JP2004305818A - Coating film forming apparatus - Google Patents

Coating film forming apparatus Download PDF

Info

Publication number
JP2004305818A
JP2004305818A JP2003099631A JP2003099631A JP2004305818A JP 2004305818 A JP2004305818 A JP 2004305818A JP 2003099631 A JP2003099631 A JP 2003099631A JP 2003099631 A JP2003099631 A JP 2003099631A JP 2004305818 A JP2004305818 A JP 2004305818A
Authority
JP
Japan
Prior art keywords
coating
substrate
airflow
liquid
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099631A
Other languages
Japanese (ja)
Inventor
Junichi Horikawa
順一 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003099631A priority Critical patent/JP2004305818A/en
Publication of JP2004305818A publication Critical patent/JP2004305818A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of being used widely in any state and suppressed in process cost to the utmost and to eliminate the thick film part at the end part of a coating region appearing when an arbitrary region is coated with a liquid material by a coating head having a slit-like opening part while extending the effective region of a film forming part. <P>SOLUTION: This coating film forming apparatus is equipped with a coating part for performing coating by discharging a liquid from the slit-like opening part of the coating head while relatively moving the coating head having the slit-like opening part and a substrate to be coated so as to cross the longitudinal direction of the slit-like opening part of the coating head at a right angle and a drying part for applying energy to the liquid applied to the substrate to be coated to dry and solidify the liquid on the substrate to be coated. An air stream producing device for producing air streams separated in the normal direction of the substrate to be coated is arranged at the position opposed to the substrate to be coated in this apparatus. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、任意の基材上に液状物を塗布して薄膜を形成する方法および装置に関する。
【0002】
【従来の技術】
従来から、任意の基材上に液状物を塗布して膜を形成する方法として、スリット状の開口部を持つ塗布ヘッドから液状物を吐出するスリットコート法が知られている。スリットコート法によって塗布物を任意の領域に塗布した際、その液状物に含まれる揮発成分を自然放置の状態で、もしくは熱エネルギー等を与えて高速に揮発させると、塗布領域の端部において厚膜となる(以降、厚膜端部)現象が現れる。
【0003】
この厚膜端部現象は、塗布領域全体の中で特に端部において塗布材料中に含まれる揮発成分の揮発速度が大きいためその途中で表面張力が大きくなり、そこに周りの材料が集まってくるために発生することが知られている。
【0004】
前記厚膜端部現象により、厚みが許容範囲を逸脱する場合には、その厚膜部の内側を有効領域とせざるを得ず、塗布基板、および塗布材料の使用効率が悪くなるため、結果的にプロセスコストが増大することになる。
【0005】
またフォトリソレジスト材等を塗布し、次にマスクを使った露光現像を行なう場合、厚膜部と平坦部との高さが大きいと必要な精度の露光が実現できないことがある。そういった場合には、厚膜部を削る等のプロセスを追加する必要があり、同様にプロセスコストが増大することになる。
【0006】
この厚膜端部が発生しないようにするための対策として、「複数回塗り」「粘度が小さい補助液を端部に供給」「端部への電界印加」「端部への超音波印加」等が施されている。
【0007】
ここで、前記従来の対策について詳述する。
【0008】
まず、複数回塗りについては、1回あたりの塗布膜厚を小さくすると中央部と端部とで揮発速度の差は小さくなり厚膜端部になりにくくなる。よって複数回塗って必要な膜厚を実現すれば膜厚の有効領域を広げることが出来る。しかしこの方法では、自ずとタクトタイムが長くなるという問題がある。
【0009】
また、塗布する際、端部に粘度が小さい補助液を供給する事で厚膜化を防ぐ方法がある。この手法によれば、表面張力勾配による面内方向の流れが小さくなるという利点があるが、塗布膜の膜質そのものに影響を与えない補助液を選ぶ必要がある。
【0010】
さらに、揮発が進行しても表面張力を大きくしない方法として電界や超音波を与える方法は、電場や超音波を発生させる装置が必要となり、プロセスコストが増大する。
【0011】
以上のように厚膜端部現象を解決するための手段はいろいろと考えられているが、対象となる塗布基板、塗布材料によって利用できない方法もあり、また2次的、3次的なプロセスが必要であることからプロセスコストが増大していた。
【0012】
【発明が解決しようとする課題】
本発明は上述した問題点に鑑みてなされたものであり、
いかなる状況においても汎用的に利用でき、しかも可能な限りプロセスコストを抑えた方法であって、スリット状の開口部を持つ塗布ヘッドによって液状物を任意の領域に塗布した際に現れる塗布領域端部の厚膜部を解消し、成膜部の有効領域を拡大することを目的とする。
【0013】
【課題を解決するための手段】
上述した課題を解決するため、本発明による第1の形態は、
スリット状の開口部を持つ塗布ヘッドと、塗布対象基板とを、前記塗布ヘッド開口部の長手方向に直交するように相対移動させつつ、前記塗布ヘッド開口部から液体を吐出して塗布を行なう塗布部と、更に前記塗布基板に塗布された液体に対してエネルギーを与えて乾燥固化させる乾燥部とを備える装置であって、
前記塗布基板と対面する位置に配置され、その法線方向に離れる気流を発生させる気流発生装置を備えた事を特徴とする塗布膜形成装置にある。
この場合、
塗布膜形成装置には、塗布ヘッドが塗布基板上を通過した後、直ちに塗布基板と相対する位置に気流発生装置を配置し、その後、塗布基板と共に塗布部から乾燥部へ移動する搬送装置を備えると好ましい。
【0014】
また、発生させた気流の状態を監視する機能を持ち、塗布液体の乾燥の状況によってその気流の風速、風量、更に気流発生装置と塗布基板の距離を制御する機能を備えていても良い。
【0015】
そして塗布領域全体で乾燥速度を均一化するため、特に乾燥速度が速くなる部位にその揮発成分気体を供給する機能を備えていても良い。
更に塗布基板の法線方向に離れる気流によって発生する塗布基板近傍の流れを補うため、その気流発生装置の周囲に、塗布基板面の法線方向に近づく気流を発生させる機能を備えていてもよい。
【0016】
【作用】
先にも述べたように、厚膜端部現象は、塗布領域全体の中で特に端部において塗布材料中に含まれる揮発成分の揮発速度が大きいため、その途中で表面張力が大きくなることが原因だということが知られている。つまり、塗布領域端部を含めて領域全体で均一に揮発させることが出来れば、その途中で表面張力の分布が発生することもなくなり、厚膜端部現象を排除することが出来ると考えられる。
【0017】
塗布された材料から揮発した成分は雰囲気中に拡散していくが、塗布領域の中央部分ではその法線方向の自由度だけが存在するのに対し、塗布領域端部近傍では領域の外側に広く自由度を持つため、雰囲気に強制的な流れが存在しない静的な状態では端部の拡散速度が大きくなるのは必須である。よって、塗布領域端部の揮発速度は大きくなる。そこで塗布領域を包む雰囲気に強制的な流れを与えることで、揮発成分の拡散方向の自由度を均一にできると考えた。しかしその流速が大きいと塗布基板上に堆積した材料が流されてしまい、膜厚の偏りや風紋等が発生する恐れがある。よって塗布材料や揮発成分の種類によって適切な流速を設定する必要がある。更に揮発成分の気化は塗布基板上に成膜された時には既に始まっているため、塗布している傍から雰囲気の流れを強制的に与える必要があり、そして乾燥固化が完了するまで流れを与え続ける必要がある。
【0018】
また更にプロセス時間を短縮してコストを削減する事を考え、塗布材料内の揮発成分の拡散と塗布材料からの気化、および気化した後の雰囲気への拡散の効率を上げるため、塗布材料および雰囲気への熱等のエネルギー供給をバランスよく行なう必要がある。
【0019】
【実施例】
以下、本発明の実施例について述べる。
【0020】
(実施例1)
本実施例の塗布膜形成装置の全体の構成の概略図を図1、図2に示す。図1は塗布ヘッド12と塗布基板9の相対移動方向の断面図であり、図2は塗布基板9の法線方向から見た断面図である。更に装置の構成要素の一つである塗布ヘッドの概略構成図を図8に示す。
【0021】
本実施例の工程は、「塗布工程」と「乾燥工程」とによりなるが、まず、「塗布工程」について以下に詳述する。
【0022】
塗布基板9は塗布ヘッド12との相対移動を行なうための塗布部ステージ15上に載置される。このとき、塗布部ステージ15と乾燥部ステージ14とは隣接して配置されている。
【0023】
まず、塗布液は、塗布液タンク25から定量ポンプ21によって塗布ヘッド12に供給される。この定量ポンプ21は、ギヤポンプ、ダイヤフラムポンプ、シリンジポンプなどの容積式ポンプを示している。また、ポンプの他の塗布液供給機構として、塗布液タンク25を圧力容器に入れ、この圧力容器に対して加圧ポンプにより加圧空気を供給することによって、塗布液を押し出す形式も可能である。塗布液タンク25から定量ポンプ21までの配管24の経路に必要に応じてフィルタ22、開閉弁23が設けられる。
【0024】
この塗布液供給機構から塗布ヘッド12に供給された塗布液は、ヘッド側面の長手方向の中央部にある流入口7からヘッド内に流入し、マニホールド11を経由した後、スリット6を通って吐出口5に至る。更に吐出口からヘッドの外側に吐出されると、塗布液はビードを形成して徐々に大きくなり、やがて塗布基板9に到達する。
【0025】
その後、塗布基板9と塗布ヘッド12との相対運動を開始すると、塗布ヘッドから供給される塗布液は塗布ヘッド12吐出口5の外側のビードを介して基板に堆積されていく。そして、塗布基板9上の所定の領域に塗布した後に塗布液の供給を停止して「塗布工程」が完了した後、気流発生装置4を塗布基板に相対する位置に移動させ、塗布基板9面の法線方向に離れる方向に気流を発生させる。この時気流は状況に応じてその風速、風量が制御されている。この様子を塗布ヘッド12の長手方向断面で示したのが図3であり、塗布基板9の法線方向から見た図が図4である。本実施例では、塗布ヘッド12の搬送部5と気流発生装置4の搬送装置2とが、塗布基板9を挟んで反対側に配置されている。(図5(a)(b)参照)
次に溶媒等の揮発成分を除去するための「乾燥工程」に移るため、塗布基板を気流発生装置4と共に搬送装置2により乾燥部ステージ14に移動する。この様子を示したのが図6である。そして乾燥部ステージ14のヒーター3により塗布基板9を加熱し、また状況に応じて気流発生装置4の気流制御機能により風速、風量を制御しながら、塗布材料中に含まれる溶媒などの揮発成分を排除し乾燥固化させる。
【0026】
また図7は、本実施例における気流発生装置4による気流をイメージした図であり、塗布基板9面の法線方向に離れる気流が描かれている。
【0027】
本実施例の塗布装置を用いて塗布を行なった結果、図13のグラフに示す膜厚分布が得られた。
【0028】
このグラフを参照すると本実施例は、比較例に比べ厚膜端部現象が縮小したことがわかる。
なお、このデータを得た塗布条件は以下の通りである。
塗布液:汎用フォトレジスト材
(含有溶媒:ジグライム)
塗布液粘度:4Pa・sec
塗布液固形分濃度:18.6wt%
塗布基板:青板ガラス
塗布液と塗布基板との接触角:15°
塗布速度:5mm/sec
吐出流量:0.5mm/sec(塗布ヘッド長手方向の単位長さあたり)
ヘッド−基板間距離:130μm
気流発生装置条件:50mm/sec(排気)
(実施例2)
図9に本発明の実施例2における気流発生装置4およびその搬送装置2の図を示す。
【0029】
図は塗布ヘッド12と塗布基板9とが相対移動する方向から見た断面図を示しており、塗布終了後、気流発生装置4を塗布基板9に相対する位置に移動させ、塗布基板面の法線方向に離れる気流を発生する点は実施例1と同じであるが、本実施例では、塗布された領域の外周部近傍に塗布材料中に含まれる溶媒等の揮発成分気体を供給する装置16が、気流発生装置4の搬送装置2に配置されている点が異なる。
【0030】
図10に本実施例の塗布膜形成装置による塗布後の塗布領域近傍の気流の様子を示すが、塗布領域端部近傍に溶媒等の揮発成分気体を供給することにより、塗布領域端部近傍の乾燥速度は抑制され、塗布領域中央部の乾燥速度に同期させることが可能になる。
【0031】
図14に実施例1と同じ条件で塗布を行って得られた膜厚分布を示すが、実施例1と同様に従来例と比べ厚膜端部現象の縮小したことがわかる。
【0032】
(実施例3)
図11に本実施例3における気流発生装置4およびその搬送装置2の図を示す。
図9と同様に、塗布ヘッド12と塗布基板9とが相対移動する方向から見た断面図を示しており、塗布終了後、気流発生装置4を塗布基板9に相対する位置に移動させ、塗布基板面の法線方向に離れる気流を発生する点は実施例1、実施例2と同じであるが、本実施例では、塗布基板面の法線方向に近づく気流を発生する気流発生装置17が気流発生装置4の外周に接するように配置されている点が実施例1と異なる。
【0033】
図12に本実施例の塗布膜形成装置による塗布後の塗布領域近傍の気流の様子を示すが、気流発生装置4によって塗布基板面の法線方向に離れる気流を発生する一方、本実施例の気流発生装置17によって塗布基板面の法線方向に近づく気流を発生することで、塗布基板9の外側から流れ込む気流が少なくなる。これによって塗布領域端部近傍の気流の速度を小さくすることが出来るため、塗布領域端部近傍の乾燥速度は抑制される。
【0034】
よって、本実施例においても、塗布領域中央部の乾燥速度に同期させることができ、厚膜端部現象を縮小することができる。
以下に本発明の実施態様例を示す。
【0035】
(実施態様例1)
スリット状の開口部を持つ塗布ヘッドと、塗布対象基板とを、前記塗布ヘッド開口部の長手方向に直交するように相対移動させつつ、前記塗布ヘッド開口部から液体を吐出して塗布を行なう塗布部と、更に前記塗布基板に塗布された液体に対してエネルギーを与えて乾燥固化させる乾燥部とを備える装置であって、
前記塗布基板と対面する位置に配置され、該塗布基板の法線方向に離れる気流を発生させる気流発生装置を備えたことを特徴とする塗布膜形成装置。
【0036】
(実施態様例2)
前記気流発生装置と、前記塗布基板とを共に塗布部から乾燥部へ移動する搬送装置を備えたことを特徴とする実施態様例1に記載の塗布膜形成装置。
【0037】
(実施態様例3)
前記気流発生装置により発生させた気流の状態を監視する監視装置を備えたことを特徴とする実施態様例1または2に記載の塗布膜形成装置。
【0038】
(実施態様例4)
前記気流発生装置が、気流の風速、風量を制御する制御装置を有することを特徴とする実施態様例1ないし3のいずれか1項に記載の塗布膜形成装置。
【0039】
(実施態様例5)
前記気流発生装置が、塗布基板との距離を制御する位置制御装置を有することを特徴とする1ないし4のいずれか1項に記載の塗布膜形成装置。
【0040】
(実施態様例6)
前記塗布基板と気流発生装置との間に、塗布液体の乾燥固化を阻害する気体を供給する気体供給装置を備えたことを特徴とする実施態様例1ないし5のいずれか1項に記載の塗布膜形成装置。
【0041】
(実施態様例7)
前記塗布基板に対してその法線方向に近づく気流を発生させる装置を、前記気流発生装置の周囲に備えたことを特徴とする実施態様例1ないし6のいずれか1項に記載の塗布膜形成装置。
【0042】
(実施態様例8)
実施態様例1ないし7のいずれか1項に記載の塗布膜形成装置を用いて塗布膜形成を行なう方法であって、
塗布部に塗布基板を取り付け、塗布ヘッドと塗布基板とを相対移動させつつ、塗布ヘッド開口部から液体を吐出して塗布基板上に塗布を行う塗布工程と、
その傍から前記気流発生装置を塗布基板と相対する位置に移動し、塗布基板の法線方向に離れる気流を発生させ、該気流発生装置と塗布基板との相対位置を保ちつつその両者を乾燥部に搬送して塗布液体の乾燥固化を行なう乾燥工程と、
を有することを特徴とする塗布膜形成方法。
【0043】
【発明の効果】
以上説明したように、本発明によれば、
スリット状の開口部を持つ塗布ヘッドによって液状物を任意の領域に塗布して薄膜を形成する際、揮発成分の拡散方向の自由度を塗布領域全体で均一にすることができ、厚膜端部現象の発生を抑えて有効領域の拡大を行なうことができる。
このため、材料コストを最小限にした高膜厚精度の塗布膜の形成を実現することができる。
【図面の簡単な説明】
【図1】実施例1における塗布膜形成装置の全体の構成を示した、塗布ヘッド相対移動方向の断面図である。
【図2】実施例1における塗布膜形成装置の全体の構成を示した、塗布基板の法線方向から見た断面図である。
【図3】実施例1における(塗布部における)気流発生装置の動きを示した、塗布ヘッド相対移動方向の断面図である。
【図4】実施例1における(塗布部における)気流発生装置の動きを示した、塗布基板の法線方向から見た断面図である。
【図5】図5(a)は実施例1における塗布膜形成装置の塗布ヘッド部、図5(b)は実施例1における気流発生装置と搬送部を示した断面図である。
【図6】実施例1における塗布部から乾燥部への気流発生装置の動きを示した構成図である。
【図7】実施例1における気流をイメージした断面図である。
【図8】実施例1における塗布ヘッドの概略構成図である。
【図9】実施例2における気流発生装置と搬送部とを示す断面図である。
【図10】実施例2における気流をイメージした断面図である。
【図11】実施例3における気流発生装置と搬送部とを示す断面図である。
【図12】実施例3における気流をイメージした断面図である。
【図13】実施例1における膜厚分布を示したグラフである。
【図14】実施例2における膜厚分布を示したグラフである。
【符号の説明】
1 塗布基板トレイ、
2 気流発生装置の搬送装置、
3 ヒーター、
4 気流発生装置、
5 吐出口、
6 スリット、
7 流入口、
8 塗布膜、
9 塗布基板、
10 ビード、
11 マニホールド、
12 塗布ヘッド、
13 塗布膜形成装置ステージ、
14 乾燥部ステージ、
15 塗布部ステージ、
16 揮発成分気体供給装置、
17 気流発生装置、
21 定量ポンプ、
22 フィルタ、
23 開閉弁、
24 配管、
25 塗布液タンク。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for forming a thin film by applying a liquid material on an arbitrary substrate.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method of forming a film by applying a liquid material on an arbitrary substrate, a slit coating method of discharging the liquid material from a coating head having a slit-shaped opening has been known. When a coating material is applied to an arbitrary area by the slit coating method, when volatile components contained in the liquid material are volatilized at a high speed by giving natural energy or applying heat energy, a thick film is formed at an end of the application area. The phenomenon of becoming a film (hereinafter, a thick film edge) appears.
[0003]
In this thick film edge phenomenon, the volatilization rate of the volatile component contained in the coating material is high in the entire coating area, particularly at the edge, so that the surface tension increases in the middle thereof, and the surrounding materials gather there. It is known to occur because.
[0004]
If the thickness deviates from the allowable range due to the thick-film edge phenomenon, the inside of the thick-film portion must be set as an effective area, and the application efficiency of the coating substrate and the coating material deteriorates. Process cost will increase.
[0005]
In the case where a photolitho resist material or the like is applied and then exposure and development are performed using a mask, if the height of the thick film portion and the flat portion is large, exposure with the required accuracy may not be realized. In such a case, it is necessary to add a process such as cutting the thick film portion, and the process cost similarly increases.
[0006]
As measures to prevent the thick film edge from being generated, “multiple coatings”, “supply of low viscosity auxiliary liquid to the edge”, “application of an electric field to the edge”, “application of ultrasonic waves to the edge” And so on.
[0007]
Here, the conventional countermeasures will be described in detail.
[0008]
First, with respect to a plurality of coatings, if the coating thickness per coating is reduced, the difference in the volatilization rate between the center and the end is reduced, and the end of the thick film is less likely to be formed. Therefore, if the required film thickness is achieved by applying a plurality of times, the effective area of the film thickness can be expanded. However, this method has a problem that the tact time naturally increases.
[0009]
In addition, there is a method of preventing the film from being thickened by supplying an auxiliary liquid having a small viscosity to an end portion when applying the liquid. According to this method, there is an advantage that the flow in the in-plane direction due to the surface tension gradient is reduced, but it is necessary to select an auxiliary liquid that does not affect the film quality itself of the coating film.
[0010]
Furthermore, a method of applying an electric field or ultrasonic waves as a method of not increasing the surface tension even if volatilization proceeds requires a device for generating an electric field or ultrasonic waves, and increases the process cost.
[0011]
As described above, various means for solving the thick film edge phenomenon are considered, but there are methods which cannot be used depending on the target coating substrate and coating material, and secondary and tertiary processes are required. The necessity has increased the process cost.
[0012]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems,
A method that can be used universally in any situation and that minimizes the process cost as much as possible, and is a coating area end that appears when a liquid material is applied to an arbitrary area by a coating head having a slit-shaped opening. It is an object of the present invention to eliminate the thick film portion and to expand the effective area of the film forming portion.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problem, a first mode according to the present invention includes:
The coating is performed by ejecting a liquid from the coating head opening while applying a coating head having a slit-shaped opening and a substrate to be coated relatively to be perpendicular to the longitudinal direction of the coating head opening. Unit, further comprising a drying unit for drying and solidifying by applying energy to the liquid applied to the coating substrate,
The coating film forming apparatus further includes an airflow generating device that is arranged at a position facing the coating substrate and generates an airflow separated in a normal direction of the coating substrate.
in this case,
The coating film forming apparatus is provided with a transfer device that immediately after the coating head passes over the coating substrate, arranges the airflow generating device at a position facing the coating substrate, and then moves from the coating unit to the drying unit together with the coating substrate. Is preferred.
[0014]
Further, it may have a function of monitoring the state of the generated airflow, and may have a function of controlling the wind speed and amount of the airflow and the distance between the airflow generation device and the application substrate according to the drying condition of the coating liquid.
[0015]
In order to make the drying speed uniform over the entire application area, a function of supplying the volatile component gas to a portion where the drying speed is particularly high may be provided.
Furthermore, in order to compensate for the flow near the coating substrate generated by the airflow separating in the normal direction of the coating substrate, a function of generating an airflow approaching the normal direction of the coating substrate surface may be provided around the airflow generating device. .
[0016]
[Action]
As described above, the thick film edge phenomenon is a phenomenon in which the surface tension is increased in the middle of the entire coating area because the volatilization rate of the volatile component contained in the coating material is high particularly at the edge. It is known to be the cause. In other words, if it is possible to volatilize uniformly over the entire region including the end portion of the coating region, it is considered that the distribution of surface tension does not occur in the middle, and the thick film end portion phenomenon can be eliminated.
[0017]
Components volatilized from the applied material diffuse into the atmosphere, but only the degree of freedom in the normal direction exists in the central part of the applied area, whereas the area near the edge of the applied area is wide outside the area. In order to have a degree of freedom, it is essential that the diffusion speed at the end portion be high in a static state where there is no forced flow in the atmosphere. Therefore, the volatilization rate at the end of the application area increases. Therefore, it was considered that the degree of freedom in the diffusion direction of the volatile component can be made uniform by giving a forced flow to the atmosphere surrounding the application region. However, if the flow velocity is high, the material deposited on the application substrate is washed away, and there is a possibility that unevenness in film thickness, wind ripples and the like may occur. Therefore, it is necessary to set an appropriate flow rate according to the type of the coating material and the volatile component. Further, since the vaporization of volatile components has already started when the film is formed on the coated substrate, it is necessary to forcibly apply the flow of the atmosphere from the side where the coating is being performed, and continue to supply the flow until drying and solidification is completed. There is a need.
[0018]
In order to further reduce the process time and cost, the coating material and the atmosphere are used to increase the efficiency of the diffusion of volatile components in the coating material, vaporization from the coating material, and diffusion into the atmosphere after vaporization. It is necessary to supply energy such as heat to the well-balanced.
[0019]
【Example】
Hereinafter, examples of the present invention will be described.
[0020]
(Example 1)
1 and 2 are schematic diagrams of the entire configuration of the coating film forming apparatus of the present embodiment. FIG. 1 is a cross-sectional view of the coating head 12 and the coating substrate 9 in a relative movement direction, and FIG. 2 is a cross-sectional view of the coating substrate 9 as viewed from a normal direction. Further, FIG. 8 shows a schematic configuration diagram of a coating head which is one of the components of the apparatus.
[0021]
The process of this embodiment includes a “coating process” and a “drying process”. First, the “coating process” will be described in detail below.
[0022]
The application substrate 9 is placed on an application section stage 15 for performing relative movement with respect to the application head 12. At this time, the coating unit stage 15 and the drying unit stage 14 are arranged adjacent to each other.
[0023]
First, the coating liquid is supplied from the coating liquid tank 25 to the coating head 12 by the metering pump 21. The metering pump 21 is a positive displacement pump such as a gear pump, a diaphragm pump, and a syringe pump. As another application liquid supply mechanism of the pump, a type in which the application liquid tank 25 is put in a pressure vessel and pressurized air is supplied to the pressure vessel by a pressure pump to thereby extrude the application liquid. . A filter 22 and an on-off valve 23 are provided as necessary in a path of a pipe 24 from the application liquid tank 25 to the metering pump 21.
[0024]
The coating liquid supplied from the coating liquid supply mechanism to the coating head 12 flows into the head from the inflow port 7 located at the center in the longitudinal direction of the side surface of the head, passes through the manifold 11, and then discharges through the slit 6. Go to Exit 5. Further, when the coating liquid is discharged from the discharge port to the outside of the head, the coating liquid forms a bead and gradually increases, and eventually reaches the coating substrate 9.
[0025]
Thereafter, when the relative movement between the coating substrate 9 and the coating head 12 is started, the coating liquid supplied from the coating head is deposited on the substrate via a bead outside the discharge port 5 of the coating head 12. After the application of the application liquid to the predetermined area on the application substrate 9 is stopped and the “application step” is completed, the airflow generator 4 is moved to a position facing the application substrate, and the surface of the application substrate 9 An airflow is generated in a direction away from the normal direction of the airbag. At this time, the wind speed and air volume of the airflow are controlled according to the situation. FIG. 3 shows this state in a cross section in the longitudinal direction of the coating head 12, and FIG. 4 shows a view seen from the normal direction of the coating substrate 9. In this embodiment, the transport unit 5 of the coating head 12 and the transport device 2 of the airflow generation device 4 are arranged on opposite sides of the coating substrate 9. (See FIGS. 5A and 5B)
Next, in order to move to a “drying step” for removing volatile components such as a solvent, the coated substrate is moved to the drying unit stage 14 by the transport device 2 together with the airflow generator 4. FIG. 6 shows this state. Then, the coating substrate 9 is heated by the heater 3 of the drying unit stage 14, and a volatile component such as a solvent contained in the coating material is removed while controlling the wind speed and the air volume by the airflow control function of the airflow generation device 4 according to the situation. Remove and dry to solidify.
[0026]
FIG. 7 is a view showing an image of an airflow generated by the airflow generation device 4 in the present embodiment, in which an airflow separated in a normal direction of the surface of the application substrate 9 is illustrated.
[0027]
As a result of coating using the coating apparatus of this example, the film thickness distribution shown in the graph of FIG. 13 was obtained.
[0028]
Referring to this graph, it can be seen that in the present example, the thick film edge phenomenon was reduced as compared with the comparative example.
The application conditions for obtaining this data are as follows.
Coating liquid: general-purpose photoresist material (solvent: diglyme)
Coating liquid viscosity: 4 Pa · sec
Coating liquid solids concentration: 18.6 wt%
Coating substrate: Contact angle between the coating liquid of blue sheet glass and coating substrate: 15 °
Coating speed: 5mm / sec
Discharge flow rate: 0.5 mm 3 / sec (per unit length in the longitudinal direction of the coating head)
Head-substrate distance: 130 μm
Airflow generator conditions: 50 mm / sec (exhaust)
(Example 2)
FIG. 9 shows a diagram of the airflow generation device 4 and its transport device 2 according to the second embodiment of the present invention.
[0029]
The figure shows a cross-sectional view as seen from the direction in which the coating head 12 and the coating substrate 9 move relative to each other. After the coating is completed, the airflow generator 4 is moved to a position facing the coating substrate 9, and This embodiment is similar to the first embodiment in that an airflow that separates in the linear direction is generated. However, the difference is that it is arranged in the transfer device 2 of the airflow generation device 4.
[0030]
FIG. 10 shows the state of air flow near the application region after application by the application film forming apparatus of the present embodiment. By supplying a volatile component gas such as a solvent to the vicinity of the application region end, the vicinity of the application region end is provided. The drying speed is suppressed, and can be synchronized with the drying speed at the center of the application area.
[0031]
FIG. 14 shows the film thickness distribution obtained by performing the coating under the same conditions as in Example 1. It can be seen that the thick film edge phenomenon was reduced as compared with the conventional example as in Example 1.
[0032]
(Example 3)
FIG. 11 shows a diagram of the airflow generation device 4 and its transport device 2 in the third embodiment.
9 shows a cross-sectional view as seen from the direction in which the coating head 12 and the coating substrate 9 move relative to each other. After the coating is completed, the airflow generating device 4 is moved to a position opposite to the coating substrate 9 to perform coating. The point of generating an airflow separated in the normal direction of the substrate surface is the same as in the first and second embodiments. However, in this embodiment, the airflow generation device 17 that generates the airflow approaching the normal direction of the coated substrate surface is used. This embodiment differs from the first embodiment in that the airflow generator 4 is disposed so as to be in contact with the outer periphery of the airflow generation device 4.
[0033]
FIG. 12 shows the state of airflow near the application area after application by the application film forming apparatus of the present embodiment. The airflow generating device 4 generates an airflow that is separated in the normal direction of the surface of the application substrate. By generating an airflow approaching the normal direction of the application substrate surface by the airflow generation device 17, the airflow flowing from outside the application substrate 9 is reduced. As a result, the speed of the air flow near the end of the coating region can be reduced, and the drying speed near the end of the coating region is suppressed.
[0034]
Therefore, also in the present embodiment, it is possible to synchronize with the drying speed at the center of the application region, and to reduce the thick film edge phenomenon.
Hereinafter, embodiments of the present invention will be described.
[0035]
(Embodiment example 1)
The coating is performed by ejecting a liquid from the coating head opening while applying a coating head having a slit-shaped opening and a substrate to be coated relatively to be perpendicular to the longitudinal direction of the coating head opening. Unit, further comprising a drying unit for drying and solidifying by applying energy to the liquid applied to the coating substrate,
An apparatus for forming a coating film, comprising: an airflow generator that is arranged at a position facing the coating substrate and generates an airflow that is separated in a normal direction of the coating substrate.
[0036]
(Embodiment 2)
The coating film forming apparatus according to the first embodiment, further comprising a transport device that moves both the airflow generation device and the coating substrate from a coating unit to a drying unit.
[0037]
(Embodiment 3)
The coating film forming apparatus according to the first or second embodiment, further comprising a monitoring device that monitors a state of the airflow generated by the airflow generation device.
[0038]
(Embodiment example 4)
The coating film forming apparatus according to any one of Embodiments 1 to 3, wherein the airflow generation device includes a control device that controls a wind speed and an airflow of the airflow.
[0039]
(Embodiment 5)
The coating film forming apparatus according to any one of claims 1 to 4, wherein the airflow generating device includes a position control device that controls a distance from the coating substrate.
[0040]
(Embodiment example 6)
The coating according to any one of Embodiments 1 to 5, further comprising a gas supply device that supplies a gas that inhibits drying and solidification of the coating liquid between the coating substrate and the airflow generator. Film forming equipment.
[0041]
(Embodiment 7)
The coating film formation according to any one of Embodiments 1 to 6, wherein a device for generating an airflow approaching the normal direction to the coating substrate is provided around the airflow generating device. apparatus.
[0042]
(Embodiment 8)
A method for forming a coating film using the coating film forming apparatus according to any one of Embodiments 1 to 7,
A coating step of attaching a coating substrate to the coating section, and moving the coating head and the coating substrate relative to each other, while discharging the liquid from the coating head opening to perform coating on the coating substrate;
From the side, the airflow generator is moved to a position facing the coating substrate to generate an airflow that is separated in the normal direction of the coating substrate, and both are dried while maintaining the relative position between the airflow generator and the coating substrate. A drying step of transporting the coating liquid to dry and solidify the coating liquid;
A method for forming a coating film, comprising:
[0043]
【The invention's effect】
As described above, according to the present invention,
When a thin film is formed by applying a liquid material to an arbitrary region using a coating head having a slit-shaped opening, the degree of freedom in the diffusion direction of volatile components can be made uniform throughout the coating region, and the thick film end The effective area can be expanded while suppressing the occurrence of the phenomenon.
For this reason, it is possible to realize the formation of the coating film with high film thickness accuracy while minimizing the material cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in the direction of relative movement of a coating head, showing the overall configuration of a coating film forming apparatus according to a first embodiment.
FIG. 2 is a cross-sectional view of the entire configuration of the coating film forming apparatus according to the first embodiment, viewed from the normal direction of the coating substrate.
FIG. 3 is a cross-sectional view illustrating a movement of an airflow generating device (at a coating unit) in a coating head relative movement direction according to the first embodiment.
FIG. 4 is a cross-sectional view of the movement of the airflow generating device (at a coating unit) in Example 1, as viewed from the normal direction of the coating substrate.
5A is a cross-sectional view illustrating a coating head unit of the coating film forming apparatus according to the first embodiment, and FIG. 5B is a cross-sectional view illustrating an airflow generation device and a transport unit according to the first embodiment.
FIG. 6 is a configuration diagram illustrating a movement of an airflow generation device from a coating unit to a drying unit according to the first embodiment.
FIG. 7 is a cross-sectional view illustrating an airflow in the first embodiment.
FIG. 8 is a schematic configuration diagram of a coating head according to the first embodiment.
FIG. 9 is a cross-sectional view illustrating an airflow generation device and a transport unit according to a second embodiment.
FIG. 10 is a cross-sectional view illustrating an airflow in the second embodiment.
FIG. 11 is a cross-sectional view illustrating an airflow generation device and a transport unit according to a third embodiment.
FIG. 12 is a cross-sectional view illustrating an airflow in the third embodiment.
FIG. 13 is a graph showing a film thickness distribution in Example 1.
FIG. 14 is a graph showing a film thickness distribution in Example 2.
[Explanation of symbols]
1 coated substrate tray,
2 Transport device for airflow generator,
3 heater,
4 airflow generator,
5 outlets,
6 slits,
7 Inlet,
8 coating film,
9 coating substrate,
10 beads,
11 manifold,
12 coating head,
13 coating film forming apparatus stage,
14 drying section stage,
15 coating stage
16 volatile component gas supply device,
17 airflow generator,
21 metering pump,
22 filters,
23 on-off valve,
24 plumbing,
25 Coating liquid tank.

Claims (1)

スリット状の開口部を持つ塗布ヘッドと、塗布対象基板とを、前記塗布ヘッド開口部の長手方向に直交するように相対移動させつつ、前記塗布ヘッド開口部から液体を吐出して塗布を行なう塗布部と、更に前記塗布基板に塗布された液体に対してエネルギーを与えて乾燥固化させる乾燥部とを備える装置であって、
前記塗布基板と対面する位置に配置され、該塗布基板の法線方向に離れる気流を発生させる気流発生装置を備えたことを特徴とする塗布膜形成装置。
The coating is performed by ejecting a liquid from the coating head opening while applying a coating head having a slit-shaped opening and a substrate to be coated relatively to be perpendicular to the longitudinal direction of the coating head opening. Unit, further comprising a drying unit for drying and solidifying by applying energy to the liquid applied to the coating substrate,
An apparatus for forming a coating film, comprising: an airflow generator that is arranged at a position facing the coating substrate and generates an airflow that is separated in a normal direction of the coating substrate.
JP2003099631A 2003-04-02 2003-04-02 Coating film forming apparatus Pending JP2004305818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099631A JP2004305818A (en) 2003-04-02 2003-04-02 Coating film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099631A JP2004305818A (en) 2003-04-02 2003-04-02 Coating film forming apparatus

Publications (1)

Publication Number Publication Date
JP2004305818A true JP2004305818A (en) 2004-11-04

Family

ID=33464020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099631A Pending JP2004305818A (en) 2003-04-02 2003-04-02 Coating film forming apparatus

Country Status (1)

Country Link
JP (1) JP2004305818A (en)

Similar Documents

Publication Publication Date Title
US7208201B2 (en) Coating apparatus and method having a slide bead coater and liquid drop applicator
KR960015708A (en) How to uniformly coat the substrate
JP5208179B2 (en) Vacuum chamber system of coating apparatus and coating method using the same
CN101932754A (en) Single phase fluid imprint lithography method
US6302960B1 (en) Photoresist coater
JPH1099764A (en) Coating applicator and method therefor
JP2009038047A (en) Liquid vaporization apparatus
JP2002015984A (en) Film-forming method
CN105983511B (en) Apparatus for coating and coating method
JP2005013989A (en) Coating method and coating machine
JP2004305818A (en) Coating film forming apparatus
JP2005270704A (en) Coating apparatus
JPH06277600A (en) Device and method for slide bead applicaion
JP2004247359A (en) Coating film forming device
JPH0248137B2 (en)
JP2587953B2 (en) Resist coating equipment
JP2004358311A (en) Slit coat method
JP2003224060A (en) Method of forming liquid film and method of forming solid film
JP2005111349A (en) Apparatus for film formation and method of forming film
JPH06246215A (en) Bladeless coater
KR100441709B1 (en) A jet device for providing developer in the lithography process
JP2015066518A (en) Drying device of coating material
JPH0515828A (en) Pressurization type curtain coating device
JP5310256B2 (en) Coating device
JP2004313874A (en) Coating application head