JP2004306259A - Heat-shrinkable polyester film - Google Patents

Heat-shrinkable polyester film Download PDF

Info

Publication number
JP2004306259A
JP2004306259A JP2003049272A JP2003049272A JP2004306259A JP 2004306259 A JP2004306259 A JP 2004306259A JP 2003049272 A JP2003049272 A JP 2003049272A JP 2003049272 A JP2003049272 A JP 2003049272A JP 2004306259 A JP2004306259 A JP 2004306259A
Authority
JP
Japan
Prior art keywords
heat
film
component
shrinkage
shrinkable polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049272A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tomita
康弘 冨田
Yasunari Shigematsu
靖得 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2003049272A priority Critical patent/JP2004306259A/en
Publication of JP2004306259A publication Critical patent/JP2004306259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-shrinkable polyester film having high shrinkability, excellent not only in shrink finish but also in perforation properties and suppressed in shrink stress. <P>SOLUTION: The heat-shrinkable polyester film comprises 70-90 wt.% of a copolyester resin (A), wherein a dicarboxylic acid component is terephthalic acid, a diol component is ethylene glycol and a copolymerizable component is 20-50 mol% of 1,4-dicyclohexanedimethanol, and 10-30 wt.% of a copolymerized polybutylene terephthalate resin (B) wherein a dicarboxylic acid component is terephthalic acid, a diol component is 1,4-butanediol and a copolymerizable component is 5-20 mol% of isophthalic acid. In this heat-shrinkable polyester film, the maximum shrink stress (85°C silicone bath immersion) in the main shrink direction of the film is 5.5 MPa or below and the shrinkage factor of the film after treatment in hot water at 80°C for 10 sec is 35-50% in the main shrink direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱収縮性ポリエステル系フィルムに係り、特にホット飲料用PETボトルの収縮ラベルとして好適に使用できる熱収縮性ポリエステル系フィルムに関する。
【0002】
【従来の技術】
収縮包装や収縮結束包装、あるいはプラスチック容器のラベル、ガラス容器の破壊飛散防止包装やラベル、キャップシール等に広く熱収縮性フィルムが使用されている。
そこで、このような被覆ラベル用途等には、フィルムの機能として、優れた熱収縮性による収縮後の美麗な収縮仕上がりが要求されている。
【0003】
熱収縮性フィルムの材質としては、ポリ塩化ビニル(PVC)、スチレン−ブタジエンブロック共重合体(SBS)及びポリエステル系樹脂が最もよく知られている。ところが、PVC、SBSは加熱収縮時の収縮斑やしわが少なく収縮仕上がり性は優れているものの、ポリエステルと比べるとPVC、SBSともにフィルムの自然収縮(常温よりやや高い温度、例えば夏場においてフィルムが本来の使用前に収縮してしまうこと)率が大きい。そこで、自然収縮が小さく、高収縮性となり、かつ耐熱性の良好なポリエステル系フィルムがホット飲料PETボトル用熱収縮性ラベルとして好適に使用される。
【0004】
【発明が解決しようとする課題】
しかし、熱収縮性ポリエステル系フィルムは自然収縮率は非常に低く、高収縮性も得られ易いものの、例えば、PETボトルに内容物を入れた状態で被覆させると、開栓時に内容物が飛び出し易いという問題がある。また、加熱収縮時に収縮斑やしわが発生し易く、収縮時の応力が高いことによるボトルの変形もあるという問題を有している。
近年、内容物であるコーヒーやお茶等の飲料を加温する目的でホットベンダーやホットウォーマー内に収容する温飲料用PETボトル、いわゆる、ホット飲料用PETボトルの需要が増加しており、このような温飲料を収納したボトルでは特にキャップを開けた際にラベルの収縮により、内容物の温飲料が飛び出すという問題がある。
【0005】
さらに、通常、上記収縮ラベルには一定のピッチでミシン目を設け、ラベル装着後に切り取り易くすることがなされている。熱収縮性ポリエステル系フィルムではPVCやSBSの熱収縮性フィルムに比べてミシン目に沿って切れ難く、ミシン目適性に劣るという問題がある。
そこで、高収縮性で収縮仕上がりに優れるとともに収縮応力を抑えた熱収縮性ポリエステル系フィルムであり、さらにミシン目適性も優れたフィルムが切望されている。
ここで、収縮特性と収縮応力の特性を特定した熱収縮性ポリエステル系フィルムが提案されている(例えば特許文献1参照)。しかしながら、特許文献1に記載のフィルムではミシン目適性の改良含め上記特性を全て満足することは出来ないという問題がある。
【0006】
本発明は前記従来の問題に鑑みてなされたものであって、その目的は収縮率を大きくするとともに、フィルムの収縮時の応力を低く抑えることにより内容物の飛び出しの問題がなく収縮仕上がりに優れ、さらにミシン目適性に優れた熱収縮性ポリエステル系フィルムを提供することにある。
【0007】
【特許文献1】
特開2002−46177号公報
【0008】
【課題を解決するための手段】
本発明は上記問題点を解消できる熱収縮性ポリエステル系フィルムを見出したものであって、その要旨とするところは、
ジカルボン酸成分がテレフタル酸、ジオール成分がエチレングリコールであり、共重合成分が1,4−シクロヘキサンジメタノール20〜50モル%の共重合ポリエステル樹脂50モル%の共重合ポリエステル樹脂(A)70〜90重量%と、ジカルボン酸成分がテレフタル酸、ジオール成分が1,4−ブタンジオールであり、共重合成分がイソフタル酸5〜20モル%である共重合ポリブチレンテレフタレート樹脂(B)10〜30重量%とからなる熱収縮性ポリエステル系フィルムであって、主収縮方向の最大収縮応力(85℃シリコーンバス浸漬)が5.5MPa以下であると共に、80℃の温水中で10秒間処理後のフィルムの収縮率が主収縮方向において35%〜50%であることを特徴とする熱収縮性ポリエステル系フィルムにある。
ここで、上記フィルムは、主収縮方向の延伸倍率が4.0〜4.7倍の範囲であることが好ましく、さらにホット飲料用PETボトルの収縮ラベルに好適に使用することができる。
【0009】
【発明の実施の形態】
以下、本発明を具体化した実施の形態を説明する。
本発明の熱収縮性ポリエステル系フィルムにおいて使用する樹脂組成は、特定の組成からなる共重合ポリエステル樹脂(A)と、特定の組成からなる共重合ポリブチレンテレフタレート樹脂(B)を特定の比率で混合する必要がある。
共重合ポリエステル樹脂(A)は、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコールを主成分とするエチレンテレフタレート系共重合ポリエステルであって、共重合成分として、1,4−シクロヘキサンジメタノールを用いた共重合ポリエステルを使用する。
【0010】
本発明において用いる共重合ポリエステル樹脂(A)においては、フィルムに成形する際の結晶化を抑制するためと、優れた靭性を賦与するためにジオール成分100モル%中、共重合成分の1,4−シクロヘキサンジメタノールを20〜50モル%、好ましくは25〜40モル%とするのがよい。
【0011】
共重合ポリブチレンテレフタレート樹脂(B)は、ジカルボン酸成分としてテレフタル酸、ジオール成分として1,4−ブタンジオールを主成分とするポリブチレンテレフタレート系共重合ポリエステルであって、共重合成分として、イソフタル酸を用いた共重合ポリエステルを使用する。
イソフタル酸は、ジカルボン酸成分100モル%中、5〜20モル%、好ましくは5〜15モル%とするのがよく、5モル%未満の共重合ポリエステルはフィルムにした際の結晶化度が高くなり、収縮応力が大きすぎる問題があり、またミシン目適性に劣るという問題がある。20モル%を超えると重合体粒子のカット性に劣り、また粒子同士が融着して生産が難しくなる等の問題がある。
【0012】
本発明では上記共重合ポリエステル樹脂(A)と、共重合ポリブチレンテレフタレート樹脂(B)を特定の比率で混合する必要があり、
共重合ポリエステル樹脂(A)70〜90重量%、好ましくは75〜90、共重合ポリブチレンテレフタレート樹脂(B)10〜30重量%、好ましくは15〜25重量%であり、共重合ポリエステル樹脂(A)が70重量%未満ではミシン目適性に劣り、90重量%を超えると収縮応力が大きくなり過ぎるという問題がある。
本発明で使用するポリエステル系樹脂では上記(A)と(B)成分以外に、本発明の目的を損なわない範囲で他のポリエステル系樹脂や、各種添加剤、例えば、安定剤、紫外線吸収剤、滑剤、着色剤等を配合しても良い。
【0013】
本発明のフィルムは上記樹脂組成からなる未延伸フィルムを少なくとも1方向に延伸してなり、特定の最大収縮応力と、収縮率特性を満足するフィルムである。
最大収縮応力としては(85℃シリコーンバス浸漬)が5.5MPa以下である必要があり、5.5MPaを超えるとホット飲料用PETボトル用の収縮ラベルとして使用した場合の内容物の飛び出しが発生し易い。
また、収縮特性としては、80℃の温水中で10秒間処理後のフィルムの収縮率が主収縮方向において35%〜50%である必要があり、35%未満では収縮不足が発生し、50%を超えると収縮仕上がりが劣るという問題がある。
なお、本発明フィルムの極限粘度は0.5以上、好ましくは0.6以上がよい。フィルムの極限粘度が0.5未満であると耐破断性が低下し易い。
【0014】
次に本発明フィルムの製造方法を具体的に説明するが、下記製造方法には限定されない。重縮合反応によって得られた共重合ポリエステルを混合し、200〜320℃の温度で溶融押出する。押出に際しては、Tダイ法、チユーブラ法等の方法を採用してもよい。
【0015】
本発明においては、延伸前の未延伸フィルムを少なくとも1方向に4.0〜4.7倍の範囲で延伸することが好ましく、4.0倍未満では厚さ斑が大きくなり4.7倍を超えると収縮応力が大きくなり過ぎる傾向がある。
ここで、Tダイ法を用いた場合、押出後表面温度15〜80℃のキャスティングドラム上で急冷して、厚さ30〜300μmの未延伸フィルムを形成する。得られた未延伸フィルムを、加熱縦延伸ロールを用いて、ロール温度60〜120℃にて1.0〜1.3倍、好ましくは1.0〜1.1倍延伸する。縦延伸後、テンターを用いて延伸温度60〜120℃にて4.0〜4.7倍延伸し、55〜100℃の温度で熱処理して巻き取る。
【0016】
ここで、前記フィルムの諸特性のうち、収縮特性は主に延伸倍率と延伸温度に依存するので、主収縮方向の収縮率を上げるという面からは、高倍率、低温延伸が好ましい。一方、収縮応力も延伸温度に主に依存し、高倍率、低温延伸ほど収縮応力が大きくなり、また延伸後の熱処理(アニーリング、特に弛緩熱処理)の影響もある。収縮率の温度依存性をよりなだらかに設定するためには、やや高温での延伸を行いつつ延伸倍率を調整するのが一つの方法であり、延伸後のフィルムの平坦性改良や収縮率調整のために熱処理を行う場合には、ポリエステルの結晶化を促進しない低温で行うことである。それにより、加熱収縮時初期のフィルムの挙動に大きく影響する収縮応力を抑え、なだらかな収縮特性を示すフィルムを得ることが可能になる。具体的な温度条件は使用するポリエステルの種類に応じて適宜設定することができる。
【0017】
また、本発明においては、前記延伸工程中、延伸前又は延伸後に、フィルムの片面又は両面にコロナ放電処理等の表面活性化処理を施して、フィルムの印刷層に対する接着性を向上させることも可能である。また、上記延伸工程中、延伸前又は延伸後に、フィルムの接着性、帯電防止性、滑り性、遮光性等を向上させることも可能である。さらに、例えば、芯層に上記ポリエステル樹脂を用い、表層に結晶化度を該ポリエステル樹脂よりも下げた共重合ポリエステル樹脂層を設ける等、共押出法等による積層フィルムとすることもできる。
【0018】
【実施例】
(実施例及び比較例)
以下、実施例及び比較例について説明するが、本発明は、これに限定されるものではない。
【0019】
(試料の調製)
[実施例1]
ジカルボン酸成分がテレフタル酸、ジオール成分がエチレングリコールであり、共重合成分が1,4−シクロヘキサンジメタノール32mol%の共重合ポリエステル樹脂に平均粒径2.4μmの無定形シリカ(富士シリシア化学社製、サイリシア320)を0.05wt%加えた共重合ポリエステル樹脂Aと、ジカルボン酸成分がテレフタル酸、ジオール成分が1,4−ブタンジオールであり、共重合成分がイソフタル酸10mol%である共重合ポリブチレンテレフタレート樹脂Bを85:15の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度84℃の雰囲気下で、横方向に4.5倍の延伸倍率で一軸延伸し、次いで91℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0020】
[実施例2]
共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bを75:25の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度80℃の雰囲気下で、横方向に4.5倍の延伸倍率で一軸延伸し、次いで94℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0021】
[実施例3]
共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bを85:15の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度84℃の雰囲気下で、横方向に4.1倍の延伸倍率で一軸延伸し、次いで91℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0022】
[比較例1]
共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bを95:5の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度88℃の雰囲気下で、横方向に4.5倍の延伸倍率で一軸延伸し、次いで90℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0023】
[比較例2]
共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bを65:35の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度76℃の雰囲気下で、横方向に4.5倍の延伸倍率で一軸延伸し、次いで95℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0024】
[比較例3]
共重合ポリエステル樹脂Aとジカルボン酸成分がテレフタル酸、ジオール成分が1,4−ブタンジオールであるポリブチレンテレフタレート樹脂Cを85:15の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度84℃の雰囲気下で、横方向に4.5倍の延伸倍率で一軸延伸し、次いで91℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0025】
[比較例4]
共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bを85:15の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度84℃の雰囲気下で、横方向に5.0倍の延伸倍率で一軸延伸し、次いで91℃で6秒間の熱処理を行って次いで熱処理を行って厚さ50μmのフィルムを得た。
【0026】
[比較例5]
共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bを85:15の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度84℃の雰囲気下で、横方向に3.8倍の延伸倍率で一軸延伸し、次いで91℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0027】
[比較例6]
共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bを85:15の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度84℃の雰囲気下で、横方向に3.5倍の延伸倍率で一軸延伸し、次いで91℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0028】
[比較例7]
共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bを85:15の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度84℃の雰囲気下で、横方向に4.5倍の延伸倍率で一軸延伸し、次いで96℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0029】
[比較例8]
ジカルボン酸成分がテレフタル酸、ジオール成分がエチレングリコールであり、共重合成分が1,4−シクロヘキサンジメタノール18mol%、ジエチレングリコール10mol%の共重合ポリエステル樹脂に平均粒径2.4μmの無定形シリカ(富士シリシア化学社製、サイリシア320)を0.05wt%加えた共重合ポリエステル樹脂Dと共重合ポリブチレンテレフタレート樹脂Bを85:15の割合で混合し、真空ベントを引きながら同方向二軸の押出機にて270℃で溶融押出後、急冷して未延伸フィルムを得た。その得られた未延伸フィルムをテンターにより延伸温度81℃の雰囲気下で、横方向に4.5倍の延伸倍率で一軸延伸し、次いで90℃で6秒間の熱処理を行って厚さ50μmのフィルムを得た。
【0030】
(フィルムの特性評価)
試料の調製で得られたフィルムの特性を評価した。フィルムの評価は以下の通りである。
【0031】
・主収縮方向の収縮率:
延伸方向に150mm、その直角方向に25mmの大きさに切り出したポリエステルフィルムに標線を間隔100mm設けて80℃の温水に10秒浸漬し、下式により求めた。
収縮率(%)={(L−L’)/L}×100
L:収縮前の標線間距離(mm) L’:収縮後の標線間距離(mm)
【0032】
・収縮応力:
各フィルムをTD方向に幅10mm長さ70mmに切り出し、50mmにてチャックし、ロードセルにタルミが無いように固定した。その後85±0.5℃のシリコンバスに試料片を浸しその際の初期収縮応力を測定した。収縮応力は下記の式に当てはめて計算した。
収縮応力(MPa)=ロードセルにかかる応力(N)/試料片の断面積(mm
【0033】
・ミシン目適性評価:
0.7×0.7mmピッチでミシン目を入れたフィルムを円筒状にして280mlペットボトルの首部まで全面に被せ、85℃の温水バスに10秒浸漬し、収縮装着後のミシン目縦裂け性を評価した。ミシン目に沿って下部まで問題なく切れるものを(○)、ミシン目に沿ってある程度切れるが、下部まで到達する前にリンゴの皮むき状態になるものを(△)、殆どミシン目に沿って切れず、リンゴの皮むき状態になるものを(×)とした。
【0034】
・厚み振れ:
MD方向5cm、耳を除いたTD方向に製品採取可能な幅に裁断し、サンプルとした。各サンプルについて、アンリツ(株)製の接触厚み計(型式:KG601A)を用いて厚みを測定し、下式により厚み振れ(厚みのバラツキ)を求めた。
厚み振れR={(最大厚み)−(最小厚み)}(μm)
R≦5を(○) 5<R≦7を(△) R>7を(×)とした。
【0035】
・収縮仕上がり評価:
格子目を入れたフィルムを円筒状にして500mlペットボトルの首部まで全面に被せ、蒸気シュリンクトンネルを通過させてボトルに装着し、収縮外観を評価した。蒸気シュリンクトンネルの温度は80〜85℃にて実施した。ラベルの格子目の歪みがなく密着性も優れ、美しい仕上がりのものを(○)、歪み、しわ等が僅かにあるが実用上支障がないものを(△)、完全な収縮不足もしくは仕上がり性が全く実用レベルに達しないものを(×)とした。
【0036】
・内容物飛び出し:
500mlペットボトル(日本コカコーラ社製「まろ茶500ml」のボトルを使用)に水を口部から5mmの高さまで入れ、円筒状にしたフィルムをボトルの首部まで全面に被せ、蒸気シュリンクトンネル内を複数個順次通過させて収縮させた時に内容物が口部から飛び出す否かで評価した。ほとんど飛び出しのないものを(○)、時々飛び出しが起こるものを(△)、かなりの頻度で飛び出すものを(×)とした。
【0037】
各実施例及び比較例のサンプル評価結果を表1に示す。
【0038】
【表1】

Figure 2004306259
【0039】
表1から本発明の実施例1〜3はいずれの特性にも優れていることが分かる。これに対して、収縮応力が大き過ぎる比較例1、比較例3、4及び比較例8では内容物飛び出しの問題があり、共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bの比率が範囲外である比較例2ではミシン目適性に劣ることが分かる。また、延伸倍率が低い比較例5、6は厚み振れが大きく、主収縮方向の収縮率が小さい比較例7では収縮仕上がりが劣ることが分かる。
【0040】
【発明の効果】
本発明によれば、高収縮性を有し収縮仕上がりに優れるとともに、収縮応力を抑えた熱収縮性ポリエステル系フィルムであって、ミシン目適性も優れており、特にホット飲料用PETボトルの収縮ラベルとして好適に使用できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-shrinkable polyester film, and more particularly to a heat-shrinkable polyester film that can be suitably used as a shrink label for a PET bottle for hot beverage.
[0002]
[Prior art]
Heat-shrinkable films are widely used in shrink wrapping, shrink-wrapping wrapping, plastic container labels, glass container destruction and scattering prevention packaging, labels, cap seals, and the like.
Therefore, for such coated label applications, etc., a beautiful shrink finish after shrinkage due to excellent heat shrinkability is required as a function of the film.
[0003]
As the material of the heat-shrinkable film, polyvinyl chloride (PVC), styrene-butadiene block copolymer (SBS), and polyester resin are best known. However, although PVC and SBS have less shrinkage spots and wrinkles during heat shrinkage and are excellent in shrink finish, both PVC and SBS have a natural shrinkage of the film (which is slightly higher than normal temperature, for example, in summer, Shrinks before use). Therefore, a polyester film having a small natural shrinkage, a high shrinkage, and a good heat resistance is suitably used as a heat shrinkable label for a hot beverage PET bottle.
[0004]
[Problems to be solved by the invention]
However, the heat-shrinkable polyester-based film has a very low natural shrinkage and is easy to obtain high shrinkage. However, for example, if the PET bottle is covered with the contents in a state of being filled, the contents easily pop out when the bottle is opened. There is a problem. In addition, there is a problem that shrinkage spots and wrinkles are easily generated during heat shrinkage, and the bottle is deformed due to high stress at the time of shrinkage.
In recent years, demand for PET bottles for hot beverages, so-called PET bottles for hot beverages, housed in hot benders or hot warmers for the purpose of warming beverages such as coffee or tea as contents has been increasing. In a bottle containing a hot beverage, there is a problem that the hot beverage of the contents pops out due to shrinkage of the label particularly when the cap is opened.
[0005]
Further, usually, the shrinkable label is provided with a perforation at a constant pitch so that the label can be easily cut off after the label is attached. The heat-shrinkable polyester-based film has a problem that it is harder to cut along the perforation than the heat-shrinkable film of PVC or SBS, and is inferior in perforation suitability.
Therefore, a heat-shrinkable polyester-based film having high shrinkage, excellent shrinkage finish and reduced shrinkage stress, and further having excellent perforation suitability are desired.
Here, a heat-shrinkable polyester film in which the characteristics of shrinkage and shrinkage stress are specified has been proposed (for example, see Patent Document 1). However, the film described in Patent Literature 1 has a problem that it is not possible to satisfy all of the above characteristics including improvement of perforation suitability.
[0006]
The present invention has been made in view of the above-described conventional problems, and has an object to increase the shrinkage rate and suppress the stress at the time of shrinking of the film to be low, so that there is no problem of popping out of the contents and excellent in shrinkage finish. Another object of the present invention is to provide a heat-shrinkable polyester film excellent in perforation suitability.
[0007]
[Patent Document 1]
JP-A-2002-46177
[Means for Solving the Problems]
The present invention has found a heat-shrinkable polyester film capable of solving the above problems, and the gist thereof is as follows.
The dicarboxylic acid component is terephthalic acid, the diol component is ethylene glycol, and the copolymerization component is 1,4-cyclohexanedimethanol, 20 to 50 mol%. % By weight, 10 to 30% by weight of a copolymerized polybutylene terephthalate resin (B) in which the dicarboxylic acid component is terephthalic acid, the diol component is 1,4-butanediol, and the copolymerization component is 5 to 20% by mole of isophthalic acid. A heat-shrinkable polyester film comprising: a maximum shrinkage stress in the main shrinkage direction (immersion in a 85 ° C. silicone bath) of 5.5 MPa or less, and shrinkage of the film after treatment in hot water at 80 ° C. for 10 seconds. The heat-shrinkable polyester film having a percentage of 35% to 50% in the main shrinkage direction. That.
Here, the film preferably has a draw ratio in the main shrinkage direction of 4.0 to 4.7 times, and can be suitably used for shrink labels of PET bottles for hot beverages.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The resin composition used in the heat-shrinkable polyester film of the present invention is obtained by mixing a copolymerized polyester resin (A) having a specific composition and a copolymerized polybutylene terephthalate resin (B) having a specific composition at a specific ratio. There is a need to.
The copolymerized polyester resin (A) is an ethylene terephthalate-based copolymerized polyester containing terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component, and uses 1,4-cyclohexanedimethanol as a copolymerization component. Use the copolyester that was used.
[0010]
In the copolymerized polyester resin (A) used in the present invention, in order to suppress crystallization when forming into a film and to impart excellent toughness, 1,4 of the copolymerized component in 100 mol% of the diol component is used. -The content of cyclohexanedimethanol is 20 to 50 mol%, preferably 25 to 40 mol%.
[0011]
The copolymerized polybutylene terephthalate resin (B) is a polybutylene terephthalate-based copolymer polyester containing terephthalic acid as a dicarboxylic acid component and 1,4-butanediol as a diol component as main components, and isophthalic acid as a copolymerization component. Is used.
Isophthalic acid is used in an amount of 5 to 20% by mole, preferably 5 to 15% by mole, based on 100% by mole of the dicarboxylic acid component. Copolymerized polyester of less than 5% by mole has high crystallinity when formed into a film. In addition, there is a problem that the shrinkage stress is too large, and that there is a problem that the suitability for perforation is poor. If it exceeds 20 mol%, there are problems such as poor cutting properties of the polymer particles and fusion of the particles to make production difficult.
[0012]
In the present invention, it is necessary to mix the copolymerized polyester resin (A) and the copolymerized polybutylene terephthalate resin (B) at a specific ratio,
The copolymerized polyester resin (A) is 70 to 90% by weight, preferably 75 to 90%, and the copolymerized polybutylene terephthalate resin (B) is 10 to 30% by weight, preferably 15 to 25% by weight. Is less than 70% by weight, there is a problem that the suitability for perforation is inferior, and if it exceeds 90% by weight, the shrinkage stress becomes too large.
In the polyester resin used in the present invention, in addition to the above components (A) and (B), other polyester resins and various additives such as a stabilizer, an ultraviolet absorber, and the like, as long as the object of the present invention is not impaired. A lubricant, a coloring agent and the like may be blended.
[0013]
The film of the present invention is obtained by stretching an unstretched film made of the above resin composition in at least one direction, and satisfies specific maximum shrinkage stress and shrinkage ratio characteristics.
The maximum shrinkage stress (85 ° C. silicone bath immersion) must be 5.5 MPa or less, and if it exceeds 5.5 MPa, the contents will pop out when used as a shrink label for hot beverage PET bottles. easy.
As for the shrinkage characteristics, the shrinkage ratio of the film after treatment in hot water at 80 ° C. for 10 seconds needs to be 35% to 50% in the main shrinkage direction. If the ratio exceeds, there is a problem that the shrinkage finish is inferior.
The intrinsic viscosity of the film of the present invention is 0.5 or more, preferably 0.6 or more. If the intrinsic viscosity of the film is less than 0.5, the rupture resistance tends to decrease.
[0014]
Next, the method for producing the film of the present invention will be specifically described, but is not limited to the following production method. The copolymerized polyester obtained by the polycondensation reaction is mixed and melt-extruded at a temperature of 200 to 320 ° C. At the time of extrusion, a method such as a T-die method or a Cubra method may be employed.
[0015]
In the present invention, it is preferable that the unstretched film before stretching is stretched in at least one direction in a range of 4.0 to 4.7 times, and when it is less than 4.0 times, the thickness unevenness becomes large and 4.7 times. If it exceeds, the shrinkage stress tends to be too large.
Here, when the T-die method is used, after extrusion, it is quenched on a casting drum having a surface temperature of 15 to 80 ° C. to form an unstretched film having a thickness of 30 to 300 μm. The obtained unstretched film is stretched 1.0 to 1.3 times, preferably 1.0 to 1.1 times at a roll temperature of 60 to 120 ° C. using a heated longitudinal stretching roll. After the longitudinal stretching, the film is stretched 4.0 to 4.7 times at a stretching temperature of 60 to 120 ° C using a tenter, and is heat-treated at a temperature of 55 to 100 ° C and wound up.
[0016]
Here, among the various characteristics of the film, since the shrinkage characteristics mainly depend on the stretching ratio and the stretching temperature, from the viewpoint of increasing the shrinkage in the main shrinking direction, high-magnification and low-temperature stretching are preferable. On the other hand, the shrinkage stress mainly depends on the stretching temperature, and the shrinkage stress increases as the stretching ratio and the stretching temperature are low, and there is also an influence of the heat treatment after the stretching (annealing, particularly the relaxation heat treatment). In order to set the temperature dependence of the shrinkage rate more smoothly, one method is to adjust the draw ratio while performing stretching at a relatively high temperature, and to improve the flatness of the film after stretching and adjust the shrinkage rate. Therefore, when heat treatment is performed, the heat treatment is performed at a low temperature that does not promote crystallization of the polyester. As a result, it is possible to suppress the shrinkage stress that largely affects the behavior of the film at the time of heat shrinkage, and to obtain a film exhibiting gentle shrinkage characteristics. Specific temperature conditions can be appropriately set according to the type of polyester used.
[0017]
Further, in the present invention, it is also possible to improve the adhesiveness of the film to the printed layer by subjecting one or both surfaces of the film to a surface activation treatment such as a corona discharge treatment before, after or after the stretching step. It is. In addition, during the stretching step, before or after the stretching, it is also possible to improve the adhesiveness, antistatic property, sliding property, light-shielding property and the like of the film. Further, for example, a laminated film may be formed by a co-extrusion method or the like, for example, by using the polyester resin for the core layer and providing a copolymerized polyester resin layer having a lower crystallinity than the polyester resin for the surface layer.
[0018]
【Example】
(Examples and Comparative Examples)
Hereinafter, Examples and Comparative Examples will be described, but the present invention is not limited thereto.
[0019]
(Sample preparation)
[Example 1]
The dicarboxylic acid component is terephthalic acid, the diol component is ethylene glycol, and the copolymerization component is a copolymerized polyester resin containing 1,4-cyclohexanedimethanol 32 mol%, and amorphous silica having an average particle size of 2.4 μm (manufactured by Fuji Silysia Chemical Ltd.) , Silysia 320) in an amount of 0.05% by weight, and a copolymerized resin in which the dicarboxylic acid component is terephthalic acid, the diol component is 1,4-butanediol, and the copolymerization component is isophthalic acid 10 mol%. Butylene terephthalate resin B was mixed at a ratio of 85:15, melt-extruded at 270 ° C. with a biaxial extruder in the same direction while pulling a vacuum vent, and then rapidly cooled to obtain an unstretched film. The obtained unstretched film is uniaxially stretched by a tenter in a transverse direction at a stretching temperature of 84 ° C. at a stretching ratio of 4.5 times, and then heat-treated at 91 ° C. for 6 seconds to obtain a 50 μm thick film. Got.
[0020]
[Example 2]
The copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B are mixed at a ratio of 75:25, melt-extruded at 270 ° C. with a biaxial extruder in the same direction while pulling a vacuum vent, and then rapidly cooled to obtain an unstretched film. Got. The obtained unstretched film is uniaxially stretched by a tenter in an atmosphere at a stretching temperature of 80 ° C. at a stretching ratio of 4.5 times in the transverse direction, and then heat-treated at 94 ° C. for 6 seconds to obtain a 50 μm thick film. Got.
[0021]
[Example 3]
The copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B are mixed at a ratio of 85:15, melt-extruded at 270 ° C. with a biaxial extruder in the same direction while pulling a vacuum vent, and then rapidly cooled to obtain an unstretched film. Got. The obtained unstretched film is uniaxially stretched by a tenter in a transverse direction at a stretching temperature of 84 ° C. at a stretching ratio of 4.1 times, and then heat-treated at 91 ° C. for 6 seconds to obtain a 50 μm thick film. Got.
[0022]
[Comparative Example 1]
The copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B are mixed at a ratio of 95: 5, melt-extruded at 270 ° C. with a biaxial extruder in the same direction while pulling a vacuum vent, and then rapidly cooled to obtain an unstretched film. Got. The obtained unstretched film is uniaxially stretched by a tenter in an atmosphere at a stretching temperature of 88 ° C. at a stretching ratio of 4.5 times in the transverse direction, and then heat-treated at 90 ° C. for 6 seconds to obtain a film having a thickness of 50 μm. Got.
[0023]
[Comparative Example 2]
The copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B are mixed at a ratio of 65:35, melt-extruded at 270 ° C. with a biaxial extruder in the same direction while pulling a vacuum vent, and then rapidly cooled to obtain an unstretched film. Got. The obtained unstretched film is uniaxially stretched by a tenter in an atmosphere at a stretching temperature of 76 ° C. at a stretching ratio of 4.5 times in the transverse direction, and then subjected to a heat treatment at 95 ° C. for 6 seconds to obtain a film having a thickness of 50 μm. Got.
[0024]
[Comparative Example 3]
A copolyester resin A and a polybutylene terephthalate resin C in which the dicarboxylic acid component is terephthalic acid and the diol component is 1,4-butanediol are mixed at a ratio of 85:15, and biaxial extrusion is performed in the same direction while pulling a vacuum vent. After being melt-extruded at 270 ° C. in a machine, it was rapidly cooled to obtain an unstretched film. The obtained unstretched film is uniaxially stretched by a tenter in a transverse direction at a stretching temperature of 84 ° C. at a stretching ratio of 4.5 times, and then heat-treated at 91 ° C. for 6 seconds to obtain a 50 μm thick film. Got.
[0025]
[Comparative Example 4]
The copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B are mixed at a ratio of 85:15, melt-extruded at 270 ° C. with a biaxial extruder in the same direction while pulling a vacuum vent, and then rapidly cooled to obtain an unstretched film. Got. The obtained unstretched film was uniaxially stretched by a tenter in a transverse direction at a stretching temperature of 84 ° C. at a stretching ratio of 5.0 times, then heat-treated at 91 ° C. for 6 seconds, and then heat-treated. A film having a thickness of 50 μm was obtained.
[0026]
[Comparative Example 5]
The copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B are mixed at a ratio of 85:15, melt-extruded at 270 ° C. with a biaxial extruder in the same direction while pulling a vacuum vent, and then rapidly cooled to obtain an unstretched film. Got. The obtained unstretched film is uniaxially stretched by a tenter in a transverse direction at a stretching temperature of 84 ° C. at a stretching ratio of 3.8 times, and then heat-treated at 91 ° C. for 6 seconds to obtain a 50 μm thick film. Got.
[0027]
[Comparative Example 6]
The copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B are mixed at a ratio of 85:15, melt-extruded at 270 ° C. with a biaxial extruder in the same direction while pulling a vacuum vent, and then rapidly cooled to obtain an unstretched film. Got. The obtained unstretched film is uniaxially stretched by a tenter in a transverse direction at a stretching temperature of 84 ° C. at a stretching ratio of 3.5 times, and then heat-treated at 91 ° C. for 6 seconds to obtain a 50 μm thick film. Got.
[0028]
[Comparative Example 7]
The copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B are mixed at a ratio of 85:15, melt-extruded at 270 ° C. with a biaxial extruder in the same direction while pulling a vacuum vent, and then rapidly cooled to obtain an unstretched film. Got. The obtained unstretched film is uniaxially stretched by a tenter in a transverse direction at an stretching temperature of 84 ° C. at a stretching ratio of 4.5 times, and then heat-treated at 96 ° C. for 6 seconds to obtain a 50 μm thick film. Got.
[0029]
[Comparative Example 8]
The dicarboxylic acid component is terephthalic acid, the diol component is ethylene glycol, the copolymerization component is 1,4-cyclohexanedimethanol 18 mol%, and the copolymerization polyester resin having 10 mol% diethylene glycol is amorphous silica having an average particle size of 2.4 μm (Fuji A copolyester resin D containing 0.05 wt% of Silysia Chemical Co., Silysia Chemical Co., Ltd.) and a copolymerized polybutylene terephthalate resin B are mixed in a ratio of 85:15, and a coaxial twin screw extruder is pulled while a vacuum vent is pulled. After melt extrusion at 270 ° C., the mixture was quenched to obtain an unstretched film. The obtained unstretched film is uniaxially stretched at a stretching ratio of 4.5 times in a transverse direction at a stretching temperature of 81 ° C. in an atmosphere of a tenter, and then heat-treated at 90 ° C. for 6 seconds to obtain a 50 μm thick film. Got.
[0030]
(Evaluation of film properties)
The properties of the films obtained in the preparation of the samples were evaluated. The evaluation of the film is as follows.
[0031]
・ Shrinkage rate in main shrinkage direction:
A polyester film cut into a size of 150 mm in the stretching direction and 25 mm in a direction perpendicular to the stretching direction was immersed in warm water of 80 ° C. for 10 seconds at intervals of 100 mm with marked lines, and determined by the following formula.
Shrinkage (%) = {(LL ′) / L} × 100
L: distance between mark lines before contraction (mm) L ': distance between mark lines after contraction (mm)
[0032]
・ Shrinkage stress:
Each film was cut out in the TD direction to a width of 10 mm and a length of 70 mm, chucked at 50 mm, and fixed to the load cell so that there was no tarmi. Thereafter, the sample was immersed in a silicon bath at 85 ± 0.5 ° C., and the initial shrinkage stress at that time was measured. The shrinkage stress was calculated by applying the following equation.
Shrinkage stress (MPa) = stress applied to load cell (N) / cross-sectional area of specimen (mm 2 )
[0033]
・ Perforation evaluation:
A perforated film with a pitch of 0.7 × 0.7 mm is formed into a cylindrical shape, covered over the entire surface of the neck of the 280 ml plastic bottle, immersed in a hot water bath at 85 ° C. for 10 seconds, and perforated vertically after shrink mounting. Was evaluated. The one that cuts along the perforation to the lower part without any problem (○), the one that cuts to some extent along the perforation, the one that peels the apple before reaching the lower part (△), almost along the perforation The sample which was not cut and became peeled from the apple was designated as (x).
[0034]
・ Thickness deviation:
The sample was cut into a width of 5 cm in the MD direction and a width in which the product could be collected in the TD direction excluding the ears, to obtain a sample. The thickness of each sample was measured using a contact thickness meter (model: KG601A) manufactured by Anritsu Corporation, and the thickness fluctuation (thickness variation) was determined by the following equation.
Thickness deviation R = {(maximum thickness)-(minimum thickness)} (μm)
R ≦ 5 was (○) 5 <R ≦ 7 was (△) R> 7 was (×).
[0035]
・ Shrink finish evaluation:
The film with the grids was formed into a cylindrical shape, covered all over the neck of the 500 ml PET bottle, passed through a steam shrink tunnel and mounted on the bottle, and the shrink appearance was evaluated. The temperature of the steam shrink tunnel was set at 80 to 85 ° C. Labels with no lattice distortion and excellent adhesion, with a beautiful finish ()), those with slight distortion and wrinkles but no practical problems (△), poor shrinkage or poor finish Those that did not reach the practical level at all were marked (x).
[0036]
-Contents jump out:
Pour water up to a height of 5 mm from the mouth into a 500 ml PET bottle (using a bottle of "Marocha 500 ml" manufactured by Nippon Coca-Cola Co., Ltd.), cover the entire surface of the bottle with a cylindrical film up to the neck of the bottle, and pass through the steam shrink tunnel several times. Evaluation was made based on whether or not the contents jumped out of the mouth when sequentially passed and shrunk. Those that barely popped out ((), those that occasionally popped out (△), and those that popped out quite frequently were (x).
[0037]
Table 1 shows the evaluation results of the samples of each of the examples and the comparative examples.
[0038]
[Table 1]
Figure 2004306259
[0039]
From Table 1, it can be seen that Examples 1 to 3 of the present invention are excellent in all characteristics. On the other hand, in Comparative Examples 1, 3, 4 and 8 in which the shrinkage stress is too large, there is a problem of the contents jumping out, and the ratio of the copolymerized polyester resin A and the copolymerized polybutylene terephthalate resin B is out of the range. It can be seen that Comparative Example 2, which is inferior, is inferior in perforation suitability. Further, it can be seen that Comparative Examples 5 and 6 where the stretching ratio is low have large thickness fluctuation, and Comparative Example 7 where the contraction rate in the main contraction direction is small has inferior shrinkage finish.
[0040]
【The invention's effect】
According to the present invention, a heat-shrinkable polyester film having high shrinkage property and excellent shrinkage finish, and suppressed shrinkage stress, excellent perforation suitability, and particularly shrinkable labels for PET bottles for hot beverages It can be suitably used as

Claims (3)

ジカルボン酸成分がテレフタル酸、ジオール成分がエチレングリコールであり、共重合成分が1,4−シクロヘキサンジメタノール20〜50モル%の共重合ポリエステル樹脂(A)70〜90重量%と、ジカルボン酸成分がテレフタル酸、ジオール成分が1,4−ブタンジオールであり、共重合成分がイソフタル酸5〜20モル%である共重合ポリブチレンテレフタレート樹脂(B)10〜30重量%とからなる熱収縮性ポリエステル系フィルムであって、主収縮方向の最大収縮応力(85℃シリコーンバス浸漬)が5.5MPa以下であると共に、80℃の温水中で10秒間処理後のフィルムの収縮率が主収縮方向において35%〜50%であることを特徴とする熱収縮性ポリエステル系フィルム。The dicarboxylic acid component is terephthalic acid, the diol component is ethylene glycol, the copolymer component is 70 to 90% by weight of a copolymerized polyester resin (A) containing 20 to 50 mol% of 1,4-cyclohexanedimethanol, and the dicarboxylic acid component is A heat-shrinkable polyester system comprising 10 to 30% by weight of a copolymerized polybutylene terephthalate resin (B) having terephthalic acid and a diol component of 1,4-butanediol and a copolymerization component of 5 to 20 mol% of isophthalic acid The film has a maximum shrinkage stress in the main shrinkage direction (85 ° C. silicone bath immersion) of 5.5 MPa or less and a shrinkage ratio of the film after treatment in hot water of 80 ° C. for 10 seconds of 35% in the main shrinkage direction. A heat-shrinkable polyester film characterized by being 50% or less. 主収縮方向の延伸倍率が4.0〜4.7倍の範囲であることを特徴とする請求項1に記載の熱収縮性ポリエステル系フィルム。The heat-shrinkable polyester film according to claim 1, wherein the stretch ratio in the main shrinkage direction is in a range of 4.0 to 4.7 times. ホット飲料用PETボトルの収縮ラベルに使用することを特徴とする請求項1又は2記載の熱収縮性ポリエステル系フィルム。3. The heat-shrinkable polyester film according to claim 1, wherein the heat-shrinkable polyester film is used for a shrink label of a PET bottle for hot beverage.
JP2003049272A 2003-02-17 2003-02-26 Heat-shrinkable polyester film Pending JP2004306259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049272A JP2004306259A (en) 2003-02-17 2003-02-26 Heat-shrinkable polyester film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003038462 2003-02-17
JP2003049272A JP2004306259A (en) 2003-02-17 2003-02-26 Heat-shrinkable polyester film

Publications (1)

Publication Number Publication Date
JP2004306259A true JP2004306259A (en) 2004-11-04

Family

ID=33477936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049272A Pending JP2004306259A (en) 2003-02-17 2003-02-26 Heat-shrinkable polyester film

Country Status (1)

Country Link
JP (1) JP2004306259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786011B1 (en) 2006-08-24 2007-12-14 에스케이씨 주식회사 Polyester film having heat-shrinkage property

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780930A (en) * 1993-07-23 1995-03-28 Mitsubishi Plastics Ind Ltd Heat shrinkable polyester film
JP2001064412A (en) * 1999-08-25 2001-03-13 Mitsubishi Rayon Co Ltd Thermally shrinkable polyester film
JP2002212405A (en) * 2001-01-19 2002-07-31 Mitsubishi Rayon Co Ltd Polyester resin composition for heat-shrinkable film, and heat-shrinkable polyester film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780930A (en) * 1993-07-23 1995-03-28 Mitsubishi Plastics Ind Ltd Heat shrinkable polyester film
JP2001064412A (en) * 1999-08-25 2001-03-13 Mitsubishi Rayon Co Ltd Thermally shrinkable polyester film
JP2002212405A (en) * 2001-01-19 2002-07-31 Mitsubishi Rayon Co Ltd Polyester resin composition for heat-shrinkable film, and heat-shrinkable polyester film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786011B1 (en) 2006-08-24 2007-12-14 에스케이씨 주식회사 Polyester film having heat-shrinkage property

Similar Documents

Publication Publication Date Title
JP7254730B2 (en) Copolyester raw materials for amorphous films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
JP6337774B2 (en) Heat-shrinkable polyester film and package
EP2058357B1 (en) Heat-shrinkable polyester film, process for production thereof, and package comprising the film
KR102245444B1 (en) Polyester film for sealant use, laminate, and packaging bag
JP4560740B2 (en) Method for producing heat-shrinkable polyester film, heat-shrinkable polyester film and package
EP2436508B1 (en) Thermally shrinkable polyester film, method of manufacturing the same, and packed product using the same
KR102508095B1 (en) Heat-shrinkable polyester-based film, manufacturing method thereof, package body
WO2016152517A1 (en) Heat-shrinkable polyester film and packaging material
KR102463003B1 (en) Heat-shrinkable polyester film and packaging material
US8722161B2 (en) Heat shrinkable polyester film, method for producing same, and packaged body
JP3939470B2 (en) Heat-shrinkable polyester film
WO2020026972A1 (en) Copolyester raw material for amorphous film, heat-shrinkable polyester-based film, heat-shrinkable label, and package
JP2009202445A (en) Method for producing heat-shrinkable polyester film, heat-shrinkable polyester film and package
JP2022084685A (en) Heat-shrinkable film, heat-shrinkable label, and package
JP7056322B2 (en) Heat shrinkable polyester film
JP3960741B2 (en) Heat-shrinkable polyester multilayer film
JP2004051888A (en) Heat shrinkable polyester film
JP2004306259A (en) Heat-shrinkable polyester film
JP6721071B2 (en) Heat-shrinkable polyester film and package
WO2021230207A1 (en) Copolyester raw material for films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
JP4250383B2 (en) Heat-shrinkable polyester film
JP5240241B2 (en) Method for producing heat-shrinkable polyester film, heat-shrinkable polyester film and package
JP3971261B2 (en) Heat-shrinkable polyester film
TW202216841A (en) Heat-shrinkable polyester film, heat-shrinkable label, and packaging body
EP3981577A1 (en) Heat-shrinkable polyester film having longitudinal (lengthwise) direction as main shrinkage direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420