (en) 2003-04-09 2003-04-09 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105708A JP4274356B2 (en) 2003-04-09 2003-04-09 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2004306874A true JP2004306874A (en) 2004-11-04
JP4274356B2 JP4274356B2 (en) 2009-06-03

Family

ID=33468139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105708A Expired - Fee Related JP4274356B2 (en) 2003-04-09 2003-04-09 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4274356B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204007A (en) * 2006-02-06 2007-08-16 Toyo Tire & Rubber Co Ltd Pneumatic tire
WO2008068105A1 (en) * 2006-12-06 2008-06-12 Continental Aktiengesellschaft Pneumatic tyre for vehicle
JP2010126046A (en) * 2008-11-28 2010-06-10 Yokohama Rubber Co Ltd:The Pneumatic tire
CN103796846A (en) * 2011-08-04 2014-05-14 株式会社普利司通 Tire
CN106626986A (en) * 2016-12-26 2017-05-10 正新橡胶(中国)有限公司 Pneumatic tire

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248202A (en) * 1988-08-10 1990-02-19 Yokohama Rubber Co Ltd:The Pneumatic radial tyre
JPH05262105A (en) * 1991-11-21 1993-10-12 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH06191224A (en) * 1992-12-25 1994-07-12 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH0858313A (en) * 1994-08-22 1996-03-05 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JPH08113009A (en) * 1994-10-17 1996-05-07 Bridgestone Corp Pneumatic tire
JPH0958223A (en) * 1995-08-24 1997-03-04 Yokohama Rubber Co Ltd:The Pneumatic radial tire for heavy load
JP2000177332A (en) * 1998-12-14 2000-06-27 Ohtsu Tire & Rubber Co Ltd :The Pneumatic tire
JP2000177329A (en) * 1998-12-14 2000-06-27 Ohtsu Tire & Rubber Co Ltd :The Tire tread
JP2002178718A (en) * 2000-12-14 2002-06-26 Toyo Tire & Rubber Co Ltd Pneumatic radial tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248202A (en) * 1988-08-10 1990-02-19 Yokohama Rubber Co Ltd:The Pneumatic radial tyre
JPH05262105A (en) * 1991-11-21 1993-10-12 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH06191224A (en) * 1992-12-25 1994-07-12 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH0858313A (en) * 1994-08-22 1996-03-05 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JPH08113009A (en) * 1994-10-17 1996-05-07 Bridgestone Corp Pneumatic tire
JPH0958223A (en) * 1995-08-24 1997-03-04 Yokohama Rubber Co Ltd:The Pneumatic radial tire for heavy load
JP2000177332A (en) * 1998-12-14 2000-06-27 Ohtsu Tire & Rubber Co Ltd :The Pneumatic tire
JP2000177329A (en) * 1998-12-14 2000-06-27 Ohtsu Tire & Rubber Co Ltd :The Tire tread
JP2002178718A (en) * 2000-12-14 2002-06-26 Toyo Tire & Rubber Co Ltd Pneumatic radial tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204007A (en) * 2006-02-06 2007-08-16 Toyo Tire & Rubber Co Ltd Pneumatic tire
WO2008068105A1 (en) * 2006-12-06 2008-06-12 Continental Aktiengesellschaft Pneumatic tyre for vehicle
JP2010126046A (en) * 2008-11-28 2010-06-10 Yokohama Rubber Co Ltd:The Pneumatic tire
CN103796846A (en) * 2011-08-04 2014-05-14 株式会社普利司通 Tire
CN106626986A (en) * 2016-12-26 2017-05-10 正新橡胶(中国)有限公司 Pneumatic tire

Also Published As

Publication number Publication date
JP4274356B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4996661B2 (en) Pneumatic tire
RU2482973C1 (en) Pneumatic tire
JP2007326433A (en) Pneumatic tire
WO2003061994A1 (en) Pneumatic tire for motorcycle
EP3113961B1 (en) Tire tread featuring a sipe
JP2005297711A (en) Pneumatic tire
JPH10217719A (en) Pneumatic tire
JPH06171316A (en) Pneumatic radial tire for heavy load
JP2014141163A (en) Motorcycle tire for irregular ground running
JP2006298202A (en) Pneumatic tire
JPH0891023A (en) Radial tire for taxi
JP3701021B2 (en) Pneumatic tire
JP4145397B2 (en) Pneumatic tires for motorcycles
JP2007045239A (en) Pneumatic tire, its manufacturing method and tire vulcanization metal die used for it
JP2004306874A (en) Pneumatic tire
EP3880496B1 (en) Truck tire tread with angled ribs having stone ejectors
JP2004090752A (en) Tire having asymmetric tread pattern
JP2000318413A (en) Pneumatic tire and metal mold for vulcanizing thereof
JP4020685B2 (en) Pneumatic tire
JP4847367B2 (en) Pneumatic tire
JP2004210043A (en) Pneumatic tire
JP3547186B2 (en) Pneumatic radial tire
JP2008094140A (en) Pneumatic tire
JP4033350B2 (en) Pneumatic tire
JP2005225305A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

R150 Certificate of patent or registration of utility model

Ref document number: 4274356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150313

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees