JP2004303266A - Smoke sensing device - Google Patents

Smoke sensing device Download PDF

Info

Publication number
JP2004303266A
JP2004303266A JP2004151194A JP2004151194A JP2004303266A JP 2004303266 A JP2004303266 A JP 2004303266A JP 2004151194 A JP2004151194 A JP 2004151194A JP 2004151194 A JP2004151194 A JP 2004151194A JP 2004303266 A JP2004303266 A JP 2004303266A
Authority
JP
Japan
Prior art keywords
smoke
light
unit
light receiving
smoke density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004151194A
Other languages
Japanese (ja)
Other versions
JP3927197B2 (en
Inventor
Ichiro Endo
一郎 遠藤
Yukio Yamauchi
幸雄 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2004151194A priority Critical patent/JP3927197B2/en
Publication of JP2004303266A publication Critical patent/JP2004303266A/en
Application granted granted Critical
Publication of JP3927197B2 publication Critical patent/JP3927197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect smoke density based on the count of scattered light even if the flow rate of intake air changes, without needing to measure the flow rate of intake air. <P>SOLUTION: A light receiving part outputs light receiving signals (a) obtained by receiving the light scattered by smoke particles, through a light receiving element every time the smoke particles pass the imaging position of laser beams in a smoke detecting region. A smoke density detecting part detects smoke density based on the integrated value per unit time of the light receiving signals (a) from the light receiving part. The smoke density can be accurately detected since the integrated value per unit time does not change even if the flow rate of suction air changes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、監視区域から吸引した空気中に浮遊する煙粒子をレーザ光を用いて光学的に検出して火災を判断する煙感知装置に関する。
The present invention relates to a smoke detection device that determines a fire by optically detecting smoke particles floating in air sucked from a monitoring area using laser light.

従来、コンピュータルームや半導体製造設備のクリーンルームに代表される清浄空間で起きる火災を極く初期に検出するため、超高感度の煙感知装置が使用されている。この超高感度の煙感知装置は、清浄空間に設置した配管より空気を吸引し、吸引した空気に含まれる煙粒子をレーザダイオードを照射した検煙領域に通し、受光素子で検出された煙粒子の散乱光による受光パルス信号の内、所定の閾値を越えた受光パルス信号の単位時間当たりの数をカウントし、この単位時間当たりのカウント数に基づいて0.05〜0.20%/mといった範囲の微弱な煙濃度を検出している。
特開平7−151680号公報
2. Description of the Related Art Conventionally, in order to detect a fire occurring in a clean space typified by a clean room of a computer room or a semiconductor manufacturing facility at an extremely early stage, an ultra-high sensitivity smoke detector has been used. This ultra-high sensitivity smoke detector sucks air from piping installed in a clean space, passes smoke particles contained in the sucked air through a smoke detection area irradiated with a laser diode, and detects smoke particles detected by a light receiving element. Of the received light pulse signals caused by the scattered light, the number of received light pulse signals exceeding a predetermined threshold per unit time is counted, and 0.05 to 0.20% / m is calculated based on the count number per unit time. Detects weak smoke density in the range.
JP-A-7-151680

しかしながら、このような受光パルス信号のパルスカウントにより煙濃度を検出する超高感度の煙感知装置にあっては、吸引する空気の流量の変化により単位時間当たりの散乱光のカウント数が変化してしまい、正確な煙濃度の検出ができない問題がある。   However, in such an ultra-high sensitivity smoke detection device that detects smoke density by pulse counting of a received light pulse signal, the number of scattered light per unit time changes due to a change in the flow rate of air to be sucked. As a result, there is a problem that accurate detection of smoke density is not possible.

この問題を解消するため従来装置にあっては、流量計により吸引した空気の流量を測定し、設定流量と検出流量から補正係数を求め、単位時間当たりのカウント数を補正するようにしている。即ち、設定流量Qrに対し実際の検出流量Qが増加した場合には、単位時間当たりのカウント数が増加して煙濃度が高めになることから、補正係数K=Qr/Qを求め、これを単位時間当たりのカウント値に掛けて設定流量Qrに換算したカウント値に補正して正しい煙濃度を検出できるようにしている。   In order to solve this problem, in the conventional apparatus, the flow rate of the sucked air is measured by a flow meter, a correction coefficient is obtained from the set flow rate and the detected flow rate, and the count number per unit time is corrected. That is, when the actual detected flow rate Q increases with respect to the set flow rate Qr, the count number per unit time increases and the smoke density becomes higher. Therefore, the correction coefficient K = Qr / Q is obtained. The count value per unit time is multiplied and corrected to a count value converted into the set flow rate Qr so that a correct smoke density can be detected.

しかし、吸引空気の流量変化による単位時間当たりのカウント数を補正するためには、流量計が必要となり、装置コストがかなり高くなる。また流量計に不具合が生じたときには煙濃度が正確に検出できなくなる問題もある。   However, in order to correct the number of counts per unit time due to a change in the flow rate of the suction air, a flow meter is required, which considerably increases the cost of the apparatus. Further, there is also a problem that when a trouble occurs in the flow meter, the smoke density cannot be accurately detected.

本発明は、このような従来の問題点に鑑みてなされたもので、吸入空気の流量計測を必要とすることなく、吸入空気の流量が変化しても正確に散乱光のカウントに基づく煙濃度の検出ができる超高感度の煙感知装置を提供することを目的とする。
The present invention has been made in view of such a conventional problem, and does not require the measurement of the flow rate of the intake air. It is an object of the present invention to provide an ultra-high sensitivity smoke detection device capable of detecting air.

この目的を達成するため本発明は次のように構成する。まず本発明は、監視区域から吸引した空気中に浮遊する煙粒子を光学的に検出して火災を判断する煙感知装置であり、レーザダイオードの出射面からのレーザ光を、結像レンズにより吸入空気が通過する検煙領域に結像させる投光部と、結像レンズによる前記レーザ光の結像位置に対し、レーザ光の投光光軸に直交しかつ結像位置を過ぎて拡散するレーザー光の電界方向と平行な方向に配置される受光素子と、検煙領域で前記レーザ光の結像位置を煙粒子が通過するごとに、煙粒子による散乱光を受光素子で受光することにより得られる受光パルス信号を出力する受光部と、受光部からの受光パルス信号の単位時間あたりの積分値に基づいて煙濃度を検出する煙濃度検出部とを設けたことを特徴とする。   To achieve this object, the present invention is configured as follows. First, the present invention is a smoke sensing device that optically detects smoke particles floating in air sucked from a monitoring area to judge a fire, and sucks laser light from an emission surface of a laser diode by an imaging lens. A light projecting unit that forms an image in a smoke detection area through which air passes, and a laser that is orthogonal to the light projecting optical axis of the laser light and diffuses past the image forming position with respect to the image forming position of the laser light by the image forming lens. A light-receiving element arranged in a direction parallel to the direction of the electric field of light, and the light-receiving element receives light scattered by the smoke particles each time the smoke particles pass through the imaging position of the laser light in the smoke detection area. And a smoke density detecting section for detecting a smoke density based on an integrated value per unit time of the received light pulse signal from the light receiving section.

このように単位時間当たり受光パルス信号の積分値から煙濃度を検出する場合、基準となる設定流量に対し実際の流量が増加したとすると、検煙空間を通過する煙粒子の速度が速くなり、単位時間当たりの散乱光の受光パルス信号の数も増加する。しかし、煙粒子の検煙領域を通る通過時間が短くなるため、散乱光が受光できる時間も短くなって受光パルス信号の波形面積で決まる積分値は低下する。その結果、受光パルス信号の数が増加しても、その分、受光パルスの積分値が低下し、両者の相殺により単位時間当たりの受光パルス積分値は変化しない。   As described above, when detecting the smoke density from the integrated value of the received light pulse signal per unit time, if the actual flow rate is increased with respect to the reference set flow rate, the speed of the smoke particles passing through the smoke detection space increases, The number of received light pulse signals of scattered light per unit time also increases. However, since the time required for the smoke particles to pass through the smoke detection region is reduced, the time during which scattered light can be received is also reduced, and the integrated value determined by the waveform area of the received light pulse signal decreases. As a result, even if the number of light receiving pulse signals increases, the integrated value of the light receiving pulse decreases accordingly, and the integrated value of the light receiving pulse per unit time does not change due to the cancellation of both.

逆に、基準となる設定流量に対し実際の流量が減少したとすると、検煙空間を通過する煙粒子の速度が遅くなり、単位時間当たりの散乱光の受光パルス信号の数も減少する。しかし、煙粒子の検煙領域を通る通過時間が長くなるため、散乱光が受光できる時間も長くなって受光パルス信号の波形面積で決まる積分値が増加する。その結果、受光パルス信号の数が減少しても、その分、受光パルス信号の積分値が増加し、両者の相殺により単位時間当たりの受光パルス積分値は変化しない。   Conversely, if the actual flow rate is reduced with respect to the reference set flow rate, the speed of the smoke particles passing through the smoke detection space is reduced, and the number of scattered light reception pulse signals per unit time is also reduced. However, since the time required for the smoke particles to pass through the smoke detection region becomes longer, the time during which scattered light can be received becomes longer, and the integral value determined by the waveform area of the received light pulse signal increases. As a result, even if the number of received light pulse signals decreases, the integrated value of the received light pulse signal increases accordingly, and the integrated value of the received light pulse per unit time does not change due to the cancellation of the two.

この単位時間当たり受光パルス積分値に基づいて煙濃度を検出する煙濃度検出部としては、例えば、受光部からの受光パルス信号に所定の閾値を設定し、この閾値を越える受光パルス信号成分を出力するスライス処理部と、スライス処理部でスライスされた受光パルス信号を前記単位時間毎に積分する積分部と、積分部による前記単位時間毎の積分値を抽出して保持するホールド部と、ホールド部に保持された積分値を煙濃度に変換する煙濃度変換部とで構成される。
As a smoke density detection unit that detects smoke density based on the integrated value of the received light pulse per unit time, for example, a predetermined threshold is set for the received light pulse signal from the light receiving unit, and a received light pulse signal component exceeding this threshold is output. A slice processing unit, an integration unit that integrates the light receiving pulse signal sliced by the slice processing unit for each unit time, a hold unit that extracts and holds the integration value for each unit time by the integration unit, and a hold unit. And a smoke density conversion unit for converting the integrated value held in the above into smoke density.

本発明によれば、煙粒子の通過で得られた散乱光の受光パルス信号につき、単位時間当たりのパルス幅の合計値あるいは単位時間当たりの積分値を求め、これらに基づいて煙濃度を検出しているため、吸引空気の流量が変化しても単位時間当たりのパルス幅合計値または積分値は変化せず、吸引空気の流量の変動に影響されることなく煙粒子の通過による散乱光の受光により正確に微小な煙濃度を検出することができる。   According to the present invention, for a received pulse signal of scattered light obtained by passing smoke particles, a total value of pulse width per unit time or an integrated value per unit time is obtained, and smoke density is detected based on these values. Therefore, even if the flow rate of the suction air changes, the total pulse width value or the integral value per unit time does not change, and the scattered light due to the passage of the smoke particles is received without being affected by the change in the flow rate of the suction air. Accordingly, a minute smoke density can be detected accurately.

また流量変動の影響を受けないことから、従来装置のように吸入空気の流量を検出する流量計を設ける必要がなく、構造が簡単でコンパクトにでき、且つコストも安価に実現できる。
Further, since there is no influence of the flow rate fluctuation, there is no need to provide a flow meter for detecting the flow rate of the intake air unlike the conventional apparatus, so that the structure can be made simple, compact, and inexpensive.

図1は本発明の煙感知装置の全体的な装置構成である。図1において、煙感知装置1はコンピュータルームや半導体製造設備を設置したクリーンルーム等の火災による煙をごく初期の段階で検出するために設置されており、煙感知装置1に監視区域に設置された検知配管2を接続している。検知配管2は例えばT字型の配管であり、複数の吸込穴3を備えている。   FIG. 1 shows the overall configuration of the smoke detector of the present invention. In FIG. 1, a smoke detector 1 is installed to detect smoke caused by a fire in a computer room or a clean room where semiconductor manufacturing facilities are installed at an extremely early stage, and is installed in a monitoring area of the smoke detector 1. The detection pipe 2 is connected. The detection pipe 2 is, for example, a T-shaped pipe and has a plurality of suction holes 3.

煙感知装置に設けた検煙部4のインレットに対しては検知配管2が接続され、アウトレット側は吸引装置7を備えたチャンバに開口されている。監視状態において、吸引装置7はモータ駆動により予め定めた所定の設定流量の空気を吸引しており、このため警戒区域に設置した検知配管2の吸込穴より吸い込まれた空気が検煙部4を通って吸引装置7から排出されている。   The detection pipe 2 is connected to the inlet of the smoke detector 4 provided in the smoke detector, and the outlet side is opened to a chamber provided with the suction device 7. In the monitoring state, the suction device 7 sucks air at a predetermined flow rate set in advance by driving the motor, so that the air sucked from the suction hole of the detection pipe 2 installed in the warning area causes the smoke detection unit 4 to flow. And is discharged from the suction device 7.

吸引装置7による吸引吸気の吸引流量は、設計上は決められているが、モータの回転変動などにより設定流量に対し実際の流量は変動しており、この吸引流量の変動に伴い検煙部4を通過する空気中に含まれる煙粒子の通過速度も変動している。検煙部4には所定偏向方向に電界成分を持つ単偏光発振を行うレーザダイオード(LD)5と受光素子としてのフォトダイオード(PD)6が設けられ、フォトダイオード6としては例えばPINフォトダイオードが使用される。   Although the suction flow rate of the suction and suction by the suction device 7 is determined in terms of design, the actual flow rate fluctuates with respect to the set flow rate due to fluctuations in the rotation of the motor and the like. The passing speed of smoke particles contained in the air passing through the air fluctuates. The smoke detector 4 is provided with a laser diode (LD) 5 that performs single polarization oscillation having an electric field component in a predetermined deflection direction and a photodiode (PD) 6 as a light receiving element. As the photodiode 6, for example, a PIN photodiode is used. used.

検煙部4を通過する吸引した空気中に存在する煙粒子を含む空中浮遊粒子(エアロゾル)の検出は、レーザダイオード5からのレーザ光の照射による散乱光をフォトダイオード6で検出し、散乱光に応じた受光パルス信号を信号処理部8に出力して煙濃度検出のための信号処理を行う。本発明にあっては、信号処理部8における受光パルス信号に基づいた煙濃度の検出のための信号処理としては、従来のように単位時間当りの受光パルス信号の数をカウントして煙濃度に変換するのではなく、
(1)単位時間当たりに得られる受光パルス信号のパルス幅の合計値
(2)単位時間当たりに得られる受光パルス信号の積分値
のいずれかに基づいて煙濃度を検出している。
The detection of airborne particles (aerosol) including smoke particles present in the sucked air passing through the smoke detector 4 is performed by detecting the scattered light due to the irradiation of the laser light from the laser diode 5 with the photodiode 6, and detecting the scattered light. Is output to the signal processing unit 8 to perform signal processing for smoke density detection. In the present invention, as signal processing for detecting smoke density based on the received light pulse signal in the signal processing unit 8, the number of received light pulse signals per unit time is counted and the smoke density is calculated as in the related art. Instead of converting
(1) The sum of the pulse widths of the light receiving pulse signals obtained per unit time, and (2) the smoke density is detected based on one of the integrated values of the light receiving pulse signals obtained per unit time.

図2は図1の検煙部4に設けた本発明で用いる散乱光式の煙粒子検出構造の説明図である。図2においてレーザダイオード5が出射するレーザ光の電界方向が所定方向に定まったいわゆる単偏光発振を行っており、内部にレーザダイオードチップ5aを備えている。レーザダイオード5から出射されたレーザ光は、投光光軸11方向に向かうにつれて拡散波として広がる。   FIG. 2 is an explanatory view of a scattered light type smoke particle detection structure used in the present invention provided in the smoke detector 4 of FIG. In FIG. 2, the laser beam emitted from the laser diode 5 performs so-called single polarization oscillation in which the direction of the electric field of the laser beam is determined to be a predetermined direction, and includes a laser diode chip 5a inside. The laser light emitted from the laser diode 5 spreads as a diffusion wave toward the light projection optical axis 11.

レーザダイオード5に続いては結像レンズ9が配置されており、レーザダイオード5からのレーザ光を集光し、検煙した空気の気流13が通過する結像位置10にレーザダイオード5の光源像、即ちレーザダイオードチップ5aの出射面の光源像(ファー・フィールド・パターン)を結像し、1μm前後の微小なスポット領域を形成している。   An image forming lens 9 is arranged following the laser diode 5, condenses the laser light from the laser diode 5, and forms a light source image of the laser diode 5 at an image forming position 10 where an airflow 13 of the smoke-detected air passes. That is, a light source image (far field pattern) on the emission surface of the laser diode chip 5a is formed to form a minute spot area of about 1 μm.

結像レンズ9によるレーザダイオード5の光源像の結像位置10に対しては、その投光光軸11に例えばθ=90°と直交する方向に設定した受光光軸12をもってフォトダイオード6を配置している。このフォトダイオード6の配置方向は、例えば結像位置10を過ぎて拡散するレーザ光の光軸断面方向の光強度分布を示す楕円パターン(ニア・フィールド・パターン)14に矢印で示す電界Eの方向と平行な方向に配置している。   At an imaging position 10 of the light source image of the laser diode 5 by the imaging lens 9, the photodiode 6 is disposed with a light receiving optical axis 12 set in a direction orthogonal to, for example, θ = 90 ° on the light projecting optical axis 11. are doing. The arrangement direction of the photodiode 6 is, for example, the direction of the electric field E indicated by an arrow in an elliptical pattern (near field pattern) 14 indicating the light intensity distribution in the optical axis cross-sectional direction of the laser light diffused past the imaging position 10. It is arranged in the direction parallel to.

このように電界Eの方向と平行な方向に受光素子としてのフォトダイオード6を配置することで、結像位置10の微小スポットを通過する煙粒子による散乱光が本願発明者の実験によれば最も高い効率で受光することができる。   By arranging the photodiode 6 as a light receiving element in a direction parallel to the direction of the electric field E, the scattered light due to the smoke particles passing through the minute spot at the image forming position 10 is the largest according to the experiment of the present inventor. Light can be received with high efficiency.

図3は図1の信号処理部8のブロック図である。信号処理部には制御部15が設けられ、制御部15に対し発光回路部16を介してレーザダイオード5を接続し、またフォトダイオード6の出力が受光回路部17を介して入力接続されている。更にモータを備えた吸引装置7が接続される。制御部15には煙濃度検出部18が設けられている。図4は図3の制御部15に設けられた煙濃度検出部18の回路ブロックであり、受光回路部17も含まれている。図4の煙濃度検出部18の回路ブロックの実施形態は、単位時間T当たりに得られる散乱光の受光パルス信号のパルス幅の合計値に基づいて煙濃度を検出している。このため煙濃度検出部18は、増幅回路20、比較回路21、積分回路22、ホールド回路24、煙濃度変換回路25及びタイマ回路26を備える。増幅回路20は図2の受光素子6で受光した結像位置10を通過する煙粒子によるレーザ光の散乱光を受光していた受光パルス信号が入力され、この受光パルス信号は微弱な信号であるから、所定の増幅率により増幅した後、受光パルス信号aとして比較回路に出力する。   FIG. 3 is a block diagram of the signal processing unit 8 of FIG. A control unit 15 is provided in the signal processing unit. The laser diode 5 is connected to the control unit 15 via the light emitting circuit unit 16, and the output of the photodiode 6 is input connected via the light receiving circuit unit 17. . Further, a suction device 7 having a motor is connected. The control unit 15 is provided with a smoke density detection unit 18. FIG. 4 is a circuit block diagram of the smoke density detection unit 18 provided in the control unit 15 of FIG. The embodiment of the circuit block of the smoke density detection unit 18 in FIG. 4 detects the smoke density based on the total value of the pulse widths of the scattered light reception pulse signals obtained per unit time T. For this purpose, the smoke density detection section 18 includes an amplification circuit 20, a comparison circuit 21, an integration circuit 22, a hold circuit 24, a smoke density conversion circuit 25, and a timer circuit 26. The amplifying circuit 20 receives as input a received light pulse signal that has received laser light scattered by smoke particles passing through the imaging position 10 received by the light receiving element 6 of FIG. 2, and this received light pulse signal is a weak signal. After that, the signal is amplified by a predetermined amplification factor, and then output to the comparison circuit as a light receiving pulse signal a.

図5(A)は増幅回路20から出力される受光信号aであり、検煙領域となるレーザ光の結像位置10を煙粒子が通過するごとに、その散乱光による受光パルス信号a1,a2,a3,a4,・・・が得られている。この受光パルス信号a1〜a4は、信号の高さが煙粒子の大きさに正比例しており、またパルス幅は煙粒子がレーザ光を結像した検煙スポット領域を通過する時間に正比例する。   FIG. 5A shows a received light signal a output from the amplifier circuit 20. Each time a smoke particle passes through the image forming position 10 of the laser beam, which is a smoke detection area, a received light pulse signal a1, a2 due to its scattered light. , A3, a4,... Are obtained. The light receiving pulse signals a1 to a4 have signal heights that are directly proportional to the size of the smoke particles, and pulse widths that are directly proportional to the time that the smoke particles pass through the smoke detection spot area where the laser light is imaged.

また煙粒子が検煙領域を通過する速度は、吸引装置7による吸引流量に正比例することになる。このため、吸入流量が設定流量より増加すると煙粒子の検煙領域の通過速度も増加し、その結果、受光パルス信号のパルス幅が減少する。逆に吸入空気流が減少すると煙粒子の検煙領域の通過速度も低下し、この場合には受光パルス信号のパルス幅が増加することになる。   The speed at which the smoke particles pass through the smoke detection area is directly proportional to the suction flow rate by the suction device 7. Therefore, when the suction flow rate exceeds the set flow rate, the passing speed of the smoke particles in the smoke detection region also increases, and as a result, the pulse width of the received light pulse signal decreases. Conversely, when the intake air flow decreases, the speed of the smoke particles passing through the smoke detection region also decreases, and in this case, the pulse width of the received light pulse signal increases.

図4の増幅回路20に続いては比較回路21が設けられる。比較回路21には図5(A)のようにアナログ的に変化するa1〜a4のパルス幅を検出するためノイズレベルを超える所定値に閾値THを設定しており、閾値THを超える受光パルスa1〜a4の幅を持つ図5(B)の矩形波整形信号bを出力する。この矩形波整形信号bは、受光信号a1〜a4を閾値THと比較したときのパルス幅への変換信号となる。図4の比較回路21に続いては積分回路22が設けられ、図5(B)の受光パルス信号a1〜a4のパルス幅に応じた矩形波成形信号bを積分し、図5(C)に示すような積分加算信号cが出力される。この積分信号cは、単位時間Tに亘る4つの矩形波成形信号b1〜b4の積分加算値を得るもので、この積分加算値は4つの矩形波成形信号b1〜b4のパルス幅をTw1,Tw2,Tw3,Tw4とると、その合計パルス幅T4、即ち
Tw=Tw1+Tw2+Tw3+Tw4
に比例したレベルを持つことになる。
Subsequent to the amplifier circuit 20 of FIG. 4, a comparison circuit 21 is provided. As shown in FIG. 5A, the threshold value TH is set to a predetermined value exceeding the noise level in the comparison circuit 21 in order to detect the pulse widths of a1 to a4 that change in an analog manner, and the light receiving pulse a1 exceeding the threshold value TH is set. The rectangular wave shaping signal b of FIG. 5B having a width of .about.a4 is output. The rectangular wave shaping signal b is a signal converted into a pulse width when the light receiving signals a1 to a4 are compared with the threshold value TH. An integrating circuit 22 is provided subsequent to the comparing circuit 21 in FIG. 4, and integrates the rectangular wave forming signal b corresponding to the pulse width of the light receiving pulse signals a1 to a4 in FIG. An integrated addition signal c as shown is output. The integration signal c is used to obtain an integrated addition value of the four rectangular wave shaping signals b1 to b4 over the unit time T. , Tw3, Tw4, the total pulse width T4, ie, Tw = Tw1 + Tw2 + Tw3 + Tw4
Will have a level proportional to.

積分回路22に続いて設けられたホールド回路24は、タイマ回路26から図4(D)のように単位時間Tごとにリセット信号dが出力されることから、このリセット信号dの立ち上がりで積分回路22からの積分信号cを取り込んで保持する。またタイマ回路26からのリセット信号dは同時に積分回路22にも与えられており、単位時間Tごとに積分回路22のリセットスタートが行われる。   Since the reset signal d is output from the timer circuit 26 every unit time T as shown in FIG. 4D, the hold circuit 24 provided subsequent to the integration circuit 22 outputs the integration signal at the rising edge of the reset signal d. 22 and takes in and holds the integrated signal c. The reset signal d from the timer circuit 26 is also given to the integrating circuit 22 at the same time, and the reset of the integrating circuit 22 is started every unit time T.

煙濃度変換回路25は、ホールド回路24に保持された単位時間Tの受光パルス信号のパルス幅合計値を煙濃度に変換する。このパルス幅合計値を煙濃度に変換するための変換テーブルは、煙粒子の粒径、検煙部の通過速度、煙粒子に対する受光パルス信号のレベル、波形成形のための閾値TH等のパラメータを決めることで、理論値として準備することができる。   The smoke density conversion circuit 25 converts the total pulse width value of the received light pulse signal of the unit time T held in the hold circuit 24 into smoke density. The conversion table for converting the total value of the pulse width into the smoke density includes parameters such as the particle diameter of the smoke particles, the passing speed of the smoke detector, the level of the received pulse signal for the smoke particles, and the threshold value TH for waveform shaping. By deciding, it can be prepared as a theoretical value.

次に図4の回路ブロックによる実施形態の動作を説明する。増幅回路20には図5(A)のようにレーザ光を絞った結像領域のビームスポットとなる検煙領域を煙粒子が通過するごとに、煙粒子の粒径に比例したピークレベルを持つ受光パルス信号が入力し、増幅回路20による増幅で図5(A)のような受光パルス信号a1,a2,a3,a4,・・・が出力される。増幅回路20からの受光パルス信号aは比較回路21に入力され、予め設定した閾値THと比較される。   Next, the operation of the embodiment using the circuit block of FIG. 4 will be described. As shown in FIG. 5A, the amplifying circuit 20 has a peak level proportional to the particle diameter of the smoke particles every time the smoke particles pass through the smoke detection region which is a beam spot of the image forming region where the laser beam is focused. The light receiving pulse signal is input, and the light receiving pulse signals a1, a2, a3, a4,... As shown in FIG. The light receiving pulse signal a from the amplifier circuit 20 is input to the comparison circuit 21 and is compared with a preset threshold value TH.

例えば受光パルス信号a1にあっては、閾値THより低い間は図4(B)の矩形波成形信号b1のようにLレベルにあり、閾値THを超えるとHレベルに立ち上がり、ピークレベルを過ぎて再び閾値THを下回るとLレベルに立ち下がる矩形波の信号に波形成形される。この結果、受光パルス信号a1は閾値THでパルス波形を切ったパルス幅Tw1をもつ矩形波成形信号b1に変換される。   For example, the light receiving pulse signal a1 is at the L level as shown in the rectangular wave shaping signal b1 in FIG. 4 (B) while being lower than the threshold value TH, rises to the H level when the threshold value TH is exceeded, and passes through the peak level. When the voltage falls below the threshold value TH again, the waveform is shaped into a rectangular wave signal that falls to the L level. As a result, the light receiving pulse signal a1 is converted into a rectangular wave shaping signal b1 having a pulse width Tw1 obtained by cutting the pulse waveform at the threshold value TH.

同様にして受光パルス信号a2,a3,a4についても、閾値THから見たパルス幅Tw2,Tw3,Tw4をもつ矩形波成形信号b2,b3,b4に変換される。図5の場合には、単位時間Tの間に4つの受光パルス信号a1〜a4が得られている。このためタイマ回路26からのリセット信号dによりリセットスタートされた積分回路22は、図5(C)の積分信号cのように、矩形波整形信号b1〜b4のHレベル期間に亘ってコンデンサを充電する累積積分動作を行う。   Similarly, the light receiving pulse signals a2, a3, and a4 are also converted into rectangular wave shaping signals b2, b3, and b4 having pulse widths Tw2, Tw3, and Tw4 viewed from the threshold value TH. In the case of FIG. 5, four light receiving pulse signals a1 to a4 are obtained during the unit time T. Therefore, the integration circuit 22 that has been reset-started by the reset signal d from the timer circuit 26 charges the capacitor over the H-level period of the square wave shaping signals b1 to b4, like the integration signal c in FIG. Is performed.

このため、単位時間Tを経過してリセット信号dが得られる立ち上がりタイミングで積分加算信号cは4つの矩形波成形信号b1〜b4のパルス幅Tw1〜Tw4の合計パルス幅Twに比例した値となっており、これがホールド回路24でホールドされ、次の単位時間Tに亘り煙濃度変換回路25に出力されることで、最終的な積分加算値に対応した煙濃度への変換出力が行われる。   Therefore, at the rising timing at which the reset signal d is obtained after the unit time T has elapsed, the integration addition signal c has a value proportional to the total pulse width Tw of the pulse widths Tw1 to Tw4 of the four rectangular wave shaping signals b1 to b4. This is held by the hold circuit 24 and output to the smoke density conversion circuit 25 over the next unit time T, whereby the smoke density conversion output corresponding to the final integrated addition value is performed.

ここで吸引装置7による空気の吸引流量が図5の状態から増加したとすると、検煙領域を通過する煙粒子の速度が増加し、単位時間Tの間に得られる受光パルス信号aの数が増加する。例えば煙濃度が同じであったとすると、流速が2倍になれば単位時間Tにて得られる受光パルス信号は図5(A)の4つから2倍の8つになる。   Here, assuming that the suction flow rate of the air by the suction device 7 is increased from the state shown in FIG. 5, the speed of the smoke particles passing through the smoke detection area is increased, and the number of the light receiving pulse signals a obtained during the unit time T is reduced. To increase. For example, assuming that the smoke density is the same, if the flow velocity is doubled, the number of received light pulse signals obtained in the unit time T is doubled from eight in FIG. 5A to eight.

このため、閾値THによる比較処理で得られた矩形波成形信号bも流速が2倍になる前のパルス幅Tw1〜Tw4の半分となり、更に4つの矩形波成形信号が単位時間Tの間に加わる。その結果、図5(C)の積分加算信号cにあっては、周期Tの中に8つの矩形波成形信号があることで、パルス幅で決まる1回の積分時間は短くとも流量が増加する前の4回から8回に積分回数が増加し、単位時間Tで最終的に得られる積分加算信号cのレベルはほとんど変動しない。逆に図5の吸入空気の流量が減少し例えば半分の流量になったとすると、検煙領域を通過する煙粒子の数も半分に減少し、単位時間Tで得られる図5(A)の受光パルス信号は図示の4つから吸入空気の流量が半分になると2つに減少する。しかしながら、流速の減少に伴い受光パルス信号のパルス幅は2倍に広がっており、その結果、積分信号cによる積分結果はほとんど変化しない。   Therefore, the rectangular wave shaping signal b obtained by the comparison process using the threshold value TH also becomes half of the pulse widths Tw1 to Tw4 before the flow velocity doubles, and further four square wave shaping signals are added during the unit time T. . As a result, in the integration addition signal c of FIG. 5C, since there are eight rectangular wave shaping signals in the cycle T, the flow rate increases even if one integration time determined by the pulse width is short. The number of integration increases from the previous four times to eight times, and the level of the integration addition signal c finally obtained in the unit time T hardly changes. Conversely, if the flow rate of the intake air in FIG. 5 is reduced to, for example, a half flow rate, the number of smoke particles passing through the smoke detection area is also reduced to half, and the light reception in FIG. The pulse signal decreases from four in the figure to two when the flow rate of the intake air is halved. However, as the flow velocity decreases, the pulse width of the received light pulse signal is doubled, and as a result, the integration result by the integration signal c hardly changes.

このような図4の実施形態にあっては、単位時間当たりTで得られる受光パルス信号のパルス幅の合計値に基づいて煙濃度を検出することで、吸入空気の吸入量量に変動があっても、煙濃度が変動しない限り常に一定のパルス幅合計値が得られ、空気の吸入流量の変動を受けることなく高精度の煙濃度検出が実現できる。   In the embodiment of FIG. 4 described above, the smoke density is detected based on the total value of the pulse width of the received light pulse signal obtained at T per unit time, so that the amount of intake air fluctuates. However, as long as the smoke density does not fluctuate, a constant pulse width total value is always obtained, and high-precision smoke density detection can be realized without fluctuation of the air intake flow rate.

図6は図4の回路ブロックについて、その一部をMPUのプログラム制御で実現している。図6において、増幅回路20は図4の実施形態と同じであるが、続いてADコンバータ27を設け、図5(A)の受光信号aを所定のサンプリングクロックを使用してデジタルデータに変換し、MPU28に入力している。MPU28には比較部210、積分部220、ホールド部240、煙濃度変換部250及びタイマ部260が設けられる。   FIG. 6 shows a part of the circuit block shown in FIG. 4 that is realized by MPU program control. 6, the amplifier circuit 20 is the same as that of the embodiment of FIG. 4, but an AD converter 27 is provided to convert the light receiving signal a of FIG. 5A into digital data using a predetermined sampling clock. , MPU 28. The MPU 28 includes a comparison unit 210, an integration unit 220, a hold unit 240, a smoke density conversion unit 250, and a timer unit 260.

これらMPU28の各処理部は、基本的には図4に示した比較回路21からタイマ回路26のハードウェアをMPU28のプログラム制御により実現したものであり、基本的な相違はない。図7は図3の制御部に設けた煙濃度検出部18の他の実施形態であり、この実施形態にあっては、単位時間Tごとに受光パルス信号の積分値を求め、この積分値に基づいた煙濃度を検出するようにしたことを特徴とする。このため図7の実施形態にあっては、増幅回路20に続いてスライス処理回路30を設けている点が図4の実施形態と相違し、他の構成は同様に積分回路22、ホールド回路24、煙濃度変換回路25及びタイマ回路26と同じになっている。   These processing units of the MPU 28 are basically realized by hardware of the comparison circuit 21 to the timer circuit 26 shown in FIG. 4 by program control of the MPU 28, and there is no fundamental difference. FIG. 7 shows another embodiment of the smoke density detecting section 18 provided in the control section of FIG. 3. In this embodiment, an integrated value of the received light pulse signal is obtained for each unit time T, and the integrated value is calculated. The smoke density is detected based on the smoke density. For this reason, the embodiment of FIG. 7 is different from the embodiment of FIG. 4 in that a slice processing circuit 30 is provided following the amplification circuit 20, and the other configurations are similarly the integration circuit 22 and the hold circuit 24. , The smoke density conversion circuit 25 and the timer circuit 26.

図8は図7の実施形態のタイミングチャートであり、増幅回路20で増幅された受光パルス信号は図8(A)のようになり、これは図4における受光パルス信号の増幅結果を示した図5(A)と同じになっている。スライス処理回路30は、ノイズ成分をカットするために設定したスライスレベルを越える信号成分を抽出するものであり、図8(A)の受光パルス信号aに対しノイズ成分をカットする所定のスライスレベルSLを設定しており、スライスレベルSL未満の信号成分を除去した図8(B)のスライス信号bを積分回路22に出力する。   FIG. 8 is a timing chart of the embodiment of FIG. 7, and the received light pulse signal amplified by the amplifier circuit 20 is as shown in FIG. 8A, which shows the result of amplification of the received light pulse signal in FIG. 5 (A). The slice processing circuit 30 extracts a signal component exceeding a slice level set for cutting a noise component, and a predetermined slice level SL for cutting a noise component with respect to the received light pulse signal a of FIG. 8B, and outputs the slice signal b of FIG. 8B from which the signal components lower than the slice level SL have been removed to the integration circuit 22.

積分回路22は、スライス信号bを単位時間Tごとに積分する。ここで受光信号a1〜a4に対応してスライス信号b1〜b4が得られていることから、積分回路22は各スライス信号b1〜b4を積分し、図8(C)の積分信号cを出力する。この結果、単位時間Tの経過時点における積分回路22からの積分信号cの値は、単位時間Tの間に得られている4つのスライス信号b1〜b4の面積波形成分の合計値に比例した値となっており、これを煙濃度変換回路25で煙濃度に変換する。   The integration circuit 22 integrates the slice signal b for each unit time T. Here, since the slice signals b1 to b4 are obtained corresponding to the light receiving signals a1 to a4, the integration circuit 22 integrates the respective slice signals b1 to b4 and outputs an integrated signal c of FIG. 8C. . As a result, the value of the integration signal c from the integration circuit 22 at the elapse of the unit time T is a value proportional to the total value of the area waveform components of the four slice signals b1 to b4 obtained during the unit time T. This is converted into a smoke density by the smoke density conversion circuit 25.

この単位時間T当たりの受光パルス信号の累積積分を求めて煙濃度を検出する図7の実施形態にあっても、吸引装置7による外部からの空気の吸引流量が増加すると受光パルス信号の単位時間Tにおける数が増加し、また吸入流量が減少すると数が減少し、逆に吸入流量が増えると信号の幅が減少し、吸入流量が低下すると信号の幅が増加する。   Even in the embodiment of FIG. 7 in which the smoke density is detected by calculating the cumulative integration of the received light pulse signal per unit time T, the unit time of the received light pulse signal is increased when the suction flow rate of air from the outside by the suction device 7 is increased. As the number at T increases and the suction flow decreases, the number decreases; conversely, as the suction flow increases, the signal width decreases, and as the suction flow decreases, the signal width increases.

このため、スライス信号bを積分した積分信号cの単位時間Tを経過した時点での値は、吸入流量が変動しても煙濃度が変動しない限り略一定となっている。このため、吸引装置による吸入空気の流量の変動に影響されることなく正確に煙濃度を測定することができる。   Therefore, the value of the integrated signal c obtained by integrating the slice signal b at the time when the unit time T has elapsed is substantially constant even if the suction flow rate changes unless the smoke density changes. For this reason, the smoke density can be accurately measured without being affected by the fluctuation of the flow rate of the intake air by the suction device.

図9は図7の実施形態の一部をMPUによるプログラム制御で実現したブロック図であり、最初の実施形態について示した図6と対応している。即ち、増幅回路20に続いてADコンバータ27が設けられ、所定のサンプリングクロックにより図8(A)の受光パルス信号をデジタルデータに変換している。MPU28内には図7のスライス処理回路30からタイマ回路26のハードウェアに相当する機能ブロックとしてスライス処理部300、積分部220、ホールド部240、煙濃度変換部250及びタイマ部260が設けられている。   FIG. 9 is a block diagram in which a part of the embodiment of FIG. 7 is realized by program control by the MPU, and corresponds to FIG. 6 showing the first embodiment. That is, an AD converter 27 is provided following the amplifier circuit 20, and converts the light receiving pulse signal of FIG. 8A into digital data by a predetermined sampling clock. In the MPU 28, a slice processing unit 300, an integration unit 220, a hold unit 240, a smoke density conversion unit 250, and a timer unit 260 are provided as functional blocks corresponding to the hardware of the slice processing circuit 30 to the timer circuit 26 in FIG. I have.

この単位時間T当たりの受光パルス信号の積分値から煙濃度を求める実施形態にあっても、吸入空気の流量変動の影響を受けることなく、より正確な煙濃度の検出が実現できる。尚、上記の実施形態は、図2のように結像レンズ9によりレーザダイオード5からのレーザ光を結像位置10に絞って微小なビームスポットの光源像を作り、この結像位置のビームスポットに対し外部から吸入した煙粒子の気流を通過させているが、結像レンズ9の代わりにコリメート・レンズを使用してレーザダイオード5からのレーザ光を平行光に変換し、この平行光に対し所定の構成角θをもって受光素子としてのフォトダイオード6を配置した平行光学系を備えた煙感知装置についても、そのまま適用できる。
Even in the embodiment in which the smoke density is obtained from the integrated value of the received light pulse signal per unit time T, more accurate detection of the smoke density can be realized without being affected by the fluctuation of the flow rate of the intake air. In the above-described embodiment, as shown in FIG. 2, the laser light from the laser diode 5 is narrowed down to the image forming position 10 by the image forming lens 9 to form a light source image of a minute beam spot, and the beam spot at this image forming position is formed. The laser beam from the laser diode 5 is converted into parallel light by using a collimating lens instead of the imaging lens 9 while passing the airflow of smoke particles inhaled from the outside. The present invention can be applied to a smoke sensing device provided with a parallel optical system in which a photodiode 6 as a light receiving element is disposed at a predetermined configuration angle θ.

本発明による煙感知装置の全体構成の説明図Explanatory drawing of the whole structure of the smoke sensing device according to the present invention. 感度試験機能を備えた本発明による散乱光式の煙粒子検出構造の説明図Explanatory drawing of a scattered light type smoke particle detection structure according to the present invention having a sensitivity test function 図1の信号処理装置のブロック図1 is a block diagram of the signal processing device of FIG. 単位時間当たりのパルス幅合計に基づいて煙濃度を検出する図3の煙濃度検出部の回路ブロック図FIG. 3 is a circuit block diagram of the smoke density detection unit in FIG. 3 for detecting smoke density based on the total pulse width per unit time. 図3の煙濃度検出部の動作を示したタイミングチャートFIG. 3 is a timing chart showing the operation of the smoke density detection unit in FIG. 単位時間当たりのパルス幅合計に基づいて煙濃度を検出するMPUを用いた図3の煙濃度検出部の機能ブロック図FIG. 3 is a functional block diagram of the smoke density detection unit in FIG. 3 using an MPU that detects smoke density based on the total pulse width per unit time. 単位時間当たりの受光パルス積分値に基づいて煙濃度を検出する図3の煙濃度検出部の回路ブロック図FIG. 3 is a circuit block diagram of the smoke density detection unit in FIG. 3 for detecting smoke density based on the integrated value of the received light pulse per unit time. 図7の煙濃度検出部の動作を示したタイミングチャートFIG. 7 is a timing chart showing the operation of the smoke density detection unit. 単位時間当たりの受光パルス積分値に基づいて煙濃度を検出するMPUを用いた図3の煙濃度検出部の機能ブロック図FIG. 3 is a functional block diagram of the smoke density detection unit in FIG. 3 using an MPU that detects smoke density based on an integrated value of a received light pulse per unit time.

符号の説明Explanation of reference numerals

1:煙感知装置
2:検知配管
3:吸込穴
4:検煙部
5:レーザダイオード
5a:レーザダイオードチップ
6:フォトダイオード(受光素子)
7:吸引装置
8:信号処理部
9:結像レンズ
10:結像位置(検煙領域)
11:発光光軸
12,19:受光光軸
15:制御部
16:発光回路部
17:受光回路部
18:煙濃度検出部
20:増幅回路
21:比較回路
22:積分回路
24:ホールド回路
25:煙濃度変換回路
26:タイマ回路
27:A/Dコンバータ
28:MPU
30:スライス処理回路
1: Smoke detector 2: Detection pipe 3: Suction hole 4: Smoke detector 5: Laser diode 5a: Laser diode chip 6: Photodiode (light receiving element)
7: suction device 8: signal processing unit 9: imaging lens 10: imaging position (smoke detection area)
11: Light-emitting optical axes 12, 19: Light-receiving optical axis 15: Control unit 16: Light-emitting circuit unit 17: Light-receiving circuit unit 18: Smoke density detection unit 20: Amplifier circuit 21: Comparison circuit 22: Integration circuit 24: Hold circuit 25: Smoke density conversion circuit 26: Timer circuit 27: A / D converter 28: MPU
30: Slice processing circuit

Claims (2)

監視区域から吸入した空気中に浮遊する煙粒子を光学的に検出して火災を判断する煙感知装置に於いて、
レーザダイオードの出射面からのレーザ光を、結像レンズにより吸入空気が通過する検煙領域に結像させる投光部と、
前記結像レンズによる前記レーザ光の結像位置に対し、前記レーザ光の投光光軸に直行しかつ前記結像位置を過ぎて拡散する前記レーザ光の電界方向と平行な方向に配置される受光素子と、
前記検煙領域で前記レーザ光の結像位置を煙粒子が通過するごとに、前記煙粒子による散乱光を前記受光素子で受光することにより得られる受光パルス信号を出力する受光部と、
前記受光部からの受光パルス信号の単位時間あたりの積分値に基づいて煙濃度を検出する煙濃度検出部と、
を設けたことを特徴とする煙検知装置。
In a smoke detection device that optically detects smoke particles floating in the air inhaled from the monitoring area to judge a fire,
A light emitting unit that forms an image of a laser beam from an emission surface of a laser diode on a smoke detection area through which intake air passes through an imaging lens;
With respect to the imaging position of the laser light by the imaging lens, the laser light is arranged in a direction perpendicular to the projection optical axis of the laser light and in a direction parallel to the electric field direction of the laser light diffused past the imaging position. A light receiving element,
Each time a smoke particle passes through the imaging position of the laser light in the smoke detection area, a light receiving unit that outputs a light receiving pulse signal obtained by receiving light scattered by the smoke particle by the light receiving element,
A smoke density detection unit that detects smoke density based on an integral value per unit time of a light reception pulse signal from the light reception unit,
A smoke detection device comprising:
請求項1記載の煙感知装置に於いて、前記煙濃度検出部は、
前記受光部からの受光パルス信号に所定の閾値を設定し、該閾値を越える受光パルス信号成分を出力するスライス処理部と、
前記スライス処理部でスライスされた受光パルス信号を前記単位時間毎に積分する積分部と、
前記積分部による前記単位時間毎の積分値を抽出して保持するホールド部と、
前記ホールド部に保持された積分値を煙濃度に変換する煙濃度変換部と、
を備えたことを特徴とする煙感知装置。
In the smoke detection device according to claim 1, the smoke density detection unit includes:
A slice processing unit that sets a predetermined threshold value for the light receiving pulse signal from the light receiving unit and outputs a light receiving pulse signal component exceeding the threshold value,
An integration unit that integrates the received light pulse signal sliced by the slice processing unit for each unit time;
A holding unit that extracts and holds the integral value per unit time by the integrating unit,
A smoke density conversion unit that converts the integrated value held in the holding unit into smoke density,
A smoke sensing device comprising:
JP2004151194A 2004-05-21 2004-05-21 Smoke detector Expired - Lifetime JP3927197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151194A JP3927197B2 (en) 2004-05-21 2004-05-21 Smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151194A JP3927197B2 (en) 2004-05-21 2004-05-21 Smoke detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17396897A Division JP3588535B2 (en) 1997-06-30 1997-06-30 Smoke detector

Publications (2)

Publication Number Publication Date
JP2004303266A true JP2004303266A (en) 2004-10-28
JP3927197B2 JP3927197B2 (en) 2007-06-06

Family

ID=33411270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151194A Expired - Lifetime JP3927197B2 (en) 2004-05-21 2004-05-21 Smoke detector

Country Status (1)

Country Link
JP (1) JP3927197B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041699A (en) * 2009-08-21 2011-03-03 Konica Minolta Sensing Inc Biological information measuring apparatus
US9431439B2 (en) 2012-10-16 2016-08-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Light detector
CN110176123A (en) * 2019-05-30 2019-08-27 北京迪恩康硕科技发展有限公司 A kind of air suction type smoke fire detector
JP2022128462A (en) * 2021-02-03 2022-09-01 ホーチキ株式会社 Smoke detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041699A (en) * 2009-08-21 2011-03-03 Konica Minolta Sensing Inc Biological information measuring apparatus
US9431439B2 (en) 2012-10-16 2016-08-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Light detector
CN110176123A (en) * 2019-05-30 2019-08-27 北京迪恩康硕科技发展有限公司 A kind of air suction type smoke fire detector
JP2022128462A (en) * 2021-02-03 2022-09-01 ホーチキ株式会社 Smoke detection device
JP7429259B2 (en) 2021-02-03 2024-02-07 ホーチキ株式会社 smoke detection device

Also Published As

Publication number Publication date
JP3927197B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3588535B2 (en) Smoke detector
KR101913973B1 (en) Particle detection sensor
EP1967843B1 (en) Smoke detector
JPS6311838A (en) Granular size detector
US4984889A (en) Particle size measuring system with coincidence detection
JPH02134540A (en) Fine particle measuring apparatus
JP6596987B2 (en) Particle measuring device
JP3532274B2 (en) Particle detector
JP2009030988A (en) Particle counting apparatus
JP2006189337A (en) Fine particle measuring instrument
JP6233711B2 (en) Particle measuring device
JP2015210189A (en) Particle measuring apparatus
JP2004303266A (en) Smoke sensing device
KR20170136885A (en) Small fine dust photo sensor
CN112334755A (en) Particle detection device
JP3193670B2 (en) Smoke detector
JP3783991B2 (en) Smoke detector
JP2006010353A (en) Fine particle measuring instrument
JP3780701B2 (en) Smoke detector
JP3312712B2 (en) Optimal threshold setting method for high-sensitivity smoke detector
JP2015210188A (en) Particle measuring apparatus
JP2002031594A (en) Light scattering type particle detector
GB2367358A (en) Smoke detecting apparatus
JPH06213795A (en) Floating particle measuring equipment
JPH0222534A (en) Particle measuring instrument

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

EXPY Cancellation because of completion of term