JP2004281714A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2004281714A
JP2004281714A JP2003071133A JP2003071133A JP2004281714A JP 2004281714 A JP2004281714 A JP 2004281714A JP 2003071133 A JP2003071133 A JP 2003071133A JP 2003071133 A JP2003071133 A JP 2003071133A JP 2004281714 A JP2004281714 A JP 2004281714A
Authority
JP
Japan
Prior art keywords
layer
solid electrolytic
conductive paint
electrolytic capacitor
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071133A
Other languages
Japanese (ja)
Other versions
JP4767479B2 (en
Inventor
Kiyobumi Aoki
清文 青木
Yasuyuki Tezuka
泰行 手塚
Shigeo Imai
成生 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2003071133A priority Critical patent/JP4767479B2/en
Publication of JP2004281714A publication Critical patent/JP2004281714A/en
Application granted granted Critical
Publication of JP4767479B2 publication Critical patent/JP4767479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor wherein the ESR level and variation are small and the ESR value is stable in a solder heat resistance and reliability test. <P>SOLUTION: After an anode oxidized film layer is formed on the surface of a sintered body made of metal powder for valve action having an anode lead wire, the lead wire of a capacitor where a solid electrolytic layer, a carbon layer and a cathode layer are stacked sequentially is connected to an anode terminal, the cathode layer on the side of the capacitor is connected to the cathode terminal by a conductive paint, and then the entire body is armored with a resin. In such a solid electrolytic capacitor, a conductive paint is additionally applied to the cathode layer on the bottom of the capacitor and between the cathode layer thereon and the cathode terminal. In the conductive paint, at least one kind of a polyester-based resin, an epoxy resin and an acryl-based resin is used as a binder, and a conductive filler contains silver or copper and its content is 40-95 wt%, and the average particle size thereof is 0.005-20 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は固体電解コンデンサに関するものであって、周波数特性に優れ、かつはんだ耐熱性、信頼性にも優れた固体電解コンデンサを提供するものである。
【0002】
【従来の技術】
従来のタンタルまたはニオブ固体電解コンデンサは図5に示すように、タンタルまたはニオブ陽極リード線2をタンタルまたはニオブ粉末中に埋め込んで成形した後、焼結することにより、タンタルまたはニオブ焼結体1を構成し、その後、該焼結体1の表面に陽極酸化によりタンタルまたはニオブ陽極酸化皮膜層3を形成し、さらに導電性高分子または二酸化マンガンからなる固体電解質層4およびカーボン層5を順次積層形成し、その後、さらに導電性塗料を塗布して硬化させることにより陰極層6を形成したものをコンデンサ素子とし、該コンデンサ素子のタンタルまたはニオブ陽極リード線2を溶接により陽極端子7に接続するとともに、コンデンサ素子側面部の陰極層6を導電性塗料9により陰極端子8に接続した後、外装樹脂10を施すことによりタンタルまたはニオブ固体電解コンデンサを作製していた(例えば、特許文献1〜3参照)。
【0003】
【特許文献1】
特開平11−283879(第2−6頁、図1)
【特許文献2】
特開平11−288848(第2−4頁、図5)
【特許文献3】
特開平11−288844(第2−5頁、図1(b))
【0004】
【発明が解決しようとする課題】
しかしながら、上記した従来の構成における陰極層6と陰極端子8の接続の場合、接触面積が十分でなく、ESRレベル/バラツキともに大きく、かつ耐熱試験/信頼性試験においてESR値が増加し易いという問題を有していた。
【0005】
【課題を解決するための手段】
本発明は、上記の問題を解決するもので、ESRがレベル/バラツキともに低く、かつ耐熱試験/信頼性試験においてESR値が安定した固体電解コンデンサを提供することを目的とするものである。
【0006】
すなわち、陽極リード線2を有する弁作用金属粉体の焼結体1表面に陽極酸化皮膜層3を形成した後、固体電解質層4、カーボン層5、陰極層6を順次積層してコンデンサ素子を構成し、該コンデンサ素子の上記陽極リード線2を陽極端子7に接続し、コンデンサ素子側面部の陰極層6を陰極端子8に導電性塗料で接続した後、該コンデンサ素子を樹脂外装してなる固体電解コンデンサにおいて、
上記コンデンサ素子底部の陰極層6、および該底部の陰極層6と陰極端子8との間に導電性塗料11を追加塗布したことを特徴とする固体電解コンデンサである。
【0007】
また、導電性塗料11が、ポリエステル系樹脂、エポキシ系樹脂、またはアクリル系樹脂の少なくとも1種類をバインダーとして用いることを特徴とする固体電解コンデンサである。
【0008】
さらに、導電性塗料11の導電性フィラーが銀または銅を含むことを特徴とする固体電解コンデンサである。
【0009】
そして、追加塗布する導電性塗料11の導電性フィラーの含有量が、40〜95wt%であることを特徴とする固体電解コンデンサである。
【0010】
また、導電性フィラーの平均粒子径が0.005〜20μmであることを特徴とする固体電解コンデンサである。
【0011】
【発明の実施の形態】
上記構成により、追加塗布する導電性塗料11が陰極層6と陰極端子8の間に入り込み、両者と接触する面積を増大させることにより、コンデンサ素子と陰極端子8との接着強度が向上し、接触抵抗を低減できる。かつ、陰極端子8の取り回し長さが導電性塗料(銀の追加塗布層)11で短縮されることにより、部材の体積抵抗を低くすることができる。
【0012】
上記構成により、ESRレベル/バラツキともに低く、かつ耐熱試験/信頼性試験においてESR値が安定した固体電解コンデンサを得ることができる。
【0013】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。図1は本発明の実施例による固体電解コンデンサで、コンデンサ素子の陰極層6と陰極端子8との間に導電性塗料9と、さらに追加塗布した導電性塗料11とを充填したチップ形タンタル固体電解コンデンサの断面図を示したものである。
【0014】
[実施例]
図1に示すように、2.5V―220μF用タンタル焼結体1を形成し、該電極体1の表面にタンタル陽極酸化皮膜層3を形成した。
【0015】
次に、導電性高分子層からなる固体電解質層4、エポキシ系樹脂からなるカーボン層5を形成した。続いて、銀導電性塗料を塗布した後、硬化させて陰極層6を形成した。
【0016】
次に、予めコンデンサ素子の側面および底面の一部に沿うようフォーミング加工した外部陰極端子8に銀導電性塗料9を塗布したのち、コンデンサ素子の陰極層6と接続するとともに、タンタル陽極導出線2と外部陽極端子7を抵抗溶接により接続した。
【0017】
その後、図1に示すように、銀導電性塗料11(フィラーの平均粒子径:1.0μm、含有量:50wt%、バインダー:アクリル系樹脂)をコンデンサ素子底部、および該底部と陰極端子8間に追加塗布した後、硬化し、コンデンサ素子と陰極端子8の接触面積を拡大する追加銀層を形成した。なお、今回追加銀層はディスペンサーにて形成したが、ジェット式の非接触ディスペンスやマスク印刷などの方法でも形成可能である。
【0018】
その後、外部陰極端子8と外部陽極端子7が互いに反対方向で、両端から引出されるようにトランスファモールド金型にセットして外装樹脂10を施し、この外部陰極端子8と外部陽極端子7をコンデンサ本体の下方に向かって端面および底面に沿わせて内側に折り曲げ加工し、チップ形固体電解コンデンサを作製した。
【0019】
(従来例)
実施例と同一のタンタル焼結体1を使用し、同様の方法で、該電極体表面にタンタル陽極酸化皮膜層3、導電性高分子層からなる固体電解質層4、エポキシ系樹脂カーボン層5を同様に形成した後、銀導電性塗料を塗布し、硬化させて陰極層6を形成した。
次に、陰極層6に導電性塗料9を塗布し、この上に外部陰極端子8を接続した後、硬化させるとともに、タンタル陽極導出線2と外部陽極端子7を溶接により接続した。
【0020】
その後、実施例と同様に、外部陰極端子8と外部陽極端子7が互いに反対方向で、両端から引出されるようトランスファモールド金型にセットして外装樹脂10を施し、図5に示されるチップ状固体電解コンデンサを作製した。
【0021】
上記実施例および従来例におけるコンデンサの100kHzでのESR値(mΩ)と漏れ電流値(2.5V印加、1分後)の平均値を表1に、このESR値(mΩ)のバラツキを図2に、はんだ耐熱性試験(260℃、10秒エアーリフロー×3回)におけるESR値の変化を図3に、高温負荷試験(100℃、2.5V印加)におけるESR値の変化を図4に示す(試料数n=100)。
【0022】
【表1】

Figure 2004281714
【0023】
表1、図2に示すとおり、導電性塗料11(追加した銀塗布層)を有する実施例は従来例よりESRレベル、バラツキともに小さく安定した結果を得た。これは、追加した銀塗布層がコンデンサ素子底部の陰極層6と陰極端子8との間に入り込み、接触面積を増大することにより、コンデンサ素子と陰極端子8との接着強度が向上し接触抵抗が低減したことと、陰極端子8との取り回し長さが導電性塗料11(追加した銀塗布層)により短縮され、部材の持つ体積抵抗が低減したことによるものである。
また、漏れ電流値は、実施例の方が若干、改善されている。
【0024】
さらに、図3に示すとおり、はんだ付け等の熱ストレスが生じた場合でも、導電性塗料11(追加した銀塗布層)を有する実施例では、従来例よりESRレベル、バラツキともに小さく安定した結果を得た。これは、外装樹脂等の熱膨張係数の異なる物質が、追加した銀塗布層の存在によりコンデンサ素子底部の陰極層6と陰極端子8の間に入り込まず、接着面の剥離等が起こらないため、接触界面での熱ストレスによる抵抗の増加が抑制されることによる。
【0025】
また、図4に示すとおり、高温負荷試験によるESRレベルの増加も導電性塗料11(追加した銀塗布層)を有する実施例は従来例より良好な結果を示した。これは、上記したように、追加した銀塗布層による熱ストレス時の抵抗増加を抑制する効果が長時間にわたり持続したためと考えられる。
【0026】
ここで、追加塗布する銀導電性塗料中の導電性フィラー含有量は、95wt%を超えると塗膜強度が低下するため、十分な導電性銀塗料層を形成できず、また40wt%未満では導電性塗料層の樹脂分過剰のため十分な導電性が得られないという問題がある。このため、導電性フィラー含有量は40〜95wt%が望ましい。
【0027】
また、追加塗布する導電性塗料中の導電性フィラーの平均粒子径は、20μmを超えると導電性フィラーの表面積が小さくなって、十分な導電性が得られず、また0.005μm未満では導電性フィラー自体の加工が難しいため材料の入手が困難という問題がある。このため、導電性フィラーの平均粒子径は0.005〜20μmが望ましい。
【0028】
さらに、導電性塗料のバインダーとして、上記実施例ではアクリル系樹脂を使用したが、ポリエステル樹脂、エポキシ樹脂またはアクリル樹脂の少なくとも1種類を使用することにより実施例と同様の効果を得ることができる。
【0029】
そして、実施例の導電性塗料の導電フィラーとして、上記実施例では銀を使用したが、銅を使用しても同様の効果を得ることができる。
【0030】
また、実施例の導電性塗料の有機溶媒として、ブチルセロソルブ、酢酸−n−ブチルまたは酢酸エチル等公知のものが使用できる。
【0031】
さらに、実施例の固体電解質として、ポリチオフェン、ポリピロールまたはポリアニリン等の導電性高分子または二酸化マンガン等公知のものが使用できる。
【0032】
【発明の効果】
上記構成により、追加塗布する導電性塗料11が陰極層6と陰極端子8の間に入り込み両者が接触する面積を増大させることにより、コンデンサ素子と陰極端子8との接着強度が向上し、接触抵抗を低減できる。また、陰極端子8の取り回し長さが追加した銀塗布層で短縮されることにより、部材の体積抵抗を低くすることができる。
さらに、はんだ付け、高温負荷試験等の熱ストレスが生じた場合でも、追加した銀塗布層の存在により、外装樹脂等の熱膨張係数の異なる物質が、コンデンサ素子底部の陰極層6と陰極端子8の間に入り込まず、接着面の剥離等が起こらないため、接触界面での熱ストレスによる抵抗の増加が抑制される。
その結果、ESRレベル/バラツキともに小さく、かつ耐熱試験/信頼性試験においてESR値が安定したタンタルまたはニオブ固体電解コンデンサを得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例による固体電解コンデンサの縦断面図である。
【図2】本発明の実施例と従来例による固体電解コンデンサのESR値の比較図である。
【図3】本発明の実施例と従来例による固体電解コンデンサのはんだ耐熱性試験におけるESR値の比較図である。
【図4】本発明の実施例と従来例における固体電解コンデンサの高温負荷試験比較図である。
【図5】従来例による固体電解コンデンサの縦断面図である。
【符号の説明】
1 焼結体(タンタルまたはニオブ焼結体)
2 陽極リード線
3 陽極酸化皮膜層
4 固体電解質層
5 カーボン層
6 陰極層
7 陽極端子
8 陰極端子
9 導電性塗料
10 外装樹脂
11 導電性塗料(追加塗布層)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid electrolytic capacitor, and provides a solid electrolytic capacitor having excellent frequency characteristics and excellent solder heat resistance and reliability.
[0002]
[Prior art]
As shown in FIG. 5, in a conventional tantalum or niobium solid electrolytic capacitor, a tantalum or niobium anode lead wire 2 is embedded in a tantalum or niobium powder, molded, and then sintered to form a tantalum or niobium sintered body 1. Then, a tantalum or niobium anodic oxide film layer 3 is formed on the surface of the sintered body 1 by anodic oxidation, and a solid electrolyte layer 4 made of a conductive polymer or manganese dioxide and a carbon layer 5 are sequentially formed. After that, the one in which the cathode layer 6 is formed by further applying and curing a conductive paint is used as a capacitor element, and the tantalum or niobium anode lead wire 2 of the capacitor element is connected to the anode terminal 7 by welding. After connecting the cathode layer 6 on the side of the capacitor element to the cathode terminal 8 with the conductive paint 9, Was prepared tantalum or niobium solid electrolytic capacitor by an applied (e.g., see Patent Documents 1 to 3).
[0003]
[Patent Document 1]
JP-A-11-283879 (page 2-6, FIG. 1)
[Patent Document 2]
JP-A-11-288848 (pages 2-4, FIG. 5)
[Patent Document 3]
JP-A-11-288844 (page 2-5, FIG. 1 (b))
[0004]
[Problems to be solved by the invention]
However, in the above-described connection between the cathode layer 6 and the cathode terminal 8 in the conventional configuration, the contact area is not sufficient, the ESR level / variation is large, and the ESR value tends to increase in the heat resistance test / reliability test. Had.
[0005]
[Means for Solving the Problems]
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a solid electrolytic capacitor having a low ESR in both level and variation and a stable ESR value in a heat resistance test / reliability test.
[0006]
That is, after forming the anodic oxide film layer 3 on the surface of the sintered body 1 of the valve metal powder having the anode lead wire 2, the solid electrolyte layer 4, the carbon layer 5, and the cathode layer 6 are sequentially laminated to form a capacitor element. After the anode lead wire 2 of the capacitor element is connected to the anode terminal 7 and the cathode layer 6 on the side face of the capacitor element is connected to the cathode terminal 8 with a conductive paint, the capacitor element is covered with a resin. In solid electrolytic capacitors,
A solid electrolytic capacitor characterized in that a conductive paint 11 is additionally applied between the cathode layer 6 at the bottom of the capacitor element and the cathode layer 6 at the bottom and the cathode terminal 8.
[0007]
Further, the solid electrolytic capacitor is characterized in that the conductive paint 11 uses at least one of a polyester resin, an epoxy resin, and an acrylic resin as a binder.
[0008]
Furthermore, the solid electrolytic capacitor is characterized in that the conductive filler of the conductive paint 11 contains silver or copper.
[0009]
In addition, the solid electrolytic capacitor is characterized in that the content of the conductive filler in the conductive paint 11 to be additionally applied is 40 to 95 wt%.
[0010]
Further, the solid electrolytic capacitor is characterized in that the average particle diameter of the conductive filler is 0.005 to 20 μm.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
With the above configuration, the conductive paint 11 to be additionally applied enters between the cathode layer 6 and the cathode terminal 8 to increase the area of contact with both, thereby improving the adhesive strength between the capacitor element and the cathode terminal 8, Resistance can be reduced. In addition, the volume resistance of the member can be reduced by reducing the routing length of the cathode terminal 8 by the conductive paint (the additional layer of silver) 11.
[0012]
With the above configuration, a solid electrolytic capacitor having a low ESR level / variation and a stable ESR value in a heat resistance test / reliability test can be obtained.
[0013]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a solid electrolytic capacitor according to an embodiment of the present invention. A chip type tantalum solid filled with a conductive paint 9 and a conductive paint 11 additionally applied between a cathode layer 6 and a cathode terminal 8 of a capacitor element. FIG. 2 is a sectional view of an electrolytic capacitor.
[0014]
[Example]
As shown in FIG. 1, a tantalum sintered body 1 for 2.5 V-220 μF was formed, and a tantalum anodic oxide film layer 3 was formed on the surface of the electrode body 1.
[0015]
Next, a solid electrolyte layer 4 made of a conductive polymer layer and a carbon layer 5 made of an epoxy resin were formed. Subsequently, a silver conductive paint was applied and then cured to form the cathode layer 6.
[0016]
Next, a silver conductive paint 9 is applied to the external cathode terminal 8 formed in advance along a part of the side and bottom surfaces of the capacitor element, and then connected to the cathode layer 6 of the capacitor element, and the tantalum anode lead wire 2 is connected. And the external anode terminal 7 were connected by resistance welding.
[0017]
Thereafter, as shown in FIG. 1, a silver conductive paint 11 (average particle diameter of filler: 1.0 μm, content: 50 wt%, binder: acrylic resin) was applied to the bottom of the capacitor element and between the bottom and the cathode terminal 8. And then cured to form an additional silver layer which increased the contact area between the capacitor element and the cathode terminal 8. Although the additional silver layer was formed by a dispenser this time, it can be formed by a method such as jet-type non-contact dispensing or mask printing.
[0018]
Thereafter, the external cathode terminal 8 and the external anode terminal 7 are set in a transfer mold so as to be pulled out from both ends in opposite directions, and the exterior resin 10 is applied thereto. The chip was bent inward along the end face and the bottom face toward the lower part of the main body to produce a chip-type solid electrolytic capacitor.
[0019]
(Conventional example)
Using the same tantalum sintered body 1 as in the example, a tantalum anodic oxide film layer 3, a solid electrolyte layer 4 made of a conductive polymer layer, and an epoxy resin carbon layer 5 were formed on the electrode body surface in the same manner. After being formed in the same manner, a silver conductive paint was applied and cured to form the cathode layer 6.
Next, a conductive paint 9 was applied to the cathode layer 6, an external cathode terminal 8 was connected thereon, and then cured, and the tantalum anode lead wire 2 and the external anode terminal 7 were connected by welding.
[0020]
Then, similarly to the embodiment, the external resin terminal 10 is applied by setting the external cathode terminal 8 and the external anode terminal 7 in the transfer mold so that the external cathode terminal 8 and the external anode terminal 7 are pulled out from both ends in the opposite directions, and the chip-shaped resin shown in FIG. A solid electrolytic capacitor was manufactured.
[0021]
Table 1 shows the average value of the ESR value (mΩ) at 100 kHz and the leakage current value (2.5 V applied, after one minute) of the capacitors in the above embodiment and the conventional example, and FIG. 2 shows the variation of the ESR value (mΩ). FIG. 3 shows a change in ESR value in a solder heat resistance test (260 ° C., 10 seconds air reflow × 3 times), and FIG. 4 shows a change in ESR value in a high temperature load test (100 ° C., 2.5 V applied). (Sample number n = 100).
[0022]
[Table 1]
Figure 2004281714
[0023]
As shown in Table 1 and FIG. 2, the examples having the conductive paint 11 (added silver coating layer) showed stable results with smaller ESR levels and variations than the conventional example. This is because the added silver coating layer enters between the cathode layer 6 at the bottom of the capacitor element and the cathode terminal 8 to increase the contact area, thereby improving the adhesive strength between the capacitor element and the cathode terminal 8 and reducing the contact resistance. This is due to the reduction and the reduction in the volume resistance of the member due to the shortened length of the connection with the cathode terminal 8 due to the conductive paint 11 (the added silver coating layer).
Also, the leakage current value is slightly improved in the embodiment.
[0024]
Further, as shown in FIG. 3, even when thermal stress such as soldering occurs, in the embodiment having the conductive paint 11 (added silver coating layer), both the ESR level and the variation are smaller and more stable than the conventional example. Obtained. This is because a substance having a different coefficient of thermal expansion, such as an exterior resin, does not enter between the cathode layer 6 and the cathode terminal 8 at the bottom of the capacitor element due to the presence of the added silver coating layer, and the adhesive surface does not peel off. This is because an increase in resistance due to thermal stress at the contact interface is suppressed.
[0025]
Further, as shown in FIG. 4, the increase in the ESR level due to the high-temperature load test showed that the example having the conductive paint 11 (added silver coating layer) had better results than the conventional example. This is probably because the effect of suppressing the increase in resistance during thermal stress by the added silver coating layer was maintained for a long time, as described above.
[0026]
Here, when the content of the conductive filler in the silver conductive paint to be additionally applied exceeds 95 wt%, the strength of the coating film is reduced, so that a sufficient conductive silver paint layer cannot be formed. There is a problem that sufficient conductivity cannot be obtained due to excess resin in the conductive paint layer. For this reason, the conductive filler content is desirably 40 to 95 wt%.
[0027]
When the average particle diameter of the conductive filler in the conductive coating to be additionally applied is more than 20 μm, the surface area of the conductive filler becomes small and sufficient conductivity cannot be obtained. There is a problem that it is difficult to obtain the material because the processing of the filler itself is difficult. Therefore, the average particle diameter of the conductive filler is desirably 0.005 to 20 μm.
[0028]
Further, in the above embodiment, an acrylic resin was used as a binder for the conductive paint, but the same effect as in the embodiment can be obtained by using at least one of a polyester resin, an epoxy resin and an acrylic resin.
[0029]
In the above embodiment, silver was used as the conductive filler of the conductive paint of the embodiment, but the same effect can be obtained by using copper.
[0030]
In addition, as the organic solvent of the conductive paint of the example, a known solvent such as butyl cellosolve, n-butyl acetate or ethyl acetate can be used.
[0031]
Further, as the solid electrolyte in the examples, a conductive polymer such as polythiophene, polypyrrole or polyaniline, or a known one such as manganese dioxide can be used.
[0032]
【The invention's effect】
With the above configuration, the conductive paint 11 to be additionally applied enters between the cathode layer 6 and the cathode terminal 8 to increase the area where the two are in contact with each other, so that the adhesive strength between the capacitor element and the cathode terminal 8 is improved, and the contact resistance is improved. Can be reduced. In addition, the volume resistance of the member can be reduced by reducing the routing length of the cathode terminal 8 with the added silver coating layer.
Further, even when a thermal stress such as a soldering or a high-temperature load test occurs, due to the presence of the added silver coating layer, a material having a different coefficient of thermal expansion such as an exterior resin may be used to form the cathode layer 6 and the cathode terminal 8 on the bottom of the capacitor element. And the peeling of the adhesive surface does not occur, so that an increase in resistance due to thermal stress at the contact interface is suppressed.
As a result, it is possible to obtain a tantalum or niobium solid electrolytic capacitor having a small ESR level / variation and a stable ESR value in a heat resistance test / reliability test.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a solid electrolytic capacitor according to an embodiment of the present invention.
FIG. 2 is a comparison diagram of ESR values of a solid electrolytic capacitor according to an embodiment of the present invention and a conventional example.
FIG. 3 is a comparison diagram of an ESR value in a solder heat resistance test of a solid electrolytic capacitor according to an example of the present invention and a conventional example.
FIG. 4 is a high-temperature load test comparison diagram of the solid electrolytic capacitors according to the embodiment of the present invention and the conventional example.
FIG. 5 is a longitudinal sectional view of a conventional solid electrolytic capacitor.
[Explanation of symbols]
1 sintered body (tantalum or niobium sintered body)
2 anode lead wire 3 anodized film layer 4 solid electrolyte layer 5 carbon layer 6 cathode layer 7 anode terminal 8 cathode terminal 9 conductive paint 10 exterior resin 11 conductive paint (additional coating layer)

Claims (5)

陽極リード線を有する弁作用金属粉体の焼結体表面に陽極酸化皮膜層を形成した後、固体電解質層、カーボン層、陰極層を順次積層してコンデンサ素子を構成し、該コンデンサ素子の上記陽極リード線を陽極端子に接続し、コンデンサ素子側面部の陰極層を陰極端子に導電性塗料で接続した後、該コンデンサ素子を樹脂外装してなる固体電解コンデンサにおいて、
上記コンデンサ素子底部の陰極層、および該底部の陰極層と陰極端子との間に導電性塗料を追加塗布したことを特徴とする固体電解コンデンサ。
After forming an anodic oxide film layer on the surface of the sintered body of the valve metal powder having an anode lead wire, a solid electrolyte layer, a carbon layer, and a cathode layer are sequentially laminated to form a capacitor element. After connecting the anode lead wire to the anode terminal and connecting the cathode layer on the side of the capacitor element to the cathode terminal with a conductive paint, in a solid electrolytic capacitor comprising a resin exterior of the capacitor element,
A solid electrolytic capacitor, wherein a conductive paint is additionally applied between the cathode layer at the bottom of the capacitor element and the cathode layer at the bottom and the cathode terminal.
請求項1記載の導電性塗料が、ポリエステル系樹脂、エポキシ系樹脂、またはアクリル系樹脂の少なくとも1種類をバインダーとして用いることを特徴とする固体電解コンデンサ。2. A solid electrolytic capacitor according to claim 1, wherein the conductive paint uses at least one of a polyester resin, an epoxy resin, and an acrylic resin as a binder. 請求項1記載の導電性塗料の導電性フィラーが銀または銅を含むことを特徴とする固体電解コンデンサ。2. A solid electrolytic capacitor according to claim 1, wherein the conductive filler of the conductive paint contains silver or copper. 請求項1記載の追加塗布する導電性塗料の導電性フィラーの含有量が、40〜95wt%であることを特徴とする固体電解コンデンサ。The solid electrolytic capacitor according to claim 1, wherein the conductive paint content of the conductive paint to be additionally applied is 40 to 95 wt%. 請求項3または請求項4記載の導電性フィラーの平均粒子径が0.005〜20μmであることを特徴とする固体電解コンデンサ。The solid electrolytic capacitor according to claim 3, wherein the conductive filler has an average particle size of 0.005 to 20 μm.
JP2003071133A 2003-03-17 2003-03-17 Solid electrolytic capacitor and manufacturing method thereof Expired - Lifetime JP4767479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071133A JP4767479B2 (en) 2003-03-17 2003-03-17 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071133A JP4767479B2 (en) 2003-03-17 2003-03-17 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004281714A true JP2004281714A (en) 2004-10-07
JP4767479B2 JP4767479B2 (en) 2011-09-07

Family

ID=33287642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071133A Expired - Lifetime JP4767479B2 (en) 2003-03-17 2003-03-17 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4767479B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227845A (en) * 2006-02-27 2007-09-06 Nec Tokin Corp Solid electrolytic capacitor
JP2012004342A (en) * 2010-06-17 2012-01-05 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same
US20130258555A1 (en) * 2012-04-02 2013-10-03 Apaq Technology Co., Ltd. Capacitor unit and stacked solid electrolytic capacitor having the same
US11508528B2 (en) 2018-12-27 2022-11-22 Panasonic Intrllectual Property Management Co., Ltd. Electrolytic capacitor and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227845A (en) * 2006-02-27 2007-09-06 Nec Tokin Corp Solid electrolytic capacitor
JP2012004342A (en) * 2010-06-17 2012-01-05 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same
US8753409B2 (en) 2010-06-17 2014-06-17 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of manufacturing the same
US20130258555A1 (en) * 2012-04-02 2013-10-03 Apaq Technology Co., Ltd. Capacitor unit and stacked solid electrolytic capacitor having the same
US11508528B2 (en) 2018-12-27 2022-11-22 Panasonic Intrllectual Property Management Co., Ltd. Electrolytic capacitor and method for producing same

Also Published As

Publication number Publication date
JP4767479B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5289033B2 (en) Solid electrolytic capacitor
JP6295433B2 (en) Solid electrolytic capacitor
TWI248097B (en) Solid electrolytic capacitor
JP5623214B2 (en) Solid electrolytic capacitor
JP4944359B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5232899B2 (en) Solid electrolytic capacitor
JP2008078312A (en) Solid electrolytic capacitor
JP2009094155A (en) Method for manufacturing solid electrolytic capacitor
JP2004281714A (en) Solid electrolytic capacitor
JP4876705B2 (en) Solid electrolytic capacitor
KR20240018410A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JP2009105171A (en) Solid-state electrolytic capacitor and its method for manufacturing
JP2008010719A (en) Solid electrolytic capacitor, and its manufacturing method
JP2006253169A (en) Solid electrolytic capacitor and manufacturing method thereof
WO2006129639A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP2001338847A (en) Solid electrolytic capacitor
JP2006339182A (en) Solid electrolytic capacitor
JP2005294385A (en) Solid-state electrolytic capacitor
JP4574544B2 (en) Solid electrolytic capacitor
JP2010267866A (en) Solid electrolytic capacitor
JP2006186083A (en) Chip-type solid electrolytic capacitor
US20150228413A1 (en) Solid electrolytic capacitor, method of manufacturing the same, and chip-type electronic component
JP2004311874A (en) Solid electrolytic capacitor
JP2003173937A (en) Solid-state electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080828

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Ref document number: 4767479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term