JP2004301521A - Vibration detection device - Google Patents

Vibration detection device Download PDF

Info

Publication number
JP2004301521A
JP2004301521A JP2003091459A JP2003091459A JP2004301521A JP 2004301521 A JP2004301521 A JP 2004301521A JP 2003091459 A JP2003091459 A JP 2003091459A JP 2003091459 A JP2003091459 A JP 2003091459A JP 2004301521 A JP2004301521 A JP 2004301521A
Authority
JP
Japan
Prior art keywords
vibration
rotating
rotating shaft
flow rate
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003091459A
Other languages
Japanese (ja)
Inventor
Hisakimi Kato
寿仁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003091459A priority Critical patent/JP2004301521A/en
Publication of JP2004301521A publication Critical patent/JP2004301521A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive small-sized vibration detection device capable of detecting highly accurately vibration of a rotating part of a rotation driving mechanism. <P>SOLUTION: A rotating shaft 1 is journaled rotatably by a bearing body 2 in the state where the outer circumferential face 11 of the rotating shaft 1 is rust-jointed to the inner circumferential face 21 of the bearing body 2. A lubricating oil 8 is filled on the rust joint face between the outer circumferential face 11 of the rotating shaft 1 and the inner circumferential face 21 of the bearing body 2. A recessed part 22 is formed on the inner circumferential face 21 of the bearing body 2, and this vibration detection device 3 is disposed in the recessed part 22. The vibration detection device 3 is equipped with a sensor chip 31 disposed in the recessed part 22, a soft material 32 wherein a flow detection passage is formed, for sending a part of the lubricating oil 8 flowing in the rotation direction of the rotating shaft 1 from the upstream side of the sensor chip 31 to the downstream side of the sensor chip 31 via the sensor chip 31, and an operation part 10 for inputting the flow rate of the lubricating oil 8 detected by the sensor chip 31 and operating vibration of the rotating shaft 1 from the flow rate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本願発明は、回転軸を軸受する回転軸の軸受装置、又は回転体を軸支する回転体の支持装置において、回転軸又は回転体の振動を検出する振動検出装置に関する。
【0002】
【従来の技術】
内燃機関等の駆動回転機構を備えた装置においては、装置に何らかの異常が発生すると駆動回転機構の回転部分に異常な振動が生じる場合が多い。そこで、駆動回転機構の回転部分の振動を検出することによって、駆動回転機構に故障等の何らかの異常が発生したか否かを検出することができるとともに、その異常の要因の特定を容易にすることができる。そのような目的で駆動回転機構の回転部分に生じる振動を検出する技術が公知であり、例えば、渦電流型変位計等の計測装置で回転軸の振動を検出するものが挙げられる(例えば、特許文献1又は特許文献2参照)。
【0003】
【特許文献1】
特開平7−35890号公報
【特許文献2】
特開平7−181076号公報
【0004】
【発明が解決しようとする課題】
しかしながら、例えば特許文献1又は特許文献2に開示されている渦電流型変位計を用いた回転軸の振動を検出する検出装置は、大型でかつ高価であるという課題があった。また、振動を検出する回転部分に対して計測装置を精度良く配置する必要があり、位置がずれると検出精度が大きく低下してしまう虞があった。
【0005】
本願発明は、このような状況に鑑み成されたものであり、その課題は、安価で小型であり、かつ高い精度で回転駆動機構の回転部分の振動を検出することが可能な振動検出装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を達成するため、本願請求項1に記載の発明は、回転駆動力が伝達されて回転する回転軸の外周面に摺接した状態で前記回転軸を軸受する軸受体を備えた前記回転軸の軸受装置において、前記回転軸の振動を検出する振動検出装置であって、前記回転軸の外周面と前記軸受体との摺接面に充填された粘性流体の流量を検出する流量検出手段と、該流量検出手段にて検出した前記回転軸の回転方向への前記粘性流体の流量から前記軸受体に対する前記回転軸の振動を演算する演算手段とを有し、前記流量検出手段は、前記軸受体に内設された流量センサと、前記軸受体の前記摺接面と前記流量センサとの間に形成され、前記回転軸の回転方向上流側から前記流量センサを経由して前記回転軸の回転方向下流側へ前記粘性流体が流れる流量検出用流路とを有している、ことを特徴とした振動検出装置である。
【0007】
回転駆動力が伝達されて回転する回転軸の外周面に摺接した状態で回転軸を軸受する軸受体を備えた回転軸の軸受装置は、回転軸の外周面と軸受体との摺接面に摩擦抵抗を低減させる潤滑油等の粘性流体が充填されている。回転軸が回転すると回転軸の回転に応じて回転軸の外周面と軸受体との摺接面に充填されている粘性流体が回転軸の回転方向に流れる。そして、軸受体に対して回転軸が振動すると、その振動に応じて回転軸の回転方向に流れている粘性流体の流量に変化が生じる。したがって、この回転軸の回転方向に流れる粘性流体の流量を検出することによって、検出した粘性流体の流量から軸受体に対する回転軸の振動を演算することができるが、回転軸の外周面と軸受体との摺接面の粘性流体の流量を直接検出することは困難である。
【0008】
そこで、回転軸を軸受する軸受体に流量センサを内設するとともに、回転軸の回転方向上流側から内設した流量センサを経由して回転軸の回転方向下流側へ粘性流体が流れる流量検出用流路を軸受体に形成する。つまり、回転軸の回転方向へ流れる粘性流体の流路から分岐した流路を軸受体の中に形成して、その流路の流量を軸受体に内設した流量センサで検出する。回転軸の回転方向に流れる粘性流体は、軸受体に内設されている流量センサを経由する流量検出用流路にも回転軸の回転方向に流れることになるので、回転軸の回転方向に流れる粘性流体の流量を間接的に検出することができる。この流量検出用流路は、回転軸の外周面と軸受体との摺接面に極めて近い位置に形成することが可能であり、回転軸の振動によって回転軸外周面の粘性流体の流量が変化すれば、軸受体の内部に分岐して設けた流量検出用流路の流量もそれに応じて変化する。したがって、極めて高い精度で回転軸の外周面と軸受体との摺接面に充填されている粘性流体の流量を検出することができ、それによって、軸受体に対する回転軸の振動を高い精度で演算して求めることが可能になる。また、回転軸の外周面が摺接する軸受体の摺接面に小型の流量センサを内設し、その摺接面から流量センサまでの流量検出用流路を構成するだけなので、回転軸の振動を検出する振動検出装置を低コストで極めてコンパクトに構成することができる。
【0009】
これにより本願請求項1に記載の発明に係る振動検出装置によれば、低コストで極めてコンパクトな構成で、回転軸の振動によって生じる回転軸外周面の粘性流体の流量変化を高い精度で検出することができるので、回転駆動機構の回転部分の振動を検出する振動検出装置を安価で小型に構成することができ、かつ高い精度で回転駆動機構の回転部分の振動を検出することが可能になるという作用効果が得られる。
【0010】
本願請求項2に記載の発明は、請求項1において、前記演算手段は、前記回転軸の回転速度に対する前記流量検出用流路の前記粘性流体の流量変動から前記軸受体に対する前記回転軸の振動を演算する、ことを特徴とした振動検出装置である。
【0011】
前述したように、軸受体に対する回転軸の振動が生じると回転軸の外周面と軸受体との摺接面に充填されている粘性流体の流量が変化する。そのため、軸受体に対する回転軸の振動が生じると回転軸の外周面と軸受体との摺接面に充填されている粘性流体の流量変動が生じ、それに応じて流量検出用流路の粘性流体の流量変動が生じる。したがって、流量検出用流路の粘性流体の流量変動を検出することによって、流量検出用流路の粘性流体の流量変動から回転軸の振動を演算することができる。
【0012】
本願請求項3に記載の発明は、回転駆動力が伝達されて回転する回転軸の外周面に摺接した状態で前記回転軸を軸受する軸受体を備えた回転軸の軸受装置において、前記回転軸の振動を検出する振動検出装置であって、前記回転軸の外周面と前記軸受体との間に生じる圧力を検出する圧力検出手段と、該圧力検出手段にて検出した圧力から前記軸受体に対する前記回転軸の振動を演算する演算手段とを有し、前記圧力検出手段は、前記軸受体に内設された圧力センサと、前記軸受体の前記摺接面と前記圧力センサとの間を連通させる圧力検出用連通路とを有している、ことを特徴とした振動検出装置である。
【0013】
回転駆動力が伝達されて回転する回転軸の外周面に摺接した状態で回転軸を軸受する軸受体を備えた回転軸の軸受装置は、回転軸の外周面と軸受体との摺接面に摩擦抵抗を低減させる潤滑油等の潤滑材が充填されている。そして、軸受体に対して回転軸が振動すると、その振動に応じて回転軸の外周面から潤滑材を介して軸受体に作用する圧力に変化が生じる。したがって、この回転軸の外周面と軸受体との間の圧力の変化を検出することによって、検出した圧力の変化から軸受体に対する回転軸の振動を演算することができるが、回転軸の外周面と軸受体との間の圧力を直接検出することは困難である。
【0014】
そこで、回転軸を軸受する軸受体に圧力センサを内設するとともに、軸受体の摺接面と圧力センサとの間を連通させる圧力検出用連通路を軸受体に形成する。つまり、回転軸の外周面と軸受体との間の潤滑材を軸受体に内設した圧力センサまで連通させ、潤滑材を介して回転軸から軸受体に作用する圧力の変化を軸受体に内設した圧力センサで検出する。この圧力検出用連通路は、回転軸の外周面と軸受体との摺接面に極めて近い位置に形成することが可能であり、回転軸の振動によって回転軸外周面の潤滑材の圧力が変化すれば、軸受体に形成した圧力検出用連通路内の潤滑材の圧力もそれに応じて変化する。したがって、極めて高い精度で回転軸の外周面と軸受体との摺接面に充填されている潤滑材の圧力を検出することができ、それによって、軸受体に対する回転軸の振動を高い精度で演算して求めることが可能になる。また、回転軸の外周面が摺接する軸受体の摺接面に小型の圧力センサを内設し、その摺接面から圧力センサまでの圧力検出用連通路を構成するだけなので、回転軸の振動を検出する振動検出装置を低コストで極めてコンパクトに構成することができる。
【0015】
これにより本願請求項3に記載の発明に係る振動検出装置によれば、低コストで極めてコンパクトな構成で、回転軸の振動によって生じる回転軸外周面の潤滑材の圧力変化を高い精度で検出することができるので、回転駆動機構の回転部分の振動を検出する振動検出装置を安価で小型に構成することができ、かつ高い精度で回転駆動機構の回転部分の振動を検出することが可能になるという作用効果が得られる。
【0016】
本願請求項4に記載の発明は、請求項3において、前記演算手段は、前記回転軸の回転速度に対する前記回転軸の外周面と前記軸受体との間の圧力変動から前記軸受体に対する前記回転軸の振動を演算する、ことを特徴とした振動検出装置である。
【0017】
前述したように、軸受体に対する回転軸の振動が生じると回転軸の外周面から潤滑材を介して軸受体に作用する圧力が変化する。そのため、軸受体に対する回転軸の振動が生じると回転軸の外周面と軸受体との間に充填されている潤滑材に圧力変動が生じ、それに応じて圧力検出用連通路内の粘性流体の圧力変動が生じる。したがって、圧力検出用連通路内の潤滑材の圧力変動を検出することによって、圧力検出用連通路の潤滑材の圧力変動から回転軸の振動を演算することができる。
【0018】
本願請求項5に記載の発明は、回転駆動力が伝達されて回転する回転体の内周面に摺接した状態で前記回転体を軸支する支持軸を備えた前記回転体の支持装置において、前記回転体の振動を検出する振動検出装置であって、前記回転体の内周面と前記支持軸との摺接面に充填された粘性流体の流量を検出する流量検出手段と、該流量検出手段にて検出した前記回転体の回転方向への前記粘性流体の流量から前記支持軸に対する前記回転体の振動を演算する演算手段とを有し、前記流量検出手段は、前記支持軸に内設された流量センサと、前記支持軸の前記摺接面と前記流量センサとの間に形成され、前記回転体の回転方向上流側から前記流量センサを経由して前記回転体の回転方向下流側へ前記粘性流体が流れる流量検出用流路とを有している、ことを特徴とした振動検出装置である。
【0019】
回転駆動力が伝達されて回転する回転体の内周面に摺接した状態で回転体を軸支する支持軸を備えた回転体の支持装置は、回転体の内周面と支持軸との摺接面に摩擦抵抗を低減させる潤滑油等の粘性流体が充填されている。回転体が回転すると回転体の回転に応じて回転体の内周面と支持軸との摺接面に充填されている粘性流体が回転体の回転方向に流れる。そして、支持軸に対して回転体が振動すると、その振動に応じて回転体の回転方向に流れている粘性流体の流量に変化が生じる。したがって、この回転体の回転方向に流れる粘性流体の流量を検出することによって、検出した粘性流体の流量から支持軸に対する回転体の振動を演算することができるが、回転体の内周面と支持軸との摺接面の粘性流体の流量を直接検出することは困難である。
【0020】
そこで、回転体を軸支する支持軸に流量センサを内設するとともに、回転体の回転方向上流側から内設した流量センサを経由して回転体の回転方向下流側へ粘性流体が流れる流量検出用流路を支持軸に形成する。つまり、回転体の回転方向へ流れる粘性流体の流路から分岐した流路を支持軸の中に形成して、その流路の流量を支持軸に内設した流量センサで検出する。回転体の回転方向に流れる粘性流体は、支持軸に内設されている流量センサを経由する流量検出用流路にも回転体の回転方向に流れることになるので、回転体の回転方向に流れる粘性流体の流量を間接的に検出することができる。この流量検出用流路は、回転体の内周面と支持軸との摺接面に極めて近い位置に形成することが可能であり、回転体の振動によって回転体内周面の粘性流体の流量が変化すれば、支持軸の内部に分岐して設けた流量検出用流路の流量もそれに応じて変化する。したがって、極めて高い精度で回転体の内周面と支持軸との摺接面に充填されている粘性流体の流量を検出することができ、それによって、支持軸に対する回転体の振動を高い精度で演算して求めることが可能になる。また、回転体の内周面が摺接する支持軸の摺接面に小型の流量センサを内設し、その摺接面から流量センサまでの流量検出用流路を構成するだけなので、回転体の振動を検出する振動検出装置を低コストで極めてコンパクトに構成することができる。
【0021】
これにより本願請求項5に記載の発明に係る振動検出装置によれば、低コストで極めてコンパクトな構成で、回転体の振動によって生じる回転体内周面の粘性流体の流量変化を高い精度で検出することができるので、回転駆動機構の回転部分の振動を検出する振動検出装置を安価で小型に構成することができ、かつ高い精度で回転駆動機構の回転部分の振動を検出することが可能になるという作用効果が得られる。
【0022】
本願請求項6に記載の発明は、請求項5において、前記演算手段は、前記回転体の回転速度に対する前記流量検出用流路の前記粘性流体の流量変動から前記支持軸に対する前記回転体の振動を演算する、ことを特徴とした振動検出装置である。
【0023】
前述したように、支持軸に対する回転体の振動が生じると回転体の内周面と支持軸との摺接面に充填されている粘性流体の流量が変化する。そのため、支持軸に対する回転体の振動が生じると回転体の内周面と支持軸との摺接面に充填されている粘性流体の流量変動が生じ、それに応じて流量検出用流路の粘性流体の流量変動が生じる。したがって、流量検出用流路の粘性流体の流量変動を検出することによって、流量検出用流路の粘性流体の流量変動から回転体の振動を演算することができる。
【0024】
本願請求項7に記載の発明は、回転駆動力が伝達されて回転する回転体の内周面に摺接した状態で前記回転体を軸支する支持軸を備えた前記回転体の支持装置において、前記回転体の振動を検出する振動検出装置であって、前記回転体の内周面と前記支持軸との間に生じる圧力を検出する圧力検出手段と、該圧力検出手段にて検出した圧力から前記支持軸に対する前記回転体の振動を演算する演算手段とを有し、前記圧力検出手段は、前記支持軸に内設された圧力センサと、前記支持軸の前記摺接面と前記圧力センサとの間を連通させる圧力検出用連通路とを有している、ことを特徴とした振動検出装置である。
【0025】
回転駆動力が伝達されて回転する回転体の内周面に摺接した状態で回転体を軸支する支持軸を備えた回転体の支持装置は、回転体の内周面と支持軸との摺接面に摩擦抵抗を低減させる潤滑油等の潤滑材が充填されている。そして、支持軸に対して回転体が振動すると、その振動に応じて回転体の内周面から潤滑材を介して支持軸に作用する圧力に変化が生じる。したがって、この回転体の内周面と支持軸との間の圧力の変化を検出することによって、検出した圧力の変化から支持軸に対する回転体の振動を演算することができるが、回転体の内周面と支持軸との間の圧力を直接検出することは困難である。
【0026】
そこで、回転体を軸支する支持軸に圧力センサを内設するとともに、支持軸の摺接面と圧力センサとの間を連通させる圧力検出用連通路を支持軸に形成する。つまり、回転体の内周面と支持軸との間の潤滑材を支持軸に内設した圧力センサまで連通させ、潤滑材を介して回転体から支持軸に作用する圧力の変化を支持軸に内設した圧力センサで検出する。この圧力検出用連通路は、回転体の内周面と支持軸との摺接面に極めて近い位置に形成することが可能であり、回転体の振動によって回転体内周面の潤滑材の圧力が変化すれば、支持軸に形成した圧力検出用連通路内の潤滑材の圧力もそれに応じて変化する。したがって、極めて高い精度で回転体の内周面と支持軸との摺接面に充填されている潤滑材の圧力を検出することができ、それによって、支持軸に対する回転体の振動を高い精度で演算して求めることが可能になる。また、回転体の内周面が摺接する支持軸の摺接面に小型の圧力センサを内設し、その摺接面から圧力センサまでの圧力検出用連通路を構成するだけなので、回転体の振動を検出する振動検出装置を低コストで極めてコンパクトに構成することができる。
【0027】
これにより本願請求項7に記載の発明に係る振動検出装置によれば、低コストで極めてコンパクトな構成で、回転体の振動によって生じる回転体内周面の潤滑材の圧力変化を高い精度で検出することができるので、回転駆動機構の回転部分の振動を検出する振動検出装置を安価で小型に構成することができ、かつ高い精度で回転駆動機構の回転部分の振動を検出することが可能になるという作用効果が得られる。
【0028】
本願請求項8に記載の発明は、請求項7において、前記演算手段は、前記回転体の回転速度に対する前記回転体の内周面と前記支持軸との間の圧力変動から前記支持軸に対する前記回転体の振動を演算する、ことを特徴とした振動検出装置である。
【0029】
前述したように、支持軸に対する回転体の振動が生じると回転体の内周面から潤滑材を介して支持軸に作用する圧力が変化する。そのため、支持軸に対する回転体の振動が生じると回転体の内周面と支持軸との間に充填されている潤滑材に圧力変動が生じ、それに応じて圧力検出用連通路内の粘性流体の圧力変動が生じる。したがって、圧力検出用連通路内の潤滑材の圧力変動を検出することによって、圧力検出用連通路の潤滑材の圧力変動から回転体の振動を演算することができる。
【0030】
【発明の実施の形態】
以下、本願発明の実施の形態を図面に基づいて説明する。
図1は、本願発明の第1実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。図2は、その回転軸の軸受装置の振動検出装置近傍を拡大して示した断面図である。
【0031】
回転軸の軸受装置100は、回転軸1の外周面11が軸受体2の内周面21に摺接した状態で回転軸1が軸受体2に回転可能に軸受されている。回転軸1の外周面11と軸受体2の内周面21との間の摺接面には、潤滑油8が充填されている。軸受体2の内周面21には、凹部22が形成されており、凹部22には、本願発明に係る振動検出装置3が配設されている。当該実施例における振動検出装置3は、凹部22に配設されたセンサチップ31と、回転軸1の回転方向Aに流れる潤滑油8の一部をセンサチップ31の上流側からセンサチップ31を経由してセンサチップ31の下流側へ流す「流量検出用流路」が形成された軟質材料32と、センサチップ31が検出した潤滑油8の流量を入力して、その流量から回転軸1の振動を演算する演算部10とを備えている。
【0032】
センサチップ31は、流量を検出する潤滑油8が流れる流路311と、流路311に流れる潤滑油8の流量を検出する流量センサ312とを有しており、外部電源9から電源を供給されて動作する。センサチップ31は、流量の計測にともなう圧力損失がほとんど無いものが好ましく、当該実施例においてセンサチップ31は、公知のMEMS(Micro・Electro・Mechanical・System)技術で半導体化した数mm角程度の大きさの熱式MEMSフローセンサである。熱式MEMSフローセンサは、可動部が無く信頼性が高いうえに、非常に小型であるため熱容量が小さく高感度で消費電力が少ないというメリットがあり、半導体プロセスで製造するため量産性にも優れている。
【0033】
軟質材料32には、センサチップ31の上流側とセンサチップ31の流路311とを連通させて、回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aへ流れる潤滑油8をセンサチップ31の流路311へ流入させる流入流路32a、及びセンサチップ31の流路311とセンサチップ31の下流側とを連通させて、流路311に流入した潤滑油8を回転軸1の外周面11と軸受体2の内周面21との間のセンサチップ31の下流側へ流出させる流出流路32bが形成されている。振動検出装置3は、回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aに流れる潤滑油8の一部が、図示の如く流入流路32aから流量センサ312を経由して流出流路32bへ流れるようになっている。軟質材料32は、軸受体2より硬度の低い又は同じ硬度の材料であり、回転軸1の外周面11と摺接することによって摩耗していくが、軸荷重の大部分を受け持つ軸受体2の内周面21が摩耗する速度に応じて軟質材料32が摩耗していくので、軟質材料32が軸受体2の内周面21から突出して回転軸1に当接して回転軸1を傷めてしまうことがない。
【0034】
回転軸1の外周面11と軸受体2の内周面21との間のわずかな隙間の間隔は、回転軸1が振動することによって回転軸1が移動すると、移動方向側で狭くなり、移動方向と反対方向側で広くなる。それによって、回転軸1の回転方向Aに流れる潤滑油8の流量は、回転軸1の外周面11と軸受体2の内周面21との間隔が狭くなった場合と広くなった場合とで変化が生じることになる。したがって、回転軸1の振動によって生じる潤滑油8の流量の変化を流量センサ312で検出し、その潤滑油8の流量の変化から回転軸1の振動を演算部10で演算して求めることができる。
【0035】
このように、凹部22に配設されたセンサチップ31と、回転軸1の回転方向Aに流れる潤滑油8の一部をセンサチップ31の上流側からセンサチップ31を経由してセンサチップ31の下流側へ流す「流量検出用流路」が形成された軟質材料32と、センサチップ31が検出した潤滑油8の流量を入力して、その流量から回転軸1の振動を演算する演算部10とで構成された振動検出装置3は、低コストで極めてコンパクトな構成で、回転軸1の振動によって生じる潤滑油8の流量変化を高い精度で検出することができるので、軸受体2に対する回転軸1の振動を検出する振動検出装置3を安価で小型に構成することができ、かつ高い精度で軸受体2に対する回転軸1の振動を検出することが可能になる。
【0036】
図3は、本願発明の第2実施例を示したものであり、本願発明に係る回転軸の軸受装置100の断面図である。
【0037】
当該実施例は、前述した第1実施例に加えて、回転軸1の外周面11に沿って振動検出装置3を軸受体2の内周面21に等間隔に6個配設したものである。このように、複数の振動検出装置3を軸受体2の内周面21に等間隔に配設し、各振動検出装置3にて検出した潤滑油8の流量の変化から回転軸1の振動を演算することによって、より高い精度で回転軸1の振動を検出することが可能になり、より好ましい態様であると言える。
【0038】
図4は、本願発明の第3実施例を示したものであり、回転軸の軸受装置100の振動検出装置3近傍を拡大して示した断面図である。
【0039】
当該実施例は、前述した第1実施例又は第2実施例において、振動検出装置3を潤滑油8の圧力の変化を検出して回転軸1の振動を演算するものとしたものである。当該実施例において、振動検出装置3は、前述した公知のMEMS技術で半導体化したセンサチップ33を備えており、センサチップ33は、潤滑油8の圧力を検出する圧力センサ332を有している。また、軟質材料32には、回転軸1の外周面11と軸受体2の内周面21との間に充填されている潤滑油8を圧力センサ332が配置されている凹部331へ連通させる「圧力検出用連通路」としての連通路32cが形成されている。演算部10は、圧力センサ332が検出した潤滑油8の圧力の変化から回転軸1の振動を演算して求める。尚、その他の構成は、前述した第1実施例又は第2実施例における振動検出装置3と同様なので説明は省略する。
【0040】
回転軸1の外周面11と軸受体2の内周面21との間のわずかな隙間の間隔は、回転軸1が振動することによって回転軸1が移動すると、移動方向側で狭くなり、移動方向と反対方向側で広くなる。それによって、回転軸1の外周面11と軸受体2の内周面21との間の潤滑油8に作用する圧力は、回転軸1の外周面11と軸受体2の内周面21との間隔が狭くなった場合と広くなった場合とで変化が生じることになる。したがって、回転軸1の振動によって生じる潤滑油8の圧力の変化を圧力センサ332で検出し、その潤滑油8の圧力の変化から回転軸1の振動を演算部10で演算して求めることができる。
【0041】
図5は、本願発明の第4実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。図6は、その回転体の支持装置の振動検出装置近傍を拡大して示した断面図である。
【0042】
回転体の支持装置200は、回転体4の内周面41が支持軸5の外周面51に摺接した状態で回転体4が支持軸5に回転可能に軸支されている。回転体4の内周面41と支持軸5の外周面51との間の摺接面には、潤滑油8が充填されている。支持軸5の外周面51には、凹部52が形成されており、凹部52には、本願発明に係る振動検出装置3が配設されている。当該実施例における振動検出装置3は、前述した第1実施例又は第2実施例に示した振動検出装置3と同じ構成を成しており、凹部52に配設されたセンサチップ31と、回転体4の回転方向Aに流れる潤滑油8の一部をセンサチップ31の上流側からセンサチップ31を経由してセンサチップ31の下流側へ流す「流量検出用流路」が形成された軟質材料32と、センサチップ31が検出した潤滑油8の流量を入力して、その流量から回転体4の振動を演算する演算部10とを備えている。センサチップ31は、同様にMEMS技術で半導体化した熱式MEMSフローセンサである。
【0043】
軟質材料32には、センサチップ31の上流側とセンサチップ31の流路311とを連通させて、回転体4の内周面41と支持軸5の外周面51との間を回転方向Aへ流れる潤滑油8をセンサチップ31の流路311へ流入させる流入流路32a、及びセンサチップ31の流路311とセンサチップ31の下流側とを連通させて、流路311に流入した潤滑油8を回転体4の内周面41と支持軸5の外周面51との間のセンサチップ31の下流側へ流出させる流出流路32bが形成されている。振動検出装置3は、回転体4の内周面41と支持軸5の外周面51との間を回転方向Aに流れる潤滑油8の一部が、図示の如く流入流路32aから流量センサ312を経由して流出流路32bへ流れるようになっている。軟質材料32は、支持軸5より硬度の低い又は同じ硬度の材料であり、回転体4の内周面41と摺接することによって摩耗していくが、荷重の大部分を受け持つ支持軸5の外周面51が摩耗する速度に応じて軟質材料32が摩耗していくので、軟質材料32が支持軸5の外周面51から突出して回転体4の内周面41に当接して回転体4を傷めてしまうことがない。
【0044】
回転体4の内周面41と支持軸5の外周面51との間のわずかな隙間の間隔は、回転体4が振動することによって回転体4が移動すると、移動方向側で狭くなり、移動方向と反対方向側で広くなる。それによって、回転体4の回転方向Aに流れる潤滑油8の流量は、回転体4の内周面41と支持軸5の外周面51との間隔が狭くなった場合と広くなった場合とで変化が生じることになる。したがって、回転体4の振動によって生じる潤滑油8の流量の変化を流量センサ312で検出し、その潤滑油8の流量の変化から回転体4の振動を演算部10で演算して求めることができる。
【0045】
このように、凹部52に配設されたセンサチップ31と、回転体4の回転方向Aに流れる潤滑油8の一部をセンサチップ31の上流側からセンサチップ31を経由してセンサチップ31の下流側へ流す「流量検出用流路」が形成された軟質材料32と、センサチップ31が検出した潤滑油8の流量を入力して、その流量から回転体4の振動を演算する演算部10とで構成された振動検出装置3は、低コストで極めてコンパクトな構成で、回転体4の振動によって生じる潤滑油8の流量変化を高い精度で検出することができるので、支持軸5に対する回転体4の振動を検出する振動検出装置3を安価で小型に構成することができ、かつ高い精度で支持軸5に対する回転体4の振動を検出することが可能になる。
【0046】
図7は、本願発明の第5実施例を示したものであり、本願発明に係る回転体の支持装置200の断面図である。
【0047】
当該実施例は、前述した第4実施例に加えて、回転体4の内周面41に沿って振動検出装置3を支持軸5の外周面51に等間隔に6個配設したものである。このように、複数の振動検出装置3を支持軸5の外周面51に等間隔に配設し、各振動検出装置3にて検出した潤滑油8の流量の変化から回転体4の振動を演算することによって、より高い精度で回転体4の振動を検出することが可能になり、より好ましい態様であると言える。
【0048】
図8は、本願発明の第6実施例を示したものであり、回転体の支持装置200の振動検出装置3近傍を拡大して示した断面図である。
【0049】
当該実施例は、前述した第4実施例又は第5実施例において、振動検出装置3を潤滑油8の圧力の変化を検出して回転体4の振動を演算するものとしたものである。当該実施例において、振動検出装置3は、前述した第3実施例に示した振動検出装置3と同じ構成を成しており、説明は省略する。回転体4の内周面41と支持軸5の外周面51との間のわずかな隙間の間隔は、回転体4が振動することによって回転体4が移動すると、移動方向側で狭くなり、移動方向と反対方向側で広くなる。それによって、回転体4の内周面41と支持軸5の外周面51との間の潤滑油8に作用する圧力は、回転体4の内周面41と支持軸5の外周面51との間隔が狭くなった場合と広くなった場合とで変化が生じることになる。したがって、回転体4の振動によって生じる潤滑油8の圧力の変化を圧力センサ332で検出し、その潤滑油8の圧力の変化から回転体4の振動を演算部10で演算して求めることができる。
【0050】
図9は、本願発明の第7実施例を示したものであり、本願発明に係る回転軸の軸受装置100の断面図である。図10は、その回転軸の軸受装置100の温度検出装置近傍を拡大して示した断面図である。
【0051】
回転軸の軸受装置100は、回転軸1の外周面11が軸受体2の内周面21に摺接した状態で回転軸1が軸受体2に回転可能に軸受されている。回転軸1の外周面11と軸受体2の内周面21との間の摺接面には、潤滑油8が充填されている。軸受体2の内周面21には、凹部22が形成されており、凹部22には、本願発明に係る温度検出装置6が配設されている。当該実施例における温度検出装置6は、凹部22に配設された前述した公知のMEMS技術で半導体化したセンサチップ61と、回転軸1の回転方向Aに流れる潤滑油8の一部をセンサチップ61の上流側からセンサチップ61を経由してセンサチップ61の下流側へ流す「温度検出用連通路」が形成された軟質材料32と、センサチップ61が検出した潤滑油8の温度を入力して、その温度から回転軸1又は軸受体2に異常が発生しているか否かを判定する演算部10とを備えている。センサチップ61は、温度を検出する潤滑油8が流れる流路611と、流路611に流れる潤滑油8の温度を検出する温度センサ612とを有しており、外部電源9から電源を供給されて動作する。
【0052】
軟質材料32には、前述した第1実施例と同様に、センサチップ61の上流側とセンサチップ61の流路611とを連通させて、回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aへ流れる潤滑油8をセンサチップ61の流路611へ流入させる流入流路32a、及びセンサチップ61の流路611とセンサチップ61の下流側とを連通させて、流路611に流入した潤滑油8を回転軸1の外周面11と軸受体2の内周面21との間のセンサチップ61の下流側へ流出させる流出流路32bが形成されている。温度検出装置6は、回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aに流れる潤滑油8の一部が、図示の如く流入流路32aから温度センサ612を経由して流出流路32bへ流れるようになっている。潤滑油8の一部が回転軸1の外周面11と軸受体2の内周面21との間から温度センサ612流れる構成であることによって、回転軸1の外周面11と軸受体2の内周面21との間の潤滑材8の温度変化が温度センサ612へより伝達しやすくなり、温度センサ612による温度検出精度をさらに向上させることができる。
【0053】
軟質材料32は、前述した第1実施例と同様に、軸受体2より硬度の低い又は同じ硬度の材料であり、回転軸1の外周面11と摺接することによって摩耗していくが、軸荷重の大部分を受け持つ軸受体2の内周面21が摩耗する速度に応じて軟質材料32が摩耗していくので、軟質材料32が軸受体2の内周面21から突出して回転軸1に当接して回転軸1を傷めてしまうことがない。回転軸1の外周面11と軸受体2の内周面21との間を回転方向Aへ流れる潤滑油8の温度を「温度検出用連通路」としての流入流路32a及び流出流路32bを介して温度センサ612で検出し、演算部10は、潤滑油8の温度が一定の温度を超えた場合に回転軸1又は軸受体2に何らかの異常が発生したと判定する。
【0054】
このように、凹部22に配設されたセンサチップ61と、回転軸1の回転方向Aに流れる潤滑油8の一部をセンサチップ61の上流側からセンサチップ61を経由してセンサチップ61の下流側へ流す「温度検出用連通路」が形成された軟質材料32と、センサチップ61が検出した潤滑油8の温度を入力して、その温度が一定の温度を超えた場合に異常が発生したと判定する演算部10とで構成された温度検出装置6は、低コストで極めてコンパクトな構成で、回転軸1又は軸受体2に何らかの異常が発生した場合に生じる潤滑油8の温度上昇を高い精度で検出することができる。したがって、温度検出装置6を安価で小型に構成することができ、かつ高い精度で回転軸1又は軸受体2に異常が発生したことを検出することが可能になる。尚、さらには、温度検出装置6を回転軸1の軸方向に複数並べて軸受体2の内周面21に配設すれば、回転軸1の外周面の略全域にわたって温度上昇を検出することができ、より好ましいと言える。
【0055】
図11は、本願発明の第8実施例を示したものであり、本願発明に係る回転体の支持装置200の断面図である。
【0056】
回転体の支持装置200は、回転体4の内周面41が支持軸5の外周面51に摺接した状態で回転体4が支持軸5に回転可能に軸支されている。回転体4の内周面41と支持軸5の外周面51との間の摺接面には、潤滑油8が充填されている。支持軸5の外周面51には、凹部52が形成されており、凹部52には、本願発明に係る温度検出装置6が配設されている。当該実施例における温度検出装置6は、前述した第7実施例に示した回転軸の軸受装置100の軸受体2に配設されている温度検出装置3と同じものであり、説明は省略する。
【0057】
このように、回転体の支持装置200においては、支持軸5の外周面に温度検出装置6を配設することによって、前述した第7実施例に示した回転軸の軸受装置100と同様に、低コストで極めてコンパクトな構成で、回転体4又は支持軸5に何らかの異常が発生した場合に生じる潤滑油8の温度上昇を高い精度で検出することができる。したがって、温度検出装置6を安価で小型に構成することができ、かつ高い精度で回転体の支持装置200に異常が発生したことを検出することが可能になる。尚、さらには、温度検出装置6を回転体4の回転軸方向に複数並べて支持軸5の外周面51に配設すれば、回転軸1の外周面の略全域にわたって温度上昇を検出することができ、より好ましいと言える。
【0058】
図12は、本願発明の第9実施例を示したものであり、回転体の支持装置200の温度検出装置6近傍を拡大して示した断面図である。
【0059】
当該実施例における温度検出装置6は、前述した第7実施例に示した回転軸の軸受装置100、又は第8実施例に示した回転体の支持装置200おける温度検出装置6とは、軟質材料62に形成された「温度検出用連通路」が異なっている以外は同じ構成であり、「温度検出用連通路」は、図示の如く潤滑油8が温度センサ612に流れる流路を構成していない態様となっている。当該実施例において軟質材料62には、回転体4の内周面41と支持軸5の外周面51との間から温度センサ612へ潤滑油8を連通させるだけの連通路62cが形成されている。回転体4の内周面41と支持軸5の外周面51との間の潤滑油8の温度が上昇すると、連通路62cの潤滑油8の温度も上昇し、センサチップ61の凹部611に充填された潤滑油8の温度も上昇して温度センサ612で潤滑油8の温度上昇を検出することができる。このように、回転体4の内周面41と支持軸5の外周面51との間から温度センサ612へ潤滑油8を連通させるだけでも潤滑油8の温度検出は可能であり、前述した第7実施例又は第8実施例と略同じ効果を得ることができる。
【0060】
図13は、本願発明の第10実施例を示したものであり、本願発明に係る回転軸の軸受装置100の断面図である。図14は、その回転軸の軸受装置100の温度検出装置近傍を拡大して示した断面図である。
【0061】
当該実施例は、回転軸1の外周面11に沿って、振動検出装置3を4個と温度検出装置7を2個とを軸受体2の内周面21に等間隔に配設した回転軸の軸受装置100である。振動検出装置3は、前述した第1実施例〜第3実施例に示した振動検出装置3と同じなので説明は省略する。温度検出装置7は、前述した公知のMEMS技術で半導体化したセンサチップ71を備えており、センサチップ71は、潤滑油8の温度を検出する温度センサ612と潤滑油8の圧力を検出する圧力センサ332とを有している。また、軟質材料72には、回転軸1の外周面11と軸受体2の内周面21との間に充填されている潤滑油8を温度センサ612及び圧力センサ332が配置されている凹部711へ連通させる「圧力検出用連通路」としての連通路72cが形成されている。演算部10は、温度センサ612が検出した潤滑油8の温度が一定の温度を超えた場合に回転軸1又は軸受体2に何らかの異常が発生したと判定するとともに、圧力センサ332が検出した潤滑油8の圧力の変化から回転軸1の振動を演算して求める。このように、振動検出装置3と温度検出装置7とを軸受体2の内周面21に配設することによって、回転軸の軸受装置100において、軸受体2に対する回転軸1の振動の検出と、潤滑油8の温度検出とを両方行うことができる。
【0062】
図15は、本願発明の第11実施例を示したものであり、本願発明に係る回転体の支持装置200の断面図である。
【0063】
当該実施例は、回転体4の内周面41に沿って、振動検出装置3を4個と温度検出装置7を2個とを支持軸5の外周面51に等間隔に配設した回転体の支持装置200である。振動検出装置3は、前述した第1実施例〜第3実施例に示した振動検出装置3と同じであり、温度検出装置7は、前述した第10実施例に示した温度検出装置7と同じでなので説明は省略する。
【0064】
このように、振動検出装置3と温度検出装置7とを支持軸5の外周面51に配設することによって、回転体の支持装置200において、支持軸5に対する回転体4の振動の検出と、潤滑油8の温度検出とを両方行うことができる。
【0065】
図16は、本願発明の第12実施例を示したものであり、回転体の支持装置200の温度検出装置6近傍を拡大して示した断面図である。
【0066】
当該実施例における温度検出装置6は、凹部52に配設された前述した公知のMEMS技術で半導体化したセンサチップ61を備えており、センサチップ61は、潤滑油8の温度を検出する温度センサ612、潤滑油8の圧力を検出する圧力センサ332、及び潤滑油8の流量を検出する流量センサ312を有している。また、軟質材料62には、センサチップ61の上流側とセンサチップ61の流路611とを連通させて、回転体4の内周面41と支持軸5の外周面51との間を回転方向Aへ流れる潤滑油8をセンサチップ61の流路611へ流入させる流入流路62a、及びセンサチップ61の流路611とセンサチップ61の下流側とを連通させて、流路611に流入した潤滑油8を回転体4の内周面41と支持軸5の外周面51との間のセンサチップ61の下流側へ流出させる流出流路62bが形成されている。温度検出装置6は、回転体4の内周面41と支持軸5の外周面51との間を回転方向Aに流れる潤滑油8の一部が、図示の如く流入流路62aから温度センサ612、圧力センサ332、及び流量センサ312を経由して流出流路62bへ流れるようになっている。演算部10は、温度センサ612が検出した潤滑油8の温度が一定の温度を超えた場合に回転軸1又は軸受体2に何らかの異常が発生したと判定するとともに、圧力センサ332が検出した潤滑油8の圧力の変化から回転軸1の振動を演算して求める。
【0067】
このように、センサチップ61に温度センサ612、圧力センサ332、及び流量センサ312を設けることによって、1つのセンサチップ61で潤滑油8の温度、圧力、及び流量を全て検出することが可能になり、支持軸5に対する回転体4の振動の検出と、潤滑油8の温度検出とを両方行うことをより低コストに行うことができる。
【0068】
尚、本願発明は上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本願発明の範囲内に含まれるものであることは言うまでもない。
【0069】
【発明の効果】
本願発明によれば、安価で小型であり、かつ高い精度で回転駆動機構の回転部分の振動を検出することが可能な振動検出装置を提供することができる。
【図面の簡単な説明】
【図1】本願発明の第1実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。
【図2】本願発明の第1実施例を示したものであり、本願発明に係る回転軸の軸受装置の振動検出装置近傍を拡大して示した断面図である。
【図3】本願発明の第2実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。
【図4】本願発明の第3実施例を示したものであり、回転軸の軸受装置の振動検出装置近傍を拡大して示した断面図である。
【図5】本願発明の第4実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。
【図6】本願発明の第4実施例を示したものであり、本願発明に係る回転体の支持装置の振動検出装置近傍を拡大して示した断面図である。
【図7】本願発明の第5実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。
【図8】本願発明の第6実施例を示したものであり、回転体の支持装置の振動検出装置近傍を拡大して示した断面図である。
【図9】本願発明の第7実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。
【図10】本願発明の第7実施例を示したものであり、本願発明に係る回転軸の軸受装置の温度検出装置近傍を拡大して示した断面図である。
【図11】本願発明の第8実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。
【図12】本願発明の第9実施例を示したものであり、回転体の支持装置の温度検出装置近傍を拡大して示した断面図である。
【図13】本願発明の第10実施例を示したものであり、本願発明に係る回転軸の軸受装置の断面図である。
【図14】本願発明の第10実施例を示したものであり、本願発明に係る回転軸の軸受装置の温度検出装置近傍を拡大して示した断面図である。
【図15】本願発明の第11実施例を示したものであり、本願発明に係る回転体の支持装置の断面図である。
【図16】本願発明の第12実施例を示したものであり、回転体の支持装置の温度検出装置近傍を拡大して示した断面図である。
【符号の説明】
1 回転軸
2 軸受体
3 振動検出装置
4 回転体
5 支持軸
6、7 温度検出装置
8 潤滑油
10 演算部
31、33、61、71 センサチップ
32、62、72 軟質材料
32a、32b、32c 流路
100 回転体の軸受装置
200 回転軸の支持装置
312 流量センサ
332 圧力センサ
612 温度センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vibration detection device that detects vibration of a rotating shaft or a rotating body in a rotating shaft bearing device that supports the rotating shaft or a rotating body supporting device that supports the rotating body.
[0002]
[Prior art]
2. Description of the Related Art In an apparatus including a drive rotation mechanism such as an internal combustion engine, when some abnormality occurs in the apparatus, abnormal vibration often occurs in a rotating portion of the drive rotation mechanism. Therefore, by detecting the vibration of the rotating portion of the drive rotation mechanism, it is possible to detect whether or not any abnormality such as a failure has occurred in the drive rotation mechanism, and to easily identify the cause of the abnormality. Can be. A technique for detecting vibration generated in a rotating portion of a drive rotation mechanism for such a purpose is known, and examples thereof include a technique for detecting vibration of a rotating shaft with a measuring device such as an eddy current type displacement meter (for example, Patent Reference 1 or Patent Document 2).
[0003]
[Patent Document 1]
JP-A-7-35890
[Patent Document 2]
JP-A-7-181076
[0004]
[Problems to be solved by the invention]
However, for example, a detection device that detects vibration of a rotating shaft using an eddy current type displacement meter disclosed in Patent Document 1 or Patent Document 2 has a problem that it is large and expensive. In addition, it is necessary to accurately arrange the measuring device with respect to the rotating part for detecting vibration, and there is a possibility that the detection accuracy may be significantly reduced if the position is shifted.
[0005]
The present invention has been made in view of such a situation, and an object of the present invention is to provide a vibration detection device that is inexpensive, small, and capable of detecting vibration of a rotating portion of a rotary drive mechanism with high accuracy. To provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present application is directed to a rotating device having a bearing body that bears the rotary shaft in a state in which the rotary driving force is transmitted and slidably contacts an outer peripheral surface of the rotary shaft. In a bearing device for a shaft, a vibration detecting device for detecting vibration of the rotating shaft, wherein a flow detecting means for detecting a flow rate of a viscous fluid filled in a sliding contact surface between an outer peripheral surface of the rotating shaft and the bearing body. And calculating means for calculating the vibration of the rotating shaft with respect to the bearing body from the flow rate of the viscous fluid in the rotation direction of the rotating shaft detected by the flow rate detecting means, wherein the flow rate detecting means is A flow sensor internally provided in the bearing body, formed between the sliding contact surface of the bearing body and the flow sensor, the rotation shaft of the rotation shaft passing through the flow sensor from the rotation direction upstream side of the rotation shaft. Flow of the viscous fluid flowing downstream in the rotation direction And a detection flow channel, it is a vibration detecting apparatus characterized.
[0007]
A bearing device for a rotating shaft provided with a bearing body that bears the rotating shaft in a state of sliding contact with the outer circumferential surface of the rotating shaft that is rotated by the rotation driving force is transmitted, the sliding contact surface between the outer circumferential surface of the rotating shaft and the bearing body. Is filled with a viscous fluid such as lubricating oil for reducing frictional resistance. When the rotating shaft rotates, the viscous fluid filling the sliding contact surface between the outer peripheral surface of the rotating shaft and the bearing body flows in the rotating direction of the rotating shaft according to the rotation of the rotating shaft. When the rotating shaft vibrates with respect to the bearing body, a change occurs in the flow rate of the viscous fluid flowing in the rotating direction of the rotating shaft according to the vibration. Therefore, by detecting the flow rate of the viscous fluid flowing in the rotation direction of the rotary shaft, the vibration of the rotary shaft with respect to the bearing can be calculated from the detected flow rate of the viscous fluid. It is difficult to directly detect the flow rate of the viscous fluid on the sliding contact surface.
[0008]
Therefore, a flow rate sensor is installed inside the bearing that bears the rotating shaft, and a flow rate sensor is used to detect the flow of viscous fluid from the upstream side in the rotating direction of the rotating shaft to the downstream side in the rotating direction of the rotating shaft via the built-in flow sensor. A flow path is formed in the bearing body. That is, a flow path branched from the flow path of the viscous fluid flowing in the rotation direction of the rotating shaft is formed in the bearing body, and the flow rate of the flow path is detected by a flow sensor provided in the bearing body. The viscous fluid flowing in the direction of rotation of the rotating shaft also flows in the direction of rotation of the rotating shaft in the direction of rotation of the rotating shaft because it also flows in the flow path for flow detection via the flow sensor provided inside the bearing body. The flow rate of the viscous fluid can be detected indirectly. This flow detection flow path can be formed at a position very close to the sliding surface between the outer peripheral surface of the rotating shaft and the bearing body, and the vibration of the rotating shaft changes the flow rate of the viscous fluid on the outer peripheral surface of the rotating shaft. Then, the flow rate of the flow detection flow path branched and provided inside the bearing body changes accordingly. Therefore, the flow rate of the viscous fluid filled in the sliding contact surface between the outer peripheral surface of the rotating shaft and the bearing can be detected with extremely high accuracy, whereby the vibration of the rotating shaft with respect to the bearing can be calculated with high accuracy. It is possible to ask for it. In addition, since a small flow sensor is provided inside the sliding surface of the bearing body where the outer peripheral surface of the rotating shaft slides, and only a flow detection flow path from the sliding surface to the flow sensor is formed, the vibration of the rotating shaft is reduced. Can be configured at a low cost and extremely compactly.
[0009]
Thus, according to the vibration detecting device according to the first aspect of the present invention, a change in the flow rate of the viscous fluid on the outer peripheral surface of the rotating shaft caused by the vibration of the rotating shaft is detected with high accuracy with a low cost and extremely compact configuration. Therefore, the vibration detecting device for detecting the vibration of the rotating portion of the rotary drive mechanism can be configured inexpensively and compactly, and the vibration of the rotary portion of the rotary drive mechanism can be detected with high accuracy. The operation and effect are obtained.
[0010]
According to a second aspect of the present invention, in the first aspect, the calculation means is configured to oscillate the rotation shaft with respect to the bearing body based on a variation in the flow rate of the viscous fluid in the flow rate detection flow path with respect to the rotation speed of the rotation shaft. Is calculated.
[0011]
As described above, when the vibration of the rotating shaft with respect to the bearing body occurs, the flow rate of the viscous fluid filled in the sliding contact surface between the outer peripheral surface of the rotating shaft and the bearing body changes. Therefore, when the vibration of the rotating shaft with respect to the bearing body occurs, the flow rate of the viscous fluid filled in the sliding contact surface between the outer peripheral surface of the rotating shaft and the bearing body occurs, and the viscous fluid in the flow path for flow detection accordingly responds. Flow rate fluctuation occurs. Therefore, by detecting the variation in the flow rate of the viscous fluid in the flow path for flow detection, the vibration of the rotating shaft can be calculated from the variation in the flow rate of the viscous fluid in the flow path for flow detection.
[0012]
The invention according to claim 3 of the present application is directed to a bearing device for a rotating shaft including a bearing body that bears the rotating shaft in a state of being in sliding contact with an outer peripheral surface of the rotating shaft that is rotated by transmitting a rotational driving force. A vibration detection device for detecting vibration of a shaft, comprising: pressure detection means for detecting a pressure generated between an outer peripheral surface of the rotating shaft and the bearing body; and a bearing body based on the pressure detected by the pressure detection means. Calculating means for calculating the vibration of the rotating shaft with respect to the pressure sensor, wherein the pressure detecting means is provided between the pressure sensor provided inside the bearing body, and the sliding contact surface of the bearing body and the pressure sensor. A communication path for pressure detection to be communicated with the vibration detection apparatus.
[0013]
A bearing device for a rotating shaft provided with a bearing body that bears the rotating shaft in a state of sliding contact with the outer circumferential surface of the rotating shaft that is rotated by the rotation driving force is transmitted, the sliding contact surface between the outer circumferential surface of the rotating shaft and the bearing body. Is filled with a lubricant such as a lubricating oil for reducing frictional resistance. When the rotating shaft vibrates with respect to the bearing, the pressure acting on the bearing via the lubricant from the outer peripheral surface of the rotating shaft changes in accordance with the vibration. Therefore, by detecting a change in pressure between the outer peripheral surface of the rotary shaft and the bearing, vibration of the rotary shaft with respect to the bearing can be calculated from the detected change in pressure. It is difficult to directly detect the pressure between the bearing and the bearing body.
[0014]
In view of this, a pressure sensor is provided inside a bearing body that bears the rotating shaft, and a pressure detection communication path that connects the sliding surface of the bearing body and the pressure sensor is formed in the bearing body. In other words, the lubricant between the outer peripheral surface of the rotating shaft and the bearing body is communicated to the pressure sensor provided in the bearing body, and the change in pressure acting on the bearing body from the rotating shaft via the lubricant is applied to the bearing body. Detected by the installed pressure sensor. This pressure detecting communication passage can be formed at a position very close to the sliding surface between the outer peripheral surface of the rotating shaft and the bearing body, and the pressure of the lubricant on the outer peripheral surface of the rotating shaft changes due to the vibration of the rotating shaft. Then, the pressure of the lubricant in the pressure detecting communication passage formed in the bearing body changes accordingly. Therefore, it is possible to detect the pressure of the lubricant filled in the sliding contact surface between the outer peripheral surface of the rotating shaft and the bearing with extremely high accuracy, thereby calculating the vibration of the rotating shaft with respect to the bearing with high accuracy. It is possible to ask for it. In addition, a small pressure sensor is provided inside the sliding surface of the bearing body where the outer peripheral surface of the rotating shaft slides, and only a pressure detection communication path from the sliding surface to the pressure sensor is formed. Can be configured at a low cost and extremely compactly.
[0015]
Thus, according to the vibration detecting apparatus according to the third aspect of the present invention, the pressure change of the lubricant on the outer peripheral surface of the rotating shaft caused by the vibration of the rotating shaft is detected with high accuracy with a low cost and extremely compact configuration. Therefore, the vibration detecting device for detecting the vibration of the rotating portion of the rotary drive mechanism can be configured inexpensively and compactly, and the vibration of the rotary portion of the rotary drive mechanism can be detected with high accuracy. The operation and effect are obtained.
[0016]
According to a fourth aspect of the present invention, in the third aspect, the calculating means is configured to determine the rotation of the rotation member with respect to the bearing member based on a pressure variation between an outer peripheral surface of the rotation shaft and the bearing member with respect to a rotation speed of the rotation shaft. A vibration detecting device for calculating vibration of a shaft.
[0017]
As described above, when vibration of the rotating shaft with respect to the bearing body occurs, the pressure acting on the bearing body via the lubricant from the outer peripheral surface of the rotating shaft changes. Therefore, when vibration of the rotating shaft with respect to the bearing body occurs, pressure fluctuation occurs in the lubricant filled between the outer peripheral surface of the rotating shaft and the bearing body, and accordingly, the pressure of the viscous fluid in the pressure detecting communication passage increases. Fluctuations occur. Therefore, the vibration of the rotary shaft can be calculated from the pressure fluctuation of the lubricant in the pressure detection communication passage by detecting the pressure fluctuation of the lubricant in the pressure detection communication passage.
[0018]
The invention according to claim 5 of the present application is directed to a rotating body supporting device including a supporting shaft that supports the rotating body while slidingly contacting an inner peripheral surface of the rotating body that is rotated by transmitting a rotational driving force. A vibration detecting device for detecting vibration of the rotating body, a flow detecting means for detecting a flow rate of a viscous fluid filled in a sliding contact surface between an inner peripheral surface of the rotating body and the support shaft; Calculating means for calculating the vibration of the rotating body with respect to the support shaft from the flow rate of the viscous fluid in the rotation direction of the rotating body detected by the detecting means, wherein the flow rate detecting means has an internal A flow sensor provided, formed between the sliding contact surface of the support shaft and the flow sensor, downstream from the upstream in the rotation direction of the rotating body via the flow sensor in the rotation direction of the rotating body. And a flow detection flow path through which the viscous fluid flows. It is a vibration detecting apparatus characterized.
[0019]
A rotating body supporting device provided with a supporting shaft that supports the rotating body in a state in which the rotating driving force is transmitted and slidably contacts an inner circumferential surface of the rotating rotating body, the rotating body has an inner circumferential surface of the rotating body and the supporting shaft. The sliding contact surface is filled with a viscous fluid such as lubricating oil for reducing frictional resistance. When the rotating body rotates, the viscous fluid filling the sliding contact surface between the inner peripheral surface of the rotating body and the support shaft flows in the rotating direction of the rotating body according to the rotation of the rotating body. When the rotating body vibrates with respect to the support shaft, the flow rate of the viscous fluid flowing in the rotating direction of the rotating body changes in accordance with the vibration. Therefore, by detecting the flow rate of the viscous fluid flowing in the rotating direction of the rotating body, the vibration of the rotating body with respect to the support shaft can be calculated from the detected flow rate of the viscous fluid. It is difficult to directly detect the flow rate of the viscous fluid on the sliding surface with the shaft.
[0020]
Therefore, a flow sensor is provided inside the support shaft that supports the rotating body, and a flow rate detection is performed in which the viscous fluid flows from the upstream side in the rotating direction of the rotating body to the downstream side in the rotating direction of the rotating body via the built-in flow sensor. A flow channel is formed on the support shaft. That is, a flow path branched from the flow path of the viscous fluid flowing in the rotating direction of the rotating body is formed in the support shaft, and the flow rate of the flow path is detected by a flow sensor provided inside the support shaft. The viscous fluid flowing in the direction of rotation of the rotating body also flows in the direction of rotation of the rotating body because it also flows in the flow path for flow detection via the flow sensor provided inside the support shaft, and thus flows in the direction of rotation of the rotating body. The flow rate of the viscous fluid can be detected indirectly. This flow rate detection flow path can be formed at a position very close to the sliding surface between the inner peripheral surface of the rotating body and the support shaft, and the flow rate of the viscous fluid on the peripheral surface of the rotating body is reduced by the vibration of the rotating body. If the flow rate changes, the flow rate of the flow rate detection flow path branched and provided inside the support shaft also changes accordingly. Therefore, it is possible to detect the flow rate of the viscous fluid filled in the sliding surface between the inner peripheral surface of the rotating body and the support shaft with extremely high accuracy, and thereby, the vibration of the rotating body with respect to the support shaft can be detected with high accuracy. It can be obtained by calculation. In addition, a small flow sensor is provided inside the sliding surface of the support shaft where the inner peripheral surface of the rotating body slides, and only a flow detection flow path from the sliding surface to the flow sensor is formed. The vibration detection device for detecting vibration can be configured at low cost and extremely compactly.
[0021]
Thus, according to the vibration detecting device according to the fifth aspect of the present invention, the change in the flow rate of the viscous fluid on the peripheral surface of the rotating body caused by the vibration of the rotating body is detected with high accuracy with a low cost and extremely compact configuration. Therefore, the vibration detecting device for detecting the vibration of the rotating portion of the rotary drive mechanism can be configured inexpensively and compactly, and the vibration of the rotary portion of the rotary drive mechanism can be detected with high accuracy. The operation and effect are obtained.
[0022]
According to a sixth aspect of the present invention, in the fifth aspect, the calculation means is configured to oscillate the rotating body with respect to the support shaft based on a variation in the flow rate of the viscous fluid in the flow rate detection flow path with respect to a rotation speed of the rotating body. Is calculated.
[0023]
As described above, when the vibration of the rotating body with respect to the support shaft occurs, the flow rate of the viscous fluid filled in the sliding contact surface between the inner peripheral surface of the rotating body and the support shaft changes. Therefore, when vibration of the rotating body with respect to the support shaft occurs, the flow rate of the viscous fluid filled in the sliding contact surface between the inner peripheral surface of the rotating body and the support shaft occurs, and the viscous fluid in the flow path for flow detection correspondingly changes. Flow rate fluctuation occurs. Therefore, by detecting the fluctuation of the flow rate of the viscous fluid in the flow path for flow detection, the vibration of the rotating body can be calculated from the fluctuation of the flow rate of the viscous fluid in the flow path for flow detection.
[0024]
The invention according to claim 7 of the present application is directed to a rotating body supporting device including a supporting shaft that supports the rotating body while slidingly contacting an inner peripheral surface of the rotating body that is rotated by transmitting a rotational driving force. A vibration detecting device for detecting vibration of the rotating body, a pressure detecting means for detecting a pressure generated between an inner peripheral surface of the rotating body and the support shaft, and a pressure detected by the pressure detecting means. Calculating means for calculating the vibration of the rotating body with respect to the support shaft from the pressure sensor, wherein the pressure detecting means includes a pressure sensor provided inside the support shaft, the sliding contact surface of the support shaft, and the pressure sensor. And a communication path for pressure detection that communicates between the vibration detection device and the vibration detecting device.
[0025]
A rotating body supporting device provided with a supporting shaft that supports the rotating body in a state in which the rotating driving force is transmitted and slidably contacts an inner circumferential surface of the rotating rotating body, the rotating body has an inner circumferential surface of the rotating body and the supporting shaft. The sliding surface is filled with a lubricant such as a lubricating oil for reducing frictional resistance. When the rotating body vibrates with respect to the support shaft, the pressure acting on the support shaft via the lubricant from the inner peripheral surface of the rotating body changes in accordance with the vibration. Therefore, by detecting a change in pressure between the inner peripheral surface of the rotating body and the support shaft, the vibration of the rotating body with respect to the support shaft can be calculated from the detected change in pressure. It is difficult to directly detect the pressure between the peripheral surface and the support shaft.
[0026]
Therefore, a pressure sensor is provided inside the support shaft that supports the rotating body, and a pressure detection communication path that connects the sliding surface of the support shaft and the pressure sensor is formed in the support shaft. In other words, the lubricant between the inner peripheral surface of the rotating body and the support shaft is communicated to the pressure sensor provided inside the support shaft, and the change in pressure acting on the support shaft from the rotating body via the lubricant is applied to the support shaft. Detected by an internal pressure sensor. This pressure detection communication passage can be formed at a position very close to the sliding contact surface between the inner peripheral surface of the rotating body and the support shaft, and the pressure of the lubricant on the peripheral surface of the rotating body is reduced by the vibration of the rotating body. If it changes, the pressure of the lubricant in the pressure detection communication passage formed on the support shaft also changes accordingly. Therefore, it is possible to detect the pressure of the lubricant filled in the sliding contact surface between the inner peripheral surface of the rotating body and the support shaft with extremely high accuracy, and thereby, the vibration of the rotating body with respect to the support shaft can be detected with high accuracy. It can be obtained by calculation. In addition, a small pressure sensor is provided inside the sliding surface of the support shaft on which the inner peripheral surface of the rotating body slides, and only a pressure detection communication path from the sliding surface to the pressure sensor is formed. The vibration detection device for detecting vibration can be configured at low cost and extremely compactly.
[0027]
Thus, according to the vibration detecting apparatus of the invention described in claim 7 of the present application, the pressure change of the lubricant on the peripheral surface of the rotating body caused by the vibration of the rotating body is detected with high accuracy with a low cost and extremely compact configuration. Therefore, the vibration detecting device for detecting the vibration of the rotating portion of the rotary drive mechanism can be configured inexpensively and compactly, and the vibration of the rotary portion of the rotary drive mechanism can be detected with high accuracy. The operation and effect are obtained.
[0028]
The invention according to claim 8 of the present application is the invention according to claim 7, wherein the calculation means is configured to determine the rotation speed of the rotating body with respect to the rotation speed of the rotating body from the pressure change between the inner circumferential surface of the rotating body and the support shaft. A vibration detecting device for calculating vibration of a rotating body.
[0029]
As described above, when the rotating body vibrates with respect to the supporting shaft, the pressure acting on the supporting shaft from the inner peripheral surface of the rotating body via the lubricant changes. Therefore, when vibration of the rotating body with respect to the supporting shaft occurs, pressure fluctuation occurs in the lubricant filled between the inner peripheral surface of the rotating body and the supporting shaft, and the viscous fluid in the pressure detecting communication passage is accordingly changed. Pressure fluctuations occur. Therefore, by detecting the pressure fluctuation of the lubricant in the pressure detection communication passage, the vibration of the rotating body can be calculated from the pressure fluctuation of the lubricant in the pressure detection communication passage.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention and is a sectional view of a rotary shaft bearing device according to the present invention. FIG. 2 is an enlarged sectional view showing the vicinity of the vibration detecting device of the bearing device of the rotary shaft.
[0031]
In the bearing device 100 for a rotating shaft, the rotating shaft 1 is rotatably supported by the bearing body 2 in a state where the outer peripheral surface 11 of the rotating shaft 1 is in sliding contact with the inner peripheral surface 21 of the bearing body 2. The lubricating oil 8 is filled in a sliding contact surface between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2. A concave portion 22 is formed on the inner peripheral surface 21 of the bearing body 2, and the vibration detecting device 3 according to the present invention is disposed in the concave portion 22. The vibration detecting device 3 according to this embodiment includes a sensor chip 31 provided in the recess 22 and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1 from the upstream side of the sensor chip 31 via the sensor chip 31. The soft material 32 in which the “flow rate detection flow path” is formed to flow to the downstream side of the sensor chip 31 and the flow rate of the lubricating oil 8 detected by the sensor chip 31 are input, and the vibration of the rotary shaft 1 is calculated based on the flow rate. And a calculation unit 10 for calculating
[0032]
The sensor chip 31 has a flow path 311 through which the lubricating oil 8 that detects the flow rate flows, and a flow rate sensor 312 that detects the flow rate of the lubricating oil 8 flowing through the flow path 311. Work. It is preferable that the sensor chip 31 has almost no pressure loss due to the measurement of the flow rate. In this embodiment, the sensor chip 31 has a size of about several mm square made into a semiconductor by a known MEMS (Micro, Electro, Mechanical, System) technique. It is a thermal MEMS flow sensor of a size. Thermal MEMS flow sensors have the advantages of high reliability with no moving parts, very small size, low heat capacity, high sensitivity and low power consumption, and excellent mass productivity because they are manufactured in a semiconductor process. ing.
[0033]
The upstream side of the sensor chip 31 and the flow path 311 of the sensor chip 31 communicate with the soft material 32 so that the space between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is rotated in the rotation direction A. The inflow passage 32 a for flowing the flowing lubricating oil 8 into the flow passage 311 of the sensor chip 31, and the flow passage 311 of the sensor chip 31 and the downstream side of the sensor chip 31 communicate with each other, so that the lubricating oil 8 flowing into the flow passage 311 An outflow channel 32b is formed to allow the air to flow out of the sensor chip 31 between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2. The vibration detecting device 3 is configured such that a part of the lubricating oil 8 flowing in the rotation direction A between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is supplied from the inflow passage 32 a to the flow sensor 312 as shown in the figure. Through the outlet channel 32b. The soft material 32 is a material having a lower hardness or the same hardness as the bearing body 2, and is worn by sliding contact with the outer peripheral surface 11 of the rotating shaft 1. Since the soft material 32 wears according to the speed at which the peripheral surface 21 wears, the soft material 32 projects from the inner peripheral surface 21 of the bearing body 2 and abuts on the rotating shaft 1 to damage the rotating shaft 1. There is no.
[0034]
The small gap between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 becomes narrower in the moving direction side when the rotating shaft 1 moves due to the vibration of the rotating shaft 1 and moves. It becomes wider on the side opposite to the direction. As a result, the flow rate of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1 depends on whether the distance between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is small or wide. A change will occur. Therefore, a change in the flow rate of the lubricating oil 8 caused by the vibration of the rotating shaft 1 is detected by the flow rate sensor 312, and the vibration of the rotating shaft 1 can be calculated by the calculating unit 10 from the change in the flow rate of the lubricating oil 8. .
[0035]
In this way, the sensor chip 31 disposed in the recess 22 and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1 are transferred from the upstream side of the sensor chip 31 via the sensor chip 31 to the sensor chip 31. A calculation unit 10 that inputs a soft material 32 having a “flow rate detection flow path” flowing downstream and a flow rate of the lubricating oil 8 detected by the sensor chip 31 and calculates the vibration of the rotary shaft 1 from the flow rate. The vibration detecting device 3 configured as described above can detect a change in the flow rate of the lubricating oil 8 caused by the vibration of the rotating shaft 1 with high accuracy in a very low-cost and extremely compact configuration. The vibration detecting device 3 for detecting the vibration of the shaft 1 can be configured at a low cost and in a small size, and the vibration of the rotating shaft 1 with respect to the bearing body 2 can be detected with high accuracy.
[0036]
FIG. 3 shows a second embodiment of the present invention, and is a cross-sectional view of a rotary shaft bearing device 100 according to the present invention.
[0037]
In this embodiment, in addition to the first embodiment described above, six vibration detecting devices 3 are arranged at equal intervals on the inner peripheral surface 21 of the bearing body 2 along the outer peripheral surface 11 of the rotating shaft 1. . In this manner, the plurality of vibration detecting devices 3 are arranged at equal intervals on the inner peripheral surface 21 of the bearing body 2, and the vibration of the rotating shaft 1 is detected based on the change in the flow rate of the lubricating oil 8 detected by each vibration detecting device 3. The calculation makes it possible to detect the vibration of the rotating shaft 1 with higher accuracy, which is a more preferable embodiment.
[0038]
FIG. 4 shows a third embodiment of the present invention, and is an enlarged sectional view of the vicinity of the vibration detecting device 3 of the bearing device 100 of the rotating shaft.
[0039]
In this embodiment, in the first or second embodiment described above, the vibration detecting device 3 calculates the vibration of the rotating shaft 1 by detecting a change in the pressure of the lubricating oil 8. In this embodiment, the vibration detection device 3 includes a sensor chip 33 that is made into a semiconductor by the above-described known MEMS technology, and the sensor chip 33 includes a pressure sensor 332 that detects the pressure of the lubricating oil 8. . Further, in the soft material 32, the lubricating oil 8 filled between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is communicated with the concave portion 331 in which the pressure sensor 332 is disposed. A communication passage 32c is formed as a "pressure detection communication passage". The calculation unit 10 calculates and calculates the vibration of the rotating shaft 1 from the change in the pressure of the lubricating oil 8 detected by the pressure sensor 332. The other configuration is the same as that of the vibration detecting device 3 according to the first embodiment or the second embodiment, and thus the description is omitted.
[0040]
The small gap between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 becomes narrower in the moving direction side when the rotating shaft 1 moves due to the vibration of the rotating shaft 1 and moves. It becomes wider on the side opposite to the direction. As a result, the pressure acting on the lubricating oil 8 between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 causes the pressure between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 to increase. A change occurs when the interval becomes narrower and when the interval becomes wider. Therefore, a change in the pressure of the lubricating oil 8 caused by the vibration of the rotating shaft 1 is detected by the pressure sensor 332, and the vibration of the rotating shaft 1 can be calculated and obtained by the calculating unit 10 from the change in the pressure of the lubricating oil 8. .
[0041]
FIG. 5 shows a fourth embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention. FIG. 6 is an enlarged cross-sectional view showing the vicinity of the vibration detecting device of the supporting device for the rotating body.
[0042]
In the rotating body support device 200, the rotating body 4 is rotatably supported by the supporting shaft 5 in a state where the inner circumferential surface 41 of the rotating body 4 is in sliding contact with the outer circumferential surface 51 of the supporting shaft 5. The sliding surface between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is filled with lubricating oil 8. A concave portion 52 is formed on the outer peripheral surface 51 of the support shaft 5, and the vibration detecting device 3 according to the present invention is disposed in the concave portion 52. The vibration detecting device 3 in this embodiment has the same configuration as the vibration detecting device 3 shown in the first embodiment or the second embodiment described above, and includes a sensor chip 31 provided in the concave portion 52 and a rotating device. A soft material in which a “flow rate detection channel” is formed in which a part of the lubricating oil 8 flowing in the rotation direction A of the body 4 flows from the upstream side of the sensor chip 31 to the downstream side of the sensor chip 31 via the sensor chip 31. 32, and a calculation unit 10 that inputs the flow rate of the lubricating oil 8 detected by the sensor chip 31 and calculates the vibration of the rotating body 4 from the flow rate. The sensor chip 31 is a thermal MEMS flow sensor similarly made into a semiconductor by the MEMS technology.
[0043]
The upstream side of the sensor chip 31 and the flow path 311 of the sensor chip 31 communicate with the soft material 32 so that the space between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is rotated in the rotation direction A. The inflow passage 32 a for flowing the flowing lubricating oil 8 into the flow passage 311 of the sensor chip 31, and the flow passage 311 of the sensor chip 31 and the downstream side of the sensor chip 31 communicate with each other, so that the lubricating oil 8 flowing into the flow passage 311 An outflow channel 32b is formed between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 to flow out to the downstream side of the sensor chip 31. The vibration detecting device 3 is configured such that a part of the lubricating oil 8 flowing in the rotation direction A between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is supplied from the inflow passage 32a to the flow sensor 312 as shown in the drawing. Through the outlet channel 32b. The soft material 32 is a material having a lower hardness or the same hardness as the support shaft 5, and is worn by being in sliding contact with the inner peripheral surface 41 of the rotating body 4. Since the soft material 32 wears according to the speed at which the surface 51 wears, the soft material 32 projects from the outer peripheral surface 51 of the support shaft 5 and abuts on the inner peripheral surface 41 of the rotating body 4 to damage the rotating body 4. I won't.
[0044]
The small gap between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 becomes narrower in the moving direction when the rotating body 4 moves due to the vibration of the rotating body 4 and moves. It becomes wider on the side opposite to the direction. Thereby, the flow rate of the lubricating oil 8 flowing in the rotation direction A of the rotating body 4 depends on whether the distance between the inner circumferential surface 41 of the rotating body 4 and the outer circumferential surface 51 of the support shaft 5 is small or wide. A change will occur. Therefore, a change in the flow rate of the lubricating oil 8 caused by the vibration of the rotating body 4 is detected by the flow rate sensor 312, and the vibration of the rotating body 4 can be calculated by the calculating unit 10 from the change in the flow rate of the lubricating oil 8. .
[0045]
As described above, the sensor chip 31 disposed in the recess 52 and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating body 4 are transferred from the upstream side of the sensor chip 31 via the sensor chip 31 to the sensor chip 31. A calculation unit 10 that inputs a soft material 32 having a “flow rate detection flow path” flowing downstream and a flow rate of the lubricating oil 8 detected by the sensor chip 31 and calculates the vibration of the rotating body 4 from the flow rate. The vibration detection device 3 configured as described above can detect a change in the flow rate of the lubricating oil 8 caused by the vibration of the rotating body 4 with high accuracy with a low cost and extremely compact configuration. The vibration detecting device 3 that detects the vibration of the vibration member 4 can be configured inexpensively and compactly, and the vibration of the rotating body 4 with respect to the support shaft 5 can be detected with high accuracy.
[0046]
FIG. 7 shows a fifth embodiment of the present invention, and is a cross-sectional view of a rotating body support device 200 according to the present invention.
[0047]
In this embodiment, in addition to the above-described fourth embodiment, six vibration detecting devices 3 are arranged at equal intervals on the outer peripheral surface 51 of the support shaft 5 along the inner peripheral surface 41 of the rotating body 4. . In this manner, the plurality of vibration detecting devices 3 are arranged at equal intervals on the outer peripheral surface 51 of the support shaft 5, and the vibration of the rotating body 4 is calculated from the change in the flow rate of the lubricating oil 8 detected by each vibration detecting device 3. By doing so, it is possible to detect the vibration of the rotating body 4 with higher accuracy, which is a more preferable embodiment.
[0048]
FIG. 8 shows a sixth embodiment of the present invention, and is an enlarged sectional view showing the vicinity of the vibration detecting device 3 of the rotating body support device 200.
[0049]
In this embodiment, in the fourth or fifth embodiment described above, the vibration detecting device 3 calculates the vibration of the rotating body 4 by detecting a change in the pressure of the lubricating oil 8. In this embodiment, the vibration detecting device 3 has the same configuration as the vibration detecting device 3 shown in the third embodiment described above, and the description is omitted. The small gap between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 becomes narrower in the moving direction when the rotating body 4 moves due to the vibration of the rotating body 4 and moves. It becomes wider on the side opposite to the direction. As a result, the pressure acting on the lubricating oil 8 between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 causes the pressure between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 to increase. A change occurs when the interval becomes narrower and when the interval becomes wider. Therefore, a change in the pressure of the lubricating oil 8 caused by the vibration of the rotating body 4 is detected by the pressure sensor 332, and the vibration of the rotating body 4 can be calculated and obtained from the change in the pressure of the lubricating oil 8 by the calculating unit 10. .
[0050]
FIG. 9 shows a seventh embodiment of the present invention, and is a cross-sectional view of a rotary shaft bearing device 100 according to the present invention. FIG. 10 is an enlarged sectional view showing the vicinity of the temperature detecting device of the bearing device 100 of the rotating shaft.
[0051]
In the bearing device 100 for a rotating shaft, the rotating shaft 1 is rotatably supported by the bearing body 2 in a state where the outer peripheral surface 11 of the rotating shaft 1 is in sliding contact with the inner peripheral surface 21 of the bearing body 2. The lubricating oil 8 is filled in a sliding contact surface between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2. A concave portion 22 is formed in the inner peripheral surface 21 of the bearing body 2, and the temperature detecting device 6 according to the present invention is disposed in the concave portion 22. The temperature detection device 6 according to the present embodiment includes a sensor chip 61 provided in the recess 22 and made into a semiconductor by the above-described known MEMS technology, and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1. The soft material 32 having a “temperature detecting communication path” flowing from the upstream side of the sensor chip 61 to the downstream side of the sensor chip 61 via the sensor chip 61 and the temperature of the lubricating oil 8 detected by the sensor chip 61 are input. And a calculation unit 10 for determining whether or not an abnormality has occurred in the rotating shaft 1 or the bearing body 2 based on the temperature. The sensor chip 61 has a flow path 611 through which the lubricating oil 8 for detecting the temperature flows, and a temperature sensor 612 for detecting the temperature of the lubricating oil 8 flowing through the flow path 611. Work.
[0052]
As in the first embodiment, the upstream side of the sensor chip 61 and the flow path 611 of the sensor chip 61 communicate with the soft material 32 so that the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral The inflow passage 32a for allowing the lubricating oil 8 flowing in the rotation direction A to flow between the surface 21 and the flow passage 611 of the sensor chip 61, and the flow passage 611 of the sensor chip 61 and the downstream side of the sensor chip 61 to communicate with each other. An outflow channel 32b is formed to allow the lubricating oil 8 flowing into the channel 611 to flow downstream of the sensor chip 61 between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2. The temperature detecting device 6 is configured such that a part of the lubricating oil 8 flowing in the rotation direction A between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is supplied from the inflow passage 32 a to the temperature sensor 612 as shown in the drawing. Through the outlet channel 32b. The configuration in which a part of the lubricating oil 8 flows through the temperature sensor 612 from between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 allows the outer peripheral surface 11 of the rotating shaft 1 and the A change in the temperature of the lubricant 8 with the peripheral surface 21 is more easily transmitted to the temperature sensor 612, and the accuracy of temperature detection by the temperature sensor 612 can be further improved.
[0053]
The soft material 32 is a material having a lower hardness or the same hardness as the bearing body 2 as in the first embodiment described above, and is worn by sliding contact with the outer peripheral surface 11 of the rotating shaft 1. Since the soft material 32 wears in accordance with the speed at which the inner peripheral surface 21 of the bearing body 2 that covers most of the bearing material 2 wears, the soft material 32 projects from the inner peripheral surface 21 of the bearing body 2 and contacts the rotating shaft 1. The rotating shaft 1 will not be damaged by contact. The temperature of the lubricating oil 8 flowing between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 in the rotation direction A is determined by the inflow channel 32a and the outflow channel 32b as “temperature detection communication paths”. The arithmetic unit 10 determines that some abnormality has occurred in the rotating shaft 1 or the bearing 2 when the temperature of the lubricating oil 8 exceeds a certain temperature.
[0054]
As described above, the sensor chip 61 disposed in the concave portion 22 and a part of the lubricating oil 8 flowing in the rotation direction A of the rotating shaft 1 are supplied from the upstream side of the sensor chip 61 via the sensor chip 61 to the sensor chip 61. When the temperature of the lubricating oil 8 detected by the sensor chip 61 and the soft material 32 in which the “temperature detection communication path” flowing to the downstream side is formed is input, and the temperature exceeds a certain temperature, an abnormality occurs. The temperature detection device 6 constituted by the calculation unit 10 that determines that the temperature has risen is low in cost and extremely compact, and detects the temperature rise of the lubricating oil 8 that occurs when any abnormality occurs in the rotating shaft 1 or the bearing 2. It can be detected with high accuracy. Therefore, the temperature detection device 6 can be configured inexpensively and compactly, and it is possible to detect with high accuracy that an abnormality has occurred in the rotating shaft 1 or the bearing body 2. Furthermore, if a plurality of temperature detecting devices 6 are arranged in the axial direction of the rotating shaft 1 and arranged on the inner peripheral surface 21 of the bearing body 2, it is possible to detect a temperature rise over substantially the entire outer peripheral surface of the rotating shaft 1. Yes, it is more preferable.
[0055]
FIG. 11 shows an eighth embodiment of the present invention, and is a cross-sectional view of a rotating body support device 200 according to the present invention.
[0056]
In the rotating body support device 200, the rotating body 4 is rotatably supported by the supporting shaft 5 in a state where the inner circumferential surface 41 of the rotating body 4 is in sliding contact with the outer circumferential surface 51 of the supporting shaft 5. The sliding surface between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is filled with lubricating oil 8. A concave portion 52 is formed on the outer peripheral surface 51 of the support shaft 5, and the temperature detecting device 6 according to the present invention is disposed in the concave portion 52. The temperature detecting device 6 in this embodiment is the same as the temperature detecting device 3 provided in the bearing body 2 of the rotary shaft bearing device 100 shown in the above-described seventh embodiment, and a description thereof will be omitted.
[0057]
As described above, in the rotating body support device 200, by disposing the temperature detecting device 6 on the outer peripheral surface of the support shaft 5, similarly to the rotary shaft bearing device 100 shown in the above-described seventh embodiment, With a very low cost and extremely compact configuration, it is possible to detect with high accuracy the temperature rise of the lubricating oil 8 that occurs when any abnormality occurs in the rotating body 4 or the support shaft 5. Therefore, the temperature detection device 6 can be configured inexpensively and compactly, and it is possible to detect with high accuracy that an abnormality has occurred in the support device 200 for the rotating body. Furthermore, if a plurality of temperature detecting devices 6 are arranged on the outer peripheral surface 51 of the support shaft 5 side by side in the direction of the rotational axis of the rotating body 4, it is possible to detect a temperature rise over substantially the entire outer peripheral surface of the rotating shaft 1. Yes, it is more preferable.
[0058]
FIG. 12 shows a ninth embodiment of the present invention, and is an enlarged sectional view showing the vicinity of the temperature detecting device 6 of the rotating body support device 200.
[0059]
The temperature detecting device 6 in this embodiment is different from the temperature detecting device 6 in the rotary shaft bearing device 100 shown in the seventh embodiment or the rotating body support device 200 shown in the eighth embodiment in a soft material. 62 has the same configuration except that the “temperature detection communication path” is different, and the “temperature detection communication path” configures a flow path in which the lubricating oil 8 flows to the temperature sensor 612 as shown in the figure. There is no mode. In this embodiment, the soft material 62 is provided with a communication passage 62 c for communicating the lubricating oil 8 to the temperature sensor 612 from between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5. . When the temperature of the lubricating oil 8 between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 rises, the temperature of the lubricating oil 8 in the communication passage 62c also rises and fills the recess 611 of the sensor chip 61. The temperature of the lubricating oil 8 thus increased also can be detected by the temperature sensor 612. As described above, the temperature of the lubricating oil 8 can be detected only by connecting the lubricating oil 8 to the temperature sensor 612 from between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5. Approximately the same effects as in the seventh embodiment or the eighth embodiment can be obtained.
[0060]
FIG. 13 shows a tenth embodiment of the present invention, and is a cross-sectional view of a rotary shaft bearing device 100 according to the present invention. FIG. 14 is an enlarged cross-sectional view showing the vicinity of the temperature detecting device of the bearing device 100 of the rotating shaft.
[0061]
In this embodiment, a rotating shaft in which four vibration detecting devices 3 and two temperature detecting devices 7 are arranged at equal intervals along the outer circumferential surface 11 of the rotating shaft 1 on the inner circumferential surface 21 of the bearing body 2. The bearing device 100 of FIG. The vibration detecting device 3 is the same as the vibration detecting device 3 shown in the above-described first to third embodiments, and thus the description is omitted. The temperature detecting device 7 includes a sensor chip 71 formed into a semiconductor by the above-described known MEMS technology. The sensor chip 71 includes a temperature sensor 612 for detecting the temperature of the lubricating oil 8 and a pressure for detecting the pressure of the lubricating oil 8. And a sensor 332. Further, the lubricating oil 8 filled between the outer peripheral surface 11 of the rotating shaft 1 and the inner peripheral surface 21 of the bearing body 2 is filled in the soft material 72 with the concave portion 711 in which the temperature sensor 612 and the pressure sensor 332 are arranged. A communication path 72c is formed as a “pressure detection communication path” that communicates with the communication path. When the temperature of the lubricating oil 8 detected by the temperature sensor 612 exceeds a certain temperature, the calculation unit 10 determines that some abnormality has occurred in the rotating shaft 1 or the bearing body 2 and determines the lubrication detected by the pressure sensor 332. The vibration of the rotating shaft 1 is calculated and obtained from the change in the pressure of the oil 8. Thus, by arranging the vibration detecting device 3 and the temperature detecting device 7 on the inner peripheral surface 21 of the bearing body 2, in the rotating shaft bearing device 100, it is possible to detect the vibration of the rotating shaft 1 with respect to the bearing body 2. And the temperature of the lubricating oil 8 can be detected.
[0062]
FIG. 15 shows an eleventh embodiment of the present invention, and is a cross-sectional view of a rotating body support device 200 according to the present invention.
[0063]
In this embodiment, a rotating body in which four vibration detecting devices 3 and two temperature detecting devices 7 are arranged at equal intervals on an outer circumferential surface 51 of a support shaft 5 along an inner circumferential surface 41 of the rotating body 4. Of the supporting device 200. The vibration detection device 3 is the same as the vibration detection device 3 shown in the first to third embodiments described above, and the temperature detection device 7 is the same as the temperature detection device 7 shown in the tenth embodiment described above. Therefore, the description is omitted.
[0064]
By arranging the vibration detection device 3 and the temperature detection device 7 on the outer peripheral surface 51 of the support shaft 5 in this manner, in the rotation device support device 200, the detection of the vibration of the rotary member 4 with respect to the support shaft 5 The temperature of the lubricating oil 8 can be detected.
[0065]
FIG. 16 shows a twelfth embodiment of the present invention, and is an enlarged sectional view showing the vicinity of the temperature detection device 6 of the rotating body support device 200.
[0066]
The temperature detecting device 6 according to the present embodiment includes a sensor chip 61 provided in the recess 52 and made into a semiconductor by the above-described known MEMS technology. The sensor chip 61 detects a temperature of the lubricating oil 8. 612, a pressure sensor 332 for detecting the pressure of the lubricating oil 8, and a flow sensor 312 for detecting the flow rate of the lubricating oil 8. Further, the upstream side of the sensor chip 61 and the flow path 611 of the sensor chip 61 are communicated with the soft material 62 so that the rotation between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is performed in the rotational direction. The lubricating oil 8 flowing into the flow path 611 is formed by making the flow path 611 of the sensor chip 61 communicate with the downstream side of the sensor chip 61 by making the flow path 611 of the sensor chip 61 communicate with the downstream side of the sensor chip 61. An outflow passage 62b is formed between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 to allow the oil 8 to flow downstream of the sensor chip 61. The temperature detecting device 6 is configured such that a part of the lubricating oil 8 flowing in the rotation direction A between the inner peripheral surface 41 of the rotating body 4 and the outer peripheral surface 51 of the support shaft 5 is supplied from the inflow passage 62 a to the temperature sensor 612 as shown in the figure. , The pressure sensor 332, and the flow rate sensor 312 to the outflow channel 62b. When the temperature of the lubricating oil 8 detected by the temperature sensor 612 exceeds a certain temperature, the calculation unit 10 determines that some abnormality has occurred in the rotating shaft 1 or the bearing body 2 and determines the lubrication oil detected by the pressure sensor 332. The vibration of the rotating shaft 1 is calculated and obtained from the change in the pressure of the oil 8.
[0067]
As described above, by providing the temperature sensor 612, the pressure sensor 332, and the flow rate sensor 312 on the sensor chip 61, it is possible to detect all of the temperature, pressure, and flow rate of the lubricating oil 8 with one sensor chip 61. Further, both the detection of the vibration of the rotating body 4 with respect to the support shaft 5 and the detection of the temperature of the lubricating oil 8 can be performed at lower cost.
[0068]
The invention of the present application is not limited to the above embodiments, and various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the invention of the present application. Needless to say.
[0069]
【The invention's effect】
According to the present invention, it is possible to provide a vibration detection device which is inexpensive, small, and capable of detecting the vibration of the rotating portion of the rotary drive mechanism with high accuracy.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of the present invention and is a cross-sectional view of a rotary shaft bearing device according to the present invention.
FIG. 2 is a cross-sectional view showing the first embodiment of the present invention and is an enlarged view of the vicinity of the vibration detecting device of the bearing device for the rotating shaft according to the present invention.
FIG. 3 shows a second embodiment of the present invention, and is a cross-sectional view of a bearing device for a rotating shaft according to the present invention.
FIG. 4 is a cross-sectional view showing a third embodiment of the present invention, in which the vicinity of a vibration detecting device of a bearing device for a rotating shaft is enlarged.
FIG. 5 shows a fourth embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention.
FIG. 6 is a cross-sectional view showing a fourth embodiment of the present invention and is an enlarged view of the vicinity of the vibration detection device of the rotating body support device according to the present invention.
FIG. 7 shows a fifth embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention.
FIG. 8 is a cross-sectional view showing a sixth embodiment of the present invention, in which the vicinity of a vibration detection device of a supporting device for a rotating body is enlarged.
FIG. 9 illustrates a seventh embodiment of the present invention, and is a cross-sectional view of a rotary shaft bearing device according to the present invention.
FIG. 10 is a cross-sectional view showing a seventh embodiment of the present invention, in which the vicinity of a temperature detecting device of a bearing device for a rotating shaft according to the present invention is enlarged.
FIG. 11 shows the eighth embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention.
FIG. 12 is a cross-sectional view showing a ninth embodiment of the present invention, in which the vicinity of a temperature detecting device of a supporting device for a rotating body is enlarged.
FIG. 13 shows a tenth embodiment of the present invention, and is a cross-sectional view of a bearing device for a rotating shaft according to the present invention.
FIG. 14 shows a tenth embodiment of the present invention, and is an enlarged sectional view showing the vicinity of a temperature detecting device of a bearing device for a rotating shaft according to the present invention.
FIG. 15 shows the eleventh embodiment of the present invention, and is a cross-sectional view of a rotating body support device according to the present invention.
FIG. 16 is a cross-sectional view showing a twelfth embodiment of the present invention, in which the vicinity of a temperature detecting device of a supporting device for a rotating body is enlarged.
[Explanation of symbols]
1 Rotary axis
2 Bearing body
3 Vibration detector
4 rotating body
5 Support shaft
6, 7 Temperature detector
8 Lubricating oil
10 Operation part
31, 33, 61, 71 Sensor chip
32, 62, 72 Soft material
32a, 32b, 32c Channel
100 Bearing device for rotating body
200 Rotary shaft support device
312 Flow sensor
332 pressure sensor
612 Temperature sensor

Claims (8)

回転駆動力が伝達されて回転する回転軸の外周面に摺接した状態で前記回転軸を軸受する軸受体を備えた前記回転軸の軸受装置において、前記回転軸の振動を検出する振動検出装置であって、
前記回転軸の外周面と前記軸受体との摺接面に充填された粘性流体の流量を検出する流量検出手段と、該流量検出手段にて検出した前記回転軸の回転方向への前記粘性流体の流量から前記軸受体に対する前記回転軸の振動を演算する演算手段とを有し、
前記流量検出手段は、前記軸受体に内設された流量センサと、前記軸受体の前記摺接面と前記流量センサとの間に形成され、前記回転軸の回転方向上流側から前記流量センサを経由して前記回転軸の回転方向下流側へ前記粘性流体が流れる流量検出用流路とを有している、ことを特徴とした振動検出装置。
A vibration detecting device for detecting vibration of the rotating shaft in the bearing device of the rotating shaft provided with a bearing body for bearing the rotating shaft in a state of slidingly contacting an outer peripheral surface of the rotating shaft which is rotated by transmitting a rotational driving force. And
Flow rate detecting means for detecting a flow rate of the viscous fluid filled in a sliding contact surface between the outer peripheral surface of the rotating shaft and the bearing body; and the viscous fluid in the rotating direction of the rotating shaft detected by the flow rate detecting means. Calculating means for calculating the vibration of the rotating shaft with respect to the bearing body from the flow rate of
The flow rate detecting means is formed between the flow rate sensor provided inside the bearing body and the sliding contact surface of the bearing body and the flow rate sensor, and controls the flow rate sensor from a rotation direction upstream side of the rotating shaft. And a flow detection flow passage through which the viscous fluid flows downstream in the rotation direction of the rotation shaft.
請求項1において、前記演算手段は、前記回転軸の回転速度に対する前記流量検出用流路の前記粘性流体の流量変動から前記軸受体に対する前記回転軸の振動を演算する、ことを特徴とした振動検出装置。2. The vibration according to claim 1, wherein the calculating means calculates the vibration of the rotating shaft with respect to the bearing body from a variation in the flow rate of the viscous fluid in the flow detecting flow path with respect to the rotation speed of the rotating shaft. Detection device. 回転駆動力が伝達されて回転する回転軸の外周面に摺接した状態で前記回転軸を軸受する軸受体を備えた回転軸の軸受装置において、前記回転軸の振動を検出する振動検出装置であって、
前記回転軸の外周面と前記軸受体との間に生じる圧力を検出する圧力検出手段と、該圧力検出手段にて検出した圧力から前記軸受体に対する前記回転軸の振動を演算する演算手段とを有し、
前記圧力検出手段は、前記軸受体に内設された圧力センサと、前記軸受体の前記摺接面と前記圧力センサとの間を連通させる圧力検出用連通路とを有している、ことを特徴とした振動検出装置。
In a bearing device for a rotating shaft provided with a bearing body for bearing the rotating shaft in a state in which the rotating driving force is transmitted and slidably contacting the outer peripheral surface of the rotating shaft, a vibration detecting device for detecting vibration of the rotating shaft is provided. So,
Pressure detecting means for detecting pressure generated between the outer peripheral surface of the rotating shaft and the bearing body; and calculating means for calculating vibration of the rotating shaft with respect to the bearing body from the pressure detected by the pressure detecting means. Have
The pressure detecting means includes a pressure sensor provided in the bearing body, and a pressure detection communication path for communicating between the sliding contact surface of the bearing body and the pressure sensor. Characteristic vibration detection device.
請求項3において、前記演算手段は、前記回転軸の回転速度に対する前記回転軸の外周面と前記軸受体との間の圧力変動から前記軸受体に対する前記回転軸の振動を演算する、ことを特徴とした振動検出装置。4. The method according to claim 3, wherein the calculating unit calculates a vibration of the rotating shaft with respect to the bearing from a pressure variation between an outer peripheral surface of the rotating shaft and the bearing with respect to a rotation speed of the rotating shaft. Vibration detection device. 回転駆動力が伝達されて回転する回転体の内周面に摺接した状態で前記回転体を軸支する支持軸を備えた前記回転体の支持装置において、前記回転体の振動を検出する振動検出装置であって、
前記回転体の内周面と前記支持軸との摺接面に充填された粘性流体の流量を検出する流量検出手段と、該流量検出手段にて検出した前記回転体の回転方向への前記粘性流体の流量から前記支持軸に対する前記回転体の振動を演算する演算手段とを有し、
前記流量検出手段は、前記支持軸に内設された流量センサと、前記支持軸の前記摺接面と前記流量センサとの間に形成され、前記回転体の回転方向上流側から前記流量センサを経由して前記回転体の回転方向下流側へ前記粘性流体が流れる流量検出用流路とを有している、ことを特徴とした振動検出装置。
A vibration detecting a vibration of the rotating body in the rotating body supporting device having a supporting shaft for supporting the rotating body in a state of being in sliding contact with an inner peripheral surface of the rotating rotating body transmitted by the rotational driving force; A detection device,
Flow rate detecting means for detecting the flow rate of the viscous fluid filled in the sliding contact surface between the inner peripheral surface of the rotating body and the support shaft; and the viscosity in the rotating direction of the rotating body detected by the flow rate detecting means. Calculating means for calculating the vibration of the rotating body with respect to the support shaft from the flow rate of the fluid,
The flow rate detecting means is formed between the flow rate sensor provided inside the support shaft and the sliding surface of the support shaft and the flow rate sensor, and controls the flow rate sensor from a rotation direction upstream side of the rotating body. A vibration detection flow path through which the viscous fluid flows downstream in the rotation direction of the rotating body.
請求項5において、前記演算手段は、前記回転体の回転速度に対する前記流量検出用流路の前記粘性流体の流量変動から前記支持軸に対する前記回転体の振動を演算する、ことを特徴とした振動検出装置。6. The vibration according to claim 5, wherein the calculating means calculates the vibration of the rotating body with respect to the support shaft from a variation in the flow rate of the viscous fluid in the flow rate detection flow path with respect to the rotation speed of the rotating body. Detection device. 回転駆動力が伝達されて回転する回転体の内周面に摺接した状態で前記回転体を軸支する支持軸を備えた前記回転体の支持装置において、前記回転体の振動を検出する振動検出装置であって、
前記回転体の内周面と前記支持軸との間に生じる圧力を検出する圧力検出手段と、該圧力検出手段にて検出した圧力から前記支持軸に対する前記回転体の振動を演算する演算手段とを有し、
前記圧力検出手段は、前記支持軸に内設された圧力センサと、前記支持軸の前記摺接面と前記圧力センサとの間を連通させる圧力検出用連通路とを有している、ことを特徴とした振動検出装置。
A vibration detecting a vibration of the rotating body in the rotating body supporting device having a supporting shaft for supporting the rotating body in a state of being in sliding contact with an inner peripheral surface of the rotating rotating body transmitted by the rotational driving force; A detection device,
Pressure detecting means for detecting pressure generated between the inner peripheral surface of the rotating body and the support shaft; and calculating means for calculating vibration of the rotating body with respect to the support shaft from the pressure detected by the pressure detecting means. Has,
The pressure detecting means includes a pressure sensor provided inside the support shaft, and a pressure detection communication passage that allows communication between the sliding contact surface of the support shaft and the pressure sensor. Characteristic vibration detection device.
請求項7において、前記演算手段は、前記回転体の回転速度に対する前記回転体の内周面と前記支持軸との間の圧力変動から前記支持軸に対する前記回転体の振動を演算する、ことを特徴とした振動検出装置。8. The method according to claim 7, wherein the calculating unit calculates a vibration of the rotating body with respect to the support shaft from a pressure fluctuation between an inner peripheral surface of the rotating body and the support shaft with respect to a rotation speed of the rotating body. Characteristic vibration detection device.
JP2003091459A 2003-03-28 2003-03-28 Vibration detection device Withdrawn JP2004301521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091459A JP2004301521A (en) 2003-03-28 2003-03-28 Vibration detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091459A JP2004301521A (en) 2003-03-28 2003-03-28 Vibration detection device

Publications (1)

Publication Number Publication Date
JP2004301521A true JP2004301521A (en) 2004-10-28

Family

ID=33404823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091459A Withdrawn JP2004301521A (en) 2003-03-28 2003-03-28 Vibration detection device

Country Status (1)

Country Link
JP (1) JP2004301521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209130A (en) * 2010-03-30 2011-10-20 Kikuchiseisakusho Co Ltd Flowrate sensor and flowrate detection device
CN105300694A (en) * 2015-11-29 2016-02-03 重庆元创汽车整线集成有限公司 Rotation mechanism for bearing detection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209130A (en) * 2010-03-30 2011-10-20 Kikuchiseisakusho Co Ltd Flowrate sensor and flowrate detection device
CN105300694A (en) * 2015-11-29 2016-02-03 重庆元创汽车整线集成有限公司 Rotation mechanism for bearing detection apparatus

Similar Documents

Publication Publication Date Title
JP7210689B2 (en) Rotary joint with integrated sensor array
KR101579282B1 (en) Bearing Test appratus for testing durability of the bearing
EP0029736B1 (en) Method of diagnosis of operating conditions of bearing and apparatus therefor
US6092029A (en) Method and apparatus for diagnosing and controlling rotating stall and surge in rotating machinery
JP7362239B2 (en) Bearing devices and spindle devices
US11867292B2 (en) Mechanical seal device with microsystem, pump device using the same and method of operating the same
JP5564963B2 (en) Bearing device and spindle device of machine tool
CN102639886B (en) There is the bearing device of the sensor of the bearing supporting force of the axle for measuring rotation
CN106461699B (en) Measurement device and measurement system using the same
US20090114020A1 (en) Bearing state diagnostic apparatus
US20230265846A1 (en) State detection on eccentric screw pumps
CN110462364B (en) Blade abnormality detection device, blade abnormality detection system, rotary machine system, and blade abnormality detection method
US12074496B2 (en) Shaft arrangement for a vehicle
CN113195949A (en) Mechanical seal with sensor
KR20110086514A (en) Method to control discharge rate of delivery pump
CN101258385A (en) Sensor unit for fluids
EP3379198B1 (en) Method and system for detecting bend in rotating shaft of magnetic bearing
WO2017154492A1 (en) Vibration measurement device, vibration measurement system, and vibration measurement method
JP2004301521A (en) Vibration detection device
JP2004301522A (en) Temperature detector
JP6967495B2 (en) Bearing equipment
JP2009534575A (en) Radial cylinder hydraulic motor with continuously variable displacement
ITMO20100215A1 (en) AXIAL PISTON MACHINE
CN114341497B (en) Eccentric screw pump
WO2019159838A1 (en) Bearing device and spindle device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606