JP2004305005A - Method for stabilizing milk component-containing beverage - Google Patents

Method for stabilizing milk component-containing beverage Download PDF

Info

Publication number
JP2004305005A
JP2004305005A JP2003098602A JP2003098602A JP2004305005A JP 2004305005 A JP2004305005 A JP 2004305005A JP 2003098602 A JP2003098602 A JP 2003098602A JP 2003098602 A JP2003098602 A JP 2003098602A JP 2004305005 A JP2004305005 A JP 2004305005A
Authority
JP
Japan
Prior art keywords
cellulose
water
milk
component
aqueous dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003098602A
Other languages
Japanese (ja)
Other versions
JP4159393B2 (en
JP2004305005A5 (en
Inventor
Yoshihito Yaginuma
義仁 柳沼
Koichiro Enatsu
浩一郎 江夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003098602A priority Critical patent/JP4159393B2/en
Publication of JP2004305005A publication Critical patent/JP2004305005A/en
Publication of JP2004305005A5 publication Critical patent/JP2004305005A5/ja
Application granted granted Critical
Publication of JP4159393B2 publication Critical patent/JP4159393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate problems that oil-off or settling or coagulation of milk proteins is caused especially when a beverage is supplied in a hot state by improving storage stability of the beverage containing a milk component. <P>SOLUTION: Microfibrous cellulose made from plant cell walls as a raw material is formulated with the beverage. When the beverage is produced, a composite is sufficiently dispersed and made to uniformly exist in the whole beverage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はオイルオフがなく、かつ、乳蛋白の沈降や乳成分の凝集のない、経時的に安定な飲料に関わる。
【0002】
【従来の技術】
飲料には、味をまろやかにしたり、栄養成分を強化したり、あるいは、乳の味を付与する目的で、牛乳やクリーム、全脂粉乳、脱脂粉乳などの乳成分を配合することが多い。その例としては、ミルクコーヒー、ミルク紅茶などが上げられる。
しかしながら、長期間の保存や、加熱などにより、乳成分(脂肪球)の乳化が損なわれ、油脂成分が飲料の上面に浮上し、飲料上面における容器との接触部位にリング状に集まることがある。それが、進行すると上面全体が白い膜で覆われるようになる。飲料をふると一時的に解消されるが、静置するとすぐに薄膜で覆われる。ひどい場合には、油脂が容器内壁にリング状に固着したり、あるいは、それがはがれて飲料中に混入するようになる。そうするともはや商品は商品価値を失い、顧客によるクレームとなる。これが「オイルオフ」「オイルリング」と呼ばれる問題である。
【0003】
また、乳化が壊れると、乳蛋白が凝集し、容器底部に沈殿することもある。これもまた、外観の悪化と味質の低下を引き起こしてしまう。
従来、上記のようなオイルオフ防止を行うにあたり、セルロース系素材を応用する技術については、特許文献1〜4のような技術が開示されている。しかしながら、必要配合量が多かったり、高温保存では充分な安定化が得られなかったり、味が悪くなったりして、実用的な技術は存在していなかった。
近年は、缶のみならず、ビンやPETボトルといった種々の透明容器が汎用されるようになり、さらにはホットで販売されるPETボトル入り飲料まで出現するに至り、有効な安定化技術の出現が待ち望まれている。
【0004】
【特許文献1】
特開平6−245703号公報
【特許文献2】
特開平11−178516号公報
【特許文献3】
特開平6−335348号公報
【特許文献4】
特開平8−38127号公報
【0005】
【発明が解決しようとする課題】
本発明の課題は、長期間の保存や保温等のヒートショックによるオイルオフや乳蛋白の沈降のない、安定な乳成分含有飲料を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、微細な繊維状のセルロースを主たる成分とする水分散性組成物を使用することで課題を解決し、本発明をなすに至った。すなわち本発明は下記の通りである。
(1)植物細胞壁を原料とした微細な繊維状のセルロースであって、その0.1質量%水分散液に安定に懸濁する成分を30質量%以上含有する繊維状セルロースを乳成分含有飲料に配合することを特徴とする乳成分含有飲料の安定化方法。
(2)微細な繊維状のセルロースの0.5質量%水分散液の損失正接が1未満である、請求項1の乳成分含有飲料の安定化方法。
(3)植物細胞壁を原料とした微細な繊維状のセルロースであって、その0.1質量%水分散液に安定に懸濁する成分を30質量%以上含有する繊維状セルロースを、親水性高分子とともに乳成分含有飲料に配合することを特徴とする乳成分含有飲料の安定化方法。
【0007】
(4)植物細胞壁を原料とした繊維状のセルロースであって、その0.1質量%水分散液に安定に懸濁する成分を30質量%以上含有する繊維状セルロース50〜95%と親水性高分子5〜50%を含有する水分散性複合体を乳成分含有飲料に配合する請求項3の乳成分含有飲料の安定化方法。
(5)水分散性複合体の0.5質量%水分散液の損失正接が1未満である、請求項4の乳成分含有飲料の安定化方法。
(6)請求項1、2、3、4、5のいずれかの方法により安定化された乳成分含有飲料。
【0008】
【発明の実施の形態】
本発明について、以下具体的に説明する。
本発明で使用される微細な繊維状のセルロースは植物細胞壁を原料とする。具体的には、木材(針葉樹、広葉樹)、コットンリンター、ケナフ、マニラ麻(アバカ)、サイザル麻、ジュート、サバイグラス、エスパルト草、バガス、稲わら、麦わら、葦、竹などの植物細胞壁由来の天然セルロースを主成分とするパルプが使用される。特に工業的に使用が可能なものが好ましい。これらは、比較的安価で、かつ、安定的に原料を入手することができるので、経済的に製品を市場に供給することができる。
【0009】
綿花、パピルス草、ビート、こうぞ、みつまた、ガンピなども使用が可能だが、原料の安定的な確保が困難であること、セルロース以外の成分の含有量が多いこと、ハンドリングが難しいことなどの理由で好ましくない場合がある。植物細胞壁を原料としない微生物セルロースは、価格および原料確保の問題を解決できないので、本発明の原料としては含まれない。再生セルロースを原料とした場合は、充分な性能が発揮されないので、再生セルロースもまた本発明の原料としては含まれない。
【0010】
本発明で使用される微細な繊維状のセルロースは、原料中に存在するミクロフィブリルをできるだけ短繊維化させることなく取り出したものであることが望ましい。しかしながら、残念ながら現在の技術では引き裂くという作用のみを与えて「微細化」する装置はない。従って多少なりとも「短繊維化」は生じてしまう。原料セルロースの平均重合度が低いと「短繊維化」が生じやすく、粗大な繊維がなくなるまで処理すると、同時に短繊維化も進行し、結果として、後述する水分散液の損失正接値は1以上となりやすい。(以下、本発明においては、「短繊維化」とは繊維を切断等の作用により短くすること、あるいは短くなった状態を意味する。また、「微細化」とは繊維を引き裂くなどの作用により細くすること、あるいは細くなった状態を意味する。)
【0011】
一方、α−セルロース含有量もまた、その値が高いと、「微細化」と「短繊維化」が同時に進行するために、水分散液の損失正接値は1以上となりやすい。ちなみに、α−セルロースとは17.5重量NaOH水溶液に溶解しない成分であり、これは重合度が比較的大きく、かつ、より結晶性の高い成分と考えられる。α−セルロース以外の成分、すなわち、β−セルロース、γ−セルロース、ヘミセルロースなどの含有量が増えると、「短繊維化」よりも「微細化」が優位に進行するらしい。このため、α−セルロース以外の成分の含有量が増えると、水分散液の損失正接値は1未満となりやすくなる。これは、α−セルロース成分は結晶性の高いミクロフィブリル成分を構成し、その他の成分はそれらの周辺に位置するという構造をとっているためではないかと推定する。
【0012】
本発明で使用される原料としては、この「微細化」と「短繊維化」の受けやすさのバランスが重要であり、方向としてはより平均重合度が高く、α−セルロース含有量が低い方が好ましい。本発明者らはこの関係を詳細に検討し、原料の平均重合度が400以上で、かつ、α−セルロース含有量が60〜100%の関係にあれば、「短繊維化」よりも「微細化」が優位に進行し、その結果として、水分散液の損失正接値は1未満となりやすい原料であることを見いだした。但し、平均重合度が低く、α−セルロース含有量が高い場合、すなわち平均重合度が1300未満で、かつ、α−セルロース含有量が90%を越える場合は「短繊維化」が「微細化」と同じか、あるいは優位に進行するため、不適当である。また、α−セルロース含有量が60%未満であると、相対的に微細な繊維状のセルロースとなり得る成分が減少してしまうので、不適当である。好ましい原料の具体例は、木材パルプ、コットンリンターパルプ、麦わらパルプ、稲わらパルプ、竹パルプ、バガスバルプなどである。
【0013】
本発明に使用される原料は、微細化の促進を目的として、前処理を行ってから使用してもよい。前処理法の例としてはたとえば、希薄なアルカリ水溶液(たとえば、1mol/LのNaOH水溶液)に数時間浸漬したり、希薄な酸水溶液に浸漬したり、酵素処理したり、あるいは爆砕処理することなどがあげられる。
本発明に使用される原料は、まず、長さ4mm以下の繊維状粒子に加工する。全個数(本数)の50%以上は約0.5mm以上であることが好ましい。より好ましくは全ての粒子が3mm以下、最も好ましくは2.5mm以下である。方法としては、乾式/湿式いずれの方法でも可能である。乾式ならばシュレッダー、ハンマーミル、ピンミル、ボールミルなどが使用できるし、湿式ならば高速回転型ホモジナイザー、カッターミルなどが使用できる。必要に応じて各装置に投入しやすいサイズに加工した後に処理する。複数回処理を行ってもよい。湿式媒体撹拌型粉砕機のような強力な粉砕機にかけると過剰に短繊維化してしまうので好ましくない。
【0014】
好ましい機械はコミトロール(URSCHEL LABORATORIES,Inc.)である。コミトロールを使用する場合は、例えば原料パルプを5〜15mm角に裁断した後、水分72〜85%程度に含水させ、カッティングヘッドあるいはマイクロカットヘッドを装着した装置に投入して処理すればよい。
次いで、これを水に投入し、プロペラ撹拌、回転型ホモジナイザーなどを用いて、繊維状粒子が凝集することのない様に分散する。パルプ化の工程等の作用により繊維状粒子の長さが短い原料(パルプ)の場合は、この分散操作のみで長さ4mm以下の繊維状粒子の水分散液とすることができる場合もある。濃度は0.1〜5%程度が好ましい。この時、繊維状成分の懸濁安定性、凝集防止を目的として、親水性高分子を配合しても良い。カルボキシメチルセルロース・ナトリウムの配合は望ましい実施態様の一つである。
【0015】
次いで、この水分散液をある程度の短繊維化と、微細化の処理を施し、0.5%水分散液の沈降体積が70体積%以上になるようにする。好ましくは沈降体積が85体積%以上である。なお沈降体積とは、微細な繊維状のセルロースが均一に懸濁するように水に分散したもの100mL(0.5%)を内径25mmのガラス管に注ぎ込み、数回反転して内容物を撹拌した後、室温で4時間静置した時に観察される白濁した懸濁層の体積を意味する。装置としては高速回転型ホモジナイザー、ピストン型ホモジナイザー、砥石回転型粉砕機などが使用できる。好ましい装置は砥石回転型粉砕機である。
【0016】
砥石回転型粉砕機とは、コロイドミルあるいは石臼型粉砕機の一種であり、例えば、粒度が16〜120番の砥粒からなる砥石をすりあわせ、そのすりあわせ部に前述の水分散液を通すことで、粉砕処理される装置のことである。必要に応じて、複数回処理を行ってもよい。砥石を適宜変更するのは好ましい実施態様の一つである。砥石回転型粉砕機は、「短繊維化」と「微細化」の両作用を有するが、その作用は砥粒の粒度に影響を受ける。短繊維化を目的とする場合は46番以下の砥石が有効であり、微細化を目的とする場合は46番以上の砥石が有効である。46番はいずれの作用も有する。具体的な装置としては、ピュアファインミル(グランダーミル)(株式会社栗田機械製作所)、セレンディピター、スーパーマスコロイダー、セレンマイスター、スーパーグラインデル(以上、増幸産業株式会社)などがあげられる。
【0017】
次いで、この水分散液を高圧ホモジナイザーにて60〜414MPaの圧力で処理することにより、微細な繊維状のセルロースが調製される。必要に応じて複数回処理を行う。遠心分離等の操作によって分取してもよい。原料の平均重合度が2000以上で、かつ、α−セルロース含有量が90%を越える場合は10回以上あるいは20回以上、高圧ホモジナイザー処理する必要がある場合があるが、生産効率を考慮すると、原料や、砥石回転型粉砕機の処理条件を適当に選択することにより、6回以下にとどめることが好ましい。一般的には、処理回数を増やすと、粘度は上昇した後、徐々に低下してくる。これは、処理回数が増えると細くなる方は限界に近づくが、短くなる方は徐々に進行するため、すなわち「微細化」よりも「短繊維化」が優勢となるためと思われる。濃度は低いほど「微細化」が優勢に進むらしく、結果として見かけ粘度の最高到達値が高くなる。処理圧もまた低いほど最高到達粘度が高くなるが、処理回数がたくさん必要となる。その場合、α−セルロース含有量が高いと、最高到達粘度に達しにくい。処理圧が高いとより少ない処理回数で最高到達粘度に到達するが、「短繊維化」が進みやすく、絶対値はより低くなる。損失正接をより低くするためには、低濃度、低圧で処理するとよいが、生産効率が悪い。だから、処理濃度と処理圧力は、性能と生産性を考慮して設定する必要がある。処理温度は5〜95℃程度を適宜選択すればよい。高温で処理すると微細化が進みやすいが、原料によっては著しく短繊維化が進む場合があるので、適宜選択する必要がある。具体的な装置としては、圧力式ホモジナイザー(Invensys APV社、株式会社イズミフードマシナリー)、エマルジフレックス(AVESTIN,Inc.)、アルティマイザーシステム(株式会社スギノマシン)、ナノマイザーシステム(ナノマイザー株式会社)、マイクロフルイダイザー(MFIC Corp.)などがある。
【0018】
本発明で使用される微細な繊維状のセルロースの「微細な繊維状」とは、光学顕微鏡および電子顕微鏡にて観察・測定されるところの、長さ(長径)が0.5μm〜1mm程度、幅(短径)が2nm〜60μm程度、長さと幅の比(長径/短径)が5〜400程度であることを意味する。
【0019】
本発明で使用される微細な繊維状のセルロースは、水中で安定に懸濁する成分を含有する。具体的には、0.1%濃度の水分散液状態として、これを1000Gで5分間遠心分離した時においても、沈降することなく水中に安定に懸濁しているという性質を有する成分であり、高分解能走査型電子顕微鏡(SEM)にて観察・測定される長さ(長径)が0.5〜30μmであり、幅(短径)が2〜600nmであり、長さと幅の比(長径/短径比)が20〜400である繊維状のセルロースからなる。好ましくは、幅が100nm以下であり、より好ましくは50nmである。通常セルロース粒子の水分散系は白濁することが特徴であり、その白さゆえに食品においてはクラウディ剤として使用されることがある。しかしながら本発明で使用される微細な繊維状のセルロースの好ましい実施態様、すなわちほとんどの成分の幅が100nm以下になると、光の透過性が上がり、透明性を増してくるという特徴を有する。この成分は本発明において非常に重要な要素であり、より低添加量で乳成分の安定化等を発揮する原因となるものである。
【0020】
本発明で使用される微細な繊維状のセルロースは、この「水中で安定に懸濁する成分」を30%以上含有する。含有量は多いほど好ましいが、50%以上であればより好ましい。なお、この成分の含有量は特に断らない限り、全セルロース中の存在比率を表すものであり、水溶性成分が含まれている場合であってもそれが含まれないように測定・算出される。
【0021】
本発明で使用される微細な繊維状のセルロースは、0.5%濃度の水分散液において、歪み10%、周波数10rad/sの条件で測定される損失正接(tanδ)が1未満であり、好ましくは0.6未満である。この値は、水分散液の動的粘弾性を示すものであり、値が低いほど水分散液がゲル的な性質をとる。ゲルとは、たとえば高分子水溶液においては、溶質(高分子鎖)が三次元的な網目構造を形成し、溶媒(水)を不動化(固定化)する状態と考えられている。一般論として、ゲル形成性水溶性高分子の場合、低濃度では損失正接が1以上であるが、濃度が上がるに連れて値が下がり、ゲルを形成する濃度では1未満となるといわれている。一方、本発明で使用される微細な繊維状のセルロースは、前述の測定条件では損失正接が1未満であるが、流動性があり、真性のゲルではない。すなわち、低周波数あるいは低歪みにおいては分散質(微細な繊維状のセルロース)が三次元網目構造を形成し、分散媒(水)を固定化する性質、すなわちゲル的性質を有する、ということである。損失正接が1以上であると、懸濁安定性等の性質が劣る。0.6未満であるとそれらの性能はさらに秀でたものとなる。
【0022】
本発明で使用される微細な繊維状のセルロースはきわめて水中での懸濁安定性が高い。そのため、従来の微小繊維状セルロースのように、保水度(JAPANTAPPI紙パルプ試験方法No.26)やろ水度(Freeness:JIS P 8121)を測定することができない。
保水度の場合、絶乾0.5g相当量のセルロースを含む水懸濁液を、目開き74μmの金属製ワイヤ(φ20mm)を張った金属製カップろ過器に注ぎ、吸引装置で徐々に吸引した時に均一なマット状とならなければならないが、本発明品は目詰まりを起こしてマット状にならないか、あるいは金属製ワイヤを通り抜けてしまう。目詰まりを起こした場合、その後の操作である3000G(15分)による遠心分離操作にて上部に離水が生じてしまう。
【0023】
また、ろ水度(カナダ標準形)の場合、黄銅製のふるい板(厚さ0.51mm、直径0.51mmの穴が表面1000mm当たり969個ある)で濾過するような操作がある。0.3%のセルロース(パルプ)繊維水分散液を通す時、セルロース繊維がふるい板の上に積層することにより、水の落下速度が変わることを利用し、セルロース繊維の叩解の程度を判定するというものであるが、本発明品のろ水度を測定すると、水分散性セルロースはふるい板にとどまることなく通過してしまう。詳細を省くが、セルロース繊維の叩解(以下、微小繊維化、という)の程度が進行すると、ろ水度は段々小さくなるが、(製紙用パルプ繊維として)過剰に短く、細くなると、繊維がふるい板を繊維が通過するようになり、ろ水度は段々大きくなってゆく。すなわち微小繊維化が進行すると、ろ水度ははじめは減少するが、その後増加するのである。すなわち、測定の目的と原理から、極端に微細な繊維状になったセルロースの場合、このような測定を行うこと自体が不適当と言える。
【0024】
以上のことより、従来の微小繊維状セルロースは、保水度やろ水度を測定して物性を特定していることを考えると、微細な繊維状の程度が本発明品ほどに進行していないということがわかる。すなわち本発明品は従来の微小繊維状セルロースとは一線を画するものと言える。
【0025】
本発明で使用される親水性高分子とは、冷水および/もしくは温水に溶解もしくは膨潤する高分子であり、乾燥時におけるセルロース同士の角質化を防止する作用を有するものである。具体的にはアラビアガム、アラビノガラクタン、アルギン酸およびその塩、カードラン、ガッティーガム、カラギーナン、カラヤガム、寒天、キサンタンガム、グアーガム、酵素分解グアーガム、クインスシードガム、ジェランガム、ゼラチン、タマリンド種子ガム、難消化性デキストリン、トラガントガム、ファーセルラン、プルラン、ペクチン、ポリデキストロース、ローカントビーンガム、水溶性大豆多糖類、カルボキシメチルセルロース・ナトリウム、メチルセルロース、ポリアクリル酸ナトリウムなどから選ばれた1種または2種以上の物質が使用される。中でも、カルボキシメチルセルロース・ナトリウムが好ましい。このカルボキシメチルセルロース・ナトリウムとしては、カルボキシメチル基の置換度が0.5〜1.5、1%水溶液の粘度が5〜9000mPa・s程度のものの使用が好ましい。より好ましくは、置換度が0.5〜1.0、1%水溶液粘度が1000〜8000mPa・s程度のものである。
【0026】
本発明に使用される水分散性複合体には微細な繊維状のセルロースと親水性高分子以外に、水分散性、懸濁安定性や風味、外観等の改善を目的として、水溶性物質、デンプン類、油脂類、蛋白質類、食塩、各種リン酸塩等の塩類、乳化剤、酸味料、甘味料、香料、色素等の食品に使用できる成分を適宜配合されていても良い。個々の成分の配合量は、計45%を最大とし、製造性、機能、価格等を適宜考慮して決定される。
【0027】
本発明に使用される水溶性物質とは冷水への溶解性が高く、粘性を殆どもたらさず、常温で固体の物質であり、デキストリン類、水溶性糖類(ブドウ糖、果糖、庶糖、乳糖、異性化糖、キシロース、トレハロース、カップリングシュガー、パラチノース、ソルボース、還元澱粉糖化飴、マルトース、ラクツロース、フラクトオリゴ糖、ガラクトオリゴ糖等)、糖アルコール類(キシリトール、マルチトール、マンニトール、ソルビトール等)、より選ばれた1種または2種以上の物質である。この物質を乾燥組成物に配合すると、粒子内部へ導水する性質が強化され、乾燥組成物粒子の水崩壊性が促進される。この作用としては特にデキストリン類が強い。
【0028】
本発明に使用されるデキストリン類とは、澱粉を酸、酵素、熱で加水分解することによって生じる部分分解物のことであり、グルコース残基が主としてα−1,4結合およびα−1,6結合からなり、DE(dextrose equivalent)として、2〜42程度のものが使用される。ブドウ糖や低分子オリゴ糖が除去された分枝デキストリンも使用することができる。
【0029】
本発明で使用される水分散性複合体は、微細な繊維状のセルロースに親水性高分子と、必要に応じてその他の成分を配合してスラリー状、あるいはペースト状とした後、乾燥し、必要に応じて粉砕する。親水性高分子およびその他の成分の投入は、水溶液としてから投入してもよいし、粉体のまま投入してもよい。また、微細な繊維状のセルロースを調製する途中の工程で配合しても良い。粉体を投入する場合は、ままこになりやすく、特に固形分濃度が高い場合は流動性が悪いので、適宜、適当な撹拌・混合機を選択して使用する。乾燥は、公知の方法を使用すればよいが、乾燥物が硬いかたまりにならないような方法が望ましく、例えば、凍結乾燥法、噴霧乾燥法、棚段式乾燥法、ドラム乾燥法、ベルト乾燥法、流動床乾燥法、マイクロウェーブ乾燥法などが適当である。乾燥後の水分は、取り扱い性、経時安定性を考慮すれば、15%以下が好ましい。より好ましくは10%以下である。最も好ましくは6%以下である。2%未満になると静電気が帯電し、粉末の取り扱いが困難になる場合がある。
【0030】
乾燥物は必要に応じて粉砕する。粉砕機としてはカッターミル、ハンマーミル、ピンミル、ジェットミルなどが使用され、目開き2mmの篩をほぼ全通する程度に粉砕する。より好ましくは目開き425μmの篩をほぼ全通し、かつ、平均としては10〜250μmとなるように粉砕する。
【0031】
本発明で使用される水分散性複合体は、微細な繊維状のセルロース50〜95と、親水性高分子5〜50%からなる乾燥組成物であり、顆粒状、粒状、粉末状、鱗片状、小片状、シート状を呈する。この組成物は水中に投入し、機械的な剪断力を与えた時、粒子が崩壊し、微細な繊維状のセルロースがほとんど乾燥前の状態で水中に分散するようになることが特徴である。微細な繊維状のセルロースが50%未満になると、セルロースの比率が低くなって効果が発揮されない。95%以上になると、相対的にその他の成分の配合比率が下がるので、水中の充分な分散性を確保することができない。機能発揮の程度と水中における分散性を確保するという観点からすると、微細な繊維状のセルロースの好ましい配合量は65〜90%であり、親水性高分子の好ましい配合量は10〜35%である。
【0032】
従来の微小繊維状セルロースにおいては、同様な乾燥組成物を調製する試みがなされている(特開昭59−189141号公報、特開平3−42297号公報、特開昭60−186548号公報、特開平9−59301号公報)。しかしながらこれらはいずれも、微小繊維状セルロースが乾燥前の状態に、充分に復元していなかった。これは、微小繊維化が不充分であり、分岐した束状の繊維が多数存在し、それらが乾燥時に角質化(合一)しやすいためと思われる。一方、本発明の水分散性セルロースは構成単位がきわめて微細な繊維状であり、分岐した束状の繊維が非常に少ないために、親水性高分子の角質化防止効果が有効に作用しやすいものと思われる。おそらくそのために、水中で分散されることにより、容易に乾燥前と同程度の状態に復帰する。
【0033】
本発明の水分散性複合体は、前述の通り、水中に投入し、機械的な剪断力を与えた時、構成単位(粒子)が崩壊し、微細な繊維状のセルロースが水中に分散するようになる。このとき「機械的な剪断力」とは、0.25%水分散液を、回転型のホモジナイザーで、最大でも15000rpmで15分間分散するようなものであり、温度は80℃以下で処理することを意味する。
【0034】
このようにして得られた水分散液(0.1%)は、乾燥前とほとんど同じ状態、すなわち、「水中で安定に懸濁する成分」が全セルロース分に対して30%以上存在する。好ましくは50%以上であり、特に好ましくは80%以上である。水分散液中のセルロースの形状は、やはり乾燥前とほとんど同じ状態、すなわち、長径は0.5〜30μm、短径は2〜600nm、長径/短径比は20〜400程度である。好ましくは、幅が100nm以下であり、より好ましくは50nmである。そして、0.5%水分散液の損失正接は1未満である。好ましくは0.6未満である。(「水中で安定に懸濁する成分」の含有量と損失正接の測定条件は後述する。)これらの性質は、系の中で微細な繊維状のセルロースのネットワークがより微細で緊密に形成されるということを意味する。これによって乳成分を含有する飲料の乳化安定性等の安定性が付与される。
【0035】
本発明で使用される乳成分とは、液状乳類(生乳、牛乳、等)、粉乳類(全粉乳、脱脂粉乳、等)、練乳類(無糖練乳、加糖練乳、等)、クリーム類(クリーム、ホイップクリーム、等)、発酵乳などを意味し、その配合量は無脂乳固形分として0.1〜12%程度、乳脂肪分として0.01〜6%程度である。配合量は目的とする飲料(例えば、乳飲料、乳入り清涼飲料、等)に応じて適宜選択される。
【0036】
本発明の飲料は、乳成分を含有する飲料であり、具体的には、加工乳、発酵乳飲料、酸性乳飲料、ミルク入り茶類(紅茶、抹茶、緑茶、麦茶、ウーロン茶、等)、ミルク入りジュース類(果汁入り飲料、野菜汁入り飲料、等)、ミルク入りコーヒー、ミルク入りココア、栄養バランス飲料、流動食などである。原料としては、水分散性複合体と、乳成分と、水の他に、甘味料、香料、色素、酸味料、香辛料、乳化剤(グリセリン脂肪酸エステル・モノグリセリド、グリセリン脂肪酸エステル・有機酸モノグリセリド、ポリグリセリン脂肪酸エステル、ポリグリセリン縮合リシノレイン酸エステル、ソルビタン酸脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、レシチン、リゾレシチン、ステアロイル乳酸カルシウム等。脂肪酸エステルを構成する脂肪酸は炭素数6〜22の飽和または不飽和の脂肪酸であり、例えばカプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、エルカ酸などである。有機酸モノグリセリドの有機酸は酢酸、乳酸、クエン酸、コハク酸、ジアセチル酒石酸などである。)、カゼインナトリウム、増粘安定剤(κカラギーナン、ιカラギーナン、λカラギーナン、カルボキシメチルセルロースナトリウム、アルギン酸プロピレングリコールエステル、ローカストビーンガム、グアーガム、タラガム、ペクチン等)、結晶セルロース、食物繊維(難消化性デキストリン、ポリデキストロース、酵素分解グアーガム、水溶性大豆多糖類等)、栄養強化剤(ビタミン、カルシウム等)、フレーバー素材(コーヒー粉末、ミルクフレーバー、ブランデー等)、食品素材(果肉、果汁、野菜、野菜汁、デンプン、穀類、豆乳、ハチミツ、植物性油脂、動物性油脂等)、調味料(みそ、しょうゆ、塩、グルタミン酸ナトリウム等)、などを配合してもよい。
【0037】
本発明の飲料の製造は、公知の方法に従う。一例を上げれば、粉体原料(砂糖、脱脂粉乳など)を温水に加えて撹拌・溶解(分散)し、コーヒー抽出液や果汁、クリームなどの原料を配合し、均質化後、容器に充填して製造される。殺菌は製品の原料、商品形態(缶、ビン、PETボトル、紙パック、カップ、等)、希望する保存条件(チルド、常温、加温、等)や賞味期限に応じて、HTST殺菌、ホットパック殺菌、レトルト殺菌などの方法を適宜選択して実施される。本発明の飲料は、水分散性複合体を含む全成分が配合された後、少なくとも1回は均質化処理を施すことが望ましい。これによって、乳成分が高度に安定化される。
【0038】
水分散性複合体は粉体原料とともに配合してもよい。但し、水分散性複合体は飲料中で微細な繊維状のセルロースに分散した状態で存在しなければ効果が発揮されないので、高速回転型のホモジナイザー等の強い撹拌機で撹拌することが望ましい。あるいは、あらかじめ水あるいは温水で水分散性複合体を撹拌して、分散液を調製してから配合してもよい。分散液調製時に、温度を60〜80℃とし、ピストン型高圧ホモジナイザー(10MPa以上)を用いることは好ましい実施態様の一つである。
【0039】
水分散性複合体の、飲料に対する配合量は、おおよそ0.001〜0.5%である。好ましくは0.005〜0.2%であり、さらに好ましくは0.007〜0.1%である。配合量が少ないとオイルオフ防止等の効果が充分発揮されず、また、配合量が多すぎると系の粘度が上がり、飲料本来の食感(のどごし、糊状感、等)が損なわれて、商品価値が低下してしまう。オイルオフ発生等の機構の詳細は不明ながら、おそらく乳成分由来の脂肪球が熱振動によって衝突し、乳化が壊れ、油脂成分は浮上し、蛋白質は沈降すると思われる。本発明品は、微細な繊維状のセルロースが飲料全体にネットワークを形成し、それが立体障害となって、脂肪球同士の衝突を妨げ、乳化破壊を防止しているのではないかと考える。また、セルロースは乳成分(脂肪球)と弱く相互作用する傾向があるので、脂肪球が微細な繊維状のセルロースの近傍に束縛され、そのために脂肪球の熱振動を抑制している可能性もある。
【0040】
ミルクコーヒー飲料の場合は、0.008〜0.08%程度の配合が適当である。従来の結晶セルロースなどのセルロース系添加剤の場合、グリセリン脂肪酸エステルとの併用でオイルオフが抑制されるが、60℃くらいの高温で保存すると、乳成分と結晶セルロースが相互作用して凝集が生じる場合があった。しかしながら本発明の飲料は、0.08%以下という低配合量でも、チルド保存(5℃)や常温保存(25℃)のみならず、ホット(60℃)においても、オイルオフやオイルリングはもちろん、乳蛋白の沈降や系の凝集、分離のほとんどない、均一な外観を維持することができる。もちろん、乳化剤やカラギーナン、カゼインナトリウム、結晶セルロースなど、従来より効果が認められている物質を配合してもよい。これによって、例えば、オイルオフ等の外観の変化なしに、PETボトル入りのミルクコーヒーをホットで販売することが可能となる。
【0041】
【実施例】
次に、実施例により本発明をさらに具体的に説明する。なお、測定は以下の通り行った。
<原料(セルロース)の平均重合度>
ASTM Designation: D 1795−90「Standerd Test Method for Intrinsic Viscosity of Cellulose」に準じて行う。
<原料(セルロース)のα−セルロース含有量>
JIS P8101−1976(「溶解パルプ試験方法」5.5 αセルロース)に準じて行う。
【0042】
<セルロース繊維(粒子)の形状(長径、短径、長径/短径比)>
セルロース繊維(粒子)のサイズの範囲が広いので、一種類の顕微鏡で全てを観察することは不可能である。そこで、繊維(粒子)の大きさに応じて光学顕微鏡、走査型顕微鏡(中分解能SEM、高分解能SEM)を適宜選択し、観察・測定する。
光学顕微鏡を使用する場合は、適当な濃度に調整したサンプル水分散液をスライドガラスにのせ、さらにカバーグラスをのせて観察に供する。
また、中分解能SEM(JSM−5510LV、日本電子株式会社製)を使用する場合は、サンプル水分散液を試料台にのせ、風乾した後、Pt−Pdを約3nm蒸着して観察に供する。
【0043】
高分解能SEM(S−5000、株式会社日立サイエンスシステムズ製)を使用する場合は、サンプル水分散液を試料台にのせ、風乾した後、Pt−Pdを約1.5nm蒸着して観察に供する。
セルロース繊維(粒子)の長径、短径、長径/短径比は撮影した写真から15本(個)以上を選択し、測定した。繊維はほぼまっすぐから、髪の毛のようにカーブしているものがあったが、糸くずのように丸まっていることはなかった。短径(太さ)は、繊維1本の中でもバラツキがあったが、平均的な値を採用した。高分解能SEMは、短径が数nm〜200nm程度の繊維の観察時に使用したのだが、一本の繊維が長すぎて、一つの視野に収まらなかった。そのため、視野を移動しつつ写真撮影を繰り返し、その後、写真を合成して解析した。
【0044】
<損失正接(=損失弾性率/貯蔵弾性率)>
(1)0.5%の水分散液となるようにサンプルと水を量り取り、エースホモジナイザー(日本精機株式会社製、AM−T型)で、15000rpmで15分間分散する。
(2)25℃の雰囲気中に3時間静置する。
(3)動的粘弾性測定装置にサンプル液を入れてから5分間静置後、下記の条件で測定し、周波数10rad/sにおける損失正接(tanδ)を求める。
装置 :ARES(100FRTN1型)
(Rheometric Scientific,Inc.製)
ジオメトリー:Double Wall Couette
温度 :25℃
歪み :10%(固定)
周波数 :1→100rad/s(約170秒かけて上昇させる)
【0045】
<水分散液粘度>
(1)0.25%の水分散液となるようにサンプルと水を量り取り、エクセルオートホモジナイザー(日本精機株式会社製、ED−7型)で、15000rpmで15分間分散する。
(2)25℃の雰囲気中に3時間静置する。
(3)よく撹拌した後、回転粘度計(株式会社トキメック製、B形粘度計、BL形)をセットし、撹拌終了30秒後にローターの回転を開始し、それから30秒後の指示値より粘度を算出する。なお、ローター回転数は60rpmとし、ローターは粘度によって適宜変更する。
【0046】
<「水中で安定に懸濁する成分」の含有量>
(1)セルロース濃度が0.1%の水分散液となるようにサンプルと水を量り取り、エクセルオートホモジナイザー(日本精機株式会社製、ED−7型)で、15000rpmで15分間分散する。
(2)サンプル液20gを遠沈管に入れ、遠心分離機にて1000Gで5分間遠心分離する。
(3)上層の液体部分を取り除き、沈降成分の重量(a)を測定する。
(4)次いで、沈降成分を絶乾し、固形分の重量(b)を測定する。
【0047】
(5)下記の式を用いて「水中で安定に懸濁する成分」の含有量(c)を算出する。
c=5000×(k1+k2) [%]
サンプルが水溶性高分子(および親水性物質)を含まない場合は、k1およびk2は下記の式を用いて算出して使用する。
k1=0.02−b
k2={k1×(a−b)}/(19.98−a+b)
また、サンプルが水溶性高分子(および親水性物質)を含む場合は、k1およびk2は下記の式を用いて算出して使用する。
k1=0.02−b+s2
k2=k1×w2/w1
セルロース/水溶性高分子(親水性物質)=f/d [配合比率]
w1=19.98−a+b+0.02×d/f
w2=a−b
s2=0.02×d×w2/{f×(w1+w2)}
【0048】
「水中で安定に懸濁する成分」の含有量が非常に多い場合は、沈降成分の重量が小さな値となるので、上記の方法では測定精度が低くなってしまう。その場合は(3)以降の手順を以下のようにして行う。
(3’)上層の液体部分を取得し、重量(a’)を測定する。
(4’)次いで、上層成分を絶乾し、固形分の重量(b’)を測定する。
(5’)下記の式を用いて「水中で安定に懸濁する成分」の含有量(c)を算出する。
c=5000×(k1+k2) [%]
サンプルが水溶性高分子(および親水性物質)を含まない場合は、k1およびk2は下記の式を用いて算出して使用する。
k1=b’
k2=k1×(19.98−a’+b’)/(a’−b’)
【0049】
また、サンプルが水溶性高分子(および親水性物質)を含む場合、k1およびk2は下記の式を用いて算出して使用する。
k1=b’−s2×w1/w2
k2=k1×w2/w1
セルロース/水溶性高分子(親水性物質)=f/d [配合比率]
w1=a’−b’
w2=19.98−a’+b’−0.02×d/f
s2=0.02×d×w2/{f×(w1+w2)}
【0050】
もし、(3’)の操作で上層の液体部分と沈降成分の境界が明瞭ではなく分離が難しい場合は全体の上部1/3量(約7g)を取得し、以降は(4’)、(5’)に従って操作する。
以下、実施例および比較例により本発明を具体的に説明する。
【0051】
[実施例1]
市販木材パルプ(平均重合度=1510、α−セルロース含有量=77%)を、6×16mm角の矩形に裁断し、水分が80%になるように水を加えた。これを、水とパルプチップができるだけ分離しないよう注意して、カッターミル(URSCHEL LABORATORIES,Inc.製「コミトロール」、モデル1700、カッティングヘッド/水平刃間隙:2.03mm、インペラー回転数:3600rpm)に1回通したところ、繊維長が0.75〜3.75mmになった。
【0052】
セルロース濃度が2%、そしてカルボキシメチルセルロースナトリウムの濃度が0.0706%になるようにカッターミル処理品とカルボキシメチルセルロースナトリウムと水を量り取り、繊維の絡みがなくなるまで撹拌・分散した。この水分散液を砥石回転型粉砕機(増幸産業株式会社製「セレンディピター」MKCA6−3型、グラインダー:MKE6−46、グラインダー回転数:1800rpm)で2回処理した。
【0053】
次いで得られた水分散液を高圧ホモジナイザー(MFIC Corp.製「マイクロフルイダイザー」M−110Y型、処理圧力:95MPa)で4パスし、微細な繊維状のセルロースの水分散液を得た。水分散液粘度は68mPa・sだった。光学顕微鏡で観察したところ、長径が10〜400μm、短径が1〜5μm、長径/短径比が10〜300の微細な繊維状のセルロースが観察された。損失正接は0.64だった。「水中で安定に懸濁する成分」の含有量は43%だった。それを高分解能SEMで観察したところ、長径が1〜20μm、短径が10〜150nm、長径/短径比が30〜300のきわめて微細な繊維状のセルロースが観察された。
【0054】
その水分散液にカルボキシメチルセルロースナトリウムを添加し、セルロース:カルボキシメチルセルロースナトリウム=80:20(重量部)としてから攪拌型ホモジナイザーで、15分間撹拌・混合した。これをドラムドライヤーにて乾燥し、スクレーパーで掻き取り、カッターミル(不二パウダル株式会社製「フラッシュミル」)で、目開き2mmの篩をほぼ全通する程度に粉砕し、水分散性複合体A(以下、複合体Aという)を得た。
【0055】
複合体Aの水分散液粘度は66mPa・sであり、損失正接は0.65であった。光学顕微鏡で観察したところ、長径が10〜400μm、短径が1〜5μm、長径/短径比が10〜300の微細な繊維状セルロースが観察された。「水中で安定に懸濁する成分」の含有量は40%だった。それを高分解能SEMで観察したところ、長径が1〜20μm、短径が10〜150nm、長径/短径比が30〜300のきわめて微細な繊維状のセルロースが観察された。
【0056】
複合体Aを温水に加え、エースホモジナイザー(日本精機株式会社製、AM−T型)で分散(15000rpm、15分間、80℃)し、0.5%分散液を調製した。この分散液1〜20部に温水(80℃)と、コーヒー抽出液48部、牛乳(無脂乳固形分8.8%、乳脂肪3.8%)12.5部、砂糖6部、炭酸水素ナトリウム0.06部、ショ糖パルミチン酸エステル0.03部を加えた。温水の量は全体が100部となるように使用した。この液を80℃で10分間プロペラ撹拌し、次いでピストン型ホモジナイザー(一次圧:15MPa、2次圧:5MPa)で2回均質化処理を行い、200mL容のガラス製耐熱ビンに充填した。これを殺菌処理し(121℃、30min)、水道水で冷却して、ミルクコーヒーを得た。ミルクコーヒーは5、25、60℃の雰囲気にて1ヶ月間静置保存し、外観の均一性(オイルオフ、凝集、沈降)を目視観察した。結果を表−1に示す。なお、粘度は製造1日後(5℃保存)に、B形粘度計(BLアダプター使用、ローター回転数60rpm)で測定した。
【0057】
比較例1は複合体Aを含まない処方であるが、この場合、乳蛋白の沈降とオイルオフが生じる。これと比べて本実施例においては、複合体Aを配合することにより、沈降とオイルオフが顕著に少なくなった。(但し、複合体の配合量が多くなると、凝集がやや増える傾向がある。)なお、「±:ごくわすがあり」という状態は、手で振ると容易に系が均一になる程度であり、実用的に充分使用可能な状態である。
【0058】
[実施例2]
市販バガスパルプ(平均重合度=1320、α−セルロース含有量=77%)を、6×16mm角の矩形に裁断した。次いでセルロース濃度が3%、カルボキシメチルセルロース・ナトリウムの濃度が0.176%となるように、それぞれと水を量り取り、家庭用ミキサーで5分間撹拌した。
この水分散液を砥石回転型粉砕機(増幸産業株式会社製「セレンディピター」MKCA6−3型、グラインダー:MKE6−46、グラインダー回転数:1800rpm)で3回処理した。
【0059】
次いで得られた水分散液を水で希釈して2%にし、高圧ホモジナイザー(MFIC Corp.製「マイクロフルイダイザー」M−140K型、処理圧力110MPa)で4パスし、微細な繊維状のセルロースの水分散液を得た。粘度は120mPa・sだった。光学顕微鏡で観察したところ、長径が10〜500μm、短径が1〜25μm、長径/短径比が5〜190の微細な繊維状のセルロースが観察された。「水中で安定に懸濁する成分」は99%だった。
【0060】
セルロース:カルボキシメチルセルロースナトリウム=85:15(重量部)となるように、水分散液にカルボキシメチルセルロースナトリウムを添加し、攪拌型ホモジナイザーで、15分間撹拌・混合した。これをドラムドライヤーにて乾燥し、スクレーパーで掻き取り、得られたものをカッターミル(不二パウダル株式会社製「フラッシュミル」)で、目開き2mmの篩をほぼ全通する程度に粉砕し、水分散性複合体B(以下、複合体Bという)を得た。複合体Bの水分散液粘度は143mPa・s、損失正接は0.38、「水中で安定に懸濁する成分」は98%だった。
【0061】
次に、複合体Aのかわりに複合体Bを用いて、あとは実施例1と同様にしてミルクコーヒーを得た。実施例1と同様に評価した結果を表−1に示す。0.1%以下という低添加量で、5℃、25℃のみならず、60℃においても均一な外観を維持していた。
[実施例3]
市販麦わらパルプ(平均重合度=930、α−セルロース含有量=68%)を、6×12mm角の矩形に裁断し、4%となるように水を加え、家庭用ミキサーで5分間撹拌した。これを高速回転型ホモジナイザー(ヤマト科学、ULTRA−DISPERSER、LK−U型)で1時間分散した。
この水分散液を砥石回転型粉砕機(増幸産業株式会社製「セレンディピター」MKCA6−3型、グラインダー:MKE6−46、グラインダー回転数:1800rpm)で2回処理した。
【0062】
次いで得られた水分散液を水で希釈して2%にし、高圧ホモジナイザー(株式会社スギノマシン製「アルティマイザーシステム」HJP25030型、処理圧力:175MPa)で8パスし、微細な繊維状のセルロースの水分散液を得た。粘度は69mPa・sだった。光学顕微鏡で観察したところ、長径が10〜700μm、短径が1〜30μm、長径/短径比が10〜150の微細な繊維状のセルロースが観察された。損失正接は0.43だった。「水中で安定に懸濁する成分」は89%だった。
【0063】
セルロース:カルボキシメチルセルロースナトリウム=85:15(重量部)となるように、水分散液にカルボキシメチルセルロースナトリウムを添加し、攪拌型ホモジナイザーで、15分間撹拌・混合した。これをドラムドライヤーにて乾燥し、スクレーパーで掻き取り、得られたものをカッターミル(不二パウダル株式会社製「フラッシュミル」)で、目開き1mmの篩をほぼ全通する程度に粉砕し、水分散性複合体C(以下、複合体Cという)を得た。複合体Cの水分散液粘度は61mPa・s、損失正接は0.51であり、「水中で安定に懸濁する成分」は75%だった。
【0064】
次に、複合体Aのかわりに複合体Cを用いて、あとは実施例1と同様にしてミルクコーヒーを得た。実施例1と同様に評価した結果を表−1に示す。
【0065】
[実施例4]
複合体Aのかわりに実施例3で得られた微細な繊維状のセルロースの水分散液を用い、あとは実施例1と同様にしてミルクコーヒーを得た。但し、微細な繊維状のセルロースの配合量は固形分として0.025%配合した。実施例1と同様に評価した結果を表−2に示す。
【0066】
[実施例5]
複合体Aのかわりに実施例3で得られた微細な繊維状のセルロースの水分散液を用い、かつ、ιカラギーナンを配合し、あとは実施例1と同様にしてミルクコーヒーを得た。但し、微細な繊維状のセルロースの配合量は固形分として0.02%配合した。ιカラギーナンは0.005%配合した。実施例1と同様に評価した結果を表−2に示す。
【0067】
[比較例1]
複合体Aを用いない以外は実施例1と同様にして、ミルクコーヒーを得た。実施例1と同様に評価した結果を表−3に示す。
本処方は静菌目的の乳化剤(ショ糖パルミチン酸エステル)を配合している以外は、特に安定化剤を配合していない。この場合、乳蛋白の沈降とオイルオフが生じた。このような状態では、例え缶に充填した場合でも商品にすることは困難である。
【0068】
[比較例2]
高純度ステアリン酸モノグリセリド0.2部を配合し、そして複合体Aを用いない以外は実施例1と同様にして、ミルクコーヒーを得た。実施例1と同様に評価した結果を表−3に示す。
【0069】
[比較例3]
高純度ステアリン酸モノグリセリド0.2部と、結晶セルロース製剤(アビセル<登録商標>RC−591、旭化成(株)製)0.1部を配合し、そして複合体Aを用いない以外は実施例1と同様にして、ミルクコーヒーを得た。実施例1と同様に評価した結果を表−3に示す。なお、本比較例は特開平6−335348号公報に開示の技術である。
【0070】
[比較例4]
高純度ステアリン酸モノグリセリド0.2部と、結晶セルロース製剤(アビセル<登録商標>RC−591、旭化成(株)製)0.3部を配合し、そして複合体Aを用いない以外は実施例1と同様にして、ミルクコーヒーを得た。実施例1と同様に評価した結果を表−3に示す。なお、本比較例は特開平6−335348号公報に開示の技術である。
【0071】
比較例3では、乳化剤0.2部と結晶セルロース製剤0.1部の配合により、60℃保存おける安定性が増したことがわかる。しかしながら、5、25、60℃の各温度における安定性はいずれも充分とは言い難い。比較例4では乳化剤0.2部と結晶セルロース製剤0.3部の配合により、5℃および25℃では、非常によい状態になった。しかしながら、60℃保存においては強く凝集が発生している。
【0072】
【表1】

Figure 2004305005
【0073】
【表2】
Figure 2004305005
【0074】
【表3】
Figure 2004305005
【0075】
【発明の効果】
本発明の乳成分含有飲料は、オイルオフがなく、かつ、乳蛋白や固体粒子の沈降のない、経時的に安定な飲料である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drink which is stable over time and free of oil-off and free of sedimentation of milk proteins and aggregation of milk components.
[0002]
[Prior art]
Milk components such as milk, cream, whole milk powder, and skim milk powder are often added to beverages for the purpose of rounding the taste, enhancing nutritional components, or imparting the taste of milk. Examples include milk coffee, milk tea, and the like.
However, due to long-term storage or heating, the emulsification of the milk component (fat globule) is impaired, the fat and oil component floats on the upper surface of the beverage, and may gather in a ring shape at the site of contact with the container on the upper surface of the beverage. . As it progresses, the entire top surface becomes covered with a white film. It is temporarily dissolved when the beverage is shaken, but is immediately covered with a thin film when left standing. In severe cases, the fats and oils stick to the inner wall of the container in a ring shape, or come off and mix into the beverage. Then the goods no longer have the value of the goods and become complaints by customers. This is a problem called “oil-off” or “oil ring”.
[0003]
Also, when the emulsification is broken, the milk protein may aggregate and precipitate at the bottom of the container. This also causes a deterioration in appearance and a decrease in taste quality.
Conventionally, in performing the above-described oil-off prevention, technologies such as Patent Literatures 1 to 4 have been disclosed as technologies using a cellulosic material. However, there has been no practical technique because the required compounding amount is large, sufficient stabilization cannot be obtained in high-temperature storage, and the taste becomes poor.
In recent years, not only cans, but also various transparent containers such as bottles and PET bottles have become widely used, and even hot beverages containing PET bottles have emerged, and the emergence of effective stabilization technology. Long-awaited.
[0004]
[Patent Document 1]
JP-A-6-245703 [Patent Document 2]
JP-A-11-178516 [Patent Document 3]
JP-A-6-335348 [Patent Document 4]
JP-A-8-38127 [0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a stable milk component-containing beverage free of oil-off and milk protein sedimentation due to heat shock such as long-term storage and heat retention.
[0006]
[Means for Solving the Problems]
The present inventors have solved the problem by using a water-dispersible composition containing fine fibrous cellulose as a main component, and have accomplished the present invention. That is, the present invention is as follows.
(1) Milk-containing beverage containing fibrous cellulose which is fine fibrous cellulose made from plant cell walls and contains 30% by mass or more of a component stably suspended in a 0.1% by mass aqueous dispersion thereof. A method for stabilizing a dairy component-containing beverage, wherein
(2) The method for stabilizing a dairy component-containing beverage according to claim 1, wherein the loss tangent of a 0.5% by mass aqueous dispersion of fine fibrous cellulose is less than 1.
(3) Fine fibrous cellulose obtained from plant cell walls and containing at least 30% by mass of a component that is stably suspended in an aqueous dispersion of 0.1% by mass thereof is provided with high hydrophilicity. A method for stabilizing a dairy component-containing beverage, wherein the method is incorporated into a dairy component-containing beverage together with molecules.
[0007]
(4) 50 to 95% of fibrous cellulose containing 30% by mass or more of a component stably suspended in an aqueous dispersion of 0.1% by mass of fibrous cellulose obtained from plant cell walls as a raw material and hydrophilic. 4. The method for stabilizing a milk-containing beverage according to claim 3, wherein the water-dispersible complex containing 5 to 50% of the polymer is blended into the milk-containing beverage.
(5) The method for stabilizing a dairy component-containing beverage according to claim 4, wherein the loss tangent of the 0.5% by mass aqueous dispersion of the aqueous dispersible complex is less than 1.
(6) A milk component-containing beverage stabilized by the method according to any one of claims 1, 2, 3, 4, and 5.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be specifically described below.
The fine fibrous cellulose used in the present invention is derived from plant cell walls. Specifically, natural cellulose derived from plant cell walls such as wood (conifers, hardwoods), cotton linters, kenaf, manila hemp (abaca), sisal, jute, survivor grass, esparto grass, bagasse, rice straw, straw, reeds, bamboo, etc. Is used. Particularly, those industrially usable are preferable. These are relatively inexpensive and can obtain raw materials stably, so that products can be economically supplied to the market.
[0009]
Cotton, papyrus grass, beet, kozo, honey, gumpy, etc. can also be used, but it is difficult to secure a stable supply of raw materials, the content of components other than cellulose is high, and handling is difficult. May not be preferred. Microbial cellulose that does not use plant cell walls as a raw material is not included in the raw material of the present invention because it cannot solve the problems of price and securing raw materials. When regenerated cellulose is used as a raw material, sufficient performance is not exhibited, and thus regenerated cellulose is not included as a raw material in the present invention.
[0010]
The fine fibrous cellulose used in the present invention is desirably obtained by extracting microfibrils present in the raw material without shortening the fibers as much as possible. Unfortunately, however, there is no device for "miniaturization" in the current technology that only provides the effect of tearing. Therefore, "short fiber" occurs to some extent. If the average degree of polymerization of the raw material cellulose is low, "short fiber" is liable to occur, and if the treatment is carried out until coarse fibers are eliminated, the short fiber also progresses at the same time. It is easy to be. (Hereinafter, in the present invention, "shortening" means shortening or shortening the fiber by the action of cutting or the like. "Finished" means by the action of tearing the fiber or the like. Thin means or thinned.)
[0011]
On the other hand, when the value of the α-cellulose content is high, the “loss tangent value” of the aqueous dispersion tends to be 1 or more because “miniaturization” and “shortening of fiber” proceed simultaneously. Incidentally, α-cellulose is a component that does not dissolve in a 17.5 wt. NaOH aqueous solution, and is considered to be a component having a relatively large degree of polymerization and higher crystallinity. When the content of components other than α-cellulose, that is, β-cellulose, γ-cellulose, hemicellulose, etc., increases, “miniaturization” seems to be superior to “short fiber”. For this reason, when the content of components other than α-cellulose increases, the loss tangent value of the aqueous dispersion tends to be less than 1. This is presumed to be because the α-cellulose component constitutes a microfibril component having high crystallinity, and the other components have a structure located around them.
[0012]
As the raw material used in the present invention, the balance between the susceptibility of the "fine refining" and "short fiber" is important, and as the direction, the average degree of polymerization is higher and the α-cellulose content is lower. Is preferred. The present inventors examined this relationship in detail, and found that if the average degree of polymerization of the raw material was 400 or more and the α-cellulose content was 60 to 100%, “fine fiber” was more pronounced than “short fiber”. It has been found that as a result, the loss tangent value of the aqueous dispersion is likely to be less than 1. However, when the average degree of polymerization is low and the α-cellulose content is high, that is, when the average degree of polymerization is less than 1300 and the α-cellulose content exceeds 90%, “short fiber” is “fine”. It is inappropriate because it progresses in the same way or superiority. On the other hand, if the α-cellulose content is less than 60%, components that can be relatively fine fibrous cellulose are reduced, which is not appropriate. Specific examples of preferred raw materials include wood pulp, cotton linter pulp, straw pulp, rice straw pulp, bamboo pulp, bagasse pulp and the like.
[0013]
The raw material used in the present invention may be used after pretreatment for the purpose of accelerating miniaturization. Examples of the pretreatment method include, for example, immersing in a diluted alkaline aqueous solution (for example, a 1 mol / L NaOH aqueous solution) for several hours, immersing in a dilute acid aqueous solution, enzymatic treatment, or explosive treatment. Is raised.
The raw material used in the present invention is first processed into fibrous particles having a length of 4 mm or less. It is preferable that 50% or more of the total number (number) is about 0.5 mm or more. More preferably all particles are 3 mm or less, most preferably 2.5 mm or less. As a method, both dry and wet methods are possible. For a dry type, a shredder, a hammer mill, a pin mill, a ball mill and the like can be used, and for a wet type, a high-speed rotation type homogenizer and a cutter mill can be used. If necessary, it is processed after processing into a size that can be easily put into each device. The processing may be performed a plurality of times. It is not preferable to use a strong pulverizer such as a wet medium stirring type pulverizer because excessively short fibers are produced.
[0014]
A preferred machine is Comitrol (URSCHEL LABORATORIES, Inc.). In the case of using a mitotrol, for example, the raw pulp may be cut into 5 to 15 mm squares, then impregnated with a water content of about 72 to 85%, and put into a device equipped with a cutting head or a micro cut head for processing.
Next, this is poured into water, and dispersed using a propeller stirrer, a rotary homogenizer or the like so that the fibrous particles do not aggregate. In the case of a raw material (pulp) having a short fibrous particle length due to the action of the pulping step or the like, an aqueous dispersion of fibrous particles having a length of 4 mm or less may be obtained only by this dispersion operation. The concentration is preferably about 0.1 to 5%. At this time, a hydrophilic polymer may be blended for the purpose of the suspension stability of the fibrous component and the prevention of aggregation. The incorporation of sodium carboxymethylcellulose is one of the preferred embodiments.
[0015]
Next, the aqueous dispersion is subjected to a certain degree of shortening and refinement treatment so that the sedimentation volume of the 0.5% aqueous dispersion is 70% by volume or more. Preferably, the sedimentation volume is at least 85% by volume. The sedimentation volume refers to 100 mL (0.5%) of fine fibrous cellulose dispersed in water so as to be uniformly suspended, poured into a glass tube having an inner diameter of 25 mm, and inverted several times to stir the contents. And the volume of the cloudy suspension layer observed when allowed to stand at room temperature for 4 hours. As a device, a high-speed rotation type homogenizer, a piston type homogenizer, a grinding wheel rotary type pulverizer and the like can be used. A preferred device is a grinding wheel rotary mill.
[0016]
A grindstone rotary grinder is a kind of a colloid mill or a millstone grinder, for example, rubs a grindstone composed of abrasive grains having a grain size of 16 to 120, and passes the above-described aqueous dispersion through the rubbed portion. That is, it is a device that is subjected to a pulverization process. If necessary, the processing may be performed a plurality of times. Changing the whetstone appropriately is one of the preferred embodiments. The grinding wheel rotary type crusher has both actions of "short fiber" and "fine refining", and the action is affected by the grain size of the abrasive grains. For the purpose of shortening the fiber length, a grinding wheel of No. 46 or less is effective, and for the purpose of miniaturization, a grinding wheel of No. 46 or more is effective. No. 46 has both functions. Specific examples of the apparatus include Pure Fine Mill (Grand Mill) (Kurita Machinery Co., Ltd.), Serendipita, Supermass Colloider, Selenium Meister, and Super Grinder (above, Masuko Sangyo Co., Ltd.).
[0017]
Next, the aqueous dispersion is treated with a high-pressure homogenizer at a pressure of 60 to 414 MPa, whereby fine fibrous cellulose is prepared. Perform processing multiple times as needed. The fraction may be collected by an operation such as centrifugation. When the average degree of polymerization of the raw material is 2,000 or more, and the α-cellulose content exceeds 90%, it may be necessary to perform high-pressure homogenizer treatment 10 times or more, or 20 times or more. By appropriately selecting the raw materials and the processing conditions of the grinding wheel rotary type pulverizer, it is preferable to keep the number of times to six or less. Generally, when the number of treatments is increased, the viscosity increases and then gradually decreases. This is presumably because, as the number of treatments increases, the thinner one approaches the limit, but the shorter one gradually progresses, that is, “short fiber” becomes more dominant than “finer”. The lower the concentration, the more likely it is that "miniaturization" proceeds, resulting in a higher maximum apparent viscosity. The lower the processing pressure is, the higher the maximum attainable viscosity is, but a larger number of processing times is required. In that case, if the α-cellulose content is high, it is difficult to reach the highest attainable viscosity. When the treatment pressure is high, the maximum viscosity is reached with a smaller number of treatments, but "shortening of fiber" tends to proceed, and the absolute value is lower. In order to lower the loss tangent, the treatment should be performed at a low concentration and a low pressure, but the production efficiency is low. Therefore, the processing concentration and the processing pressure need to be set in consideration of performance and productivity. The processing temperature may be appropriately selected from about 5 to 95 ° C. If the treatment is carried out at a high temperature, the fineness tends to progress, but depending on the raw material, the fiber may be significantly shortened, so that it is necessary to select an appropriate material. Specific devices include a pressure-type homogenizer (Invensys APV, Izumi Food Machinery Co., Ltd.), Emulziflex (AVESTIN, Inc.), an ultimateizer system (Sugino Machine Co., Ltd.), and a nanomizer system (Nanomizer Co., Ltd.) And Microfluidizer (MFIC Corp.).
[0018]
The “fine fibrous” of the fine fibrous cellulose used in the present invention means that the length (major axis) is about 0.5 μm to 1 mm as observed and measured with an optical microscope and an electron microscope. It means that the width (minor axis) is about 2 nm to 60 μm, and the ratio of the length to the width (major axis / minor axis) is about 5 to 400.
[0019]
The fine fibrous cellulose used in the present invention contains a component that is stably suspended in water. Specifically, it is a component having the property that it is stably suspended in water without sedimentation even when it is centrifuged at 1000 G for 5 minutes as a 0.1% concentration aqueous dispersion, The length (major axis) observed and measured by a high-resolution scanning electron microscope (SEM) is 0.5 to 30 μm, the width (minor axis) is 2 to 600 nm, and the ratio of length to width (major axis / It is made of fibrous cellulose having a minor axis ratio of 20 to 400. Preferably, the width is 100 nm or less, more preferably 50 nm. Usually, an aqueous dispersion of cellulose particles is characterized by cloudiness, and is sometimes used as a cloudy agent in foods due to its whiteness. However, in a preferred embodiment of the fine fibrous cellulose used in the present invention, that is, when the width of most of the components is 100 nm or less, light transmittance is increased and transparency is increased. This component is a very important factor in the present invention, and causes the stabilization of the milk component and the like with a lower addition amount.
[0020]
The fine fibrous cellulose used in the present invention contains 30% or more of this “component that is stably suspended in water”. The higher the content, the better, but more preferably 50% or more. Unless otherwise specified, the content of this component represents the abundance ratio in the total cellulose, and is measured and calculated so that even if a water-soluble component is contained, it is not contained. .
[0021]
The fine fibrous cellulose used in the present invention has a loss tangent (tan δ) of less than 1 measured in a 0.5% aqueous dispersion at a strain of 10% and a frequency of 10 rad / s, Preferably it is less than 0.6. This value indicates the dynamic viscoelasticity of the aqueous dispersion, and the lower the value, the more the aqueous dispersion has a gel-like property. The gel is considered to be a state in which, for example, in a polymer aqueous solution, a solute (polymer chain) forms a three-dimensional network structure and immobilizes (fixes) a solvent (water). As a general theory, it is said that in the case of a gel-forming water-soluble polymer, the loss tangent is 1 or more at a low concentration, but the value decreases as the concentration increases, and becomes less than 1 at a concentration at which a gel is formed. On the other hand, the fine fibrous cellulose used in the present invention has a loss tangent of less than 1 under the above-mentioned measurement conditions, but has fluidity and is not an intrinsic gel. That is, at low frequency or low strain, the dispersoid (fine fibrous cellulose) forms a three-dimensional network structure and has a property of immobilizing the dispersion medium (water), that is, has a gel-like property. . When the loss tangent is 1 or more, properties such as suspension stability are poor. Below 0.6, their performance is even better.
[0022]
The fine fibrous cellulose used in the present invention has extremely high suspension stability in water. Therefore, unlike the conventional microfibrillated cellulose, the water retention (JAPANTAPPI paper pulp test method No. 26) and the freeness (Freeness: JIS P8121) cannot be measured.
In the case of water retention, an aqueous suspension containing cellulose in an amount equivalent to 0.5 g of absolutely dry cellulose was poured into a metal cup filter provided with a metal wire (φ20 mm) having a mesh size of 74 μm, and was gradually sucked by a suction device. Sometimes a uniform mat is required, but the products of the present invention may not be matted due to clogging or may pass through a metal wire. When clogging occurs, water separation occurs at the upper part by a subsequent operation of centrifugation at 3000 G (15 minutes).
[0023]
Also, if the freeness of (Canadian standard type), there is an operation such as filtration through a brass sieve plate (thickness 0.51mm, hole diameter 0.51mm is 969 per surface 1000 mm 2). When passing an aqueous dispersion of cellulose (pulp) fiber of 0.3%, the degree of beating of the cellulose fiber is determined by utilizing the fact that the cellulose fiber is laminated on a sieve plate to change the falling speed of water. However, when the freeness of the product of the present invention is measured, the water-dispersible cellulose passes through the sieve plate without remaining. Although the details are omitted, as the degree of beating of the cellulose fibers (hereinafter referred to as microfibrillation) progresses, the freeness gradually decreases, but when the fibers are excessively short (as pulp fibers for papermaking) and thin, the fibers are sieved. As the fibers pass through the board, the freeness gradually increases. That is, as the microfibrillation proceeds, the freeness decreases at first, but then increases. That is, from the purpose and principle of measurement, it can be said that such measurement itself is inappropriate in the case of extremely fine fibrous cellulose.
[0024]
From the above, conventional microfibrous cellulose, considering that the physical properties are specified by measuring the water retention and freeness, it is said that the degree of fine fibrous does not progress as much as the product of the present invention You can see that. That is, it can be said that the product of the present invention is different from the conventional microfibrous cellulose.
[0025]
The hydrophilic polymer used in the present invention is a polymer that dissolves or swells in cold water and / or warm water, and has a function of preventing keratinization of cellulose during drying. Specifically, gum arabic, arabinogalactan, alginic acid and its salts, curdlan, guttie gum, carrageenan, karaya gum, agar, xanthan gum, guar gum, enzyme-degraded guar gum, quince seed gum, gellan gum, gelatin, tamarind seed gum, indigestible Dextrin, tragacanth gum, furcellulan, pullulan, pectin, polydextrose, locant bean gum, water-soluble soybean polysaccharide, sodium carboxymethylcellulose, methylcellulose, one or more selected from sodium polyacrylate and the like The substance is used. Among them, sodium carboxymethylcellulose is preferable. As the sodium carboxymethylcellulose, it is preferable to use one having a degree of carboxymethyl group substitution of 0.5 to 1.5 and a 1% aqueous solution having a viscosity of about 5 to 9000 mPa · s. More preferably, the degree of substitution is about 0.5 to 1.0, and the viscosity of a 1% aqueous solution is about 1,000 to 8,000 mPa · s.
[0026]
The water-dispersible composite used in the present invention, in addition to fine fibrous cellulose and a hydrophilic polymer, water-dispersibility, water-soluble substances for the purpose of improving suspension stability and flavor, appearance, etc., Components that can be used in foods such as starches, oils and fats, proteins, salts such as salt and various phosphates, emulsifiers, acidulants, sweeteners, flavors, and pigments may be appropriately blended. The compounding amount of each component is determined in consideration of manufacturability, function, price, etc., with a maximum of 45% in total.
[0027]
The water-soluble substance used in the present invention is a substance which has high solubility in cold water, hardly provides viscosity and is solid at normal temperature, and is a dextrin, a water-soluble saccharide (glucose, fructose, sucrose, lactose, lactose, isomerization). Sugar, xylose, trehalose, coupling sugar, palatinose, sorbose, reduced starch saccharified candy, maltose, lactulose, fructooligosaccharide, galactooligosaccharide, etc.), and sugar alcohols (xylitol, maltitol, mannitol, sorbitol, etc.). One or more substances. When this substance is incorporated into the dry composition, the property of conducting water into the inside of the particles is enhanced, and the water disintegration of the dry composition particles is promoted. Dextrins are particularly strong in this effect.
[0028]
The dextrins used in the present invention are partially decomposed products produced by hydrolyzing starch with an acid, an enzyme, or heat, and glucose residues mainly composed of α-1,4 bonds and α-1,6 bonds. A DE (dextrose equivalent) of about 2 to 42 is used. Branched dextrins from which glucose and low molecular oligosaccharides have been removed can also be used.
[0029]
The water-dispersible composite used in the present invention is prepared by mixing a hydrophilic polymer with fine fibrous cellulose, and other components as necessary to form a slurry or paste, and then drying. Grind if necessary. The hydrophilic polymer and other components may be charged as an aqueous solution or may be charged as powder. Also, it may be blended in the process of preparing fine fibrous cellulose. When the powder is charged, the powder tends to remain, and particularly when the solid content is high, the fluidity is poor. Therefore, an appropriate stirring / mixing machine is appropriately selected and used. Drying may be performed by a known method, but a method that does not form a hard lump of the dried product is desirable, for example, freeze drying, spray drying, tray drying, drum drying, belt drying, Fluid bed drying, microwave drying and the like are suitable. The moisture content after drying is preferably 15% or less in consideration of handleability and stability over time. It is more preferably at most 10%. Most preferably, it is at most 6%. If it is less than 2%, static electricity is charged, and handling of the powder may be difficult.
[0030]
The dried product is ground if necessary. As a pulverizer, a cutter mill, a hammer mill, a pin mill, a jet mill, or the like is used, and the pulverizer is pulverized so as to pass through a sieve having a mesh size of 2 mm. More preferably, it is pulverized so as to pass through a sieve having an opening of 425 μm almost completely, and to have an average of 10 to 250 μm.
[0031]
The water-dispersible composite used in the present invention is a dry composition composed of 50 to 95% of fine fibrous cellulose and 5 to 50% of a hydrophilic polymer, and is granular, granular, powdery, and scaly. , Small pieces and sheets. This composition is characterized in that when it is put into water and subjected to a mechanical shearing force, the particles are disintegrated and fine fibrous cellulose is dispersed in water almost before drying. When the content of the fine fibrous cellulose is less than 50%, the effect of the cellulose is lowered and the effect is not exhibited. If it is 95% or more, the mixing ratio of the other components is relatively reduced, so that sufficient dispersibility in water cannot be ensured. From the viewpoint of securing the degree of function and the dispersibility in water, the preferred amount of the fine fibrous cellulose is 65 to 90%, and the preferred amount of the hydrophilic polymer is 10 to 35%. .
[0032]
With respect to conventional microfibrous cellulose, attempts have been made to prepare similar dry compositions (Japanese Patent Application Laid-Open Nos. 59-189141, 3-42297, 60-186548, JP-A-9-59301). However, in all of them, the microfibrous cellulose was not sufficiently restored to the state before drying. This is presumably because microfibrillation is insufficient, a large number of branched bundle-shaped fibers are present, and they tend to become keratinized (unified) when dried. On the other hand, the water-dispersible cellulose of the present invention has an extremely fine fibrous constitutional unit, and has a very small number of branched bundles of fibers. I think that the. Perhaps because of this, it is easily dispersed in water and easily returns to the same state as before drying.
[0033]
As described above, the water-dispersible composite of the present invention is such that when it is put into water and subjected to a mechanical shearing force, the constituent units (particles) disintegrate and fine fibrous cellulose is dispersed in water. become. At this time, the “mechanical shearing force” is such that a 0.25% aqueous dispersion is dispersed at a maximum of 15,000 rpm for 15 minutes with a rotary homogenizer at a temperature of 80 ° C. or less. Means
[0034]
The aqueous dispersion (0.1%) obtained in this manner has almost the same state as before drying, that is, 30% or more of the “components that are stably suspended in water” based on the total cellulose content. It is preferably at least 50%, particularly preferably at least 80%. The shape of the cellulose in the aqueous dispersion is almost the same as before drying, that is, the major axis is 0.5 to 30 μm, the minor axis is 2 to 600 nm, and the major axis / minor axis ratio is about 20 to 400. Preferably, the width is 100 nm or less, more preferably 50 nm. The loss tangent of the 0.5% aqueous dispersion is less than 1. Preferably it is less than 0.6. (The conditions for measuring the content of the “components that are stably suspended in water” and the loss tangent will be described later.) These properties indicate that a fine fibrous cellulose network is formed more finely and tightly in the system. Means that Thereby, stability such as emulsification stability of a beverage containing a milk component is imparted.
[0035]
The milk component used in the present invention includes liquid milk (raw milk, milk, etc.), milk powder (whole milk powder, skim milk powder, etc.), condensed milk (sugar-free condensed milk, sweetened condensed milk, etc.), creams ( Cream, whipped cream, etc.), fermented milk and the like, and the compounding amount thereof is about 0.1 to 12% as a non-fat milk solid content and about 0.01 to 6% as a milk fat content. The compounding amount is appropriately selected depending on the intended beverage (for example, milk drink, milk-containing soft drink, etc.).
[0036]
The beverage of the present invention is a beverage containing a milk component, and specifically, processed milk, fermented milk beverage, acidic milk beverage, tea containing milk (black tea, matcha, green tea, barley tea, oolong tea, etc.), milk Juices (beverage juices, vegetable juices, etc.), coffee with milk, cocoa with milk, nutritionally balanced beverages, liquid foods, etc. As raw materials, in addition to the water-dispersible complex, the milk component, and water, a sweetener, a flavor, a pigment, an acidifier, a spice, an emulsifier (glycerin fatty acid ester / monoglyceride, glycerin fatty acid ester / organic acid monoglyceride, polyglycerin) Fatty acid ester, polyglycerin condensed ricinoleate, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, lecithin, lysolecithin, calcium stearoyl lactate, etc. The fatty acid constituting the fatty acid ester is a saturated or unsaturated fatty acid having 6 to 22 carbon atoms. Saturated fatty acids such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, and erucic acid. Acid mono The organic acids of lyceride are acetic acid, lactic acid, citric acid, succinic acid, diacetyltartaric acid, etc.), sodium caseinate, thickening stabilizer (κ carrageenan, ι carrageenan, λ carrageenan, sodium carboxymethyl cellulose, propylene glycol alginate, locust) Bean gum, guar gum, cod gum, pectin, etc.), crystalline cellulose, dietary fiber (indigestible dextrin, polydextrose, enzymatically decomposed guar gum, water-soluble soy polysaccharides, etc.), nutritional enhancer (vitamin, calcium, etc.), flavor material ( Coffee powder, milk flavor, brandy, etc., food materials (pulp, fruit juice, vegetables, vegetable juice, starch, cereals, soy milk, honey, vegetable oils, animal oils, etc.), seasonings (miso, soy sauce, salt, glutamic acid) Sodium, etc.), etc. It may be blended.
[0037]
The production of the beverage of the present invention follows known methods. To give an example, powder materials (sugar, skim milk powder, etc.) are added to warm water, stirred and dissolved (dispersed), mixed with coffee extract, fruit juice, cream, etc., homogenized and filled into containers. Manufactured. Sterilization depends on the raw material of the product, product form (cans, bottles, PET bottles, paper packs, cups, etc.), desired storage conditions (chilled, normal temperature, heated, etc.) and expiration date, HTST sterilization, hot pack It is carried out by appropriately selecting a method such as sterilization and retort sterilization. The beverage of the present invention is desirably subjected to a homogenization treatment at least once after all components including the water-dispersible complex have been blended. Thereby, the milk component is highly stabilized.
[0038]
The water-dispersible composite may be blended together with the powder raw material. However, the effect is not exhibited unless the water-dispersible composite is present in the beverage in a state of being dispersed in fine fibrous cellulose. Therefore, it is desirable to stir the mixture with a strong stirrer such as a high-speed rotating homogenizer. Alternatively, the water-dispersible composite may be previously stirred with water or warm water to prepare a dispersion, and then mixed. It is one of the preferred embodiments to use a piston-type high-pressure homogenizer (10 MPa or more) at a temperature of 60 to 80 ° C. when preparing the dispersion.
[0039]
The blending amount of the water-dispersible complex to the beverage is approximately 0.001 to 0.5%. Preferably it is 0.005-0.2%, More preferably, it is 0.007-0.1%. If the blending amount is small, the effect of preventing oil-off etc. is not sufficiently exhibited, and if the blending amount is too large, the viscosity of the system increases, and the original texture (throbbing, pasty feeling, etc.) of the beverage is impaired, Product value will be reduced. Although the details of the mechanism such as the occurrence of oil-off are unknown, it is presumed that fat globules derived from milk components collide due to thermal vibration, emulsification is broken, fat components float, and proteins settle. The product of the present invention considers that fine fibrous cellulose forms a network in the whole beverage, which acts as a steric hindrance, prevents collision between fat globules, and prevents emulsification destruction. In addition, since cellulose tends to interact weakly with the milk component (fat globule), the fat globule may be bound in the vicinity of fine fibrous cellulose, thereby suppressing the thermal vibration of the fat globule. is there.
[0040]
In the case of a milk coffee beverage, a blending ratio of about 0.008 to 0.08% is appropriate. In the case of a conventional cellulose-based additive such as crystalline cellulose, oil-off is suppressed in combination with a glycerin fatty acid ester. However, when stored at a high temperature of about 60 ° C., the milk component interacts with the crystalline cellulose to cause aggregation. There was a case. However, the beverage of the present invention can be used not only for chilled storage (5 ° C.) and room temperature storage (25 ° C.) but also for hot (60 ° C.) oil-off and oil rings, even at a low blending amount of 0.08% or less. A uniform appearance can be maintained with little precipitation of milk proteins, aggregation or separation of the system. Of course, substances that have been conventionally recognized as effective, such as emulsifiers, carrageenan, sodium caseinate, and crystalline cellulose, may be added. Thus, for example, milk coffee in a PET bottle can be sold hot without changing the appearance such as oil-off.
[0041]
【Example】
Next, the present invention will be described more specifically with reference to examples. The measurement was performed as follows.
<Average degree of polymerization of raw material (cellulose)>
ASTM Designation: Performed in accordance with D 1795-90 “Standard Test Method for Intrinsic Viscosity of Cellulose”.
<Α-cellulose content of raw material (cellulose)>
The test is performed in accordance with JIS P8101-1976 (“Testing method for dissolved pulp” 5.5 α-cellulose).
[0042]
<Cellulose fiber (particle) shape (major axis, minor axis, major axis / minor axis ratio)>
Due to the large size range of cellulose fibers (particles), it is not possible to observe them all with one kind of microscope. Therefore, an optical microscope and a scanning microscope (medium resolution SEM, high resolution SEM) are appropriately selected according to the size of the fiber (particle), and observation and measurement are performed.
When an optical microscope is used, the sample aqueous dispersion adjusted to an appropriate concentration is placed on a slide glass, and further placed on a cover glass for observation.
When a medium-resolution SEM (JSM-5510LV, manufactured by JEOL Ltd.) is used, a sample aqueous dispersion is placed on a sample table, air-dried, and about 3 nm of Pt-Pd is deposited for observation.
[0043]
When a high-resolution SEM (S-5000, manufactured by Hitachi Science Systems, Ltd.) is used, a sample aqueous dispersion is placed on a sample table, air-dried, and then Pt-Pd is deposited to about 1.5 nm for observation.
The major axis, minor axis, and major / minor axis ratio of cellulose fibers (particles) were measured by selecting 15 or more (pieces) from the photographed photographs. The fibers were almost straight, and some were curved like hair, but were not curled like lint. The minor axis (thickness) varied among single fibers, but an average value was adopted. The high-resolution SEM was used for observation of a fiber having a minor axis of about several nm to 200 nm, but one fiber was too long to fit in one visual field. Therefore, photography was repeated while moving the field of view, and then the photographs were synthesized and analyzed.
[0044]
<Loss tangent (= loss modulus / storage modulus)>
(1) A sample and water are weighed so as to form a 0.5% aqueous dispersion, and are dispersed with an ace homogenizer (AM-T type, manufactured by Nippon Seiki Co., Ltd.) at 15000 rpm for 15 minutes.
(2) Let stand in an atmosphere of 25 ° C. for 3 hours.
(3) After placing the sample liquid in the dynamic viscoelasticity measuring apparatus, it is allowed to stand for 5 minutes, and then measured under the following conditions to determine a loss tangent (tan δ) at a frequency of 10 rad / s.
Equipment: ARES (100FRTN1 type)
(Rheometric Scientific, Inc.)
Geometry: Double Wall Couette
Temperature: 25 ° C
Distortion: 10% (fixed)
Frequency: 1 → 100 rad / s (raise over about 170 seconds)
[0045]
<Aqueous dispersion viscosity>
(1) A sample and water are weighed so as to form a 0.25% aqueous dispersion, and dispersed with an Excel auto homogenizer (ED-7, manufactured by Nippon Seiki Co., Ltd.) at 15000 rpm for 15 minutes.
(2) Let stand in an atmosphere of 25 ° C. for 3 hours.
(3) After stirring well, set a rotational viscometer (B-type viscometer, BL type, manufactured by Tokimec Co., Ltd.), start rotating the rotor 30 seconds after the completion of stirring, and then set the viscosity from the indicated value 30 seconds later. Is calculated. The rotation speed of the rotor is set to 60 rpm, and the rotor is appropriately changed depending on the viscosity.
[0046]
<Content of “components that are stably suspended in water”>
(1) A sample and water are weighed so that the cellulose dispersion becomes an aqueous dispersion having a concentration of 0.1%, and dispersed with an Excel auto homogenizer (ED-7 type, manufactured by Nippon Seiki Co., Ltd.) at 15,000 rpm for 15 minutes.
(2) 20 g of the sample solution is placed in a centrifuge tube, and centrifuged at 1000 G for 5 minutes using a centrifuge.
(3) The liquid portion of the upper layer is removed, and the weight (a) of the sediment component is measured.
(4) Next, the sedimentation component is completely dried, and the weight (b) of the solid content is measured.
[0047]
(5) Calculate the content (c) of “a component that is stably suspended in water” using the following equation.
c = 5000 × (k1 + k2) [%]
When the sample does not contain a water-soluble polymer (and a hydrophilic substance), k1 and k2 are calculated using the following formula and used.
k1 = 0.02-b
k2 = {k1 × (ab)} / (19.98-a + b)
When the sample contains a water-soluble polymer (and a hydrophilic substance), k1 and k2 are calculated using the following equations and used.
k1 = 0.02-b + s2
k2 = k1 × w2 / w1
Cellulose / water-soluble polymer (hydrophilic substance) = f / d [mixing ratio]
w1 = 19.98−a + b + 0.02 × d / f
w2 = ab
s2 = 0.02 × d × w2 / {f × (w1 + w2)}
[0048]
When the content of the “components that are stably suspended in water” is very large, the weight of the sedimentation components becomes small, so that the above-described method lowers the measurement accuracy. In that case, the procedure after (3) is performed as follows.
(3 ′) Obtain the liquid portion of the upper layer and measure the weight (a ′).
(4 ′) Next, the upper layer component is dried completely, and the weight (b ′) of the solid content is measured.
(5 ′) The content (c) of “a component that is stably suspended in water” is calculated using the following equation.
c = 5000 × (k1 + k2) [%]
When the sample does not contain a water-soluble polymer (and a hydrophilic substance), k1 and k2 are calculated using the following formula and used.
k1 = b '
k2 = k1 × (19.98−a ′ + b ′) / (a′−b ′)
[0049]
When the sample contains a water-soluble polymer (and a hydrophilic substance), k1 and k2 are calculated using the following equations and used.
k1 = b′−s2 × w1 / w2
k2 = k1 × w2 / w1
Cellulose / water-soluble polymer (hydrophilic substance) = f / d [mixing ratio]
w1 = a'-b '
w2 = 19.98−a ′ + b′−0.02 × d / f
s2 = 0.02 × d × w2 / {f × (w1 + w2)}
[0050]
If the boundary between the upper liquid portion and the sedimentation component is not clear due to the operation of (3 ′) and it is difficult to separate, the upper 1/3 amount (about 7 g) of the whole is obtained, and thereafter (4 ′) and (4 ′) Operate according to 5 ').
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0051]
[Example 1]
Commercial wood pulp (average degree of polymerization = 1510, α-cellulose content = 77%) was cut into a rectangle of 6 x 16 mm square, and water was added so that the water content was 80%. While taking care not to separate the water and the pulp chips as much as possible, a cutter mill (“COMITROL” manufactured by URSCHEL LABORATORIES, Inc., model 1700, cutting head / horizontal blade gap: 2.03 mm, impeller rotation speed: 3600 rpm) Once, the fiber length became 0.75 to 3.75 mm.
[0052]
Cutter-milled product, sodium carboxymethylcellulose and water were weighed so that the cellulose concentration was 2% and the sodium carboxymethylcellulose concentration was 0.0706%, and the mixture was stirred and dispersed until the fibers were not entangled. This aqueous dispersion was treated twice with a grindstone rotary type pulverizer (“Serendipita” MKCA6-3, manufactured by Masuko Sangyo Co., Ltd., grinder: MKE6-46, grinder rotation speed: 1800 rpm).
[0053]
Next, the obtained aqueous dispersion was subjected to 4 passes with a high-pressure homogenizer (“Microfluidizer”, Model M-110Y, manufactured by MFIC Corp., processing pressure: 95 MPa) to obtain a fine fibrous cellulose aqueous dispersion. The aqueous dispersion viscosity was 68 mPa · s. When observed with an optical microscope, fine fibrous cellulose having a major axis of 10 to 400 μm, a minor axis of 1 to 5 μm, and a major axis / minor axis ratio of 10 to 300 was observed. The loss tangent was 0.64. The content of the “component that is stably suspended in water” was 43%. When observed with a high-resolution SEM, extremely fine fibrous cellulose having a major axis of 1 to 20 μm, a minor axis of 10 to 150 nm, and a major axis / minor axis ratio of 30 to 300 was observed.
[0054]
Sodium carboxymethylcellulose was added to the aqueous dispersion to make cellulose: sodium carboxymethylcellulose = 80: 20 (parts by weight), followed by stirring and mixing with a stirring homogenizer for 15 minutes. This was dried with a drum dryer, scraped off with a scraper, and pulverized with a cutter mill (“Flush Mill” manufactured by Fuji Paudal Co., Ltd.) so that the sieve with a mesh of 2 mm was passed through almost completely. A (hereinafter, referred to as complex A) was obtained.
[0055]
The aqueous dispersion viscosity of the composite A was 66 mPa · s, and the loss tangent was 0.65. When observed with an optical microscope, fine fibrous cellulose having a major axis of 10 to 400 μm, a minor axis of 1 to 5 μm, and a major axis / minor axis ratio of 10 to 300 was observed. The content of the “component that is stably suspended in water” was 40%. When observed with a high-resolution SEM, extremely fine fibrous cellulose having a major axis of 1 to 20 μm, a minor axis of 10 to 150 nm, and a major axis / minor axis ratio of 30 to 300 was observed.
[0056]
Complex A was added to warm water, and dispersed (15000 rpm, 15 minutes, 80 ° C.) with an ace homogenizer (manufactured by Nippon Seiki Co., Ltd., AM-T) to prepare a 0.5% dispersion. Warm water (80 ° C.), 48 parts of coffee extract, 12.5 parts of milk (8.8% of non-fat milk solids, 3.8% of milk fat), 12.5 parts of sugar, 6 parts of sugar, carbonic acid 0.06 parts of sodium hydrogen and 0.03 parts of sucrose palmitate were added. The amount of warm water was used so that the whole was 100 parts. This liquid was stirred with a propeller at 80 ° C. for 10 minutes, and then homogenized twice with a piston-type homogenizer (primary pressure: 15 MPa, secondary pressure: 5 MPa), and filled into a 200-mL glass heat-resistant bottle. This was sterilized (121 ° C., 30 min) and cooled with tap water to obtain milk coffee. The milk coffee was allowed to stand still for one month in an atmosphere of 5, 25, 60 ° C., and the appearance uniformity (oil-off, aggregation, sedimentation) was visually observed. The results are shown in Table 1. The viscosity was measured with a B-type viscometer (using a BL adapter, rotor rotation speed 60 rpm) one day after production (stored at 5 ° C.).
[0057]
Comparative Example 1 is a formulation containing no complex A. In this case, sedimentation of milk protein and oil-off occur. In contrast, in the present example, sedimentation and oil-off were significantly reduced by blending the composite A. (However, when the blending amount of the complex increases, aggregation tends to increase slightly.) The state of “±: there is a forgiveness” is such that the system is easily uniform when shaken by hand, It is in a practically usable state.
[0058]
[Example 2]
Commercial bagasse pulp (average degree of polymerization = 1320, α-cellulose content = 77%) was cut into a rectangle of 6 × 16 mm square. Next, water and water were weighed out so that the cellulose concentration was 3% and the sodium carboxymethylcellulose concentration was 0.176%, and the mixture was stirred with a household mixer for 5 minutes.
This aqueous dispersion was treated three times with a grindstone rotary type pulverizer (“Serendipita” MKCA6-3, manufactured by Masuko Sangyo Co., Ltd., grinder: MKE6-46, grinder rotation speed: 1800 rpm).
[0059]
Then, the obtained aqueous dispersion was diluted with water to 2%, and passed through a high-pressure homogenizer (“Microfluidizer”, model M-140K, manufactured by MFIC Corp., Model M-140K, processing pressure: 110 MPa) for 4 passes to obtain fine fibrous cellulose. An aqueous dispersion was obtained. The viscosity was 120 mPa · s. When observed with an optical microscope, fine fibrous cellulose having a major axis of 10 to 500 μm, a minor axis of 1 to 25 μm, and a major axis / minor axis ratio of 5 to 190 was observed. "The component which is stably suspended in water" was 99%.
[0060]
Sodium carboxymethylcellulose was added to the aqueous dispersion so that cellulose: sodium carboxymethylcellulose = 85: 15 (parts by weight), and the mixture was stirred and mixed for 15 minutes with a stirring homogenizer. This was dried with a drum dryer, scraped off with a scraper, and the obtained product was crushed with a cutter mill (“Flush Mill” manufactured by Fuji Paudal Co., Ltd.) to a degree that it could pass through a sieve with a mesh size of 2 mm almost completely. A water-dispersible composite B (hereinafter, referred to as composite B) was obtained. The viscosity of the aqueous dispersion of the composite B was 143 mPa · s, the loss tangent was 0.38, and the “component that is stably suspended in water” was 98%.
[0061]
Next, a milk coffee was obtained in the same manner as in Example 1 except that the complex B was used instead of the complex A. Table 1 shows the results of the evaluation performed in the same manner as in Example 1. With a low addition amount of 0.1% or less, a uniform appearance was maintained not only at 5 ° C and 25 ° C but also at 60 ° C.
[Example 3]
A commercially available straw pulp (average degree of polymerization = 930, α-cellulose content = 68%) was cut into a rectangle of 6 × 12 mm square, water was added so as to be 4%, and the mixture was stirred with a household mixer for 5 minutes. This was dispersed for 1 hour using a high-speed rotation type homogenizer (Yamato Kagaku, ULTRA-DISPERSER, LK-U type).
This aqueous dispersion was treated twice with a grindstone rotary type pulverizer (“Serendipita” MKCA6-3, manufactured by Masuko Sangyo Co., Ltd., grinder: MKE6-46, grinder rotation speed: 1800 rpm).
[0062]
Next, the obtained aqueous dispersion was diluted with water to 2%, and passed through 8 passes with a high-pressure homogenizer (“Ultimizer System” manufactured by Sugino Machine Co., Ltd., Model HJP25030, processing pressure: 175 MPa) to obtain fine fibrous cellulose. An aqueous dispersion was obtained. The viscosity was 69 mPa · s. When observed with an optical microscope, fine fibrous cellulose having a major axis of 10 to 700 μm, a minor axis of 1 to 30 μm, and a major axis / minor axis ratio of 10 to 150 was observed. The loss tangent was 0.43. The “component that stably suspends in water” was 89%.
[0063]
Sodium carboxymethylcellulose was added to the aqueous dispersion so that cellulose: sodium carboxymethylcellulose = 85: 15 (parts by weight), and the mixture was stirred and mixed for 15 minutes with a stirring homogenizer. This was dried with a drum dryer, scraped off with a scraper, and the obtained product was pulverized with a cutter mill (“Flush Mill” manufactured by Fuji Paudal Co., Ltd.) to a degree that the sieve with an opening of 1 mm was passed almost completely. A water-dispersible composite C (hereinafter, referred to as composite C) was obtained. The viscosity of the aqueous dispersion of the composite C was 61 mPa · s, the loss tangent was 0.51, and the “component that is stably suspended in water” was 75%.
[0064]
Next, milk coffee was obtained in the same manner as in Example 1 except that the complex C was used instead of the complex A. Table 1 shows the results of the evaluation performed in the same manner as in Example 1.
[0065]
[Example 4]
An aqueous dispersion of fine fibrous cellulose obtained in Example 3 was used in place of Complex A, and milk coffee was obtained in the same manner as in Example 1. However, the compounding amount of fine fibrous cellulose was 0.025% as a solid content. Table 2 shows the evaluation results in the same manner as in Example 1.
[0066]
[Example 5]
Instead of the composite A, the aqueous dispersion of fine fibrous cellulose obtained in Example 3 was used, and ι-carrageenan was added. Milk coffee was obtained in the same manner as in Example 1. However, the compounding amount of fine fibrous cellulose was 0.02% as solid content. 0.005% of carrageenan was added. Table 2 shows the evaluation results in the same manner as in Example 1.
[0067]
[Comparative Example 1]
Milk coffee was obtained in the same manner as in Example 1 except that the complex A was not used. Table 3 shows the results of the evaluation performed in the same manner as in Example 1.
This formulation does not contain a stabilizer in particular, except that it contains an emulsifier (sucrose palmitate) for bacteriostatic purposes. In this case, sedimentation of milk protein and oil-off occurred. In such a state, it is difficult to produce a product even if it is filled in a can.
[0068]
[Comparative Example 2]
Milk coffee was obtained in the same manner as in Example 1 except that 0.2 parts of high-purity stearic acid monoglyceride was added, and that the complex A was not used. Table 3 shows the results of the evaluation performed in the same manner as in Example 1.
[0069]
[Comparative Example 3]
Example 1 except that 0.2 part of high-purity stearic acid monoglyceride and 0.1 part of a crystalline cellulose preparation (Avicel (registered trademark) RC-591, manufactured by Asahi Kasei Corporation) were mixed, and no complex A was used. In the same manner as above, milk coffee was obtained. Table 3 shows the results of the evaluation performed in the same manner as in Example 1. This comparative example is a technique disclosed in JP-A-6-335348.
[0070]
[Comparative Example 4]
Example 1 except that 0.2 part of high-purity stearic acid monoglyceride and 0.3 part of a crystalline cellulose preparation (Avicel (registered trademark) RC-591, manufactured by Asahi Kasei Co., Ltd.) were blended, and complex A was not used. In the same manner as above, milk coffee was obtained. Table 3 shows the results of the evaluation performed in the same manner as in Example 1. This comparative example is a technique disclosed in JP-A-6-335348.
[0071]
In Comparative Example 3, it was found that the stability at 60 ° C. storage was increased by the addition of 0.2 part of the emulsifier and 0.1 part of the crystalline cellulose preparation. However, the stability at each of the temperatures of 5, 25, and 60 ° C. is not sufficiently satisfactory. In Comparative Example 4, the combination of 0.2 part of the emulsifier and 0.3 part of the crystalline cellulose preparation resulted in a very good state at 5 ° C. and 25 ° C. However, when stored at 60 ° C., strong aggregation occurs.
[0072]
[Table 1]
Figure 2004305005
[0073]
[Table 2]
Figure 2004305005
[0074]
[Table 3]
Figure 2004305005
[0075]
【The invention's effect】
The milk component-containing beverage of the present invention is a beverage that is stable over time without oil-off and without sedimentation of milk proteins and solid particles.

Claims (6)

植物細胞壁を原料とした微細な繊維状のセルロースであって、その0.1質量%水分散液に安定に懸濁する成分を30質量%以上含有する繊維状セルロースを乳成分含有飲料に配合することを特徴とする乳成分含有飲料の安定化方法。A fibrous cellulose containing 30% by mass or more of a fine fibrous cellulose made from a plant cell wall and containing a component stably suspended in a 0.1% by mass aqueous dispersion thereof is added to a milk component-containing beverage. A method for stabilizing a dairy component-containing beverage, comprising: 微細な繊維状のセルロースの0.5質量%水分散液の損失正接が1未満である、請求項1の乳成分含有飲料の安定化方法。The method for stabilizing a dairy component-containing beverage according to claim 1, wherein the loss tangent of a 0.5% by mass aqueous dispersion of fine fibrous cellulose is less than 1. 植物細胞壁を原料とした微細な繊維状のセルロースであって、その0.1質量%水分散液に安定に懸濁する成分を30質量%以上含有する繊維状セルロースを、親水性高分子とともに乳成分含有飲料に配合することを特徴とする乳成分含有飲料の安定化方法。Fine fibrous cellulose containing 30% by mass or more of a component that is stably suspended in a 0.1% by mass aqueous dispersion of a plant cell wall as a raw material is mixed with a hydrophilic polymer to obtain milk. A method for stabilizing a dairy component-containing beverage, which is characterized by being blended into a component-containing beverage. 植物細胞壁を原料とした繊維状のセルロースであって、その0.1質量%水分散液に安定に懸濁する成分を30質量%以上含有する繊維状セルロース50〜95%と親水性高分子5〜50%を含有する水分散性複合体を乳成分含有飲料に配合する請求項3の乳成分含有飲料の安定化方法。50 to 95% of fibrous cellulose containing 30% by mass or more of a component stably suspended in an aqueous dispersion of 0.1% by mass of fibrous cellulose made from plant cell walls and hydrophilic polymer 5 4. The method for stabilizing a dairy component-containing beverage according to claim 3, wherein a water-dispersible complex containing 5050% is incorporated into the dairy component-containing beverage. 水分散性複合体の0.5質量%水分散液の損失正接が1未満である、請求項4の乳成分含有飲料の安定化方法。The method for stabilizing a dairy component-containing beverage according to claim 4, wherein the loss tangent of the 0.5% by mass aqueous dispersion of the water-dispersible complex is less than 1. 請求項1、2、3、4、5のいずれかの方法により安定化された乳成分含有飲料。A milk component-containing beverage stabilized by the method according to any one of claims 1, 2, 3, 4, and 5.
JP2003098602A 2003-04-01 2003-04-01 Method for stabilizing milk-containing beverages Expired - Fee Related JP4159393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098602A JP4159393B2 (en) 2003-04-01 2003-04-01 Method for stabilizing milk-containing beverages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098602A JP4159393B2 (en) 2003-04-01 2003-04-01 Method for stabilizing milk-containing beverages

Publications (3)

Publication Number Publication Date
JP2004305005A true JP2004305005A (en) 2004-11-04
JP2004305005A5 JP2004305005A5 (en) 2006-05-18
JP4159393B2 JP4159393B2 (en) 2008-10-01

Family

ID=33463330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098602A Expired - Fee Related JP4159393B2 (en) 2003-04-01 2003-04-01 Method for stabilizing milk-containing beverages

Country Status (1)

Country Link
JP (1) JP4159393B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289164A (en) * 2005-04-06 2006-10-26 Agri Future Joetsu Co Ltd Liquid composition dispersed with biomass-derived component, its production method and product produced from this liquid composition
JP2006314260A (en) * 2005-05-13 2006-11-24 Meiji Milk Prod Co Ltd Method for suppressing crystal deposition caused on tyrosine-containing beverage
JP2011162700A (en) * 2010-02-12 2011-08-25 Asahi Kasei Chemicals Corp Crystalline cellulose composite
JP2012518050A (en) * 2009-02-13 2012-08-09 ウーペーエム キュンメネ コーポレイション Method for producing modified cellulose
US20140017385A1 (en) * 2011-03-29 2014-01-16 San-Ei Gen F.F.I., Inc. Oil-in-water dispersion type oil-containing liquid food
JP2014036595A (en) * 2012-08-14 2014-02-27 Asahi Kasei Chemicals Corp Neutral beverage containing crystalline cellulose composite
WO2014095323A1 (en) 2012-12-19 2014-06-26 Unilever N.V. Ready-to-drink tea-based beverage comprising cellulose microfibrils derived from plant parenchymal tissue
WO2015193122A1 (en) * 2014-06-17 2015-12-23 Unilever Plc Ready-to-drink proteinaceous beverage
US10188124B2 (en) 2012-12-19 2019-01-29 Conopco, Inc. Tea dry matter compositional beverage
WO2021241686A1 (en) * 2020-05-27 2021-12-02 三栄源エフ・エフ・アイ株式会社 Protein-containing acidic beverage
CN115426890A (en) * 2020-02-17 2022-12-02 皇家多维埃格伯特斯有限公司 Composition for forming beverage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325060A (en) * 1991-04-26 1992-11-13 Asahi Chem Ind Co Ltd Thermally stable food composition
JPH06335348A (en) * 1993-03-29 1994-12-06 Asahi Chem Ind Co Ltd Coffee beverage and its production
JPH0838127A (en) * 1994-08-04 1996-02-13 Asahi Chem Ind Co Ltd Non-coffee milky beverage and production thereof
JPH1056960A (en) * 1996-08-19 1998-03-03 Asahi Chem Ind Co Ltd Fine cellulose-containing acidic milk beverage
JPH10234316A (en) * 1996-10-18 1998-09-08 Sanei Gen F F I Inc Dispersion stabilizer containing native gellan gum and its application
JP2000041627A (en) * 1998-07-30 2000-02-15 Asahi Chem Ind Co Ltd Food composition containing plural dispersible cellulose composite materials
JP2000069907A (en) * 1998-09-03 2000-03-07 Asahi Chem Ind Co Ltd Acidic milk beverage and its production
JP2002345401A (en) * 2001-05-24 2002-12-03 Sanei Gen Ffi Inc Acidic milk beverage containing insoluble solid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325060A (en) * 1991-04-26 1992-11-13 Asahi Chem Ind Co Ltd Thermally stable food composition
JPH06335348A (en) * 1993-03-29 1994-12-06 Asahi Chem Ind Co Ltd Coffee beverage and its production
JPH0838127A (en) * 1994-08-04 1996-02-13 Asahi Chem Ind Co Ltd Non-coffee milky beverage and production thereof
JPH1056960A (en) * 1996-08-19 1998-03-03 Asahi Chem Ind Co Ltd Fine cellulose-containing acidic milk beverage
JPH10234316A (en) * 1996-10-18 1998-09-08 Sanei Gen F F I Inc Dispersion stabilizer containing native gellan gum and its application
JP2000041627A (en) * 1998-07-30 2000-02-15 Asahi Chem Ind Co Ltd Food composition containing plural dispersible cellulose composite materials
JP2000069907A (en) * 1998-09-03 2000-03-07 Asahi Chem Ind Co Ltd Acidic milk beverage and its production
JP2002345401A (en) * 2001-05-24 2002-12-03 Sanei Gen Ffi Inc Acidic milk beverage containing insoluble solid

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289164A (en) * 2005-04-06 2006-10-26 Agri Future Joetsu Co Ltd Liquid composition dispersed with biomass-derived component, its production method and product produced from this liquid composition
JP2006314260A (en) * 2005-05-13 2006-11-24 Meiji Milk Prod Co Ltd Method for suppressing crystal deposition caused on tyrosine-containing beverage
US9181653B2 (en) 2009-02-13 2015-11-10 Upm-Kymmene Oyj Method for producing modified cellulose
JP2012518050A (en) * 2009-02-13 2012-08-09 ウーペーエム キュンメネ コーポレイション Method for producing modified cellulose
JP2011162700A (en) * 2010-02-12 2011-08-25 Asahi Kasei Chemicals Corp Crystalline cellulose composite
US20140017385A1 (en) * 2011-03-29 2014-01-16 San-Ei Gen F.F.I., Inc. Oil-in-water dispersion type oil-containing liquid food
US11363824B2 (en) * 2011-03-29 2022-06-21 San-Ei Gen F.F.I., Inc. Oil-in-water dispersion type oil-containing liquid food
JP2014036595A (en) * 2012-08-14 2014-02-27 Asahi Kasei Chemicals Corp Neutral beverage containing crystalline cellulose composite
US10188124B2 (en) 2012-12-19 2019-01-29 Conopco, Inc. Tea dry matter compositional beverage
JP2016500270A (en) * 2012-12-19 2016-01-12 ユニリーバー・ナームローゼ・ベンノートシヤープ Instant tea-based beverage containing cellulose microfibrils derived from plant soft tissue
AU2013361916B2 (en) * 2012-12-19 2016-03-31 Unilever Ip Holdings B.V. Ready-to-drink tea-based beverage comprising cellulose microfibrils derived from plant parenchymal tissue
EA029188B1 (en) * 2012-12-19 2018-02-28 Юнилевер Н.В. Ready-to-drink tea-based beverage and method for preparing same
US9999235B2 (en) 2012-12-19 2018-06-19 Conopco, Inc. Ready-to-drink tea beverage comprising cellulose microfibrils derived from plant parenchymal tissue
CN104869838B (en) * 2012-12-19 2018-12-11 荷兰联合利华有限公司 Ready-to-drink tea base beverage comprising being derived from paracellulose microfibril
WO2014095323A1 (en) 2012-12-19 2014-06-26 Unilever N.V. Ready-to-drink tea-based beverage comprising cellulose microfibrils derived from plant parenchymal tissue
CN104869838A (en) * 2012-12-19 2015-08-26 荷兰联合利华有限公司 Ready-to-drink tea-based beverage comprising cellulose microfibrils derived from plant parenchymal tissue
WO2015193122A1 (en) * 2014-06-17 2015-12-23 Unilever Plc Ready-to-drink proteinaceous beverage
CN115426890A (en) * 2020-02-17 2022-12-02 皇家多维埃格伯特斯有限公司 Composition for forming beverage
WO2021241686A1 (en) * 2020-05-27 2021-12-02 三栄源エフ・エフ・アイ株式会社 Protein-containing acidic beverage

Also Published As

Publication number Publication date
JP4159393B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
KR100636756B1 (en) Water-dispersible cellulose and process for producing the same
JP2006008857A (en) Highly dispersible cellulose composition
TWI306017B (en) Composition composed of highly dispersible cellulose complex and polysaccharide
US10624359B2 (en) Highly functional cellulose composite
JP4749363B2 (en) Acidic milk food with mild acidity
JP4152788B2 (en) Gel composition
EP2934162B1 (en) Ready-to-drink tea-based beverage comprising cellulose microfibrils derived from plant parenchymal tissue
JP5539748B2 (en) Crystalline cellulose composite
TW201201709A (en) Cellulose composite
JP4159393B2 (en) Method for stabilizing milk-containing beverages
JP2020048461A (en) High concentration protein beverage
JP2009065836A (en) Liquid egg composition and egg processed food
JP3998588B2 (en) Heat resistant gel
JP4225482B2 (en) Yogurt manufacturing method
WO2002096213A1 (en) Composite containing fine cellulose
JP2005095061A (en) Emulsified composition
JP4094983B2 (en) Edible sponge gel
JP3665010B2 (en) Food composition comprising a fine cellulose-containing composite
JP2010104324A (en) Crystalline cellulose conjugated product suitable for milk beverage
JP3903452B2 (en) Acidic milk beverage and method for producing the same
TWI231819B (en) A water-dispersible cellulose and a process for producing the same
JP2000333650A (en) Parched soybean flour beverage

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R150 Certificate of patent or registration of utility model

Ref document number: 4159393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees