JP2004301130A - Exhaust gas purifying honeycomb structure - Google Patents

Exhaust gas purifying honeycomb structure Download PDF

Info

Publication number
JP2004301130A
JP2004301130A JP2004209963A JP2004209963A JP2004301130A JP 2004301130 A JP2004301130 A JP 2004301130A JP 2004209963 A JP2004209963 A JP 2004209963A JP 2004209963 A JP2004209963 A JP 2004209963A JP 2004301130 A JP2004301130 A JP 2004301130A
Authority
JP
Japan
Prior art keywords
exhaust gas
honeycomb structure
honeycomb
super
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004209963A
Other languages
Japanese (ja)
Other versions
JP4358054B2 (en
Inventor
Kenji Arakawa
健二 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP2004209963A priority Critical patent/JP4358054B2/en
Publication of JP2004301130A publication Critical patent/JP2004301130A/en
Application granted granted Critical
Publication of JP4358054B2 publication Critical patent/JP4358054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purifying honeycomb structure capable of collecting a particulate matter (PM) in exhaust gas even when the structure is a flow-through type with low pressure loss. <P>SOLUTION: A metal-made super porous part having a pore diameter of 500 μm or less and porosity of 55 to 95% is formed at least on part of an inner wall of a honeycomb cell. It is considered that the super porous part 16 extending in parallel with an exhaust gas flow and having extremely high porosity has a function of collecting the PM when the exhaust gas passes through the honeycomb cell. The PM can be collected at a high collecting rate of 30 to 50%. Since this structure is a flow-through type, an increase in a pressure loss is almost prevented even when the PM is accumulated on the super porous part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ディーゼルエンジンなどから排出される排ガス中の粒子状物質(以下PMという)を捕集できるフロースルー型の排ガス浄化ハニカム構造体に関する。   The present invention relates to a flow-through type exhaust gas purification honeycomb structure capable of collecting particulate matter (hereinafter referred to as PM) in exhaust gas discharged from a diesel engine or the like.

ディーゼルエンジンの排ガス中には、カーボン、 SOF(Soluble Organic Fraction)、高分子有機化合物、硫酸ミストなどからなるPMが含まれ、大気汚染及び人体への悪影響の面からPMの排出を抑制しようとする動きが高まっている。PMの排出を抑制するには、フィルタによってPMを捕集する方法と、フロースルー型の触媒を用いてPMを燃焼除去する方法の2種類があり、それぞれのあるいは両方を組み合わせた技術開発が進められている。   Exhaust gas from diesel engines contains PM consisting of carbon, SOF (Soluble Organic Fraction), high molecular weight organic compounds, sulfuric acid mist, etc., and attempts to suppress PM emissions from the viewpoint of air pollution and adverse effects on the human body. Movement is growing. There are two methods for suppressing PM emissions: a method of trapping PM with a filter and a method of burning and removing PM using a flow-through type catalyst. Have been.

フィルタとしては、ハニカム形状の耐熱性基材あるいはメタルハニカム体の両端開口を互い違いに市松状に閉塞したものが用いられている。このフィルタでは、セル隔壁を多孔質として通気性を付与し、セル隔壁を排ガスが通過する際にPMを濾過して捕集する。そして捕集されたPMは、排ガスの熱によってあるいは外部から加熱することによって燃焼され、これによってフィルタを再生している。   As the filter, a honeycomb-shaped heat-resistant base material or a metal honeycomb body in which openings at both ends are alternately closed in a checkered pattern is used. In this filter, the cell partition is made porous to impart air permeability, and PM is filtered and collected when exhaust gas passes through the cell partition. The collected PM is burned by the heat of the exhaust gas or by heating from the outside, thereby regenerating the filter.

例えば特開平09−262415号公報には、金属質多孔体製平板と金属製波板を重ねてロール巻きし、入口開口と出口開口を互い違いに目止めしてなるフィルタが開示されている。このように熱電導性の高い金属製のフィルタとすることで、捕集されたPMの燃焼を均一に効率よく行うことができ、フィルタの溶損やクラックの発生を防止できる。また触媒コンバータと一体化できるので、振動などに対する強度が向上するという利点もある。   For example, Japanese Patent Laid-Open No. 09-262415 discloses a filter in which a flat plate made of a porous metal body and a corrugated metal plate are rolled and rolled, and an inlet opening and an outlet opening are alternately filled. By using a metal filter having high thermal conductivity in this manner, the trapped PM can be burned uniformly and efficiently, and the filter can be prevented from being damaged or cracked. Further, since it can be integrated with the catalytic converter, there is an advantage that the strength against vibration and the like is improved.

またフロースルー型の触媒はPMを濾し取る構造になっておらず、PMの粒径に対して十分大きい直径0.05mm、好ましくは 0.2mm以上の連通口を有し、貴金属を担持したアルミナなどからなる触媒コート層が連通路に形成されている。このフロースルー型の触媒は、ペレット状、フォーム状、ハニカム状など種々の形状とされている。   In addition, the flow-through type catalyst is not structured to filter out PM, has a diameter of 0.05 mm, which is sufficiently large with respect to the particle diameter of PM, preferably has a communication port of 0.2 mm or more, and is made of alumina carrying noble metal or the like. Is formed in the communication passage. This flow-through type catalyst has various shapes such as a pellet shape, a foam shape, and a honeycomb shape.

そしてセル隔壁に貴金属を担持したフィルタも開発されている。このような触媒付フィルタによれば、捕集されたPMをより低温から燃焼させることができ、再生効率が高まる。また触媒によってPM以外のHC,COあるいはNOx を浄化することもできる。   A filter in which a noble metal is supported on a cell partition has also been developed. According to such a filter with a catalyst, the trapped PM can be burned at a lower temperature, and the regeneration efficiency increases. Also, HC, CO or NOx other than PM can be purified by the catalyst.

ところが従来のフィルタでは、セル隔壁でPMを濾過する構造であるために、セル隔壁の細孔径を小さくしないとPMを捕集することができない。しかしセル隔壁の細孔径を小さくすると、圧損が増大するという不具合がある。またPMが堆積すると圧損がさらに増大してしまう。そこで圧損の増大を防止しつつPMを捕集するには、セル隔壁の面積を大きくすることが考えられるが、そうするとフィルタのサイズが大きくなり自動車の排気系への装着が困難となることもある。   However, since the conventional filter has a structure in which PM is filtered by the cell partition, the PM cannot be collected unless the pore diameter of the cell partition is reduced. However, when the pore diameter of the cell partition is reduced, there is a problem that the pressure loss increases. When PM accumulates, the pressure loss further increases. Therefore, in order to trap PM while preventing an increase in pressure loss, it is conceivable to increase the area of the cell partition. However, this may increase the size of the filter and make it difficult to mount the filter on the exhaust system of a vehicle. .

また貴金属を担持したフィルタにあっては、フィルタのサイズが大きくなると触媒効率が低下し、それを防ぐためには貴金属の担持量を多くしなければならずコストが高くなるという問題がある。   Further, in the case of a filter carrying a noble metal, there is a problem that as the size of the filter increases, the catalytic efficiency decreases, and in order to prevent this, the amount of the noble metal carried must be increased and the cost increases.

一方、従来のフロースルー型の触媒では、圧損の増大という問題は生じないもののPMを捕集することが困難であり、フロースルー型の触媒を用いる場合には、PMを濾過するための手段が別に必要となるという問題がある。
特開平09−262415号公報
On the other hand, the conventional flow-through type catalyst does not cause a problem of an increase in pressure loss, but it is difficult to trap PM. In the case of using a flow-through type catalyst, a means for filtering PM is required. There is a problem that is required separately.
JP 09-262415 A

本発明は上記した事情に鑑みてなされたものであり、フロースルー型であってもPMを捕集できるようにすることを目的とする。   The present invention has been made in view of the above circumstances, and has as its object to enable PM to be collected even in a flow-through type.

上記課題を解決する本発明の排ガス浄化ハニカム構造体の特徴は、排ガスの入口と出口を連通する複数のハニカムセル内を排ガスが流通するフロースルー型のハニカム構造体であって、ハニカムセルの内壁の少なくとも一部には孔径が 500μm以下、気孔率が55〜95%で金属製の超多孔質部が形成され、超多孔質部で排ガス中の粒子状物質を捕集することにある。   The feature of the exhaust gas purifying honeycomb structure of the present invention that solves the above-mentioned problems is a flow-through type honeycomb structure in which exhaust gas flows through a plurality of honeycomb cells that communicate the exhaust gas inlet and outlet, and the inner wall of the honeycomb cell Is formed at least in part of a metal super-porous part having a pore diameter of 500 μm or less and a porosity of 55 to 95%, and the super-porous part traps particulate matter in exhaust gas.

上記排ガス浄化ハニカム構造体では、ハニカムセルの内壁には、多孔質酸化物に貴金属を担持してなる触媒層が形成されていることが望ましい。   In the exhaust gas purifying honeycomb structure, it is preferable that a catalyst layer formed by supporting a noble metal on a porous oxide is formed on the inner wall of the honeycomb cell.

本発明のハニカム構造体によれば、フロースルー型であってもPMを捕集することができるので、排ガスの流通抵抗はきわめて小さく、PMが超多孔質部に堆積したとしても圧損の増大はほとんど無い。また超多孔質部は金属製であるので、PMが堆積した後にPMを燃焼させる再生時における熱伝導性が高く、再生に要する時間を短縮することができる。さらに、触媒層を形成した場合は、排ガスの熱及びPMの酸化による発熱が伝導しやすく、低温域でPMを除去することができ低温域での再生も可能となる。   According to the honeycomb structure of the present invention, PM can be collected even in a flow-through type, so that the flow resistance of exhaust gas is extremely small, and even if PM accumulates in the super porous portion, the pressure loss increases. almost none. Further, since the super-porous portion is made of metal, the thermal conductivity at the time of regeneration for burning PM after PM is deposited is high, and the time required for regeneration can be reduced. Further, when the catalyst layer is formed, heat of exhaust gas and heat generated by oxidation of PM are easily conducted, so that PM can be removed in a low temperature range and regeneration in a low temperature range becomes possible.

本発明の排ガス浄化ハニカム構造体は、ハニカムセルの内壁の少なくとも一部には孔径が 500μm以下、気孔率が55〜95%で金属製の超多孔質部が形成されている。現象の詳細はまだ不明であるが、排ガスがハニカムセル内を通過する際に、排ガス流れと並行する極めて高い気孔率の超多孔質部がPMを捕集する作用をもつと考えられ、PMを30〜50%という高い捕集率で捕集することができる。そしてフロースルー型であるので、排ガスの流通抵抗はきわめて小さく、PMが超多孔質部に堆積したとしても圧損の増大はほとんど無い。   In the exhaust gas purifying honeycomb structure of the present invention, a metal super-porous portion having a pore diameter of 500 μm or less and a porosity of 55 to 95% is formed on at least a part of the inner wall of the honeycomb cell. Although the details of the phenomenon are still unknown, when the exhaust gas passes through the honeycomb cell, it is considered that the super-porous portion having an extremely high porosity in parallel with the exhaust gas flow has an action of trapping the PM. It can be collected at a high collection rate of 30-50%. And since it is a flow-through type, the flow resistance of the exhaust gas is extremely small, and even if PM accumulates in the super porous portion, there is almost no increase in pressure loss.

超多孔質部の孔径が 500μmより大きくなると細孔に捕集されたPMが容易に離脱して排出されてしまうため、孔径は 500μm以下とすることが必要である。孔径の下限は特に制限されないが、PMの最小粒径以上とすることが好ましい。また気孔率が55%未満ではPMの捕集が困難となり、95%を超えると超多孔質部の強度が不足して使用中に破損などの不具合が生じる。   If the pore diameter of the superporous portion is larger than 500 μm, the PM trapped in the pores is easily separated and discharged, so the pore diameter needs to be 500 μm or less. Although the lower limit of the pore size is not particularly limited, it is preferable that the pore size be equal to or larger than the minimum particle size of PM. If the porosity is less than 55%, it becomes difficult to trap PM. If the porosity exceeds 95%, the strength of the super-porous portion becomes insufficient and breakage occurs during use.

超多孔質部は、ハニカムセルの内壁の少なくとも一部に形成されている。例えばハニカムセルの内壁の表面に形成されていてもよいし、セル隔壁の厚さ方向の全体を超多孔質部とすることもできる。超多孔質部を内壁の表面に形成すれば、セル隔壁自体は気孔率を低く緻密に形成できるので、ハニカム構造体の強度が向上する。またセル壁厚を薄くしても十分な強度を有するようになるため、セル密度を高くすることができ排ガスとの接触面積が増大するため浄化能が向上する。そして超多孔質部を排ガス流れの下流部の内壁表面に形成すれば、下流部は熱衝撃が低いため、高熱膨張で結合強度が高い炭化珪素などの材料を使用することができ、より高気孔率化できるためPM捕集率がさらに向上する。   The super porous portion is formed on at least a part of the inner wall of the honeycomb cell. For example, it may be formed on the surface of the inner wall of the honeycomb cell, or the entire cell partition wall in the thickness direction may be a super-porous portion. If the super porous portion is formed on the surface of the inner wall, the cell partition walls themselves can be formed densely with low porosity, so that the strength of the honeycomb structure is improved. Even if the cell wall thickness is reduced, sufficient strength is obtained, so that the cell density can be increased, and the contact area with the exhaust gas increases, thereby improving the purification ability. If the super porous portion is formed on the inner wall surface of the downstream portion of the exhaust gas flow, the downstream portion has a low thermal shock, so that a material such as silicon carbide having a high thermal expansion and a high bonding strength can be used, and a higher pore volume The efficiency of PM collection can further improve the PM collection rate.

またハニカム構造体の排ガス流れ方向における超多孔質部の位置は、上流側、中央部、下流部あるいはこれらの組合せから自由に選択することができ、排ガス流れ方向と垂直方向の位置は、中心部、外周部あるいは全体から自由に選択することができる。   The position of the super porous portion in the exhaust gas flow direction of the honeycomb structure can be freely selected from the upstream side, the central portion, the downstream portion, or a combination thereof, and the position in the direction perpendicular to the exhaust gas flow direction is the central portion. , The outer peripheral portion or the whole.

超多孔質部を排ガス流れ方向の上流部に形成した場合には、上流部でPMが捕集される。したがってハニカムセルの内壁に触媒層をもつ場合には、下流部において貴金属にPMが付着するのが抑制されるため、触媒層の活性低下を抑制することができる。また超多孔質部を排ガス流れ方向の下流部に形成した場合には、上流部の触媒層による低温始動時の性能悪化を抑制することができる。そして超多孔質部を排ガス流れ方向の中央部に形成した場合には、PM燃焼時の熱歪みが緩和されるため構造の信頼性が向上する。   When the super porous portion is formed at the upstream portion in the exhaust gas flow direction, PM is collected at the upstream portion. Therefore, when a catalyst layer is provided on the inner wall of the honeycomb cell, PM is prevented from adhering to the noble metal in the downstream portion, so that a decrease in the activity of the catalyst layer can be suppressed. Further, when the super porous portion is formed in the downstream portion in the exhaust gas flow direction, it is possible to suppress the deterioration of the performance at the time of low temperature start due to the catalyst layer in the upstream portion. When the super porous portion is formed at the center in the flow direction of the exhaust gas, the thermal distortion at the time of PM combustion is reduced, so that the reliability of the structure is improved.

さらに超多孔質部を外周部に形成した場合には、HC,CO,NOx の浄化性能が向上し、内周部に形成した場合には、捕集したPMが燃焼し易いという効果が得られる。 Further when formed on the outer peripheral portion of the super-porous portion, HC, CO, improves purification performance of NO x, when formed in the inner peripheral portion, the effect of easily trapped PM is burned is obtained Can be

ハニカム構造体としては、コージェライトなどの耐熱性セラミックから形成されたもの、あるいは金属製の波板と平板を重ねてロール状に巻回したものなどを用いることができる。耐熱性セラミック製のハニカム構造体に金属製の超多孔質部を形成するには、例えばハニカムセルの表面の少なくとも一部に多孔質金属板を積層することで行う。金属製のハニカム構造体の場合には、平板及び波板の少なくとも一方の少なくとも一部に多孔質金属板を用いることで、超多孔質部を形成することができる。また平板及び波板全てを超多孔質部とすることもできる。平板を超多孔質部とすれば低圧損とすることができ、波板を超多孔質部とすればPM捕集率が向上する。   As the honeycomb structure, a structure formed from a heat-resistant ceramic such as cordierite, or a structure in which a corrugated metal plate and a flat plate are stacked and wound in a roll shape can be used. In order to form a metal super-porous portion in a honeycomb structure made of heat-resistant ceramic, for example, a porous metal plate is laminated on at least a part of the surface of a honeycomb cell. In the case of a metal honeycomb structure, a super porous portion can be formed by using a porous metal plate for at least a part of at least one of a flat plate and a corrugated plate. In addition, all of the flat plate and the corrugated plate may be formed as a super porous portion. When the flat plate is made of a super-porous portion, a low pressure loss can be achieved.

多孔質金属板としてはメタル不織布、パンチングメタルなどを利用することができ、その孔径と気孔率が上記範囲となるようにすればよい。   As the porous metal plate, a metal nonwoven fabric, a punched metal, or the like can be used, and the pore diameter and the porosity may be within the above ranges.

本発明のハニカム構造体の使用時には、超多孔質部にPMが堆積するため定期的に堆積したPM燃焼除去してPM捕集能を回復させる必要がある。これは高温の排ガスを供給する方法、あるいは外部ヒータなどで加熱する方法など、従来のフィルタと同様に行うことができる。触媒層をもたない場合には、 600〜 650℃でPMを燃焼除去してPM捕集能を回復することができる。   When the honeycomb structure of the present invention is used, since PM accumulates in the super-porous portion, it is necessary to periodically burn and remove the accumulated PM to recover the PM collecting ability. This can be performed in the same manner as a conventional filter, such as a method of supplying high-temperature exhaust gas or a method of heating with an external heater. When there is no catalyst layer, PM can be burned and removed at 600 to 650 ° C. to recover the PM collecting ability.

さらに本発明の排ガス浄化ハニカム構造体では、ハニカムセルの内壁には、多孔質酸化物に貴金属を担持してなる触媒層が形成されていることが望ましい。これにより排ガス中のHC,CO及びNOx を浄化することができ、排ガス浄化用触媒としても利用することができる。 Further, in the exhaust gas purifying honeycomb structure of the present invention, it is desirable that a catalyst layer in which a porous oxide carries a noble metal is formed on the inner wall of the honeycomb cell. Accordingly HC in the exhaust gas, it is possible to purify CO and NO x, can be utilized as a catalyst for purifying an exhaust gas.

また触媒層は、少なくとも超多孔質部に形成されていることが望ましい。このような触媒層をもてば、捕集されたPMを 200〜 300℃の低温域から速やかに燃焼除去することができ、PM捕集能を連続的に回復させることができる。この触媒層は、担体粉末に貴金属を担持してなる触媒粉末をハニカムセルの内壁にコートして形成することができる。   Further, it is desirable that the catalyst layer is formed at least in the super porous portion. With such a catalyst layer, the trapped PM can be quickly burned and removed from a low temperature range of 200 to 300 ° C., and the PM trapping ability can be continuously restored. This catalyst layer can be formed by coating the inner wall of a honeycomb cell with a catalyst powder obtained by supporting a noble metal on a carrier powder.

担体粉末としては Al2O3,SiO2,TiO2,CeO2,ZrO2などを用いることができ、貴金属にはPt,Pd,Rh,Irなどを用いることができる。中でも特に活性が高いPtが好ましい。また触媒層を形成するには、担体粉末に予め貴金属を担持した触媒粉末をハニカム構造体にコートしてもよいし、先ず担体粉末からコート層を形成しそれに貴金属を担持することもできる。またアルカリ金属,アルカリ土類金属あるいは希土類元素から選ばれるNOx 吸蔵材をさらに担持すれば、排ガス中のNOx も効率よく浄化することができる。 Al 2 O 3 , SiO 2 , TiO 2 , CeO 2 , ZrO 2 and the like can be used as the carrier powder, and Pt, Pd, Rh, Ir and the like can be used as the noble metal. Among them, Pt having particularly high activity is preferable. To form the catalyst layer, the honeycomb structure may be coated with a catalyst powder in which a noble metal is preliminarily supported on a carrier powder, or a coat layer may be first formed from the carrier powder and a noble metal may be supported thereon. Further, if an NO x storage material selected from an alkali metal, an alkaline earth metal or a rare earth element is further supported, NO x in the exhaust gas can be efficiently purified.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
図1に本実施例のハニカム構造体の要部断面図を示す。このハニカム構造体は厚さ 250μmのステンレス製不織布からなる平板1と、平板1から波形状に形成された波板2を重ねて、直径 103mm、長さ 155mmのロール状に巻回されてなり、平板1及び波板2はロウ付け接合されている。平板1と波板2とで形成されたセルの密度は 400/in2 である。また平板1及び波板2は共に気孔径が 100μm以下、気孔率が65%であり、ハニカム構造体の全体が本発明にいう超多孔質部となっている。
(Example 1)
FIG. 1 is a sectional view of a main part of the honeycomb structure of the present embodiment. This honeycomb structure is obtained by laminating a flat plate 1 made of a nonwoven fabric made of stainless steel having a thickness of 250 μm and a corrugated plate 2 formed in a corrugated shape from the flat plate 1 and wound into a roll having a diameter of 103 mm and a length of 155 mm. The flat plate 1 and the corrugated plate 2 are joined by brazing. The density of the cell formed by the flat plate 1 and the corrugated plate 2 is 400 / in 2 . Further, both the flat plate 1 and the corrugated plate 2 have a pore size of 100 μm or less and a porosity of 65%, and the entire honeycomb structure is a super porous portion according to the present invention.

(実施例2)
図2に本実施例のハニカム構造体の斜視図を示す。このハニカム構造体は、気孔率が異なること以外は実施例1と同様の平板1及び波板2から同様に形成された上流部3と、厚さ50μmのステンレス製金属箔からなる平板と波板を重ねてロール状に巻回されてなる下流部4とから構成されている。
(Example 2)
FIG. 2 shows a perspective view of the honeycomb structure of the present embodiment. This honeycomb structure has an upstream portion 3 similarly formed from a flat plate 1 and a corrugated plate 2 similar to those in Example 1 except that the porosity is different, and a flat plate made of a 50 μm-thick stainless steel metal foil and a corrugated plate. And a downstream portion 4 which is wound in a roll shape.

上流部3は直径 103mm、長さ80mm、下流部4は直径 103mm、長さ75mmに形成され、ロウ付けによって互いに接合されている。上流部3及び下流部4は、共にセルの密度は 400/in2 である。また上流部3の平板及び波板は共に気孔径が 100μm以下、気孔率が85%であり、上流部3が本発明にいう超多孔質部となっている。 The upstream section 3 has a diameter of 103 mm and a length of 80 mm, and the downstream section 4 has a diameter of 103 mm and a length of 75 mm, and are joined to each other by brazing. Both the upstream section 3 and the downstream section 4 have a cell density of 400 / in 2 . Further, both the flat plate and the corrugated plate of the upstream portion 3 have a pore diameter of 100 μm or less and a porosity of 85%, and the upstream portion 3 is the super porous portion according to the present invention.

(実施例3)
図3に本実施例のハニカム構造体の斜視図を示す。このハニカム構造体は、厚さ50μmのステンレス製金属箔からなる平板と波板を重ねてロール状に巻回されてなる上流部5と、気孔率が異なること以外は実施例1と同様の平板1及び波板2から同様に形成された下流部6とから構成されている。
(Example 3)
FIG. 3 shows a perspective view of the honeycomb structure of the present embodiment. This honeycomb structure is the same as that of Example 1 except that the upstream portion 5 is formed by laminating a flat plate made of a stainless steel metal foil having a thickness of 50 μm and a corrugated plate and wound into a roll, and has a different porosity. 1 and a downstream portion 6 similarly formed from the corrugated plate 2.

上流部5は直径 103mm、長さ 100mm、下流部6は直径 103mm、長さ55mmに形成され、ロウ付けによって互いに接合されている。上流部5及び下流部6は、共にセルの密度は 400/in2 である。また下流部6の平板及び波板は共に気孔径が 100μm以下、気孔率が85%であり、下流部6が本発明にいう超多孔質部となっている。 The upstream part 5 has a diameter of 103 mm and a length of 100 mm, and the downstream part 6 has a diameter of 103 mm and a length of 55 mm, and is joined to each other by brazing. Both the upstream part 5 and the downstream part 6 have a cell density of 400 / in 2 . Both the flat plate and the corrugated plate of the downstream portion 6 have a pore diameter of 100 μm or less and a porosity of 85%, and the downstream portion 6 is the super porous portion according to the present invention.

(実施例4)
図4に本実施例のハニカム構造体の斜視図を示す。このハニカム構造体は、厚さ50μmのステンレス製金属箔からなる平板と波板を重ねてロール状に巻回されてなる上流部7と、気孔率が異なること以外は実施例1と同様の平板1及び波板2から同様に形成された中央部8と、上流部7と同様に形成された下流部9から構成されている。
(Example 4)
FIG. 4 shows a perspective view of the honeycomb structure of the present embodiment. This honeycomb structure is the same as the first embodiment except that the upstream portion 7 is formed by laminating a flat plate made of a stainless steel metal foil having a thickness of 50 μm and a corrugated plate and wound into a roll, and has a different porosity. 1 and a corrugated plate 2 and a central portion 8 similarly formed, and a downstream portion 9 formed similarly to the upstream portion 7.

上流部7は直径 103mm、長さ50mm、中央部8は直径 103mm、長さ55mm、下流部9は直径103mm、長さ50mmに形成され、ロウ付けによって互いに接合されている。上流部7、中央部8及び下流部9は、共にセルの密度は 400/in2 である。また中央部8の平板及び波板は共に気孔径が 100μm以下、気孔率が90%であり、中央部8が本発明にいう超多孔質部となっている。 The upstream portion 7 has a diameter of 103 mm and a length of 50 mm, the central portion 8 has a diameter of 103 mm and a length of 55 mm, and the downstream portion 9 has a diameter of 103 mm and a length of 50 mm. The upstream part 7, the central part 8 and the downstream part 9 all have a cell density of 400 / in 2 . Further, both the flat plate and the corrugated plate in the central portion 8 have a pore diameter of 100 μm or less and a porosity of 90%, and the central portion 8 is the super porous portion according to the present invention.

(実施例5)
図5に本実施例のハニカム構造体の概略断面図を示す。このハニカム構造体は、厚さ50μmのステンレス製金属箔からなる平板と波板を重ねてロール状に巻回されてなる中心部10と、中心部10の外周に巻回され、気孔率が異なること以外は実施例1と同様の平板1及び波板2から同様に形成された外周部11とから構成されている。
(Example 5)
FIG. 5 shows a schematic cross-sectional view of the honeycomb structure of the present embodiment. This honeycomb structure is wound around a central portion 10 formed by laminating a flat plate made of stainless steel metal foil having a thickness of 50 μm and a corrugated plate and wound in a roll shape, and is wound around the outer periphery of the central portion 10 and has a different porosity. Except for the above, the outer peripheral portion 11 is formed similarly from the flat plate 1 and the corrugated plate 2 similar to the first embodiment.

中心部10は直径40mm、長さ 155mm、外周部11は外径 103mm、長さ 155mmに形成され、ロウ付けによって互いに接合されている。中心部10及び外周部11は、共にセルの密度が 400/in2 である。また外周部11の平板及び波板は共に気孔径が 100μm以下、気孔率が75%であり、外周部11が本発明にいう超多孔質部となっている。 The central portion 10 has a diameter of 40 mm and a length of 155 mm, and the outer peripheral portion 11 has an outer diameter of 103 mm and a length of 155 mm, which are joined to each other by brazing. Both the central part 10 and the outer peripheral part 11 have a cell density of 400 / in 2 . Both the flat plate and the corrugated plate of the outer peripheral portion 11 have a pore diameter of 100 μm or less and a porosity of 75%, and the outer peripheral portion 11 is the super porous portion according to the present invention.

(実施例6)
図6に本実施例のハニカム構造体の概略断面図を示す。このハニカム構造体は、気孔率が異なること以外は実施例1と同様の平板1及び波板2から同様に形成された中心部12と、中心部12の外周に巻回され、厚さ50μmのステンレス製金属箔からなる平板と波板を重ねてロール状に巻回されてなる外周部13とから構成されている。
(Example 6)
FIG. 6 shows a schematic sectional view of the honeycomb structure of the present embodiment. This honeycomb structure is wound around the central portion 12 similarly formed from the flat plate 1 and the corrugated plate 2 of the first embodiment except that the porosity is different, and the outer periphery of the central portion 12, and has a thickness of 50 μm. It is composed of a flat plate made of stainless steel metal foil and an outer peripheral portion 13 formed by laminating a corrugated plate and winding it into a roll.

中心部12は直径80mm、長さ 155mm、外周部13は外径 103mm、長さ 155mmに形成され、ロウ付けによって互いに接合されている。中心部12及び外周部13は、共にセルの密度が 400/in2 である。また中心部12の平板及び波板は共に気孔径が 100μm以下、気孔率が90%であり、外周部11が本発明にいう超多孔質部となっている。 The central portion 12 is formed with a diameter of 80 mm and a length of 155 mm, and the outer peripheral portion 13 is formed with an outer diameter of 103 mm and a length of 155 mm, and is joined to each other by brazing. Both the central part 12 and the outer peripheral part 13 have a cell density of 400 / in 2 . Both the flat plate and the corrugated plate in the central portion 12 have a pore diameter of 100 μm or less and a porosity of 90%, and the outer peripheral portion 11 is the super porous portion according to the present invention.

(実施例7)
図7に本実施例のハニカム構造体の要部断面図を示す。このハニカム構造体は、気孔率が異なること以外は実施例1と同様の平板14を用い、波板15を厚さ50μmのステンレス製金属箔から形成したこと以外は実施例1と同様の構成である。平板14が本発明にいう超多孔質部となっている。
(Example 7)
FIG. 7 is a cross-sectional view of a main part of the honeycomb structure of the present embodiment. This honeycomb structure has the same configuration as that of the first embodiment except that the flat plate 14 is the same as that of the first embodiment except that the porosity is different, and the corrugated plate 15 is formed of a stainless steel metal foil having a thickness of 50 μm. is there. The flat plate 14 is the super-porous portion according to the present invention.

(実施例8)
図8に本実施例のハニカム構造体の要部断面図を示す。このハニカム構造体は、気孔率が異なること以外は実施例1と同様の波板16を用い、平板17を厚さ50μmのステンレス製金属箔から形成したこと以外は実施例1と同様の構成である。波板16が本発明にいう超多孔質部となっている。
(Example 8)
FIG. 8 is a cross-sectional view of a main part of the honeycomb structure of the present embodiment. This honeycomb structure uses the same corrugated plate 16 as in Example 1 except that the porosity is different, and has the same configuration as that of Example 1 except that the flat plate 17 is formed from a stainless steel metal foil having a thickness of 50 μm. is there. The corrugated plate 16 is the super porous portion according to the present invention.

(比較例1)
コージェライト製でハニカム形状の耐熱性基材の両端開口を互い違いに市松状に閉塞した市販のディーゼルパティキュレートフィルタを比較例1のハニカム構造体とした。このハニカム構造体は、直径 103mm、長さ 155mm、セル密度 400/in2 であり、セル隔壁の気孔率は50%である。
(Comparative Example 1)
A commercially available diesel particulate filter made of cordierite and having a honeycomb-shaped heat-resistant substrate in which the openings at both ends were alternately closed in a checkered pattern was used as the honeycomb structure of Comparative Example 1. This honeycomb structure has a diameter of 103 mm, a length of 155 mm, a cell density of 400 / in 2 and a porosity of the cell partition walls of 50%.

(比較例2)
コージェライト製のフロースルー型のモノリス基材を比較例2のハニカム構造体とした。このハニカム構造体は、直径 103mm、長さ 155mm、セル密度 400/in2 であり、ハニカムセル隔壁の気孔率は30%である。
(Comparative Example 2)
A cordierite flow-through type monolith substrate was used as the honeycomb structure of Comparative Example 2. This honeycomb structure has a diameter of 103 mm, a length of 155 mm, a cell density of 400 / in 2 and a porosity of the honeycomb cell partition walls of 30%.

(比較例3)
金属製網体を積層して巻回してなる巻回体を比較例3のハニカム構造体とした。このハニカム構造体の気孔率は70%、目開き(気孔径)は1mmである。
(Comparative Example 3)
A wound body obtained by stacking and winding metal nets was used as a honeycomb structure of Comparative Example 3. The porosity of this honeycomb structure is 70%, and the aperture (pore diameter) is 1 mm.

<試験・評価>
上記実施例及び比較例のハニカム構造体を排気量2Lのディーゼルエンジンの排気系に装着し、2000回転程度の低速運転時におけるハニカム構造体前後の排ガス中のPM濃度を測定して、ハニカム構造体に捕集されたPMの捕集率を求めた。また同時にハニカム構造体前後の排ガス圧力を測定し、差圧から圧損を求めた。結果をそれぞれ表1に示す。
<Test / Evaluation>
The honeycomb structures of the above Examples and Comparative Examples were mounted on the exhaust system of a diesel engine with a displacement of 2 L, and the PM concentration in the exhaust gas before and after the honeycomb structures during low-speed operation of about 2,000 revolutions was measured. The collection rate of PM collected in the sample was determined. At the same time, the exhaust gas pressure before and after the honeycomb structure was measured, and the pressure loss was determined from the differential pressure. The results are shown in Table 1.

Figure 2004301130
Figure 2004301130

表1より、各実施例のハニカム構造体は、フロースルー型でありながらPM捕集率が35%以上と高効率でPMを捕集することができ、かつ圧損も十分に低いことが明らかである。   From Table 1, it is clear that the honeycomb structure of each example can collect PM with a high efficiency of 35% or more and the PM loss is sufficiently low even though it is a flow-through type. is there.

実施例1のハニカム構造体の要部断面図である。FIG. 3 is a cross-sectional view of a main part of the honeycomb structure of the first embodiment. 実施例2のハニカム構造体の概略斜視図である。FIG. 9 is a schematic perspective view of a honeycomb structure according to a second embodiment. 実施例3のハニカム構造体の概略斜視図である。FIG. 9 is a schematic perspective view of a honeycomb structure according to a third embodiment. 実施例4のハニカム構造体の概略斜視図である。FIG. 13 is a schematic perspective view of a honeycomb structure according to a fourth embodiment. 実施例5のハニカム構造体の概略断面図である。FIG. 13 is a schematic sectional view of a honeycomb structure according to a fifth embodiment. 実施例6のハニカム構造体の概略断面図である。FIG. 14 is a schematic sectional view of a honeycomb structure according to a sixth embodiment. 実施例7のハニカム構造体の要部断面図である。FIG. 14 is a cross-sectional view of a main part of a honeycomb structure of a seventh embodiment. 実施例8のハニカム構造体の要部断面図である。FIG. 15 is a cross-sectional view of a main part of a honeycomb structure of an eighth embodiment.

符号の説明Explanation of reference numerals

1:平板(超多孔質部) 2:波板(超多孔質部)
3:上流部(超多孔質部) 4:下流部
1: Flat plate (super porous portion) 2: Corrugated plate (super porous portion)
3: Upstream section (super porous section) 4: Downstream section

Claims (2)

排ガスの入口と出口を連通する複数のハニカムセル内を排ガスが流通するフロースルー型のハニカム構造体であって、該ハニカムセルの内壁の少なくとも一部には孔径が 500μm以下、気孔率が55〜95%で金属製の超多孔質部が形成され、該超多孔質部で排ガス中の粒子状物質を捕集することを特徴とする排ガス浄化ハニカム構造体。   A flow-through type honeycomb structure in which exhaust gas flows through a plurality of honeycomb cells that communicate the exhaust gas inlet and outlet, wherein at least a part of the inner wall of the honeycomb cell has a pore diameter of 500 μm or less and a porosity of 55 to An exhaust gas purifying honeycomb structure, wherein a metal super-porous portion is formed at 95%, and the super-porous portion traps particulate matter in exhaust gas. 前記ハニカムセルの内壁には、多孔質酸化物に貴金属を担持してなる触媒層が形成されている請求項1に記載の排ガス浄化ハニカム構造体。
The exhaust gas purifying honeycomb structure according to claim 1, wherein a catalyst layer in which a porous oxide carries a noble metal is formed on an inner wall of the honeycomb cell.
JP2004209963A 2004-07-16 2004-07-16 Exhaust gas purification honeycomb structure Expired - Fee Related JP4358054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209963A JP4358054B2 (en) 2004-07-16 2004-07-16 Exhaust gas purification honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209963A JP4358054B2 (en) 2004-07-16 2004-07-16 Exhaust gas purification honeycomb structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001319697A Division JP4357776B2 (en) 2001-10-17 2001-10-17 Exhaust gas purification honeycomb structure

Publications (2)

Publication Number Publication Date
JP2004301130A true JP2004301130A (en) 2004-10-28
JP4358054B2 JP4358054B2 (en) 2009-11-04

Family

ID=33411431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209963A Expired - Fee Related JP4358054B2 (en) 2004-07-16 2004-07-16 Exhaust gas purification honeycomb structure

Country Status (1)

Country Link
JP (1) JP4358054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025166A (en) * 2009-07-27 2011-02-10 Hino Motors Ltd Oxidation catalyst and device which treats exhaust gas from engine by using the same
JP2015183554A (en) * 2014-03-20 2015-10-22 ヤンマー株式会社 Engine device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025166A (en) * 2009-07-27 2011-02-10 Hino Motors Ltd Oxidation catalyst and device which treats exhaust gas from engine by using the same
JP2015183554A (en) * 2014-03-20 2015-10-22 ヤンマー株式会社 Engine device

Also Published As

Publication number Publication date
JP4358054B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4907860B2 (en) Filter catalyst
JP3982285B2 (en) Exhaust gas purification filter
JP2001190916A (en) Honeycomb structure
JP2004019498A (en) Emission gas purification filter type promoter
JP2004105792A (en) Catalyst for exhaust gas purification filter and method of manufacturing the same
JP2010269205A (en) Catalyst for cleaning exhaust gas
JP2007253144A (en) Honeycomb structured body and exhaust gas purifying device
JP4715032B2 (en) Diesel exhaust gas purification filter
JP2009160547A (en) Exhaust-gas cleaning catalyst and its production method
JP3855267B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4758071B2 (en) PM-containing exhaust gas purification filter, exhaust gas purification method, and purification apparatus
JP7386626B2 (en) particulate filter
JP2008151100A (en) Exhaust emission control device
JP2006231116A (en) Exhaust gas-cleaning filter catalyst
JP4357776B2 (en) Exhaust gas purification honeycomb structure
JP4426381B2 (en) Honeycomb structure and manufacturing method thereof
JP4868713B2 (en) Exhaust gas purification filter device
JP2002119867A (en) Catalytic structural body for purifying waste gas
JP2009228618A (en) Exhaust emission control device
JP2006077672A (en) Exhaust emission control filter and exhaust emission control device
JP2007244950A (en) Particulate filter type exhaust gas cleaning catalyst and particulate filter
JP4358054B2 (en) Exhaust gas purification honeycomb structure
JP2008229459A (en) Exhaust gas cleaning device
JP2006016991A (en) Exhaust gas cleaning filter
JP3874258B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070508

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070612

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4358054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees