JP2004304063A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2004304063A
JP2004304063A JP2003097202A JP2003097202A JP2004304063A JP 2004304063 A JP2004304063 A JP 2004304063A JP 2003097202 A JP2003097202 A JP 2003097202A JP 2003097202 A JP2003097202 A JP 2003097202A JP 2004304063 A JP2004304063 A JP 2004304063A
Authority
JP
Japan
Prior art keywords
layer
carbon
electrolytic capacitor
solid electrolytic
carbon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097202A
Other languages
Japanese (ja)
Inventor
Yoshihiko Sasaki
嘉彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2003097202A priority Critical patent/JP2004304063A/en
Publication of JP2004304063A publication Critical patent/JP2004304063A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which has a low ESR (equivalent series resistance) and a small loss, and also a method for manufacturing the capacitor. <P>SOLUTION: In the solid electrolytic capacitor, an anodic oxide film is formed on a sintered compact made of valve action metal powder, a solid electrolyte layer made of manganese dioxide or the like is formed thereon, and then a cathode layer is formed thereon. A first carbon layer 41 made of mainly carbon particles having small diameters as the cathode layer, a second carbon layer 42 made of mainly scale-like carbon particles having large diameters, a third carbon layer 43 having small diameters and a silver paste layer 5, are sequentially laminated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解コンデンサおよびその製造方法に関する。
【0002】
【従来の技術】
近年、漏れ電流が小さく、高周波特性に優れた、信頼性の高い固体電解コンデンサが要望されている。この要望に応えるために、特開昭64−47016号公報、特開平1−253226号公報および特開平2−130906号公報は、二酸化マンガンや導電性高分子を固体電解質として用いた固体電解コンデンサを提案している。このような固体電解コンデンサは下記のようにして製造される。
【0003】
まず、タンタル、アルミニウム、およびニオブなどの弁金属からなる多孔体を陽極酸化することにより、多孔体表面に化成皮膜を成長させる。この化成皮膜上に半導体である二酸化マンガンあるいは機能性高分子からなる固体電解質層を形成する。続いて、固体電解質層の表面にカーボン層を形成し、さらにカーボン層上に銀を含有する塗料を塗布して銀導電性樹脂層からなる陰極引出電極を設ける。カーボン層は、固体電解質層と銀導電性樹脂層とを接合して、コンデンサ内での導通を向上させる。
【0004】
【特許文献1】特開昭64−47016号公報
【特許文献2】特開平1−253226号公報
【特許文献3】特開平2−130906号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述の固体電解コンデンサにおいて、固体電解質として、二酸化マンガン、あるいは、さらに導電率の高い高分子固体電解質を用いても、固体電解コンデンサの等価直列抵抗(EquivalentSeries Resistance 以下、ESRと称する)が一定値以下に低下しないという問題があった。詳細な検討を行った結果、ESRは、コンデンサ充放電電流の導電経路における各部材の抵抗の合計値に比較してはるかに大きいことが判明した。また、カーボン層と固体電解質層との接触に依存する接触抵抗がESRの主な要因であり、このESRが固体電解コンデンサの特性に影響を与えることが判明した。
【0006】
本発明は、上記のような課題を解決するためになされたものであり、ESRが低く、損失の小さい固体電解コンデンサおよびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
この発明は、弁作用金属の粉末からなる焼結体に陽極酸化皮膜を形成し、固体電解質層及び陰極層を順次積層してなる固体電解コンデンサにおいて、陰極層として、粒径の小さいカーボンを主体とする第1カーボン層、粒径の大きい鱗片状のカーボンを主体とする第2カーボン層、粒径の小さいカーボンを主体とする第3カーボン層、銀ペースト層から構成したことを特徴とする。
【0008】
固体電解質層は表面が平坦ではなく、凹凸を有するものである。例えば固体電解質として二酸化マンガンを用いたものは、タンタル粉末を焼結した焼結体を、硝酸マンガン水溶液中にディップしたのち引き揚げて、約200℃の温度に加熱焼成することを複数回(例えば、10回程度)に繰り返すことにより、二酸化マンガンによる固体電解層を形成するが、焼成による体積の収縮や硝酸マンガン水溶液の溶媒の蒸発等により、二酸化マンガンは密には形成されず、二酸化マンガン層は隙間を有するものとなる。
【0009】
また、導電性高分子を固体電解質として用いたものでも、化学重合により導電性高分子層を形成した場合には、化学重合によっては重合方向を制御することが困難で、その表面には凹凸が形成されたものとなってしまう。
【0010】
このため、粒径の小さいカーボンを主体とするカーボン層を形成すると、固体電解質層の表面の凹凸にカーボン粒子が入り込み、固体電解質層との接触面積を低減させることができる。しかし粒径の小さいカーボン粒子は、カーボン粒子内部での断面積が小さいものであることと、カーボン粒子の接触頻度が多いため、接触抵抗も大きなものとなる。このため、カーボン層全体を見ると、カーボン層の導電率は良好とは言えない。
【0011】
そこで、粒径の小さいカーボン粒子を主体とする第1のカーボン層の上に、粒径の大きい鱗片状のカーボンを主体とする第2カーボン層を形成することにより、第1のカーボン層のカーボン粒子との接触面積の増大が図られるとともに、粒径の大きい鱗片状のカーボン自体の有する内部抵抗が小さいものであるため(粒径が大きい分、導電経路の断面積が大きいものとなるため)、カーボン層の抵抗が低いものとなる。
【0012】
さらに、カーボン層の上には銀ペースト層を形成するが、銀ペースト層中の銀粒子は3〜10μmとカーボン粒子にくらべ大きいものを使用する場合が多い。そのため、鱗片状のカーボンを主体とする第2カーボン層の上に直接銀ペースト層を塗布した場合には、鱗片状のカーボン層の表面が粗いものとなっているため、銀ペーストがカーボン層の隙間に入り込むことができない場合が発生し、結果としてカーボン層と銀ペーストとの接触面積が十分に確保できないなり、接触抵抗の増大を引き起こす。そこでこの発明では、鱗片状のカーボンを主体とする第2カーボン層の上に粒径の小さいカーボンを主体とする第3カーボン層を形成し、カーボン層の表面の凹凸を減少させ、銀ペーストとの接触抵抗の低減を図っている。
【0013】
【発明の実施の形態】
次にこの発明の実施の形態について説明する。
【0014】
図1は固体電解コンデンサの構造を示す断面図、図2は固体電解コンデンサの陰極層の構造を示す拡大図である。
【0015】
参照符号1は、弁作用を有する金属であるタンタルの粉末を例えば加圧成型した上で焼結し陽極導出線2を立設して形成した陽極体である。陽極体1の表面には誘電体酸化被膜を形成し、その後、陽極体1に硝酸マンガン液を含浸させて焼成し、陽極体1の表面に二酸化マンガン層3を形成し、固体電解質層とする。
【0016】
さらに、二酸化マンガン層3の上にカーボン層4を形成する。カーボン層4は、まず平均粒径0.1〜1μmのカーボン粒子を主成分とする第1のカーボン層41を形成する。カーボン層の形成は、陽極体1をカーボン粒子およびバインダーを分散媒に分散させた分散液に浸漬した後に、引き上げて乾燥する方法によって形成することができる。
【0017】
第1のカーボン層を形成した後、その表面に平均粒径1〜10μmのカーボン粒子を主成分とする第2のカーボン層42を形成する。さらに、第2のカーボン層を形成した後、その表面にに平均粒径0.1〜1μmのカーボン粒子を主成分とする第3のカーボン層43を形成する。この第2のカーボン層42および第3のカーボン層43の形成方法は第1のカーボン層41の形成と同様に、陽極体1を所定のカーボン粒子およびバインダーを分散媒に分散させた分散液に浸漬した後に乾燥する方法にうよって形成することができる。
【0018】
そして、カーボン層の上に平均粒径1〜10μmの鱗片状の銀を主成分とする銀ペースト層5を形成して陰極層とする。
【0019】
つづいて、銀ペースト層5の陰極リード端子6の接続箇所に銀接着材等の導電性接着剤7を塗布し、陰極リード端子6を接続する。その後、陽極導出線2を陽極リード端子8に、例えばスポット溶接により接続した後、陽極体1および陰極層から成る素子本体全体を、陽極リード端子8および陰極リード端子6の基部を含めてエポキシ系の絶縁性樹脂9で覆い、固体電解コンデンサを完成させる。
【0020】
以上のような構成の固体電解コンデンサでは、陰極層として粒径の小さいカーボンを主体とする第1カーボン層、粒径の大きい鱗片状のカーボンを主体とする第2カーボン層、粒径の小さいカーボンを主体とする第3カーボン層、銀ペースト層から構成したため、固体電解質層と陰極層の接触抵抗の低減および、陰極層のカーボン層と銀ペースト層の接触抵抗の低減を図ることができるた、固体電解コンデンサ全体としてのESRの低減を図ることができる。
【0021】
【発明の効果】
以上説明してきたように、この発明は固体電解コンデンサのESRの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の固体電解コンデンサの構造を示す断面図である。
【図2】本発明の固体電解コンデンサの陰極層の構造を示す断面図である。
【符号の説明】
1 焼結体
2 陽極導出線
3 二酸化マンガン層(固体電解質層)
4 カーボン層
41 第1のカーボン層
42 第2のカーボン層
43 第3のカーボン層
5 銀ペースト層
6 陰極リード端子
7 導電性接着材
8 陽極リード端子
9 絶縁性樹脂
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, there has been a demand for a highly reliable solid electrolytic capacitor having a small leakage current and excellent high-frequency characteristics. In order to meet this demand, JP-A-64-47016, JP-A-1-253226 and JP-A-2-130906 disclose a solid electrolytic capacitor using manganese dioxide or a conductive polymer as a solid electrolyte. is suggesting. Such a solid electrolytic capacitor is manufactured as follows.
[0003]
First, a chemical conversion film is grown on the surface of a porous body by anodizing a porous body made of a valve metal such as tantalum, aluminum, and niobium. A solid electrolyte layer made of manganese dioxide as a semiconductor or a functional polymer is formed on the chemical conversion film. Subsequently, a carbon layer is formed on the surface of the solid electrolyte layer, and a paint containing silver is applied on the carbon layer to provide a cathode extraction electrode made of a silver conductive resin layer. The carbon layer joins the solid electrolyte layer and the silver conductive resin layer to improve conduction in the capacitor.
[0004]
[Patent Document 1] JP-A-64-47016 [Patent Document 2] JP-A-1-253226 [Patent Document 3] JP-A-2-130906 [0005]
[Problems to be solved by the invention]
However, in the above-described solid electrolytic capacitor, even when manganese dioxide or a polymer solid electrolyte having higher conductivity is used as the solid electrolyte, the equivalent series resistance (Equivalent Series Resistance, hereinafter referred to as ESR) of the solid electrolytic capacitor is constant. There was a problem that it did not drop below the value. As a result of a detailed study, it was found that the ESR was much larger than the total value of the resistance of each member in the conductive path of the capacitor charging / discharging current. In addition, it has been found that the contact resistance depending on the contact between the carbon layer and the solid electrolyte layer is a main factor of the ESR, and this ESR affects the characteristics of the solid electrolytic capacitor.
[0006]
The present invention has been made to solve the above-described problems, and has as its object to provide a solid electrolytic capacitor having low ESR and low loss, and a method of manufacturing the same.
[0007]
[Means for Solving the Problems]
The present invention relates to a solid electrolytic capacitor in which an anodic oxide film is formed on a sintered body made of a valve metal powder, and a solid electrolyte layer and a cathode layer are sequentially laminated. A second carbon layer mainly composed of flaky carbon having a large particle diameter, a third carbon layer mainly composed of carbon having a small particle diameter, and a silver paste layer.
[0008]
The surface of the solid electrolyte layer is not flat, but has irregularities. For example, in the case of using manganese dioxide as a solid electrolyte, a sintered body obtained by sintering tantalum powder is dipped in an aqueous manganese nitrate solution, then withdrawn, and heated and fired at a temperature of about 200 ° C. a plurality of times (for example, (About 10 times) to form a solid electrolytic layer of manganese dioxide, but manganese dioxide is not densely formed due to volume shrinkage due to firing and evaporation of the solvent of the manganese nitrate aqueous solution, and the manganese dioxide layer is It has a gap.
[0009]
In addition, even when the conductive polymer is used as a solid electrolyte, when the conductive polymer layer is formed by chemical polymerization, it is difficult to control the polymerization direction by chemical polymerization, and the surface has irregularities. It will be formed.
[0010]
Therefore, when a carbon layer mainly composed of carbon having a small particle diameter is formed, carbon particles enter the unevenness on the surface of the solid electrolyte layer, and the contact area with the solid electrolyte layer can be reduced. However, carbon particles having a small particle diameter have a small cross-sectional area inside the carbon particles and a high contact frequency with the carbon particles, so that the contact resistance is large. Therefore, the conductivity of the carbon layer cannot be said to be good when the entire carbon layer is viewed.
[0011]
Therefore, by forming a second carbon layer mainly composed of flaky carbon having a large particle diameter on the first carbon layer mainly composed of a carbon particle having a small particle diameter, the carbon of the first carbon layer is formed. The contact area with the particles is increased, and the internal resistance of the flaky carbon itself having a large particle size is small (because the cross-sectional area of the conductive path is large due to the large particle size). , The resistance of the carbon layer is low.
[0012]
Further, a silver paste layer is formed on the carbon layer. In many cases, silver particles in the silver paste layer have a size of 3 to 10 μm, which is larger than the carbon particles. Therefore, when the silver paste layer is applied directly on the second carbon layer mainly composed of flaky carbon, the surface of the flaky carbon layer is rough. In some cases, it is not possible to enter the gap, and as a result, a sufficient contact area between the carbon layer and the silver paste cannot be secured, resulting in an increase in contact resistance. Therefore, in the present invention, a third carbon layer mainly composed of carbon having a small particle diameter is formed on a second carbon layer mainly composed of flaky carbon, the surface irregularities of the carbon layer are reduced, and a silver paste is formed. To reduce the contact resistance.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described.
[0014]
FIG. 1 is a sectional view showing the structure of the solid electrolytic capacitor, and FIG. 2 is an enlarged view showing the structure of the cathode layer of the solid electrolytic capacitor.
[0015]
Reference numeral 1 denotes an anode body formed by elongating an anode lead wire 2 by sintering, for example, a powder of tantalum, which is a metal having a valve action, under pressure molding. A dielectric oxide film is formed on the surface of the anode body 1, and then the anode body 1 is impregnated with a manganese nitrate solution and baked to form a manganese dioxide layer 3 on the surface of the anode body 1 to form a solid electrolyte layer. .
[0016]
Further, a carbon layer 4 is formed on the manganese dioxide layer 3. As the carbon layer 4, first, a first carbon layer 41 mainly containing carbon particles having an average particle diameter of 0.1 to 1 μm is formed. The carbon layer can be formed by immersing the anode body 1 in a dispersion in which carbon particles and a binder are dispersed in a dispersion medium, and then pulling up and drying.
[0017]
After forming the first carbon layer, a second carbon layer 42 having carbon particles having an average particle diameter of 1 to 10 μm as a main component is formed on the surface thereof. Further, after forming the second carbon layer, a third carbon layer 43 mainly containing carbon particles having an average particle diameter of 0.1 to 1 μm is formed on the surface thereof. The formation method of the second carbon layer 42 and the third carbon layer 43 is similar to the formation of the first carbon layer 41. The anode body 1 is formed into a dispersion liquid in which predetermined carbon particles and a binder are dispersed in a dispersion medium. It can be formed by a method of drying after dipping.
[0018]
Then, a silver paste layer 5 mainly composed of flaky silver having an average particle size of 1 to 10 μm is formed on the carbon layer to form a cathode layer.
[0019]
Subsequently, a conductive adhesive 7 such as a silver adhesive is applied to a connection portion of the silver paste layer 5 where the cathode lead terminal 6 is connected, and the cathode lead terminal 6 is connected. Thereafter, the anode lead wire 2 is connected to the anode lead terminal 8 by, for example, spot welding, and then the entire device body including the anode body 1 and the cathode layer is epoxy-based including the bases of the anode lead terminal 8 and the cathode lead terminal 6. To complete the solid electrolytic capacitor.
[0020]
In the solid electrolytic capacitor having the above configuration, the cathode layer has a first carbon layer mainly composed of carbon having a small particle diameter, a second carbon layer mainly composed of flaky carbon having a large particle diameter, and a carbon layer having a small particle diameter. Since it is composed of a third carbon layer and a silver paste layer mainly composed of, the contact resistance between the solid electrolyte layer and the cathode layer and the contact resistance between the carbon layer and the silver paste layer of the cathode layer can be reduced. ESR of the entire solid electrolytic capacitor can be reduced.
[0021]
【The invention's effect】
As described above, the present invention can reduce the ESR of the solid electrolytic capacitor.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a structure of a solid electrolytic capacitor of the present invention.
FIG. 2 is a sectional view showing a structure of a cathode layer of the solid electrolytic capacitor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sintered body 2 Anode lead wire 3 Manganese dioxide layer (solid electrolyte layer)
Reference Signs List 4 carbon layer 41 first carbon layer 42 second carbon layer 43 third carbon layer 5 silver paste layer 6 cathode lead terminal 7 conductive adhesive 8 anode lead terminal 9 insulating resin

Claims (1)

弁作用金属の粉末からなる焼結体に陽極酸化皮膜を形成し、固体電解質層及び陰極層を順次積層してなる固体電解コンデンサにおいて、
陰極層を、粒径の小さいカーボンを主体とする第1カーボン層、粒径の大きい鱗片状のカーボンを主体とする第2カーボン層、粒径の小さいカーボンを主体とする第3カーボン層、銀ペースト層から構成したことを特徴とする固体電解コンデンサ。
An anodic oxide film is formed on a sintered body made of powder of valve action metal, and in a solid electrolytic capacitor obtained by sequentially laminating a solid electrolyte layer and a cathode layer,
The cathode layer includes a first carbon layer mainly composed of carbon having a small particle diameter, a second carbon layer mainly composed of flaky carbon having a large particle diameter, a third carbon layer mainly composed of carbon having a small particle diameter, silver A solid electrolytic capacitor comprising a paste layer.
JP2003097202A 2003-03-31 2003-03-31 Solid electrolytic capacitor Pending JP2004304063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097202A JP2004304063A (en) 2003-03-31 2003-03-31 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097202A JP2004304063A (en) 2003-03-31 2003-03-31 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2004304063A true JP2004304063A (en) 2004-10-28

Family

ID=33409052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097202A Pending JP2004304063A (en) 2003-03-31 2003-03-31 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2004304063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013456A1 (en) * 2005-07-26 2007-02-01 Showa Denko K. K. Solid electrolytic capacitor element and solid electrolytic capacitor using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013456A1 (en) * 2005-07-26 2007-02-01 Showa Denko K. K. Solid electrolytic capacitor element and solid electrolytic capacitor using same
JPWO2007013456A1 (en) * 2005-07-26 2009-02-05 昭和電工株式会社 Solid electrolytic capacitor element and solid electrolytic capacitor using the same
US8004824B2 (en) 2005-07-26 2011-08-23 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor element and solid electrolytic capacitor using same

Similar Documents

Publication Publication Date Title
KR101554049B1 (en) Solid Electrolytic Capacitor and Method of Manufacturing thereof
KR100827160B1 (en) Stacked solid electrolytic capacitor
JP2010153454A (en) Solid electrolytic capacitor
KR102104424B1 (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP2009505413A (en) Solid capacitor and manufacturing method thereof
JP2008244184A (en) Solid-state electrolytic capacitor and manufacturing method therefor
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JP2006049760A (en) Wet electrolytic capacitor
US8004824B2 (en) Solid electrolytic capacitor element and solid electrolytic capacitor using same
JP2003229330A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JP2012069788A (en) Solid electrolytic capacitor
JP4670402B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004304063A (en) Solid electrolytic capacitor
JP2008010719A (en) Solid electrolytic capacitor, and its manufacturing method
JP2010003772A (en) Solid electrolytic capacitor
JP2001338847A (en) Solid electrolytic capacitor
JP3519896B2 (en) Polarizing electrode and electric double layer capacitor using the same
US20220165510A1 (en) Metal Foam Capacitors and Supercapacitors
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JP2009246138A (en) Solid electrolytic capacitor and its manufacturing method
JP2009252913A (en) Method of manufacturing solid electrolytic capacitor
JP2008270754A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004281714A (en) Solid electrolytic capacitor
JPH10223487A (en) Electrode for electric double layer capacitor and electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081006

A131 Notification of reasons for refusal

Effective date: 20081022

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A02 Decision of refusal

Effective date: 20090624

Free format text: JAPANESE INTERMEDIATE CODE: A02