JP2004301522A - Temperature detector - Google Patents

Temperature detector Download PDF

Info

Publication number
JP2004301522A
JP2004301522A JP2003091479A JP2003091479A JP2004301522A JP 2004301522 A JP2004301522 A JP 2004301522A JP 2003091479 A JP2003091479 A JP 2003091479A JP 2003091479 A JP2003091479 A JP 2003091479A JP 2004301522 A JP2004301522 A JP 2004301522A
Authority
JP
Japan
Prior art keywords
temperature
bearing
rotating
rotating shaft
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003091479A
Other languages
Japanese (ja)
Inventor
Hisakimi Kato
寿仁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003091479A priority Critical patent/JP2004301522A/en
Publication of JP2004301522A publication Critical patent/JP2004301522A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • F16C17/243Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety related to temperature and heat, e.g. for preventing overheating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature detector capable of highly accurately and speedily detecting temperature rises in a lubricant at a rotating part in a rotation drive mechanism. <P>SOLUTION: The temperature detector is constituted in such a way that a rotating shaft 1 may be rotatably supported at a bearing 2 with the external circumferential surface 11 of the rotating shaft 1 sliding and in contact with the internal circumferential surface 21 of the bearing 2. A lubricating oil 8 is filled in a slide contact surface between the external circumferential surface 11 of the rotating shaft 1 and the internal circumferential surface 21 of the bearing 2. A temperature detector 6 is arranged in a recession part 22 formed in the internal circumferential surface 21 of the bearing 2. The temperature detector 6 is provided with a sensor chip 61; a soft material 32 in which a communication path for temperature detection and for making part of the lubricating oil 8 flowing in the rotating direction A of the rotating shaft 1 flow to the downstream side of the sensor chip 61 from the upstream side of the sensor chip 61 via the sensor chip 61 is formed; and an operation part 10 for inputting the temperature of the lubricating oil 8 detected by the sensor chip 61 and determining whether abnormalities have occurred in the rotating shaft 1 or in the bearing 2 or not on the basis of the temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本願発明は、回転軸を軸受する回転軸の軸受装置、又は回転体を軸支する回転体の支持装置において、回転軸又は回転体の摺接面の潤滑材温度を検出する温度検出装置に関する。
【0002】
【従来の技術】
一般的に、内燃機関等の駆動回転機構の回転部分には、回転部分の摩擦抵抗を低減させるために潤滑油等の潤滑材が充填されている。この回転部分に何らかの異常が発生した場合、回転部分の摩擦抵抗が増加して潤滑材の温度が上昇する場合が多い。そこで、潤滑材の温度を検出して駆動回転機構の回転部分の異常を検出する技術が公知であり、例えば、回転部分の潤滑油を循環させる循環路を外部に設け、循環路の潤滑油の温度を検出するものが挙げられる(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平5−202930号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前述した特許文献1に開示されている従来技術においては、回転部分の外部に設けた循環路で潤滑油の熱が奪われて温度が低下してしまい、回転部分の潤滑油の温度を正確に検出することが難しい。また、回転部分の潤滑油の温度上昇に対して、回転部分の外部に設けた循環路の潤滑油の温度が上昇するまでに時間的な遅れが生じるため、迅速に回転部分の温度上昇を検出することができない。そのため、回転部分に何らかの異常が発生してからそれによる潤滑油の温度上昇を検出するまでに時間遅れが生じてしまい、回転部分に何らかの異常が発生したことを迅速に検出することができないという問題があった。
【0005】
本願発明は、このような状況に鑑み成されたものであり、その課題は、回転駆動機構における回転部分の潤滑材の温度上昇を高い精度で迅速に検出することが可能な温度検出装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を達成するため、本願請求項1に記載の発明は、回転駆動力が伝達されて回転する回転軸の外周面に摺接した状態で前記回転軸を軸受する軸受体を備えた回転軸の軸受装置において、前記回転軸の外周面と前記軸受体との摺接面に充填されている潤滑材の温度を検出する温度検出装置であって、前記軸受体に内設された温度センサと、前記軸受体の前記摺接面と前記温度センサとの間を連通させる温度検出用連通路とを有している、ことを特徴とした温度検出装置である。
【0007】
回転駆動力が伝達されて回転する回転軸の外周面に摺接した状態で回転軸を軸受する軸受体を備えた回転軸の軸受装置は、回転軸の外周面と軸受体との摺接面に摩擦抵抗を低減させる潤滑油等の潤滑材が充填されている。そして、軸受体又は回転軸に何らかの異常が発生すると、軸受体と回転軸との摺接部分の摩擦抵抗が急増して軸受部分の温度が上昇する場合が多い。そして、軸受部分の温度が上昇すると、回転軸と軸受体との間に充填されている潤滑材の温度も上昇することになる。したがって、回転軸と軸受体との間に充填されている潤滑材の温度を検出することによって、軸受体又は回転軸に何らかの異常が発生したことを迅速に検出することができるが、回転軸と軸受体との間に充填されている潤滑材の温度を検出することは困難である。
【0008】
そこで、回転軸を軸受する軸受体に温度センサを内設するとともに、軸受体の摺接面と温度センサとの間を連通させる温度検出用連通路を軸受体に形成する。つまり、回転軸の外周面と軸受体との間の潤滑材を軸受体に内設した温度センサまで連通させて、温度検出用連通路を介して回転軸と軸受体との間に充填されている潤滑材の温度を軸受体に内設した圧力センサで検出する。この温度検出用連通路は、回転軸の外周面と軸受体との摺接面に極めて近い位置に形成することが可能であり、回転軸の外周面と軸受体との間の潤滑材の温度が変化すれば、軸受体に形成した温度検出用連通路内の潤滑材の温度もそれに応じてすぐに変化する。したがって、極めて高い精度で回転軸の外周面と軸受体との摺接面に充填されている潤滑材の温度を検出することが可能になる。また、回転軸の外周面が摺接する軸受体の摺接面に小型の温度センサを内設し、その摺接面から温度センサまでの温度検出用連通路を構成するだけなので、回転軸の外周面と軸受体との間の潤滑材の温度を検出する温度検出装置を低コストで極めてコンパクトに構成することができる。
【0009】
これにより本願請求項1に記載の発明に係る温度検出装置によれば、低コストで極めてコンパクトな構成で、回転軸の外周面と軸受体との間の潤滑材の温度を高い精度で検出することができるので、回転駆動機構における回転部分の潤滑材の温度上昇を高い精度で迅速に検出することが可能になるという作用効果が得られる。
【0010】
本願請求項2に記載の発明は、請求項1において、前記潤滑材は、粘性流体であり、前記温度検出用連通路は、前記回転軸の回転方向上流側から前記温度センサを経由して前記回転軸の回転方向下流側へ前記粘性流体が流れる流路を構成している、ことを特徴とした温度検出装置である。
【0011】
このように、温度検出用連通路が回転軸の回転方向上流側から温度センサを経由して回転軸の回転方向下流側へ潤滑材としての粘性流体が流れる流路を構成することによって、潤滑材としての粘性流体の温度変化が温度センサへより伝達しやすくなり、温度センサによる温度検出精度をさらに向上させることができる。
【0012】
本願請求項3に記載の発明は、請求項1又は2において、前記温度センサにて検出した温度が一定の温度を超えた時点で異常と判定する異常検出手段を有している、ことを特徴とした温度検出装置である。回転駆動機構における回転部分の潤滑材の温度上昇を高い精度で迅速に検出することができるので、回転軸又は軸受体に生じた異常を高い精度で迅速に検出することができる。
【0013】
本願請求項4に記載の発明は、請求項1〜3のいずれか1項において、前記軸受体の前記摺接面に形成された凹部に前記温度センサを収納した後、前記温度検出用連通路が形成された前記軸受体より硬度が低い又は同じ硬度の部材で前記凹部を密閉して構成されている、ことを特徴とした温度検出装置である。
【0014】
軸受体の摺接面に凹部を形成し、その凹部に温度センサを収納して金属部材等で凹部を密閉して温度センサを軸受体に内設すると、回転軸が摺接する軸受体の摺接面が摩擦抵抗によって徐々に摩耗していくことによって、凹部を密閉している部材が回転軸に摺接することになる。そこで、このように、温度検出用連通路が形成された軸受体より硬度が低い又は同じ硬度の部材で凹部を密閉して構成することによって、軸受体の摺接面の摩耗に応じて凹部を密閉している部材も摩耗していくので、凹部を密閉している部材が回転軸に摺接した際に回転軸を傷めてしまうことを防止することができる。
【0015】
本願請求項5に記載の発明は、回転駆動力が伝達されて回転する回転体の内周面に摺接した状態で前記回転体を軸支する支持軸を備えた前記回転体の支持装置において、前記回転体の内周面と前記支持軸との摺接面に充填されている潤滑材の温度を検出する温度検出装置であって、前記支持軸に内設された温度センサと、前記支持軸の前記摺接面と前記温度センサとの間を連通させる温度検出用連通路とを有している、ことを特徴とした温度検出装置である。
【0016】
回転駆動力が伝達されて回転する回転体の内周面に摺接した状態で回転体を軸受する支持軸を備えた回転体の軸受装置は、回転体の内周面と支持軸との摺接面に摩擦抵抗を低減させる潤滑油等の潤滑材が充填されている。そして、支持軸又は回転体に何らかの異常が発生すると、支持軸と回転体との摺接部分の摩擦抵抗が急増して軸受部分の温度が上昇する場合が多い。そして、軸受部分の温度が上昇すると、回転体と支持軸との間に充填されている潤滑材の温度も上昇することになる。したがって、回転体と支持軸との間に充填されている潤滑材の温度を検出することによって、支持軸又は回転体に何らかの異常が発生したことを迅速に検出することができるが、回転体と支持軸との間に充填されている潤滑材の温度を検出することは困難である。
【0017】
そこで、回転体を軸受する支持軸に温度センサを内設するとともに、支持軸の摺接面と温度センサとの間を連通させる温度検出用連通路を支持軸に形成する。つまり、回転体の内周面と支持軸との間の潤滑材を支持軸に内設した温度センサまで連通させて、温度検出用連通路を介して回転体と支持軸との間に充填されている潤滑材の温度を支持軸に内設した圧力センサで検出する。この温度検出用連通路は、回転体の内周面と支持軸との摺接面に極めて近い位置に形成することが可能であり、回転体の内周面と支持軸との間の潤滑材の温度が変化すれば、支持軸に形成した温度検出用連通路内の潤滑材の温度もそれに応じてすぐに変化する。したがって、極めて高い精度で回転体の内周面と支持軸との摺接面に充填されている潤滑材の温度を検出することが可能になる。また、回転体の内周面が摺接する支持軸の摺接面に小型の温度センサを内設し、その摺接面から温度センサまでの温度検出用連通路を構成するだけなので、回転体の内周面と支持軸との間の潤滑材の温度を検出する温度検出装置を低コストで極めてコンパクトに構成することができる。
【0018】
これにより本願請求項5に記載の発明に係る温度検出装置によれば、低コストで極めてコンパクトな構成で、回転体の内周面と支持軸との間の潤滑材の温度を高い精度で検出することができるので、回転駆動機構における回転部分の潤滑材の温度上昇を高い精度で迅速に検出することが可能になるという作用効果が得られる。
【0019】
本願請求項6に記載の発明は、請求項5において、前記潤滑材は、粘性流体であり、前記温度検出用連通路は、前記回転体の回転方向上流側から前記温度センサを経由して前記回転体の回転方向下流側へ前記粘性流体が流れる流路を構成している、ことを特徴とした温度検出装置である。
【0020】
このように、温度検出用連通路が回転体の回転方向上流側から温度センサを経由して回転体の回転方向下流側へ潤滑材としての粘性流体が流れる流路を構成することによって、潤滑材としての粘性流体の温度変化が温度センサへより伝達しやすくなり、温度センサによる温度検出精度をさらに向上させることができる。
【0021】
本願請求項7に記載の発明は、請求項5又は6において、前記温度センサにて検出した温度が一定の温度を超えた時点で異常と判定する異常検出手段を有している、ことを特徴とした温度検出装置である。回転駆動機構における回転部分の潤滑材の温度上昇を高い精度で迅速に検出することができるので、回転体又は支持軸に生じた異常を高い精度で迅速に検出することができる。
【0022】
本願請求項8に記載の発明は、請求項5〜7のいずれか1項において、前記支持軸の前記摺接面に形成された凹部に前記温度センサを収納した後、前記温度検出用連通路が形成された前記支持軸より硬度が低い又は同じ硬度の部材で前記凹部を密閉して構成されている、ことを特徴とした温度検出装置である。
【0023】
支持軸の摺接面に凹部を形成し、その凹部に温度センサを収納して金属部材等で凹部を密閉して温度センサを支持軸に内設すると、回転体が摺接する支持軸の摺接面が摩擦抵抗によって徐々に摩耗していくことによって、凹部を密閉している部材が回転体に摺接することになる。そこで、このように、温度検出用連通路が形成された支持軸より硬度が低い又は同じ硬度の部材で凹部を密閉して構成することによって、支持軸の摺接面の摩耗に応じて凹部を密閉している部材も摩耗していくので、凹部を密閉している部材が回転体に摺接した際に回転体を傷めてしまうことを防止することができる。
【0024】
【発明の実施の形態】
以下、本願発明の実施の形態を図面に基づいて説明する。
図1は、本願発明の第1実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。図2は、その回転軸の軸受装置の振動検出装置近傍を拡大して示した断面図である。
【0025】
回転軸の軸受装置100は、回転軸1の外周面11が軸受体2の内周面21に摺接した状態で回転軸1が軸受体2に回転可能に軸受されている。回転軸1の外周面11と軸受体2の内周面21との間の摺接面には、潤滑油8が充填されている。軸受体2の内周面21には、凹部22が形成されており、凹部22には、本願発明に係る振動検出装置3が配設されている。当該実施例における振動検出装置3は、凹部22に配設されたセンサチップ31と、回転軸1の回転方向Aに流れる潤滑油8の一部をセンサチップ31の上流側からセンサチップ31を経由してセンサチップ31の下流側へ流す「流量検出用流路」が形成された軟質材料32と、センサチップ31が検出した潤滑油8の流量を入力して、その流量から回転軸1の振動を演算する演算部10とを備えている。
【0026】
センサチップ31は、流量を検出する潤滑油8が流れる流路311と、流路311に流れる潤滑油8の流量を検出する流量センサ312とを有しており、外部電源9から電源を供給されて動作する。センサチップ31は、流量の計測にともなう圧力損失がほとんど無いものが好ましく、当該実施例においてセンサチップ31は、公知のMEMS(Micro・Electro・Mechanical・System)技術で半導体化した数mm角程度の大きさの熱式MEMSフローセンサである。熱式MEMSフローセンサは、可動部が無く信頼性が高いうえに、非常に小型であるため熱容量が小さく高感度で消費電力が少ないというメリットがあり、半導体プロセスで製造するため量産性にも優れている。
【0027】
軟質材料32には、センサチップ31の上流側とセンサチップ31の流路311とを連通させて、回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aへ流れる潤滑油8をセンサチップ31の流路311へ流入させる流入流路32a、及びセンサチップ31の流路311とセンサチップ31の下流側とを連通させて、流路311に流入した潤滑油8を回転軸1の外周面11と軸受体2の内周面21との間のセンサチップ31の下流側へ流出させる流出流路32bが形成されている。振動検出装置3は、回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aに流れる潤滑油8の一部が、図示の如く流入流路32aから流量センサ312を経由して流出流路32bへ流れるようになっている。軟質材料32は、軸受体2より硬度の低い又は同じ硬度の材料であり、回転軸1の外周面11と摺接することによって摩耗していくが、軸荷重の大部分を受け持つ軸受体2の内周面21が摩耗する速度に応じて軟質材料32が摩耗していくので、軟質材料32が軸受体2の内周面21から突出して回転軸1に当接して回転軸1を傷めてしまうことがない。
【0028】
回転軸1の外周面11と軸受体2の内周面21との間のわずかな隙間の間隔は、回転軸1が振動することによって回転軸1が移動すると、移動方向側で狭くなり、移動方向と反対方向側で広くなる。それによって、回転軸1の回転方向Aに流れる潤滑油8の流量は、回転軸1の外周面11と軸受体2の内周面21との間隔が狭くなった場合と広くなった場合とで変化が生じることになる。したがって、回転軸1の振動によって生じる潤滑油8の流量の変化を流量センサ312で検出し、その潤滑油8の流量の変化から回転軸1の振動を演算部10で演算して求めることができる。
【0029】
このように、凹部22に配設されたセンサチップ31と、回転軸1の回転方向Aに流れる潤滑油8の一部をセンサチップ31の上流側からセンサチップ31を経由してセンサチップ31の下流側へ流す「流量検出用流路」が形成された軟質材料32と、センサチップ31が検出した潤滑油8の流量を入力して、その流量から回転軸1の振動を演算する演算部10とで構成された振動検出装置3は、低コストで極めてコンパクトな構成で、回転軸1の振動によって生じる潤滑油8の流量変化を高い精度で検出することができるので、軸受体2に対する回転軸1の振動を検出する振動検出装置3を安価で小型に構成することができ、かつ高い精度で軸受体2に対する回転軸1の振動を検出することが可能になる。
【0030】
図3は、本願発明の第2実施例を示したものであり、本願発明に係る回転軸の軸受装置100の断面図である。
【0031】
当該実施例は、前述した第1実施例に加えて、回転軸1の外周面11に沿って振動検出装置3を軸受体2の内周面21に等間隔に6個配設したものである。このように、複数の振動検出装置3を軸受体2の内周面21に等間隔に配設し、各振動検出装置3にて検出した潤滑油8の流量の変化から回転軸1の振動を演算することによって、より高い精度で回転軸1の振動を検出することが可能になり、より好ましい態様であると言える。
【0032】
図4は、本願発明の第3実施例を示したものであり、回転軸の軸受装置100の振動検出装置3近傍を拡大して示した断面図である。
【0033】
当該実施例は、前述した第1実施例又は第2実施例において、振動検出装置3を潤滑油8の圧力の変化を検出して回転軸1の振動を演算するものとしたものである。当該実施例において、振動検出装置3は、前述した公知のMEMS技術で半導体化したセンサチップ33を備えており、センサチップ33は、潤滑油8の圧力を検出する圧力センサ332を有している。また、軟質材料32には、回転軸1の外周面11と軸受体2の内周面21との間に充填されている潤滑油8を圧力センサ332が配置されている凹部331へ連通させる「圧力検出用連通路」としての連通路32cが形成されている。演算部10は、圧力センサ332が検出した潤滑油8の圧力の変化から回転軸1の振動を演算して求める。尚、その他の構成は、前述した第1実施例又は第2実施例における振動検出装置3と同様なので説明は省略する。
【0034】
回転軸1の外周面11と軸受体2の内周面21との間のわずかな隙間の間隔は、回転軸1が振動することによって回転軸1が移動すると、移動方向側で狭くなり、移動方向と反対方向側で広くなる。それによって、回転軸1の外周面11と軸受体2の内周面21との間の潤滑油8に作用する圧力は、回転軸1の外周面11と軸受体2の内周面21との間隔が狭くなった場合と広くなった場合とで変化が生じることになる。したがって、回転軸1の振動によって生じる潤滑油8の圧力の変化を圧力センサ332で検出し、その潤滑油8の圧力の変化から回転軸1の振動を演算部10で演算して求めることができる。
【0035】
図5は、本願発明の第4実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。図6は、その回転体の支持装置の振動検出装置近傍を拡大して示した断面図である。
【0036】
回転体の支持装置200は、回転体4の内周面41が支持軸5の外周面51に摺接した状態で回転体4が支持軸5に回転可能に軸支されている。回転体4の内周面41と支持軸5の外周面51との間の摺接面には、潤滑油8が充填されている。支持軸5の外周面51には、凹部52が形成されており、凹部52には、本願発明に係る振動検出装置3が配設されている。当該実施例における振動検出装置3は、前述した第1実施例又は第2実施例に示した振動検出装置3と同じ構成を成しており、凹部52に配設されたセンサチップ31と、回転体4の回転方向Aに流れる潤滑油8の一部をセンサチップ31の上流側からセンサチップ31を経由してセンサチップ31の下流側へ流す「流量検出用流路」が形成された軟質材料32と、センサチップ31が検出した潤滑油8の流量を入力して、その流量から回転体4の振動を演算する演算部10とを備えている。センサチップ31は、同様にMEMS技術で半導体化した熱式MEMSフローセンサである。
【0037】
軟質材料32には、センサチップ31の上流側とセンサチップ31の流路311とを連通させて、回転体4の内周面41と支持軸5の外周面51との間を回転方向Aへ流れる潤滑油8をセンサチップ31の流路311へ流入させる流入流路32a、及びセンサチップ31の流路311とセンサチップ31の下流側とを連通させて、流路311に流入した潤滑油8を回転体4の内周面41と支持軸5の外周面51との間のセンサチップ31の下流側へ流出させる流出流路32bが形成されている。振動検出装置3は、回転体4の内周面41と支持軸5の外周面51との間を回転方向Aに流れる潤滑油8の一部が、図示の如く流入流路32aから流量センサ312を経由して流出流路32bへ流れるようになっている。軟質材料32は、支持軸5より硬度の低い又は同じ硬度の材料であり、回転体4の内周面41と摺接することによって摩耗していくが、荷重の大部分を受け持つ支持軸5の外周面51が摩耗する速度に応じて軟質材料32が摩耗していくので、軟質材料32が支持軸5の外周面51から突出して回転体4の内周面41に当接して回転体4を傷めてしまうことがない。
【0038】
回転体4の内周面41と支持軸5の外周面51との間のわずかな隙間の間隔は、回転体4が振動することによって回転体4が移動すると、移動方向側で狭くなり、移動方向と反対方向側で広くなる。それによって、回転体4の回転方向Aに流れる潤滑油8の流量は、回転体4の内周面41と支持軸5の外周面51との間隔が狭くなった場合と広くなった場合とで変化が生じることになる。したがって、回転体4の振動によって生じる潤滑油8の流量の変化を流量センサ312で検出し、その潤滑油8の流量の変化から回転体4の振動を演算部10で演算して求めることができる。
【0039】
このように、凹部52に配設されたセンサチップ31と、回転体4の回転方向Aに流れる潤滑油8の一部をセンサチップ31の上流側からセンサチップ31を経由してセンサチップ31の下流側へ流す「流量検出用流路」が形成された軟質材料32と、センサチップ31が検出した潤滑油8の流量を入力して、その流量から回転体4の振動を演算する演算部10とで構成された振動検出装置3は、低コストで極めてコンパクトな構成で、回転体4の振動によって生じる潤滑油8の流量変化を高い精度で検出することができるので、支持軸5に対する回転体4の振動を検出する振動検出装置3を安価で小型に構成することができ、かつ高い精度で支持軸5に対する回転体4の振動を検出することが可能になる。
【0040】
図7は、本願発明の第5実施例を示したものであり、本願発明に係る回転体の支持装置200の断面図である。
【0041】
当該実施例は、前述した第4実施例に加えて、回転体4の内周面41に沿って振動検出装置3を支持軸5の外周面51に等間隔に6個配設したものである。このように、複数の振動検出装置3を支持軸5の外周面51に等間隔に配設し、各振動検出装置3にて検出した潤滑油8の流量の変化から回転体4の振動を演算することによって、より高い精度で回転体4の振動を検出することが可能になり、より好ましい態様であると言える。
【0042】
図8は、本願発明の第6実施例を示したものであり、回転体の支持装置200の振動検出装置3近傍を拡大して示した断面図である。
【0043】
当該実施例は、前述した第4実施例又は第5実施例において、振動検出装置3を潤滑油8の圧力の変化を検出して回転体4の振動を演算するものとしたものである。当該実施例において、振動検出装置3は、前述した第3実施例に示した振動検出装置3と同じ構成を成しており、説明は省略する。回転体4の内周面41と支持軸5の外周面51との間のわずかな隙間の間隔は、回転体4が振動することによって回転体4が移動すると、移動方向側で狭くなり、移動方向と反対方向側で広くなる。それによって、回転体4の内周面41と支持軸5の外周面51との間の潤滑油8に作用する圧力は、回転体4の内周面41と支持軸5の外周面51との間隔が狭くなった場合と広くなった場合とで変化が生じることになる。したがって、回転体4の振動によって生じる潤滑油8の圧力の変化を圧力センサ332で検出し、その潤滑油8の圧力の変化から回転体4の振動を演算部10で演算して求めることができる。
【0044】
図9は、本願発明の第7実施例を示したものであり、本願発明に係る回転軸の軸受装置100の断面図である。図10は、その回転軸の軸受装置100の温度検出装置近傍を拡大して示した断面図である。
【0045】
回転軸の軸受装置100は、回転軸1の外周面11が軸受体2の内周面21に摺接した状態で回転軸1が軸受体2に回転可能に軸受されている。回転軸1の外周面11と軸受体2の内周面21との間の摺接面には、潤滑油8が充填されている。軸受体2の内周面21には、凹部22が形成されており、凹部22には、本願発明に係る温度検出装置6が配設されている。当該実施例における温度検出装置6は、凹部22に配設された前述した公知のMEMS技術で半導体化したセンサチップ61と、回転軸1の回転方向Aに流れる潤滑油8の一部をセンサチップ61の上流側からセンサチップ61を経由してセンサチップ61の下流側へ流す「温度検出用連通路」が形成された軟質材料32と、センサチップ61が検出した潤滑油8の温度を入力して、その温度から回転軸1又は軸受体2に異常が発生しているか否かを判定する演算部10とを備えている。センサチップ61は、温度を検出する潤滑油8が流れる流路611と、流路611に流れる潤滑油8の温度を検出する温度センサ612とを有しており、外部電源9から電源を供給されて動作する。
【0046】
軟質材料32には、前述した第1実施例と同様に、センサチップ61の上流側とセンサチップ61の流路611とを連通させて、回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aへ流れる潤滑油8をセンサチップ61の流路611へ流入させる流入流路32a、及びセンサチップ61の流路611とセンサチップ61の下流側とを連通させて、流路611に流入した潤滑油8を回転軸1の外周面11と軸受体2の内周面21との間のセンサチップ61の下流側へ流出させる流出流路32bが形成されている。温度検出装置6は、回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aに流れる潤滑油8の一部が、図示の如く流入流路32aから温度センサ612を経由して流出流路32bへ流れるようになっている。潤滑油8の一部が回転軸1の外周面11と軸受体2の内周面21との間から温度センサ612流れる構成であることによって、回転軸1の外周面11と軸受体2の内周面21との間の潤滑材8の温度変化が温度センサ612へより伝達しやすくなり、温度センサ612による温度検出精度をさらに向上させることができる。
【0047】
軟質材料32は、前述した第1実施例と同様に、軸受体2より硬度の低い又は同じ硬度の材料であり、回転軸1の外周面11と摺接することによって摩耗していくが、軸荷重の大部分を受け持つ軸受体2の内周面21が摩耗する速度に応じて軟質材料32が摩耗していくので、軟質材料32が軸受体2の内周面21から突出して回転軸1に当接して回転軸1を傷めてしまうことがない。回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aへ流れる潤滑油8の温度を「温度検出用連通路」としての流入流路32a及び流出流路32bを介して温度センサ612で検出し、演算部10は、潤滑油8の温度が一定の温度を超えた場合に回転軸1又は軸受体2に何らかの異常が発生したと判定する。
【0048】
このように、凹部22に配設されたセンサチップ61と、回転軸1の回転方向Aに流れる潤滑油8の一部をセンサチップ61の上流側からセンサチップ61を経由してセンサチップ61の下流側へ流す「温度検出用連通路」が形成された軟質材料32と、センサチップ61が検出した潤滑油8の温度を入力して、その温度が一定の温度を超えた場合に異常が発生したと判定する演算部10とで構成された温度検出装置6は、低コストで極めてコンパクトな構成で、回転軸1又は軸受体2に何らかの異常が発生した場合に生じる潤滑油8の温度上昇を高い精度で検出することができる。したがって、温度検出装置6を安価で小型に構成することができ、かつ高い精度で回転軸1又は軸受体2に異常が発生したことを検出することが可能になる。尚、さらには、温度検出装置6を回転軸1の軸方向に複数並べて軸受体2の内周面21に配設すれば、回転軸1の外周面の略全域にわたって温度上昇を検出することができ、より好ましいと言える。
【0049】
図11は、本願発明の第8実施例を示したものであり、本願発明に係る回転体の支持装置200の断面図である。
【0050】
回転体の支持装置200は、回転体4の内周面41が支持軸5の外周面51に摺接した状態で回転体4が支持軸5に回転可能に軸支されている。回転体4の内周面41と支持軸5の外周面51との間の摺接面には、潤滑油8が充填されている。支持軸5の外周面51には、凹部52が形成されており、凹部52には、本願発明に係る温度検出装置6が配設されている。当該実施例における温度検出装置6は、前述した第7実施例に示した回転軸の軸受装置100の軸受体2に配設されている温度検出装置3と同じものであり、説明は省略する。
【0051】
このように、回転体の支持装置200においては、支持軸5の外周面に温度検出装置6を配設することによって、前述した第7実施例に示した回転軸の軸受装置100と同様に、低コストで極めてコンパクトな構成で、回転体4又は支持軸5に何らかの異常が発生した場合に生じる潤滑油8の温度上昇を高い精度で検出することができる。したがって、温度検出装置6を安価で小型に構成することができ、かつ高い精度で回転体の支持装置200に異常が発生したことを検出することが可能になる。尚、さらには、温度検出装置6を回転体4の回転軸方向に複数並べて支持軸5の外周面51に配設すれば、回転軸1の外周面の略全域にわたって温度上昇を検出することができ、より好ましいと言える。
【0052】
図12は、本願発明の第9実施例を示したものであり、回転体の支持装置200の温度検出装置6近傍を拡大して示した断面図である。
【0053】
当該実施例における温度検出装置6は、前述した第7実施例に示した回転軸の軸受装置100、又は第8実施例に示した回転体の支持装置200おける温度検出装置6とは、軟質材料62に形成された「温度検出用連通路」が異なっている以外は同じ構成であり、「温度検出用連通路」は、図示の如く潤滑油8が温度センサ612に流れる流路を構成していない態様となっている。当該実施例において軟質材料62には、回転体4の内周面41と支持軸5の外周面51との間から温度センサ612へ潤滑油8を連通させるだけの連通路62cが形成されている。回転体4の内周面41と支持軸5の外周面51との間の潤滑油8の温度が上昇すると、連通路62cの潤滑油8の温度も上昇し、センサチップ61の凹部611に充填された潤滑油8の温度も上昇して温度センサ612で潤滑油8の温度上昇を検出することができる。このように、回転体4の内周面41と支持軸5の外周面51との間から温度センサ612へ潤滑油8を連通させるだけでも潤滑油8の温度検出は可能であり、前述した第7実施例又は第8実施例と略同じ効果を得ることができる。
【0054】
図13は、本願発明の第10実施例を示したものであり、本願発明に係る回転軸の軸受装置100の断面図である。図14は、その回転軸の軸受装置100の温度検出装置近傍を拡大して示した断面図である。
【0055】
当該実施例は、回転軸1の外周面11に沿って、振動検出装置3を4個と温度検出装置7を2個とを軸受体2の内周面21に等間隔に配設した回転軸の軸受装置100である。振動検出装置3は、前述した第1実施例〜第3実施例に示した振動検出装置3と同じなので説明は省略する。温度検出装置7は、前述した公知のMEMS技術で半導体化したセンサチップ71を備えており、センサチップ71は、潤滑油8の温度を検出する温度センサ612と潤滑油8の圧力を検出する圧力センサ332とを有している。また、軟質材料72には、回転軸1の外周面11と軸受体2の内周面21との間に充填されている潤滑油8を温度センサ612及び圧力センサ332が配置されている凹部711へ連通させる「圧力検出用連通路」としての連通路72cが形成されている。演算部10は、温度センサ612が検出した潤滑油8の温度が一定の温度を超えた場合に回転軸1又は軸受体2に何らかの異常が発生したと判定するとともに、圧力センサ332が検出した潤滑油8の圧力の変化から回転軸1の振動を演算して求める。このように、振動検出装置3と温度検出装置7とを軸受体2の内周面21に配設することによって、回転軸の軸受装置100において、軸受体2に対する回転軸1の振動の検出と、潤滑油8の温度検出とを両方行うことができる。
【0056】
図15は、本願発明の第11実施例を示したものであり、本願発明に係る回転体の支持装置200の断面図である。
【0057】
当該実施例は、回転体4の内周面41に沿って、振動検出装置3を4個と温度検出装置7を2個とを支持軸5の外周面51に等間隔に配設した回転体の支持装置200である。振動検出装置3は、前述した第1実施例〜第3実施例に示した振動検出装置3と同じであり、温度検出装置7は、前述した第10実施例に示した温度検出装置7と同じでなので説明は省略する。
【0058】
このように、振動検出装置3と温度検出装置7とを支持軸5の外周面51に配設することによって、回転体の支持装置200において、支持軸5に対する回転体4の振動の検出と、潤滑油8の温度検出とを両方行うことができる。
【0059】
図16は、本願発明の第12実施例を示したものであり、回転体の支持装置200の温度検出装置6近傍を拡大して示した断面図である。
【0060】
当該実施例における温度検出装置6は、凹部52に配設された前述した公知のMEMS技術で半導体化したセンサチップ61を備えており、センサチップ61は、潤滑油8の温度を検出する温度センサ612、潤滑油8の圧力を検出する圧力センサ332、及び潤滑油8の流量を検出する流量センサ312を有している。また、軟質材料62には、センサチップ61の上流側とセンサチップ61の流路611とを連通させて、回転体4の内周面41と支持軸5の外周面51との間を回転方向Aへ流れる潤滑油8をセンサチップ61の流路611へ流入させる流入流路62a、及びセンサチップ61の流路611とセンサチップ61の下流側とを連通させて、流路611に流入した潤滑油8を回転体4の内周面41と支持軸5の外周面51との間のセンサチップ61の下流側へ流出させる流出流路62bが形成されている。温度検出装置6は、回転体4の内周面41と支持軸5の外周面51との間を回転方向Aに流れる潤滑油8の一部が、図示の如く流入流路62aから温度センサ612、圧力センサ332、及び流量センサ312を経由して流出流路62bへ流れるようになっている。演算部10は、温度センサ612が検出した潤滑油8の温度が一定の温度を超えた場合に回転軸1又は軸受体2に何らかの異常が発生したと判定するとともに、圧力センサ332が検出した潤滑油8の圧力の変化から回転軸1の振動を演算して求める。
【0061】
このように、センサチップ61に温度センサ612、圧力センサ332、及び流量センサ312を設けることによって、1つのセンサチップ61で潤滑油8の温度、圧力、及び流量を全て検出することが可能になり、支持軸5に対する回転体4の振動の検出と、潤滑油8の温度検出とを両方行うことをより低コストに行うことができる。
【0062】
尚、本願発明は上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本願発明の範囲内に含まれるものであることは言うまでもない。
【0063】
【発明の効果】
本願発明によれば、回転駆動機構における回転部分の潤滑材の温度上昇を高い精度で迅速に検出することが可能な温度検出装置を提供することができる。
【図面の簡単な説明】
【図1】本願発明の第1実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。
【図2】本願発明の第1実施例を示したものであり、本願発明に係る回転軸の軸受装置の振動検出装置近傍を拡大して示した断面図である。
【図3】本願発明の第2実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。
【図4】本願発明の第3実施例を示したものであり、回転軸の軸受装置の振動検出装置近傍を拡大して示した断面図である。
【図5】本願発明の第4実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。
【図6】本願発明の第4実施例を示したものであり、本願発明に係る回転体の支持装置の振動検出装置近傍を拡大して示した断面図である。
【図7】本願発明の第5実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。
【図8】本願発明の第6実施例を示したものであり、回転体の支持装置の振動検出装置近傍を拡大して示した断面図である。
【図9】本願発明の第7実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。
【図10】本願発明の第7実施例を示したものであり、本願発明に係る回転軸の軸受装置の温度検出装置近傍を拡大して示した断面図である。
【図11】本願発明の第8実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。
【図12】本願発明の第9実施例を示したものであり、回転体の支持装置の温度検出装置近傍を拡大して示した断面図である。
【図13】本願発明の第10実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。
【図14】本願発明の第10実施例を示したものであり、本願発明に係る回転軸の軸受装置の温度検出装置近傍を拡大して示した断面図である。
【図15】本願発明の第11実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。
【図16】本願発明の第12実施例を示したものであり、回転体の支持装置の温度検出装置近傍を拡大して示した断面図である。
【符号の説明】
1 回転軸
2 軸受体
3 振動検出装置
4 回転体
5 支持軸
6、7 温度検出装置
8 潤滑油
10 演算部
31、33、61、71 センサチップ
32、62、72 軟質材料
32a、32b、32c 流路
100 回転体の軸受装置
200 回転軸の支持装置
312 流量センサ
332 圧力センサ
612 温度センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature detecting device for detecting a lubricant temperature on a sliding surface of a rotating shaft or a rotating body in a rotating shaft bearing device that supports the rotating shaft or a rotating body supporting device that supports the rotating body.
[0002]
[Prior art]
Generally, a rotating part of a drive rotating mechanism such as an internal combustion engine is filled with a lubricant such as lubricating oil in order to reduce frictional resistance of the rotating part. When any abnormality occurs in the rotating part, the frictional resistance of the rotating part increases and the temperature of the lubricant often rises. Therefore, a technology for detecting the temperature of the lubricant and detecting an abnormality in the rotating portion of the drive rotating mechanism is known.For example, a circulation path for circulating the lubricating oil in the rotating section is provided outside, and the lubricating oil in the circulation path is provided. There is one that detects temperature (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-5-202930
[Problems to be solved by the invention]
However, in the related art disclosed in Patent Document 1 described above, heat of the lubricating oil is taken away by a circulation path provided outside the rotating portion, and the temperature of the rotating oil decreases. It is difficult to detect accurately. In addition, the temperature rise of the rotating part has a time delay until the temperature of the lubricating oil in the circulation path provided outside of the rotating part rises. Can not do it. As a result, there is a time delay between the occurrence of an abnormality in the rotating part and the detection of a rise in lubricating oil temperature due to the occurrence of the abnormality, and it is not possible to quickly detect that an abnormality has occurred in the rotating part. was there.
[0005]
The present invention has been made in view of such a situation, and an object thereof is to provide a temperature detection device capable of quickly detecting a temperature rise of a lubricant in a rotating portion of a rotary drive mechanism with high accuracy. Is to do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 of the present application provides a rotating shaft including a bearing body that bears the rotating shaft in a state in which the rotating driving force is transmitted and slidably contacts an outer peripheral surface of the rotating shaft. A temperature detecting device for detecting a temperature of a lubricant filled in a sliding contact surface between the outer peripheral surface of the rotating shaft and the bearing body, wherein a temperature sensor provided in the bearing body; And a temperature detecting communication path for communicating between the sliding contact surface of the bearing body and the temperature sensor.
[0007]
A bearing device for a rotating shaft provided with a bearing body that bears the rotating shaft in a state of sliding contact with the outer circumferential surface of the rotating shaft that is rotated by the rotation driving force is transmitted, the sliding contact surface between the outer circumferential surface of the rotating shaft and the bearing body. Is filled with a lubricant such as a lubricating oil for reducing frictional resistance. When any abnormality occurs in the bearing body or the rotating shaft, the frictional resistance of the sliding contact portion between the bearing body and the rotating shaft rapidly increases, and the temperature of the bearing portion often rises. Then, when the temperature of the bearing portion rises, the temperature of the lubricant filled between the rotating shaft and the bearing body also rises. Therefore, by detecting the temperature of the lubricant filled between the rotating shaft and the bearing, it is possible to quickly detect that any abnormality has occurred in the bearing or the rotating shaft. It is difficult to detect the temperature of the lubricant filled between the bearing and the bearing.
[0008]
In view of this, a temperature sensor is provided inside the bearing body that bears the rotating shaft, and a temperature detection communication path that connects the sliding surface of the bearing body and the temperature sensor is formed in the bearing body. That is, the lubricant between the outer peripheral surface of the rotating shaft and the bearing body is communicated to the temperature sensor provided in the bearing body, and the lubricant is filled between the rotating shaft and the bearing body via the temperature detection communication passage. The temperature of the lubricating material is detected by a pressure sensor provided in the bearing body. This temperature detecting communication passage can be formed at a position very close to the sliding contact surface between the outer peripheral surface of the rotating shaft and the bearing, and the temperature of the lubricant between the outer peripheral surface of the rotating shaft and the bearing is very high. Is changed, the temperature of the lubricant in the communication passage for temperature detection formed in the bearing body is also immediately changed accordingly. Therefore, it is possible to detect the temperature of the lubricant filled in the sliding surface between the outer peripheral surface of the rotating shaft and the bearing body with extremely high accuracy. In addition, a small temperature sensor is provided inside the sliding contact surface of the bearing body on which the outer peripheral surface of the rotating shaft slides, and only a temperature detection communication path from the sliding contact surface to the temperature sensor is formed. The temperature detecting device for detecting the temperature of the lubricant between the surface and the bearing body can be configured at low cost and extremely compactly.
[0009]
Thus, according to the temperature detecting device according to the first aspect of the present invention, the temperature of the lubricant between the outer peripheral surface of the rotating shaft and the bearing body is detected with high accuracy with a low cost and extremely compact configuration. Therefore, an operation and effect can be obtained in which it is possible to quickly detect the temperature rise of the lubricant in the rotating portion of the rotary drive mechanism with high accuracy.
[0010]
According to a second aspect of the present invention, in the first aspect, the lubricating material is a viscous fluid, and the temperature detection communication passage is provided via the temperature sensor from a rotation direction upstream side of the rotation shaft. A temperature detection device comprising a flow path through which the viscous fluid flows downstream in a rotation direction of a rotation shaft.
[0011]
As described above, the temperature detection communication path forms a flow path through which the viscous fluid as a lubricant flows from the upstream side in the rotation direction of the rotation shaft to the downstream side in the rotation direction of the rotation shaft via the temperature sensor, thereby providing the lubricant. The temperature change of the viscous fluid as described above can be more easily transmitted to the temperature sensor, and the temperature detection accuracy by the temperature sensor can be further improved.
[0012]
The invention according to claim 3 of the present application is characterized in that, in claim 1 or 2, there is provided abnormality detection means for determining an abnormality when the temperature detected by the temperature sensor exceeds a certain temperature. This is a temperature detecting device. Since the temperature rise of the lubricant in the rotating portion of the rotary drive mechanism can be quickly detected with high accuracy, it is possible to quickly and accurately detect the abnormality that has occurred in the rotating shaft or the bearing body.
[0013]
According to a fourth aspect of the present invention, in the first aspect of the present invention, after the temperature sensor is housed in a concave portion formed in the sliding contact surface of the bearing body, the communication path for temperature detection is provided. The temperature detecting device is characterized in that the recess is hermetically sealed by a member having a lower hardness or the same hardness as that of the bearing body formed with.
[0014]
When a concave portion is formed in the sliding surface of the bearing body, the temperature sensor is housed in the concave portion, the concave portion is sealed with a metal member or the like, and the temperature sensor is installed in the bearing body. As the surface gradually wears due to frictional resistance, the member sealing the concave portion comes into sliding contact with the rotating shaft. Therefore, as described above, the concave portion is hermetically sealed with a member having a lower hardness or the same hardness as the bearing body in which the temperature detection communication passage is formed, so that the concave portion is formed in accordance with wear of the sliding contact surface of the bearing body. Since the sealing member also wears out, it is possible to prevent the rotating shaft from being damaged when the member sealing the concave portion slides on the rotating shaft.
[0015]
The invention according to claim 5 of the present application is directed to a rotating body supporting device including a supporting shaft that supports the rotating body while slidingly contacting an inner peripheral surface of the rotating body that is rotated by transmitting a rotational driving force. A temperature sensor for detecting a temperature of a lubricant filled in a sliding contact surface between an inner peripheral surface of the rotating body and the support shaft, wherein a temperature sensor provided in the support shaft; A temperature detection device, comprising: a temperature detection communication path that allows communication between the sliding contact surface of a shaft and the temperature sensor.
[0016]
A bearing device for a rotating body having a support shaft for bearing the rotating body in a state of sliding contact with the inner circumferential surface of the rotating body that is rotated by the rotation driving force is transmitted, the sliding device between the inner circumferential surface of the rotating body and the supporting shaft. The contact surface is filled with a lubricant such as a lubricating oil for reducing frictional resistance. Then, when any abnormality occurs in the support shaft or the rotating body, the frictional resistance of the sliding contact portion between the support shaft and the rotating body rapidly increases, and the temperature of the bearing portion often rises. When the temperature of the bearing increases, the temperature of the lubricant filled between the rotating body and the support shaft also increases. Therefore, by detecting the temperature of the lubricant filled between the rotating body and the support shaft, it is possible to quickly detect that any abnormality has occurred in the support shaft or the rotating body. It is difficult to detect the temperature of the lubricant filled between the support shaft.
[0017]
In view of this, a temperature sensor is provided inside the support shaft for bearing the rotating body, and a communication passage for temperature detection for communicating between the sliding surface of the support shaft and the temperature sensor is formed in the support shaft. That is, the lubricant between the inner peripheral surface of the rotating body and the support shaft is communicated to the temperature sensor provided inside the support shaft, and the lubricant is filled between the rotating body and the support shaft via the temperature detection communication path. The temperature of the lubricating material is detected by a pressure sensor provided inside the support shaft. The communication path for temperature detection can be formed at a position very close to the sliding contact surface between the inner peripheral surface of the rotating body and the support shaft, and the lubricant between the inner peripheral surface of the rotating body and the support shaft can be formed. Is changed, the temperature of the lubricant in the temperature detecting communication passage formed on the support shaft is also changed immediately. Therefore, it is possible to detect the temperature of the lubricant filled in the sliding contact surface between the inner peripheral surface of the rotating body and the support shaft with extremely high accuracy. In addition, a small temperature sensor is installed inside the sliding surface of the support shaft where the inner peripheral surface of the rotating body slides, and only a temperature detection communication path from the sliding surface to the temperature sensor is formed. The temperature detecting device for detecting the temperature of the lubricant between the inner peripheral surface and the support shaft can be configured at low cost and extremely compactly.
[0018]
Thus, according to the temperature detecting device according to the fifth aspect of the present invention, the temperature of the lubricant between the inner peripheral surface of the rotating body and the support shaft is detected with high accuracy with a low cost and extremely compact configuration. Therefore, it is possible to quickly and accurately detect a rise in the temperature of the lubricant in the rotating portion of the rotary drive mechanism with high accuracy.
[0019]
The invention according to claim 6 of the present application is the invention according to claim 5, wherein the lubricant is a viscous fluid, and the communication path for temperature detection is provided from the rotation direction upstream side of the rotating body via the temperature sensor. A temperature detection device, comprising a flow path through which the viscous fluid flows downstream in the rotation direction of the rotating body.
[0020]
As described above, the temperature detection communication path forms a flow path through which the viscous fluid as a lubricant flows from the upstream side in the rotation direction of the rotating body to the downstream side in the rotation direction of the rotating body via the temperature sensor, thereby providing the lubricant. The temperature change of the viscous fluid as described above can be more easily transmitted to the temperature sensor, and the temperature detection accuracy by the temperature sensor can be further improved.
[0021]
The invention according to claim 7 of the present application is characterized in that in claim 5 or 6, there is provided abnormality detection means for judging an abnormality when the temperature detected by the temperature sensor exceeds a certain temperature. This is a temperature detecting device. Since the temperature rise of the lubricant in the rotating portion of the rotary drive mechanism can be quickly detected with high accuracy, it is possible to quickly and accurately detect an abnormality occurring in the rotating body or the support shaft with high accuracy.
[0022]
The invention according to claim 8 of the present application is the method according to any one of claims 5 to 7, wherein after the temperature sensor is housed in a recess formed in the sliding contact surface of the support shaft, the communication path for temperature detection is provided. And a member having a hardness lower than or equal to that of the support shaft on which the concave portion is formed, and the recess is hermetically sealed.
[0023]
A concave portion is formed in the sliding contact surface of the support shaft, the temperature sensor is housed in the concave portion, the concave portion is sealed with a metal member or the like, and the temperature sensor is installed in the support shaft. As the surface gradually wears due to frictional resistance, the member sealing the concave portion comes into sliding contact with the rotating body. Therefore, as described above, the concave portion is sealed with a member having a lower hardness or the same hardness as the support shaft in which the temperature detection communication passage is formed, so that the concave portion is formed in accordance with the wear of the sliding contact surface of the support shaft. Since the sealing member also wears, it is possible to prevent the rotating body from being damaged when the sealing member contacts the rotating body.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention and is a sectional view of a rotary shaft bearing device according to the present invention. FIG. 2 is an enlarged sectional view showing the vicinity of the vibration detecting device of the bearing device of the rotary shaft.
[0025]
In the bearing device 100 for a rotating shaft, the rotating shaft 1 is rotatably supported by the bearing body 2 in a state where the outer peripheral surface 11 of the rotating shaft 1 is in sliding contact with the inner peripheral surface 21 of the bearing body 2. The lubricating oil 8 is filled in a sliding contact surface between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2. A concave portion 22 is formed on the inner peripheral surface 21 of the bearing body 2, and the vibration detecting device 3 according to the present invention is disposed in the concave portion 22. The vibration detecting device 3 according to this embodiment includes a sensor chip 31 provided in the recess 22 and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1 from the upstream side of the sensor chip 31 via the sensor chip 31. The soft material 32 in which the “flow rate detection flow path” is formed to flow to the downstream side of the sensor chip 31 and the flow rate of the lubricating oil 8 detected by the sensor chip 31 are input, and the vibration of the rotary shaft 1 is calculated based on the flow rate. And a calculation unit 10 for calculating
[0026]
The sensor chip 31 has a flow path 311 through which the lubricating oil 8 that detects the flow rate flows, and a flow rate sensor 312 that detects the flow rate of the lubricating oil 8 flowing through the flow path 311. Work. It is preferable that the sensor chip 31 has almost no pressure loss due to the measurement of the flow rate. In this embodiment, the sensor chip 31 has a size of about several mm square made into a semiconductor by a known MEMS (Micro, Electro, Mechanical, System) technique. It is a thermal MEMS flow sensor of a size. Thermal MEMS flow sensors have the advantages of high reliability with no moving parts, very small size, low heat capacity, high sensitivity and low power consumption, and excellent mass productivity because they are manufactured in a semiconductor process. ing.
[0027]
The upstream side of the sensor chip 31 and the flow path 311 of the sensor chip 31 communicate with the soft material 32 so that the space between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is rotated in the rotation direction A. The inflow passage 32 a for flowing the flowing lubricating oil 8 into the flow passage 311 of the sensor chip 31, and the flow passage 311 of the sensor chip 31 and the downstream side of the sensor chip 31 communicate with each other, so that the lubricating oil 8 flowing into the flow passage 311 An outflow channel 32b is formed to allow the air to flow out of the sensor chip 31 between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2. The vibration detecting device 3 is configured such that a part of the lubricating oil 8 flowing in the rotation direction A between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is supplied from the inflow passage 32 a to the flow sensor 312 as shown in the figure. Through the outlet channel 32b. The soft material 32 is a material having a lower hardness or the same hardness as the bearing body 2, and is worn by sliding contact with the outer peripheral surface 11 of the rotating shaft 1. Since the soft material 32 wears according to the speed at which the peripheral surface 21 wears, the soft material 32 projects from the inner peripheral surface 21 of the bearing body 2 and abuts on the rotating shaft 1 to damage the rotating shaft 1. There is no.
[0028]
The small gap between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 becomes narrower in the moving direction side when the rotating shaft 1 moves due to the vibration of the rotating shaft 1 and moves. It becomes wider on the side opposite to the direction. As a result, the flow rate of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1 depends on whether the distance between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is small or wide. A change will occur. Therefore, a change in the flow rate of the lubricating oil 8 caused by the vibration of the rotating shaft 1 is detected by the flow rate sensor 312, and the vibration of the rotating shaft 1 can be calculated by the calculating unit 10 from the change in the flow rate of the lubricating oil 8. .
[0029]
In this way, the sensor chip 31 disposed in the recess 22 and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1 are transferred from the upstream side of the sensor chip 31 via the sensor chip 31 to the sensor chip 31. A calculation unit 10 that inputs a soft material 32 having a “flow rate detection flow path” flowing downstream and a flow rate of the lubricating oil 8 detected by the sensor chip 31 and calculates the vibration of the rotary shaft 1 from the flow rate. The vibration detecting device 3 configured as described above can detect a change in the flow rate of the lubricating oil 8 caused by the vibration of the rotating shaft 1 with high accuracy in a very low-cost and extremely compact configuration. The vibration detecting device 3 for detecting the vibration of the shaft 1 can be configured at a low cost and in a small size, and the vibration of the rotating shaft 1 with respect to the bearing body 2 can be detected with high accuracy.
[0030]
FIG. 3 shows a second embodiment of the present invention, and is a cross-sectional view of a rotary shaft bearing device 100 according to the present invention.
[0031]
In this embodiment, in addition to the first embodiment described above, six vibration detecting devices 3 are arranged at equal intervals on the inner peripheral surface 21 of the bearing body 2 along the outer peripheral surface 11 of the rotating shaft 1. . In this manner, the plurality of vibration detecting devices 3 are arranged at equal intervals on the inner peripheral surface 21 of the bearing body 2, and the vibration of the rotating shaft 1 is detected based on the change in the flow rate of the lubricating oil 8 detected by each vibration detecting device 3. The calculation makes it possible to detect the vibration of the rotating shaft 1 with higher accuracy, which is a more preferable embodiment.
[0032]
FIG. 4 shows a third embodiment of the present invention, and is an enlarged sectional view of the vicinity of the vibration detecting device 3 of the bearing device 100 of the rotating shaft.
[0033]
In this embodiment, in the first or second embodiment described above, the vibration detecting device 3 calculates the vibration of the rotating shaft 1 by detecting a change in the pressure of the lubricating oil 8. In this embodiment, the vibration detection device 3 includes a sensor chip 33 that is made into a semiconductor by the above-described known MEMS technology, and the sensor chip 33 includes a pressure sensor 332 that detects the pressure of the lubricating oil 8. . Further, in the soft material 32, the lubricating oil 8 filled between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is communicated with the concave portion 331 in which the pressure sensor 332 is disposed. A communication passage 32c is formed as a "pressure detection communication passage". The calculation unit 10 calculates and calculates the vibration of the rotating shaft 1 from the change in the pressure of the lubricating oil 8 detected by the pressure sensor 332. The other configuration is the same as that of the vibration detecting device 3 according to the first embodiment or the second embodiment, and thus the description is omitted.
[0034]
The small gap between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 becomes narrower in the moving direction side when the rotating shaft 1 moves due to the vibration of the rotating shaft 1 and moves. It becomes wider on the side opposite to the direction. As a result, the pressure acting on the lubricating oil 8 between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 causes the pressure between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 to increase. A change occurs when the interval becomes narrower and when the interval becomes wider. Therefore, a change in the pressure of the lubricating oil 8 caused by the vibration of the rotating shaft 1 is detected by the pressure sensor 332, and the vibration of the rotating shaft 1 can be calculated and obtained by the calculating unit 10 from the change in the pressure of the lubricating oil 8. .
[0035]
FIG. 5 shows a fourth embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention. FIG. 6 is an enlarged cross-sectional view showing the vicinity of the vibration detecting device of the supporting device for the rotating body.
[0036]
In the rotating body support device 200, the rotating body 4 is rotatably supported by the supporting shaft 5 in a state where the inner circumferential surface 41 of the rotating body 4 is in sliding contact with the outer circumferential surface 51 of the supporting shaft 5. The sliding surface between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is filled with lubricating oil 8. A concave portion 52 is formed on the outer peripheral surface 51 of the support shaft 5, and the vibration detecting device 3 according to the present invention is disposed in the concave portion 52. The vibration detecting device 3 in this embodiment has the same configuration as the vibration detecting device 3 shown in the first embodiment or the second embodiment described above, and includes a sensor chip 31 provided in the concave portion 52 and a rotating device. A soft material in which a “flow rate detection channel” is formed in which a part of the lubricating oil 8 flowing in the rotation direction A of the body 4 flows from the upstream side of the sensor chip 31 to the downstream side of the sensor chip 31 via the sensor chip 31. 32, and a calculation unit 10 that inputs the flow rate of the lubricating oil 8 detected by the sensor chip 31 and calculates the vibration of the rotating body 4 from the flow rate. The sensor chip 31 is a thermal MEMS flow sensor similarly made into a semiconductor by the MEMS technology.
[0037]
The upstream side of the sensor chip 31 and the flow path 311 of the sensor chip 31 communicate with the soft material 32 so that the space between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is rotated in the rotation direction A. The inflow passage 32 a for flowing the flowing lubricating oil 8 into the flow passage 311 of the sensor chip 31, and the flow passage 311 of the sensor chip 31 and the downstream side of the sensor chip 31 communicate with each other, so that the lubricating oil 8 flowing into the flow passage 311 An outflow channel 32b is formed between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 to flow out to the downstream side of the sensor chip 31. The vibration detecting device 3 is configured such that a part of the lubricating oil 8 flowing in the rotation direction A between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is supplied from the inflow passage 32a to the flow sensor 312 as shown in the drawing. Through the outlet channel 32b. The soft material 32 is a material having a lower hardness or the same hardness as the support shaft 5, and is worn by being in sliding contact with the inner peripheral surface 41 of the rotating body 4. Since the soft material 32 wears according to the speed at which the surface 51 wears, the soft material 32 projects from the outer peripheral surface 51 of the support shaft 5 and abuts on the inner peripheral surface 41 of the rotating body 4 to damage the rotating body 4. I won't.
[0038]
The small gap between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 becomes narrower in the moving direction when the rotating body 4 moves due to the vibration of the rotating body 4 and moves. It becomes wider on the side opposite to the direction. Thereby, the flow rate of the lubricating oil 8 flowing in the rotation direction A of the rotating body 4 depends on whether the distance between the inner circumferential surface 41 of the rotating body 4 and the outer circumferential surface 51 of the support shaft 5 is small or wide. A change will occur. Therefore, a change in the flow rate of the lubricating oil 8 caused by the vibration of the rotating body 4 is detected by the flow rate sensor 312, and the vibration of the rotating body 4 can be calculated by the calculating unit 10 from the change in the flow rate of the lubricating oil 8. .
[0039]
As described above, the sensor chip 31 disposed in the recess 52 and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating body 4 are transferred from the upstream side of the sensor chip 31 via the sensor chip 31 to the sensor chip 31. A calculation unit 10 that inputs a soft material 32 having a “flow rate detection flow path” flowing downstream and a flow rate of the lubricating oil 8 detected by the sensor chip 31 and calculates the vibration of the rotating body 4 from the flow rate. The vibration detection device 3 configured as described above can detect a change in the flow rate of the lubricating oil 8 caused by the vibration of the rotating body 4 with high accuracy with a low cost and extremely compact configuration. The vibration detecting device 3 that detects the vibration of the vibration member 4 can be configured inexpensively and compactly, and the vibration of the rotating body 4 with respect to the support shaft 5 can be detected with high accuracy.
[0040]
FIG. 7 shows a fifth embodiment of the present invention, and is a cross-sectional view of a rotating body support device 200 according to the present invention.
[0041]
In this embodiment, in addition to the above-described fourth embodiment, six vibration detecting devices 3 are arranged at equal intervals on the outer peripheral surface 51 of the support shaft 5 along the inner peripheral surface 41 of the rotating body 4. . In this manner, the plurality of vibration detecting devices 3 are arranged at equal intervals on the outer peripheral surface 51 of the support shaft 5, and the vibration of the rotating body 4 is calculated from the change in the flow rate of the lubricating oil 8 detected by each vibration detecting device 3. By doing so, it is possible to detect the vibration of the rotating body 4 with higher accuracy, which is a more preferable embodiment.
[0042]
FIG. 8 shows a sixth embodiment of the present invention, and is an enlarged sectional view showing the vicinity of the vibration detecting device 3 of the rotating body support device 200.
[0043]
In this embodiment, in the fourth or fifth embodiment described above, the vibration detecting device 3 calculates the vibration of the rotating body 4 by detecting a change in the pressure of the lubricating oil 8. In this embodiment, the vibration detecting device 3 has the same configuration as the vibration detecting device 3 shown in the third embodiment described above, and the description is omitted. The small gap between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 becomes narrower in the moving direction when the rotating body 4 moves due to the vibration of the rotating body 4 and moves. It becomes wider on the side opposite to the direction. As a result, the pressure acting on the lubricating oil 8 between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 causes the pressure between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 to increase. A change occurs when the interval becomes narrower and when the interval becomes wider. Therefore, a change in the pressure of the lubricating oil 8 caused by the vibration of the rotating body 4 is detected by the pressure sensor 332, and the vibration of the rotating body 4 can be calculated and obtained from the change in the pressure of the lubricating oil 8 by the calculating unit 10. .
[0044]
FIG. 9 shows a seventh embodiment of the present invention, and is a cross-sectional view of a rotary shaft bearing device 100 according to the present invention. FIG. 10 is an enlarged sectional view showing the vicinity of the temperature detecting device of the bearing device 100 of the rotating shaft.
[0045]
In the bearing device 100 for a rotating shaft, the rotating shaft 1 is rotatably supported by the bearing body 2 in a state where the outer peripheral surface 11 of the rotating shaft 1 is in sliding contact with the inner peripheral surface 21 of the bearing body 2. The lubricating oil 8 is filled in a sliding contact surface between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2. A concave portion 22 is formed in the inner peripheral surface 21 of the bearing body 2, and the temperature detecting device 6 according to the present invention is disposed in the concave portion 22. The temperature detection device 6 according to the present embodiment includes a sensor chip 61 provided in the recess 22 and made into a semiconductor by the above-described known MEMS technology, and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1. The soft material 32 having a “temperature detecting communication path” flowing from the upstream side of the sensor chip 61 to the downstream side of the sensor chip 61 via the sensor chip 61 and the temperature of the lubricating oil 8 detected by the sensor chip 61 are input. And a calculation unit 10 for determining whether or not an abnormality has occurred in the rotating shaft 1 or the bearing body 2 based on the temperature. The sensor chip 61 has a flow path 611 through which the lubricating oil 8 for detecting the temperature flows, and a temperature sensor 612 for detecting the temperature of the lubricating oil 8 flowing through the flow path 611. Work.
[0046]
As in the first embodiment, the upstream side of the sensor chip 61 and the flow path 611 of the sensor chip 61 communicate with the soft material 32 so that the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral The inflow passage 32a for allowing the lubricating oil 8 flowing in the rotation direction A to flow between the surface 21 and the flow passage 611 of the sensor chip 61, and the flow passage 611 of the sensor chip 61 and the downstream side of the sensor chip 61 to communicate with each other. An outflow channel 32b is formed to allow the lubricating oil 8 flowing into the channel 611 to flow downstream of the sensor chip 61 between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2. The temperature detecting device 6 is configured such that a part of the lubricating oil 8 flowing in the rotation direction A between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is supplied from the inflow passage 32 a to the temperature sensor 612 as shown in the drawing. Through the outlet channel 32b. The configuration in which a part of the lubricating oil 8 flows through the temperature sensor 612 from between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 allows the outer peripheral surface 11 of the rotating shaft 1 and the A change in the temperature of the lubricant 8 with the peripheral surface 21 is more easily transmitted to the temperature sensor 612, and the accuracy of temperature detection by the temperature sensor 612 can be further improved.
[0047]
The soft material 32 is a material having a lower hardness or the same hardness as the bearing body 2 as in the first embodiment described above, and is worn by sliding contact with the outer peripheral surface 11 of the rotating shaft 1. Since the soft material 32 wears in accordance with the speed at which the inner peripheral surface 21 of the bearing body 2 that covers most of the bearing material 2 wears, the soft material 32 projects from the inner peripheral surface 21 of the bearing body 2 and contacts the rotating shaft 1. The rotating shaft 1 will not be damaged by contact. The temperature of the lubricating oil 8 flowing between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 in the rotation direction A is determined by the inflow channel 32a and the outflow channel 32b as “temperature detection communication paths”. The arithmetic unit 10 determines that some abnormality has occurred in the rotating shaft 1 or the bearing 2 when the temperature of the lubricating oil 8 exceeds a certain temperature.
[0048]
As described above, the sensor chip 61 disposed in the concave portion 22 and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1 are supplied from the upstream side of the sensor chip 61 via the sensor chip 61 to the sensor chip 61. When the temperature of the lubricating oil 8 detected by the sensor chip 61 and the soft material 32 in which the “temperature detection communication path” flowing to the downstream side is formed is input, and the temperature exceeds a certain temperature, an abnormality occurs. The temperature detection device 6 constituted by the calculation unit 10 that determines that the temperature has risen is low in cost and extremely compact, and detects the temperature rise of the lubricating oil 8 that occurs when any abnormality occurs in the rotating shaft 1 or the bearing 2. It can be detected with high accuracy. Therefore, the temperature detection device 6 can be configured inexpensively and compactly, and it is possible to detect with high accuracy that an abnormality has occurred in the rotating shaft 1 or the bearing body 2. Furthermore, if a plurality of temperature detecting devices 6 are arranged in the axial direction of the rotating shaft 1 and arranged on the inner peripheral surface 21 of the bearing body 2, it is possible to detect a temperature rise over substantially the entire outer peripheral surface of the rotating shaft 1. Yes, it is more preferable.
[0049]
FIG. 11 shows an eighth embodiment of the present invention, and is a cross-sectional view of a rotating body support device 200 according to the present invention.
[0050]
In the rotating body support device 200, the rotating body 4 is rotatably supported by the supporting shaft 5 in a state where the inner circumferential surface 41 of the rotating body 4 is in sliding contact with the outer circumferential surface 51 of the supporting shaft 5. The sliding surface between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is filled with lubricating oil 8. A concave portion 52 is formed on the outer peripheral surface 51 of the support shaft 5, and the temperature detecting device 6 according to the present invention is disposed in the concave portion 52. The temperature detecting device 6 in this embodiment is the same as the temperature detecting device 3 provided in the bearing body 2 of the rotary shaft bearing device 100 shown in the above-described seventh embodiment, and a description thereof will be omitted.
[0051]
As described above, in the rotating body support device 200, by disposing the temperature detecting device 6 on the outer peripheral surface of the support shaft 5, similarly to the rotary shaft bearing device 100 shown in the above-described seventh embodiment, With a very low cost and extremely compact configuration, it is possible to detect with high accuracy the temperature rise of the lubricating oil 8 that occurs when any abnormality occurs in the rotating body 4 or the support shaft 5. Therefore, the temperature detection device 6 can be configured inexpensively and compactly, and it is possible to detect with high accuracy that an abnormality has occurred in the support device 200 for the rotating body. Furthermore, if a plurality of temperature detecting devices 6 are arranged on the outer peripheral surface 51 of the support shaft 5 side by side in the direction of the rotational axis of the rotating body 4, it is possible to detect a temperature rise over substantially the entire outer peripheral surface of the rotating shaft 1. Yes, it is more preferable.
[0052]
FIG. 12 shows a ninth embodiment of the present invention, and is an enlarged sectional view showing the vicinity of the temperature detecting device 6 of the rotating body support device 200.
[0053]
The temperature detecting device 6 in this embodiment is different from the temperature detecting device 6 in the rotary shaft bearing device 100 shown in the seventh embodiment or the rotating body support device 200 shown in the eighth embodiment in a soft material. 62 has the same configuration except that the “temperature detection communication path” is different, and the “temperature detection communication path” configures a flow path in which the lubricating oil 8 flows to the temperature sensor 612 as shown in the figure. There is no mode. In this embodiment, the soft material 62 is provided with a communication passage 62 c for communicating the lubricating oil 8 to the temperature sensor 612 from between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5. . When the temperature of the lubricating oil 8 between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 rises, the temperature of the lubricating oil 8 in the communication passage 62c also rises and fills the recess 611 of the sensor chip 61. The temperature of the lubricating oil 8 thus increased also can be detected by the temperature sensor 612. As described above, the temperature of the lubricating oil 8 can be detected only by connecting the lubricating oil 8 to the temperature sensor 612 from between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5. Approximately the same effects as in the seventh embodiment or the eighth embodiment can be obtained.
[0054]
FIG. 13 shows a tenth embodiment of the present invention, and is a cross-sectional view of a rotary shaft bearing device 100 according to the present invention. FIG. 14 is an enlarged sectional view showing the vicinity of the temperature detecting device of the bearing device 100 of the rotating shaft.
[0055]
In this embodiment, a rotating shaft in which four vibration detecting devices 3 and two temperature detecting devices 7 are arranged on the inner circumferential surface 21 of the bearing body 2 at equal intervals along the outer circumferential surface 11 of the rotating shaft 1. The bearing device 100 of FIG. The vibration detecting device 3 is the same as the vibration detecting device 3 shown in the above-described first to third embodiments, and thus the description is omitted. The temperature detecting device 7 includes a sensor chip 71 formed into a semiconductor by the above-described known MEMS technology. The sensor chip 71 includes a temperature sensor 612 for detecting the temperature of the lubricating oil 8 and a pressure for detecting the pressure of the lubricating oil 8. And a sensor 332. Further, the lubricating oil 8 filled between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is filled in the soft material 72 with the concave portion 711 in which the temperature sensor 612 and the pressure sensor 332 are arranged. A communication passage 72c is formed as a "pressure detection communication passage" that communicates with the communication passage. When the temperature of the lubricating oil 8 detected by the temperature sensor 612 exceeds a certain temperature, the calculation unit 10 determines that some abnormality has occurred in the rotating shaft 1 or the bearing body 2 and determines the lubrication detected by the pressure sensor 332. The vibration of the rotating shaft 1 is calculated and obtained from the change in the pressure of the oil 8. Thus, by arranging the vibration detecting device 3 and the temperature detecting device 7 on the inner peripheral surface 21 of the bearing body 2, in the rotating shaft bearing device 100, it is possible to detect the vibration of the rotating shaft 1 with respect to the bearing body 2. And the temperature of the lubricating oil 8 can be detected.
[0056]
FIG. 15 shows an eleventh embodiment of the present invention, and is a cross-sectional view of a rotating body support device 200 according to the present invention.
[0057]
In this embodiment, a rotating body in which four vibration detecting devices 3 and two temperature detecting devices 7 are arranged on the outer circumferential surface 51 of the support shaft 5 at equal intervals along the inner circumferential surface 41 of the rotating body 4. Of the supporting device 200. The vibration detection device 3 is the same as the vibration detection device 3 shown in the first to third embodiments described above, and the temperature detection device 7 is the same as the temperature detection device 7 shown in the tenth embodiment described above. Therefore, the description is omitted.
[0058]
By arranging the vibration detection device 3 and the temperature detection device 7 on the outer peripheral surface 51 of the support shaft 5 in this manner, in the rotation device support device 200, the detection of the vibration of the rotary member 4 with respect to the support shaft 5 The temperature of the lubricating oil 8 can be detected.
[0059]
FIG. 16 shows a twelfth embodiment of the present invention, and is an enlarged sectional view showing the vicinity of the temperature detection device 6 of the rotating body support device 200.
[0060]
The temperature detection device 6 according to the present embodiment includes a sensor chip 61 provided in the concave portion 52 and made into a semiconductor by the above-described known MEMS technology. The sensor chip 61 detects the temperature of the lubricating oil 8. 612, a pressure sensor 332 for detecting the pressure of the lubricating oil 8, and a flow sensor 312 for detecting the flow rate of the lubricating oil 8. Further, the upstream side of the sensor chip 61 and the flow path 611 of the sensor chip 61 are communicated with the soft material 62 so that the rotation between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is performed in the rotational direction. The lubricating oil 8 flowing into the flow path 611 is formed by communicating the flow path 611 of the sensor chip 61 with the flow path 611 of the sensor chip 61 and the downstream side of the sensor chip 61 by causing the lubricating oil 8 flowing to the A to flow into the flow path 611 of the sensor chip 61. An outflow passage 62b is formed between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 to allow the oil 8 to flow downstream of the sensor chip 61. The temperature detecting device 6 is configured such that a part of the lubricating oil 8 flowing in the rotation direction A between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is supplied from the inflow passage 62 a to the temperature sensor 612 as shown in the drawing. , The pressure sensor 332, and the flow rate sensor 312 to the outflow channel 62b. When the temperature of the lubricating oil 8 detected by the temperature sensor 612 exceeds a certain temperature, the calculation unit 10 determines that some abnormality has occurred in the rotating shaft 1 or the bearing body 2 and determines the lubrication oil detected by the pressure sensor 332. The vibration of the rotating shaft 1 is calculated and obtained from the change in the pressure of the oil 8.
[0061]
As described above, by providing the temperature sensor 612, the pressure sensor 332, and the flow rate sensor 312 on the sensor chip 61, it is possible to detect all of the temperature, pressure, and flow rate of the lubricating oil 8 with one sensor chip 61. Further, both the detection of the vibration of the rotating body 4 with respect to the support shaft 5 and the detection of the temperature of the lubricating oil 8 can be performed at lower cost.
[0062]
The invention of the present application is not limited to the above embodiments, and various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the invention of the present application. Needless to say.
[0063]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the temperature detection apparatus which can detect the temperature rise of the lubricant of the rotating part in a rotary drive mechanism quickly with high precision can be provided.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of the present invention and is a cross-sectional view of a rotary shaft bearing device according to the present invention.
FIG. 2 is a cross-sectional view showing the first embodiment of the present invention and is an enlarged view of the vicinity of the vibration detecting device of the bearing device for the rotating shaft according to the present invention.
FIG. 3 shows a second embodiment of the present invention, and is a cross-sectional view of a bearing device for a rotating shaft according to the present invention.
FIG. 4 is a cross-sectional view showing a third embodiment of the present invention, in which the vicinity of a vibration detecting device of a bearing device for a rotating shaft is enlarged.
FIG. 5 shows a fourth embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention.
FIG. 6 is a cross-sectional view showing a fourth embodiment of the present invention and is an enlarged view of the vicinity of the vibration detection device of the rotating body support device according to the present invention.
FIG. 7 shows a fifth embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention.
FIG. 8 is a cross-sectional view showing a sixth embodiment of the present invention, in which the vicinity of a vibration detection device of a supporting device for a rotating body is enlarged.
FIG. 9 shows a seventh embodiment of the present invention, and is a cross-sectional view of a bearing device for a rotating shaft according to the present invention.
FIG. 10 is a cross-sectional view showing a seventh embodiment of the present invention, in which the vicinity of a temperature detecting device of a bearing device for a rotating shaft according to the present invention is enlarged.
FIG. 11 shows an eighth embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention.
FIG. 12 is a cross-sectional view showing a ninth embodiment of the present invention, in which the vicinity of a temperature detecting device of a supporting device for a rotating body is enlarged.
FIG. 13 shows a tenth embodiment of the present invention, and is a cross-sectional view of a bearing device for a rotating shaft according to the present invention.
FIG. 14 shows a tenth embodiment of the present invention, and is an enlarged sectional view showing the vicinity of a temperature detecting device of a bearing device for a rotating shaft according to the present invention.
FIG. 15 shows the eleventh embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention.
FIG. 16 is a cross-sectional view showing a twelfth embodiment of the present invention, in which the vicinity of a temperature detecting device of a supporting device for a rotating body is enlarged.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotation shaft 2 Bearing body 3 Vibration detection device 4 Rotation body 5 Support shaft 6, 7 Temperature detection device 8 Lubricating oil 10 Operation parts 31, 33, 61, 71 Sensor chips 32, 62, 72 Soft materials 32a, 32b, 32c Flow Road 100 Rotating body bearing device 200 Rotary shaft support device 312 Flow rate sensor 332 Pressure sensor 612 Temperature sensor

Claims (8)

回転駆動力が伝達されて回転する回転軸の外周面に摺接した状態で前記回転軸を軸受する軸受体を備えた回転軸の軸受装置において、前記回転軸の外周面と前記軸受体との摺接面に充填されている潤滑材の温度を検出する温度検出装置であって、
前記軸受体に内設された温度センサと、前記軸受体の前記摺接面と前記温度センサとの間を連通させる温度検出用連通路とを有している、ことを特徴とした温度検出装置。
In a bearing device for a rotating shaft provided with a bearing for bearing the rotating shaft in a state in which the rotating driving force is transmitted and slidably contacting the outer circumferential surface of the rotating shaft, the outer peripheral surface of the rotating shaft and the bearing are A temperature detecting device for detecting the temperature of the lubricant filled in the sliding contact surface,
A temperature sensor provided inside the bearing body; and a temperature detection communication path for communicating between the sliding contact surface of the bearing body and the temperature sensor. .
請求項1において、前記潤滑材は、粘性流体であり、前記温度検出用連通路は、前記回転軸の回転方向上流側から前記温度センサを経由して前記回転軸の回転方向下流側へ前記粘性流体が流れる流路を構成している、ことを特徴とした温度検出装置。2. The device according to claim 1, wherein the lubricating material is a viscous fluid, and the communication path for temperature detection is configured such that the temperature detecting communication passage extends from an upstream side in the rotation direction of the rotation shaft to a downstream side in the rotation direction of the rotation shaft via the temperature sensor. A temperature detection device comprising a flow path through which a fluid flows. 請求項1又は2において、前記温度センサにて検出した温度が一定の温度を超えた時点で異常と判定する異常検出手段を有している、ことを特徴とした温度検出装置。3. The temperature detection device according to claim 1, further comprising an abnormality detection unit configured to determine an abnormality when a temperature detected by the temperature sensor exceeds a predetermined temperature. 請求項1〜3のいずれか1項において、前記軸受体の前記摺接面に形成された凹部に前記温度センサを収納した後、前記温度検出用連通路が形成された前記軸受体より硬度が低い又は同じ硬度の部材で前記凹部を密閉して構成されている、ことを特徴とした温度検出装置。4. The bearing body according to claim 1, wherein after the temperature sensor is housed in a recess formed in the sliding contact surface of the bearing body, the hardness is higher than that of the bearing body in which the temperature detection communication path is formed. 5. A temperature detecting device, wherein the recess is hermetically closed by a member having low or the same hardness. 回転駆動力が伝達されて回転する回転体の内周面に摺接した状態で前記回転体を軸支する支持軸を備えた前記回転体の支持装置において、前記回転体の内周面と前記支持軸との摺接面に充填されている潤滑材の温度を検出する温度検出装置であって、
前記支持軸に内設された温度センサと、前記支持軸の前記摺接面と前記温度センサとの間を連通させる温度検出用連通路とを有している、ことを特徴とした温度検出装置。
In the rotating body supporting device having a support shaft for supporting the rotating body in a state in which the rotating driving force is transmitted and slidably contacting an inner circumferential surface of the rotating rotating body, the inner circumferential surface of the rotating body and A temperature detection device for detecting the temperature of the lubricant filled in the sliding contact surface with the support shaft,
A temperature sensor provided inside the support shaft; and a temperature detection communication path for communicating between the sliding contact surface of the support shaft and the temperature sensor. .
請求項5において、前記潤滑材は、粘性流体であり、前記温度検出用連通路は、前記回転体の回転方向上流側から前記温度センサを経由して前記回転体の回転方向下流側へ前記粘性流体が流れる流路を構成している、ことを特徴とした温度検出装置。6. The lubricant according to claim 5, wherein the lubricating material is a viscous fluid, and the communication path for temperature detection is configured such that the temperature detecting communication passage extends from an upstream side in the rotational direction of the rotator to a downstream side in the rotational direction of the rotator via the temperature sensor. A temperature detection device comprising a flow path through which a fluid flows. 請求項5又は6において、前記温度センサにて検出した温度が一定の温度を超えた時点で異常と判定する異常検出手段を有している、ことを特徴とした温度検出装置。The temperature detection device according to claim 5, further comprising an abnormality detection unit configured to determine an abnormality when a temperature detected by the temperature sensor exceeds a certain temperature. 請求項5〜7のいずれか1項において、前記支持軸の前記摺接面に形成された凹部に前記温度センサを収納した後、前記温度検出用連通路が形成された前記支持軸より硬度が低い又は同じ硬度の部材で前記凹部を密閉して構成されている、ことを特徴とした温度検出装置。8. The hardness of the support shaft according to any one of claims 5 to 7, wherein the temperature sensor is housed in a recess formed in the sliding contact surface of the support shaft, and then the temperature detection communication passage is formed. A temperature detecting device, wherein the recess is hermetically closed by a member having low or the same hardness.
JP2003091479A 2003-03-28 2003-03-28 Temperature detector Pending JP2004301522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091479A JP2004301522A (en) 2003-03-28 2003-03-28 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091479A JP2004301522A (en) 2003-03-28 2003-03-28 Temperature detector

Publications (1)

Publication Number Publication Date
JP2004301522A true JP2004301522A (en) 2004-10-28

Family

ID=33404841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091479A Pending JP2004301522A (en) 2003-03-28 2003-03-28 Temperature detector

Country Status (1)

Country Link
JP (1) JP2004301522A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138974A (en) * 2005-11-15 2007-06-07 Nsk Ltd Rolling bearing with temperature sensor
JP2013044414A (en) * 2011-08-25 2013-03-04 Chugoku Electric Power Co Inc:The Sliding bearing
JP2016133220A (en) * 2015-01-16 2016-07-25 マーレ エンジン システムズ ユーケイ リミテッドMah Slide bearing
JP2016224270A (en) * 2015-05-29 2016-12-28 京セラドキュメントソリューションズ株式会社 Image forming apparatus, optical scanner, maintenance method
CN117928770A (en) * 2024-03-25 2024-04-26 广东新成科技实业有限公司 Temperature monitoring test equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138974A (en) * 2005-11-15 2007-06-07 Nsk Ltd Rolling bearing with temperature sensor
JP2013044414A (en) * 2011-08-25 2013-03-04 Chugoku Electric Power Co Inc:The Sliding bearing
JP2016133220A (en) * 2015-01-16 2016-07-25 マーレ エンジン システムズ ユーケイ リミテッドMah Slide bearing
JP2016224270A (en) * 2015-05-29 2016-12-28 京セラドキュメントソリューションズ株式会社 Image forming apparatus, optical scanner, maintenance method
CN117928770A (en) * 2024-03-25 2024-04-26 广东新成科技实业有限公司 Temperature monitoring test equipment
CN117928770B (en) * 2024-03-25 2024-05-24 广东新成科技实业有限公司 Lubricating oil temperature monitoring test equipment

Similar Documents

Publication Publication Date Title
US11353151B2 (en) Rotary union with integral sensor array
JP7362239B2 (en) Bearing devices and spindle devices
JP5564963B2 (en) Bearing device and spindle device of machine tool
US6092029A (en) Method and apparatus for diagnosing and controlling rotating stall and surge in rotating machinery
JP2002357222A (en) Fluid bearing
US11867292B2 (en) Mechanical seal device with microsystem, pump device using the same and method of operating the same
JP2007271625A (en) Multi tip clearance measurement system and method of operation
CN113195949A (en) Mechanical seal with sensor
JP2004301522A (en) Temperature detector
US20220037956A1 (en) Shaft arrangement for a vehicle
TWI815960B (en) Bearing apparatus
JP2004301521A (en) Vibration detection device
WO2019159838A1 (en) Bearing device and spindle device
JP2009216036A (en) Rotary machine and method of inspecting design of thrust bearing
JP2014163434A (en) Temperature detecting device, temperature detection system, bearing pad, bearing device and rotary machine
WO2022059573A1 (en) Bearing device
JP5185164B2 (en) Contact
US11002181B2 (en) Method and system for determining a characteristic of a rotating machine
KR20070019910A (en) Measurement system for axial load
JPH03163214A (en) Bearing device
CN103711801B (en) The bearing unit of development machine hobboing cutter band composite sensor
JP2021014885A (en) Bearing device and spindle device
JP2003278802A (en) Temperature sensing fluid fan coupling device
KR980010369A (en) Cyclone Turbine Type Flow Meter
JP2013139759A (en) Performance testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080402