JP2002119867A - Catalytic structural body for purifying waste gas - Google Patents
Catalytic structural body for purifying waste gasInfo
- Publication number
- JP2002119867A JP2002119867A JP2000316968A JP2000316968A JP2002119867A JP 2002119867 A JP2002119867 A JP 2002119867A JP 2000316968 A JP2000316968 A JP 2000316968A JP 2000316968 A JP2000316968 A JP 2000316968A JP 2002119867 A JP2002119867 A JP 2002119867A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- cell
- throttle
- outlet
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003197 catalytic effect Effects 0.000 title abstract description 8
- 239000002912 waste gas Substances 0.000 title abstract 6
- 239000003054 catalyst Substances 0.000 claims abstract description 69
- 238000005192 partition Methods 0.000 claims abstract description 35
- 230000003647 oxidation Effects 0.000 claims abstract description 8
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 8
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 239000010419 fine particle Substances 0.000 abstract description 26
- 238000000034 method Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 12
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 229910052878 cordierite Inorganic materials 0.000 description 5
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 101100325793 Arabidopsis thaliana BCA2 gene Proteins 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 102100033007 Carbonic anhydrase 14 Human genes 0.000 description 1
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- 101000867862 Homo sapiens Carbonic anhydrase 14 Proteins 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- 101100219325 Phaseolus vulgaris BA13 gene Proteins 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- -1 platinum group metals Chemical class 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ディーゼルエンジ
ンの排ガスに含まれる微粒子成分の捕捉・燃焼を行う排
ガス浄化触媒構造体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst structure for trapping and burning particulate components contained in exhaust gas of a diesel engine.
【0002】[0002]
【従来の技術】ディーゼルエンジンの排ガスに含まれる
微粒子成分を浄化する方法としては、(1)目封じ型セ
ラミックハニカム等のフィルタを用いて排ガス中の微粒
子成分を捕捉し、蓄積した微粒子成分をバーナまたはヒ
ータ等の外部着火手段により燃焼させて上記フィルタを
再生する方法と、(2)上記フィルタに触媒物質を担持
させ、排ガス中の微粒子成分を捕捉するとともに触媒物
質により燃焼も行わせて、バーナまたはヒータを用いた
再生の必要をなくす、あるいは再生の頻度を少なくする
方法とがある。上記(1)および(2)の方法はいずれ
も、排ガスがフィルタの隔壁を通り抜ける(ウォールフ
ロー)ときに排ガス中の微粒子成分を捕捉している。2. Description of the Related Art As a method for purifying particulate components contained in exhaust gas of a diesel engine, there are the following methods. (1) The particulate component in exhaust gas is captured using a filter such as a plugged ceramic honeycomb, and the accumulated particulate component is burned. A method of regenerating the filter by burning it with an external igniting means such as a heater; and (2) a method of carrying a catalytic substance on the filter to capture particulate components in exhaust gas and to burn with the catalytic substance. Alternatively, there is a method of eliminating the need for regeneration using a heater or reducing the frequency of regeneration. In each of the methods (1) and (2), the particulate matter in the exhaust gas is captured when the exhaust gas passes through the partition of the filter (wall flow).
【0003】また、特開平1−171626号公報に
は、セラミックハニカム等の三次元構造体に酸化触媒を
担持させ、この触媒構造体の貫通孔に排ガスを流しなが
ら(ストレートフロー)、貫通孔周囲の壁面において排
ガスと酸化触媒とを接触させることにより、微粒子成分
中のSOF(可溶有機成分)を連続的に燃焼させる方法
が開示されている。Japanese Patent Application Laid-Open No. 1-171626 discloses that an oxidation catalyst is supported on a three-dimensional structure such as a ceramic honeycomb, and exhaust gas flows through the through-hole of this catalyst structure (straight flow). Discloses a method of continuously burning SOF (soluble organic component) in the fine particle component by contacting the exhaust gas with the oxidation catalyst on the wall surface.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記(1)の
方法によると、外部着火手段を要するため装置が複雑と
なり、また再生時には微粒子成分が急激に燃焼するため
フィルタが損傷しやすい。さらに、供給される排ガス中
に含まれる微粒子成分が多いと、フィルタの再生頻度が
多くなり経済的に好ましくない。上記(2)の方法によ
ると、再生頻度を少なくすることはできるものの微粒子
成分の燃焼制御が難しく、例えば過剰堆積後の急激な燃
焼によりフィルタが損傷する場合がある。また、上記
(1)および(2)の方法では、微粒子成分の燃焼後に
残った灰分(Ash)が次第に蓄積されてフィルタを閉
塞するという問題がある。However, according to the above method (1), an external ignition means is required, which complicates the apparatus, and the filter is liable to be damaged due to rapid burning of the particulate components during regeneration. Further, if the amount of the fine particle component contained in the supplied exhaust gas is large, the frequency of regeneration of the filter increases, which is not economically preferable. According to the above-mentioned method (2), although the frequency of regeneration can be reduced, it is difficult to control the combustion of fine particle components, and for example, the filter may be damaged due to rapid combustion after excessive deposition. Further, the methods (1) and (2) have a problem that the ash (Ash) remaining after the burning of the fine particle component gradually accumulates and blocks the filter.
【0005】一方、上記特開平1−171626号公報
に記載の方法では、排ガスは貫通孔内に流され隔壁を通
り抜けることはないので、灰分による触媒構造体の詰ま
りや、蓄積された微粒子成分の急激な燃焼による損傷は
起こりにくい。しかし、このストレートフロー方式によ
り燃焼浄化可能なのは、微粒子成分中のSOFのみであ
る。微粒子成分中の煤分(Soot)は触媒構造体を素
通りするか、せいぜい表面に付着する程度であって、触
媒成分の接触が不十分なため燃焼させることができな
い。したがって、ウォールフロー方式に比べて微粒子成
分の浄化率が著しく低いという問題がある。On the other hand, in the method described in Japanese Patent Laid-Open No. 1-171626, the exhaust gas flows into the through holes and does not pass through the partition walls. Damage from rapid combustion is unlikely. However, only SOF in the fine particle component can be burned and purified by the straight flow method. The soot in the particulate component passes through the catalyst structure or adheres to the surface at best, and cannot be burned due to insufficient contact of the catalyst component. Therefore, there is a problem that the purification rate of the fine particle component is extremely low as compared with the wall flow method.
【0006】本発明の目的は、触媒構造体の詰まりが起
こりにくく、かつ微粒子成分の浄化率が改善された排ガ
ス浄化触媒構造体を提供することにある。An object of the present invention is to provide an exhaust gas purifying catalyst structure in which clogging of the catalyst structure hardly occurs and the purification rate of fine particle components is improved.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の排ガス浄化触媒構造体は、ディーゼ
ルエンジンの排ガスに含まれる微粒子成分の捕捉・燃焼
を行う排ガス浄化触媒構造体であって、隔壁により形成
された複数のセルを有するモノリス担体と、該モノリス
担体に担持された触媒成分とからなり、上記隔壁の気孔
率は30〜70体積%であり、上記複数のセルは、上記
モノリス担体を貫通しており排ガス出口側に絞り部が設
けられた出口絞りセルを含むことを特徴とする。In order to solve the above problems, an exhaust gas purifying catalyst structure according to claim 1 is an exhaust gas purifying catalyst structure that captures and burns particulate components contained in exhaust gas of a diesel engine. A monolithic carrier having a plurality of cells formed by partition walls, and a catalyst component supported on the monolithic carrier, wherein the porosity of the partition walls is 30 to 70% by volume, and the plurality of cells are: An exhaust throttle cell penetrating the monolithic carrier and having an exhaust portion provided on the exhaust gas outlet side is provided.
【0008】請求項2記載の排ガス浄化触媒構造体は、
請求項1記載の構造体において、上記複数のセルは、上
記出口絞りセルと、上記モノリス担体を貫通しており排
ガス入口側に絞り部が設けられた入口絞りセルとからな
り、該出口絞りセルと該入口絞りセルとは交互に配置さ
れていることを特徴とする。The exhaust gas purifying catalyst structure according to claim 2 is
2. The structure according to claim 1, wherein the plurality of cells include the outlet throttle cell, and an inlet throttle cell penetrating the monolithic carrier and having a throttle portion provided on an exhaust gas inlet side. 3. And the inlet throttle cells are alternately arranged.
【0009】請求項3記載の排ガス浄化触媒構造体は、
請求項1記載の構造体において、上記複数のセルは、上
記出口絞りセルと、排ガス入口側が閉塞された入口閉塞
セルとからなり、該出口絞りセルと該入口閉塞セルとは
交互に配置されていることを特徴とする。An exhaust gas purifying catalyst structure according to claim 3 is
2. The structure according to claim 1, wherein the plurality of cells include the outlet throttle cell and an inlet closed cell whose exhaust gas inlet side is closed, and the outlet throttle cell and the inlet closed cell are alternately arranged. It is characterized by being.
【0010】請求項4記載の排ガス浄化触媒構造体は。
請求項1、2または3記載の構造体において、上記触媒
成分として酸化触媒が用いられていることを特徴とす
る。請求項5記載の排ガス浄化触媒構造体は。請求項1
から4のいずれか一項記載の構造体において、上記触媒
成分として、HC、COおよびNOxを浄化する浄化触
媒が用いられていることを特徴とする。The exhaust gas purifying catalyst structure according to claim 4 is provided.
The structure according to claim 1, 2 or 3, wherein an oxidation catalyst is used as the catalyst component. An exhaust gas purifying catalyst structure according to claim 5. Claim 1
5. The structure according to any one of items 1 to 4, wherein a purifying catalyst for purifying HC, CO and NOx is used as the catalyst component.
【0011】本発明の排ガス浄化触媒構造体における
「モノリス担体」は、例えば多孔質セラミックス等から
なり、隔壁により形成された複数の貫通セルを有する。
この隔壁の気孔率は30〜70体積%であり、好ましく
は40〜60体積%、さらに好ましくは45〜55体積
%である。気孔率が30体積%未満では、本願発明によ
る効果を十分に発揮することができない。一方、気孔率
が70体積%を超えるモノリス担体は製造が困難であ
り、また強度が不足しやすい。The "monolith carrier" in the exhaust gas purifying catalyst structure of the present invention is made of, for example, porous ceramics and has a plurality of through cells formed by partition walls.
The porosity of this partition is 30 to 70% by volume, preferably 40 to 60% by volume, and more preferably 45 to 55% by volume. If the porosity is less than 30% by volume, the effect of the present invention cannot be sufficiently exhibited. On the other hand, a monolithic carrier having a porosity of more than 70% by volume is difficult to produce and tends to have insufficient strength.
【0012】上記「絞り部」とは、上記貫通セルの流路
断面積が他の部分に比べて縮小された部分である。通常
この絞り部は、出口絞りセルの場合には貫通セルの出口
側端に、入口絞りセルの場合には入口側端に設けること
が好ましい。絞り部の形状は特に限定されず、セル横断
面における中央に開口部(流路)が形成される形状、1
または2以上の角部に開口部が形成される形状等とする
ことができる。The "throttle portion" is a portion in which the cross-sectional area of the flow passage of the through cell is reduced as compared with other portions. Usually, this throttle is preferably provided at the outlet end of the through cell in the case of the outlet throttle cell, and at the inlet end in the case of the inlet throttle cell. The shape of the constricted portion is not particularly limited, and the shape is such that an opening (flow channel) is formed at the center in the cell cross section.
Alternatively, the shape may be such that an opening is formed at two or more corners.
【0013】出口絞りセルの場合、この絞り部における
セルの流路断面積の絞り割合は、他の部分の流路断面積
を100%として、開口部(流路)の面積の合計が30
〜90%であることが好ましく、より好ましくは40〜
80%、さらに好ましくは50〜75%である。また、
この絞り部におけるセルの流路断面積は、例えば隔壁厚
さ0.3mm、セル数300個/in2の場合におい
て、0.3〜1.2mm2とすることができ、好ましく
は0.4〜1.0mm2とすることができる。絞り部の
長さは、例えば3〜10mmであり、好ましくは3〜5
mmである。絞りの程度が大きすぎると、微粒子成分あ
るいはその灰分によりこの絞り部において出口絞りセル
が詰まりやすくなる。また、圧力損失が増大して内燃機
関の性能が実質的に低下するため好ましくない。一方、
絞りの程度が小さすぎると、排ガスを隔壁内に入り込ま
せる効果が不足し、微粒子成分の浄化性能が低下する。In the case of the outlet throttle cell, the throttle ratio of the flow path cross-sectional area of the cell in this throttle portion is 30%, with the total cross-sectional area of the opening (flow path) being 30%, with the flow cross-sectional area of the other part being 100%.
~ 90%, more preferably 40 ~
It is 80%, more preferably 50-75%. Also,
The flow path cross-sectional area of the cell at the narrowed portion can be, for example, 0.3 to 1.2 mm 2 when the partition wall thickness is 0.3 mm and the number of cells is 300 / in 2 , and preferably 0.4. 1.01.0 mm 2 . The length of the constricted portion is, for example, 3 to 10 mm, preferably 3 to 5 mm.
mm. If the degree of throttling is too large, the outlet throttling cell tends to be clogged at the throttling portion due to the fine particle component or its ash. Further, the pressure loss increases, and the performance of the internal combustion engine substantially decreases, which is not preferable. on the other hand,
If the degree of throttling is too small, the effect of allowing the exhaust gas to enter the partition walls is insufficient, and the purification performance of the fine particle component is reduced.
【0014】上記モノリス担体に担持させる「触媒成
分」は、微粒子を着火燃焼させるためのものであって、
請求項4記載のように酸化触媒を用いることが好まし
い。酸化触媒としては、例えば白金族金属から選択され
る一種または二種以上を用いることができる。これによ
り、触媒構造体の入口における排ガス温度が例えば40
0℃程度の低温であっても、外部着火手段を用いること
なく微粒子成分を捕捉燃焼させることができる。また、
請求項5記載のように、この触媒成分としてHC、CO
およびNOxを浄化する浄化触媒(例えばNOx吸蔵還
元触媒)を用いる場合には、この排ガス触媒構造体がH
C、CO、NOxおよび微粒子(パティキュレート)を
除去する四元触媒として機能するものとなるため好まし
い。The "catalyst component" carried on the monolithic carrier is for igniting and burning fine particles.
It is preferable to use an oxidation catalyst as described in claim 4. As the oxidation catalyst, for example, one or more selected from platinum group metals can be used. Thereby, the exhaust gas temperature at the inlet of the catalyst structure is, for example, 40
Even at a low temperature of about 0 ° C., the particulate components can be captured and burned without using external ignition means. Also,
As described in claim 5, HC, CO
When a purification catalyst for purifying NOx and NOx (for example, a NOx storage reduction catalyst) is used, this exhaust gas catalyst structure
It is preferable because it functions as a four-way catalyst for removing C, CO, NOx and fine particles (particulates).
【0015】上記触媒成分は、通常はモノリス担体の全
体にわたって隔壁の表裏両面に担持され、その担持量は
モノリス担体の各部においてほぼ均一であることが好ま
しい。触媒成分の担持量は特に限定されないが、例えば
1〜10g/リットルとすることができる。The above-mentioned catalyst component is usually carried on the front and back surfaces of the partition over the entire monolith carrier, and the amount of the catalyst component is preferably substantially uniform in each part of the monolith carrier. The supported amount of the catalyst component is not particularly limited, but may be, for example, 1 to 10 g / liter.
【0016】(作用および効果)本発明の排ガス浄化触
媒構造体は、従来のウォールフロー型の排ガス浄化フィ
ルタに用いられる目封じ型セラミックハニカム等とは異
なり、貫通したセルを有するので、このセルが微粒子成
分やその灰分により閉塞されにくい。また、従来のスト
レートフロー型の触媒構造体に比べて隔壁の気孔率が高
く、かつ出口側に設けられた絞り部により排ガス流に抵
抗を与えているため、排ガスの一部が隔壁を通り抜ける
か、あるいは隔壁表面より内側に入り込みやすい(半ウ
ォールフロー)。したがって、微粒子成分の少なくとも
一部を隔壁により捕捉し、この微粒子成分を触媒成分と
十分に接触させて、SOFのみならず煤までも燃焼させ
て浄化することができる。なお、従来のストレートフロ
ー型触媒構造体では、隔壁表面よりも内側に排ガスを入
り込ませる意図がなかったため気孔率を高くする動機が
なく、構造体の強度および製造の容易性から隔壁の気孔
率は通常15〜25体積%程度であった。(Operation and Effect) The exhaust gas purifying catalyst structure of the present invention has a penetrating cell unlike a plugged ceramic honeycomb or the like used for a conventional wall flow type exhaust gas purifying filter. Hardly clogged by fine particle components and their ash. In addition, since the porosity of the partition wall is higher than that of the conventional straight-flow type catalyst structure, and the throttle portion provided on the outlet side imparts resistance to the exhaust gas flow, a part of the exhaust gas may pass through the partition wall. Or, it is easy to enter the inside of the partition wall surface (half wall flow). Therefore, at least a part of the fine particle component can be captured by the partition wall, and the fine particle component can be sufficiently brought into contact with the catalyst component so that not only SOF but also soot can be burned and purified. In the conventional straight-flow catalyst structure, there was no motivation to increase the porosity because there was no intention to allow the exhaust gas to enter the inside of the partition wall surface, and the porosity of the partition wall was determined from the strength of the structure and the ease of manufacturing. Usually, it was about 15 to 25% by volume.
【0017】請求項2記載のように、出口絞りセルと入
口絞りセルとが交互に配置された構造とした場合には、
入口絞りセル内が負圧となることにより、出口絞りセル
内の排ガスが隔壁を通り抜けて入口絞りセル内へと導入
されやすい。したがって、微粒子成分の捕捉・燃焼効率
が良好である。また、請求項3記載のように、出口絞り
セルと入口閉塞セルとが交互に配置された構造とした場
合には、出口絞りセル内に比べて入口閉塞セル内の圧力
は低いので、出口絞りセル内の排ガスが隔壁を通り抜け
て入口絞りセル内へと導入されやすい。したがって、微
粒子成分の捕捉・燃焼効率が良好である。According to a second aspect of the present invention, when the outlet throttle cells and the inlet throttle cells are arranged alternately,
When the pressure in the inlet throttle cell becomes negative, exhaust gas in the outlet throttle cell easily passes through the partition wall and is introduced into the inlet throttle cell. Therefore, the efficiency of capturing and burning the fine particle component is good. In the case where the outlet throttle cells and the inlet closed cells are alternately arranged, the pressure in the inlet closed cells is lower than that in the outlet throttle cells. Exhaust gas in the cell easily passes through the partition and is introduced into the inlet throttle cell. Therefore, the efficiency of capturing and burning the fine particle component is good.
【0018】[0018]
【発明の実施の形態】以下、実施例により本発明を更に
具体的に説明する。 (実施例1)気孔率50%のコージェライト製ハニカム
状体(容量1.3リットル、隔壁厚さ0.3mm、セル
数300個/in2)を準備した。このハニカム状体の
出口側端面部約5mmを別途調整したコージェライト粉
末のスラリーに浸漬し、引き上げて余分なスラリーを軽
く吹き払い、乾燥して焼成した。得られたモノリス担体
は、セル断面(排ガス流路)の一辺が1.2mmの正方
形状であり、その出口側約5mmにおいて排ガス流路が
一辺約0.9mmの正方形状に絞り込まれた形状の出口
絞りセルからなる。その後、このモノリス担体に活性ア
ルミナを主体とするウォッシュコート層を形成し、ここ
に酸化触媒として2g/リットル(触媒構造体1リット
ル当たり2g)のPtを担持させた。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described more specifically by way of examples. Example 1 A cordierite honeycomb body having a porosity of 50% (capacity: 1.3 liters, partition wall thickness: 0.3 mm, number of cells: 300 cells / in 2 ) was prepared. About 5 mm of the outlet end face of the honeycomb body was immersed in a separately prepared slurry of cordierite powder, pulled up, lightly blown off excess slurry, dried and fired. The obtained monolithic carrier had a square shape with one side of a cell cross section (exhaust gas channel) of 1.2 mm, and the exhaust gas channel was narrowed to a square shape with a side of approximately 0.9 mm at an outlet side of about 5 mm. Consists of an exit throttle cell. Thereafter, a washcoat layer mainly composed of activated alumina was formed on the monolithic carrier, and 2 g / liter (2 g / liter of catalyst structure) of Pt was supported thereon as an oxidation catalyst.
【0019】この排ガス浄化触媒構造体の断面図を図1
に示す。モノリス担体1は、厚さ0.3mm、気孔率5
0%の隔壁11により形成された複数のセル12を有す
る。この実施例1では、セル12はいずれも、モノリス
担体1を貫通しており排ガス出口側(図1の右側)に絞
り部13が設けられた出口絞りセル121である。出口
絞りセル121の排ガス入口側(図1の左側)は絞られ
ていない。なお、図1〜図5ではウォッシュコート層お
よび触媒成分を省略して示している。FIG. 1 is a sectional view of the exhaust gas purifying catalyst structure.
Shown in The monolith carrier 1 has a thickness of 0.3 mm and a porosity of 5
It has a plurality of cells 12 formed by 0% of partition walls 11. In the first embodiment, each of the cells 12 is an outlet throttle cell 121 which penetrates the monolith carrier 1 and has a throttle portion 13 provided on the exhaust gas outlet side (the right side in FIG. 1). The exhaust gas inlet side (left side in FIG. 1) of the outlet throttle cell 121 is not throttled. 1 to 5, the washcoat layer and the catalyst component are omitted.
【0020】(実施例2)実施例2の排ガス浄化触媒構
造体の断面図を図2に示す。このモノリス担体1におけ
るセル12は、排ガス出口側に絞り部13が設けられた
出口絞りセル121と、排ガス入口側に絞り部13が設
けられた入口絞りセル122とからなる。出口絞りセル
121と入口絞りセル122とは交互に配置されてい
る。出口絞りセル121の出口側端および入口絞りセル
122の入口側端に設けられた絞り部13の長さは5m
mであり、開口部の形状は0.9mm2の正方形状であ
る。出口絞りセル121の入口側端および入口絞りセル
122の出口側端は絞られていない。その他の構成およ
び絞り部13の形成方法は実施例1と同様である。(Embodiment 2) FIG. 2 is a sectional view of an exhaust gas purifying catalyst structure according to Embodiment 2. The cell 12 in the monolithic carrier 1 is composed of an outlet throttle cell 121 provided with a throttle unit 13 on the exhaust gas outlet side, and an inlet throttle cell 122 provided with a throttle unit 13 on the exhaust gas inlet side. The outlet throttle cells 121 and the inlet throttle cells 122 are arranged alternately. The length of the throttle unit 13 provided at the outlet side end of the outlet throttle cell 121 and the inlet side end of the inlet throttle cell 122 is 5 m.
m, and the opening has a square shape of 0.9 mm 2 . The inlet end of the outlet throttle cell 121 and the outlet end of the inlet throttle cell 122 are not throttled. Other configurations and a method of forming the narrowed portion 13 are the same as those in the first embodiment.
【0021】(実施例3)実施例3の排ガス浄化触媒構
造体の断面図を図3に示す。このモノリス担体1におけ
るセル12は、排ガス出口側に実施例1と同形状の絞り
部13が設けられた出口絞りセル121と、排ガス入口
側が栓14により閉塞された入口閉塞セル123とから
なる。出口絞りセル121と入口閉塞セル123とは交
互に配置されている。出口絞りセル121の入口側端お
よび入口閉塞セル123の出口側端は絞られていない。
その他の構成および絞り部13の形成方法は実施例1と
同様である。Embodiment 3 FIG. 3 is a sectional view of an exhaust gas purifying catalyst structure according to Embodiment 3. The cell 12 in the monolithic carrier 1 is composed of an outlet throttle cell 121 in which a throttle portion 13 having the same shape as that of the first embodiment is provided on the exhaust gas outlet side, and an inlet closed cell 123 whose exhaust gas inlet side is closed by a plug 14. The outlet throttle cells 121 and the inlet closed cells 123 are arranged alternately. The inlet end of the outlet throttle cell 121 and the outlet end of the inlet closed cell 123 are not throttled.
Other configurations and a method of forming the narrowed portion 13 are the same as those in the first embodiment.
【0022】(実施例4)実施例1と同じハニカム構造
体を用いて、コージェライト粉末のスラリーに浸漬し、
引き上げて余分なスラリーを軽く吹き払い、乾燥する工
程を二回繰り返した後に焼成した点以外は実施例1と同
様にしてモノリス担体1を得た。このモノリス担体1は
出口絞りセル121のみからなり、そのセル断面の一辺
は1.2mmの正方形状であり、出口側約5mmにおい
て排ガス流路が一辺約0.5mmの正方形状に絞り込ま
れている。その他の構成は実施例1と同様である。Example 4 The same honeycomb structure as in Example 1 was immersed in a cordierite powder slurry.
A monolithic carrier 1 was obtained in the same manner as in Example 1 except that the process of pulling up, gently blowing off excess slurry, and drying was repeated twice, followed by baking. This monolithic carrier 1 is composed of only an outlet throttle cell 121, and one side of the cell cross section is a square of 1.2 mm, and the exhaust gas flow path is narrowed to a square of about 0.5 mm on a side at about 5 mm on the outlet side. . Other configurations are the same as in the first embodiment.
【0023】(比較例1)比較例1の排ガス浄化触媒構
造体の断面図を図4に示す。この構造体におけるモノリ
ス担体1は、絞り部を形成しない点以外は実施例1と同
様にして得られたものであって、絞り部をもたないスト
レートセル124のみからなる。その他の構成は実施例
1と同様である。Comparative Example 1 FIG. 4 shows a cross-sectional view of the exhaust gas purifying catalyst structure of Comparative Example 1. The monolithic carrier 1 in this structure was obtained in the same manner as in Example 1 except that no narrowed portion was formed, and was composed of only the straight cells 124 having no narrowed portion. Other configurations are the same as in the first embodiment.
【0024】(比較例2)比較例2の排ガス浄化触媒構
造体の断面図を図5に示す。この構造体におけるモノリ
ス担体1は、気孔率20%のコージェライト製ハニカム
状体(容量1.3リットル、隔壁厚さ0.15mm、セ
ル数400個/in 2)を用い、コージェライト粉末の
スラリーに浸漬し、引き上げて余分なスラリーを軽く吹
き払い、乾燥する工程を二回繰り返した後に焼成した点
以外は実施例1と同様にして得られたものである。この
モノリス担体1は出口絞りセル121のみからなり、そ
のセル断面の一辺は1.2mmの正方形状であり、出口
側約5mmにおいて排ガス流路が一辺約0.5mmの正
方形状に絞り込まれている。その他の構成は実施例1と
同様である。Comparative Example 2 The exhaust gas purifying catalyst structure of Comparative Example 2
FIG. 5 shows a sectional view of the structure. The monolith in this structure
Carrier 1 is a cordierite honeycomb having a porosity of 20%.
(Capacity: 1.3 liters, partition wall thickness: 0.15 mm, cell
400 pieces / in Two) Using cordierite powder
Immerse in the slurry, pull it up and lightly blow the excess slurry
The point of firing after repeating the process of wiping and drying twice
Except for the above, it was obtained in the same manner as in Example 1. this
The monolith carrier 1 is composed of only the outlet throttle cell 121,
Is a 1.2 mm square shape on one side of the cell cross section.
At about 5 mm on the side, the exhaust gas flow path is
It is narrowed down to a square shape. Other configurations are the same as in the first embodiment.
The same is true.
【0025】(評価)実施例1〜4および比較例1、2
の排ガス浄化触媒構造体を排気量2000ccのディー
ゼルエンジンの排気系に取り付け、2000rpm、触
媒構造体の入口における排ガス温度400℃の条件で2
時間運転した。運転開始から1時間後および2時間後の
時点で、浄化後の排ガスにおける微粒子成分低減率(浄
化率)と、触媒構造体に付着した微粒子成分の量とを測
定した。なお、燃料としては硫黄分10ppm以下の低
硫黄軽油を用いたため、硫黄化合物生成による微粒子低
減率悪化は無視できると考えられる。試験結果を表1に
示す。(Evaluation) Examples 1 to 4 and Comparative Examples 1 and 2
The exhaust gas purifying catalyst structure was mounted on the exhaust system of a diesel engine with a displacement of 2,000 cc.
Driven for hours. At 1 hour and 2 hours after the start of the operation, the particulate component reduction rate (purification rate) in the purified exhaust gas and the amount of the particulate components attached to the catalyst structure were measured. Since a low sulfur gas oil having a sulfur content of 10 ppm or less was used as the fuel, it is considered that the deterioration of the fine particle reduction rate due to the generation of the sulfur compound can be ignored. Table 1 shows the test results.
【0026】[0026]
【表1】 [Table 1]
【0027】表1から判るように、絞り部をもたないス
トレートフロー型の触媒構造体を用いた比較例1、およ
び隔壁の気孔率が低いモノリス担体を用いた比較例2に
対して、実施例1〜4の触媒構造体では、いずれも微粒
子成分の低減率が明らかに向上した。これは、排ガスの
一部が隔壁の表面よりも内側に入り込み、この隔壁によ
り微粒子成分が濾過捕集されたためと考えられる。ま
た、このように微粒子成分を隔壁で積極的に捕集してい
るにもかかわらず、試験後の触媒構造体に付着していた
微粒子成分の量は、むしろ実施例のほうが少ない傾向に
あった。これは、捕集された微粒子成分が効率的に触媒
成分(ここではPt)と反応して燃焼浄化されているた
めと推定される。As can be seen from Table 1, Comparative Example 1 using a straight flow type catalyst structure having no constricted portion and Comparative Example 2 using a monolithic carrier having a low porosity of the partition walls were carried out. In each of the catalyst structures of Examples 1 to 4, the reduction rate of the fine particle component was clearly improved. This is considered to be because a part of the exhaust gas entered the inside of the surface of the partition wall, and the fine particle component was collected by the partition wall. In addition, despite the fact that the fine particle components were actively collected by the partition walls, the amount of the fine particle components adhering to the catalyst structure after the test tended to be smaller in the examples. . This is presumed to be because the trapped fine particle component efficiently reacts with the catalyst component (here, Pt) and is purified by combustion.
【0028】なお、構成および上記評価結果から推察さ
れる、実施例1〜4および比較例1、2の排ガス浄化構
造体における排ガスGの流れを図1〜5にそれぞれ示
す。実施例1および4の構造体では、図示しないディー
ゼルエンジンからの排ガスGは、図1の左側から出口絞
りセル121に流入する。絞り部13により流れがやや
妨げられており、また隔壁11の気孔率が高いことによ
り、排ガスGの一部は隔壁11の内部まで進入し、さら
に隔壁11を通り抜けて隣接する出口絞りセル121に
流入する場合もある。これにより、隔壁11の表面で微
粒子成分を捕捉し、担持された触媒成分と十分に接触さ
せることができる。The flows of the exhaust gas G in the exhaust gas purifying structures of Examples 1 to 4 and Comparative Examples 1 and 2, which are deduced from the configuration and the above evaluation results, are shown in FIGS. In the structures of the first and fourth embodiments, the exhaust gas G from the diesel engine (not shown) flows into the outlet throttle cell 121 from the left side in FIG. Since the flow is slightly obstructed by the restricting portion 13 and the porosity of the partition 11 is high, a part of the exhaust gas G enters the inside of the partition 11 and further passes through the partition 11 to the adjacent outlet restricting cell 121. It may flow in. Thereby, the fine particle component can be captured on the surface of the partition wall 11 and brought into sufficient contact with the supported catalyst component.
【0029】実施例2の構造体では、下流側に排ガスG
の流れに対する抵抗を設けた出口絞りセル121と、下
流側が開放された入口絞りセル122とが交互に配置さ
れている。さらに、図2の左端から絞り部13を通って
入口絞りセル122に流入した排ガスGが膨張すること
により入口絞りセル内122が負圧となる。このため、
出口絞りセル121内に比べて入口絞りセル122内は
低圧となり、出口絞りセル121内の排ガスGが隔壁1
1を通り抜けて入口絞りセル内122へと導入されやす
い。したがって、微粒子成分の捕捉・燃焼効率が良好で
ある。In the structure of the second embodiment, the exhaust gas G
The outlet throttle cells 121 provided with resistance to the flow of air and the inlet throttle cells 122 whose downstream sides are open are alternately arranged. Further, the exhaust gas G flowing into the inlet throttle cell 122 through the throttle unit 13 from the left end in FIG. 2 expands, so that the pressure in the inlet throttle cell 122 becomes negative. For this reason,
The pressure in the inlet throttle cell 122 is lower than that in the outlet throttle cell 121, and the exhaust gas G in the outlet throttle cell 121
1 is easily introduced into the inlet throttle cell 122. Therefore, the efficiency of capturing and burning the fine particle component is good.
【0030】実施例3の構造体では、下流側に排ガスG
の流れに対する抵抗を設けた出口絞りセル121と、入
口側が閉塞され下流側が開放された入口絞りセル122
とが交互に配置されている。出口絞りセル121内に比
べて入口絞りセル122内は低圧となるので、出口絞り
セル121内の排ガスGが隔壁11を通り抜けて入口絞
りセル内122へと導入されやすく、微粒子成分の捕捉
・燃焼効率が良い。そして、実施例1〜4の構造体にお
いて、出口絞りセル121は下流側が絞られながらも貫
通しているので、排ガスG中の微粒子成分やその灰分に
より閉塞されにくい。In the structure of the third embodiment, the exhaust gas G
Throttle cell 121 having resistance to the flow of air, and an inlet throttle cell 122 having a closed inlet side and an open downstream side.
And are alternately arranged. Since the pressure in the inlet throttle cell 122 is lower than that in the outlet throttle cell 121, the exhaust gas G in the outlet throttle cell 121 easily passes through the partition wall 11 and is introduced into the inlet throttle cell 122, and capture and combustion of particulate components Efficient. In the structures of Examples 1 to 4, since the outlet throttle cell 121 penetrates while the downstream side is throttled, the outlet throttle cell 121 is less likely to be blocked by the particulate components in the exhaust gas G and its ash.
【0031】これに対して、比較例1の構造体は絞り部
をもたないため、排ガスGがストレートセル124を素
通りしてしまい、排ガスGと触媒成分とを十分に接触さ
せることができなかったものと考えられる。また、比較
例2の構造体は出口絞りセル121を有するが、隔壁1
1の気孔率が20%と低いため、排ガスGを隔壁11内
に入り込ませることができず、排ガスGと触媒成分とを
十分に接触させることができなかったものと考えられ
る。On the other hand, since the structure of Comparative Example 1 does not have the constricted portion, the exhaust gas G passes through the straight cell 124, and the exhaust gas G and the catalyst component cannot be sufficiently contacted. It is thought that it was. Further, the structure of Comparative Example 2 has the outlet throttle cell 121,
It is probable that exhaust gas G could not enter the partition 11 because the porosity of the sample No. 1 was as low as 20%, and the exhaust gas G could not be brought into sufficient contact with the catalyst component.
【図1】実施例1の排ガス浄化触媒構造体を示す断面図
である。FIG. 1 is a cross-sectional view illustrating an exhaust gas purifying catalyst structure according to a first embodiment.
【図2】実施例2の排ガス浄化触媒構造体を示す断面図
である。FIG. 2 is a cross-sectional view illustrating an exhaust gas purifying catalyst structure according to a second embodiment.
【図3】実施例3の排ガス浄化触媒構造体を示す断面図
である。FIG. 3 is a cross-sectional view illustrating an exhaust gas purifying catalyst structure according to a third embodiment.
【図4】比較例1の排ガス浄化触媒構造体を示す断面図
である。FIG. 4 is a sectional view showing an exhaust gas purifying catalyst structure of Comparative Example 1.
【図5】比較例2の排ガス浄化触媒構造体を示す断面図
である。FIG. 5 is a sectional view showing an exhaust gas purifying catalyst structure of Comparative Example 2.
1;モノリス担体 11;隔壁 12;セル 121;出口絞りセル 122;入口絞りセル 123;入口閉塞セル 124;ストレートセル 13;絞り部 G;排ガス Reference Signs List 1; monolithic carrier 11; partition wall 12; cell 121; outlet throttle cell 122; inlet throttle cell 123; inlet closed cell 124; straight cell 13;
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 32/00 F01N 3/28 301P F01N 3/02 321 B01D 53/36 ZABC 3/28 301 104B 104A Fターム(参考) 3G090 AA03 EA01 3G091 AB02 AB03 AB13 BA13 CA27 GB06W GB17X 4D048 AA06 AA13 AA14 AA18 AB01 AB03 BB02 BB12 BB14 4G069 AA01 AA03 AA08 BA01B BA13B BC75B CA03 CA07 CA10 CA13 CA14 CA15 CA18 DA05 EA19 FA03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 32/00 F01N 3/28 301P F01N 3/02 321 B01D 53/36 ZABC 3/28 301 104B 104A F-term (Reference) 3G090 AA03 EA01 3G091 AB02 AB03 AB13 BA13 CA27 GB06W GB17X 4D048 AA06 AA13 AA14 AA18 AB01 AB03 BB02 BB12 BB14 4G069 AA01 AA03 AA08 BA01B BA13B BC75B CA03 CA07 CA10 CA13 CA14 CA15 CA18 DA05
Claims (5)
微粒子成分の捕捉・燃焼を行う排ガス浄化触媒構造体で
あって、隔壁により形成された複数のセルを有するモノ
リス担体と、該モノリス担体に担持された触媒成分とか
らなり、 上記隔壁の気孔率は30〜70体積%であり、上記複数
のセルは、上記モノリス担体を貫通しており排ガス出口
側に絞り部が設けられた出口絞りセルを含むことを特徴
とする排ガス浄化触媒構造体。1. An exhaust gas purifying catalyst structure for capturing and burning a particulate component contained in exhaust gas of a diesel engine, comprising: a monolith carrier having a plurality of cells formed by partition walls; and a monolith carrier supported by the monolith carrier. The partition wall has a porosity of 30 to 70% by volume, and the plurality of cells include an outlet throttle cell penetrating the monolithic carrier and provided with a throttle portion on an exhaust gas outlet side. An exhaust gas purifying catalyst structure comprising:
と、上記モノリス担体を貫通しており排ガス入口側に絞
り部が設けられた入口絞りセルとからなり、該出口絞り
セルと該入口絞りセルとは交互に配置されている請求項
1記載の排ガス浄化触媒構造体。2. The cell according to claim 1, wherein the plurality of cells include the outlet throttle cell, and an inlet throttle cell penetrating the monolithic carrier and provided with a throttle portion on the exhaust gas inlet side. 2. The exhaust gas purifying catalyst structure according to claim 1, wherein the cells are alternately arranged.
と、排ガス入口側が閉塞された入口閉塞セルとからな
り、該出口絞りセルと該入口閉塞セルとは交互に配置さ
れている請求項1記載の排ガス浄化触媒構造体。3. The plurality of cells include the outlet throttle cell and an inlet closed cell whose exhaust gas inlet side is closed, and the outlet throttle cell and the inlet closed cell are alternately arranged. An exhaust gas purifying catalyst structure according to the above.
ている請求項1、2または3記載の排ガス浄化触媒構造
体。4. The exhaust gas purifying catalyst structure according to claim 1, wherein an oxidation catalyst is used as the catalyst component.
NOxを浄化する浄化触媒が用いられている請求項1か
ら4のいずれか一項記載の排ガス浄化触媒構造体。5. The exhaust gas purifying catalyst structure according to claim 1, wherein a purifying catalyst for purifying HC, CO, and NOx is used as the catalyst component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000316968A JP2002119867A (en) | 2000-10-17 | 2000-10-17 | Catalytic structural body for purifying waste gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000316968A JP2002119867A (en) | 2000-10-17 | 2000-10-17 | Catalytic structural body for purifying waste gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002119867A true JP2002119867A (en) | 2002-04-23 |
Family
ID=18795839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000316968A Pending JP2002119867A (en) | 2000-10-17 | 2000-10-17 | Catalytic structural body for purifying waste gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002119867A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7008461B2 (en) | 2002-10-10 | 2006-03-07 | Ngk Insulators, Ltd. | Honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purification system using honeycomb structure |
JP2006272072A (en) * | 2005-03-28 | 2006-10-12 | Ngk Insulators Ltd | Honeycomb structure |
US7128961B2 (en) | 2002-10-10 | 2006-10-31 | Ngk Insulators, Ltd. | Honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purification system using honeycomb structure |
JP2008544149A (en) * | 2005-06-24 | 2008-12-04 | エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング | Method and apparatus for operating a particle collector |
JP2009000647A (en) * | 2007-06-22 | 2009-01-08 | Tokyo Yogyo Co Ltd | Exhaust gas cleaning filter |
WO2009032142A1 (en) * | 2007-08-31 | 2009-03-12 | Perkins Engines Company Limited | Partial flow exhaust filter |
JP2010104956A (en) * | 2008-10-31 | 2010-05-13 | Ngk Insulators Ltd | Honeycomb structure and honeycomb catalyst body |
JP2010104952A (en) * | 2008-10-31 | 2010-05-13 | Ngk Insulators Ltd | Honeycomb structure, method for producing the same, and honeycomb catalyst body |
JP2010104957A (en) * | 2008-10-31 | 2010-05-13 | Ngk Insulators Ltd | Honeycomb structure and honeycomb catalyst body |
JP2010104955A (en) * | 2008-10-31 | 2010-05-13 | Ngk Insulators Ltd | Honeycomb structure and honeycomb catalyst body |
WO2012046484A1 (en) * | 2010-10-06 | 2012-04-12 | 日本碍子株式会社 | Exhaust gas purification device |
WO2013172916A1 (en) | 2012-05-18 | 2013-11-21 | Coopersurgical, Inc. | Suture passer guides and related kits and methods |
-
2000
- 2000-10-17 JP JP2000316968A patent/JP2002119867A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7128961B2 (en) | 2002-10-10 | 2006-10-31 | Ngk Insulators, Ltd. | Honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purification system using honeycomb structure |
US7008461B2 (en) | 2002-10-10 | 2006-03-07 | Ngk Insulators, Ltd. | Honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purification system using honeycomb structure |
JP4666593B2 (en) * | 2005-03-28 | 2011-04-06 | 日本碍子株式会社 | Honeycomb structure |
JP2006272072A (en) * | 2005-03-28 | 2006-10-12 | Ngk Insulators Ltd | Honeycomb structure |
JP2008544149A (en) * | 2005-06-24 | 2008-12-04 | エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング | Method and apparatus for operating a particle collector |
JP2009000647A (en) * | 2007-06-22 | 2009-01-08 | Tokyo Yogyo Co Ltd | Exhaust gas cleaning filter |
WO2009032142A1 (en) * | 2007-08-31 | 2009-03-12 | Perkins Engines Company Limited | Partial flow exhaust filter |
JP2010104956A (en) * | 2008-10-31 | 2010-05-13 | Ngk Insulators Ltd | Honeycomb structure and honeycomb catalyst body |
JP2010104957A (en) * | 2008-10-31 | 2010-05-13 | Ngk Insulators Ltd | Honeycomb structure and honeycomb catalyst body |
JP2010104955A (en) * | 2008-10-31 | 2010-05-13 | Ngk Insulators Ltd | Honeycomb structure and honeycomb catalyst body |
JP2010104952A (en) * | 2008-10-31 | 2010-05-13 | Ngk Insulators Ltd | Honeycomb structure, method for producing the same, and honeycomb catalyst body |
WO2012046484A1 (en) * | 2010-10-06 | 2012-04-12 | 日本碍子株式会社 | Exhaust gas purification device |
WO2013172916A1 (en) | 2012-05-18 | 2013-11-21 | Coopersurgical, Inc. | Suture passer guides and related kits and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100602923B1 (en) | Filter catalyst for purifying exhaust gas | |
EP1598534A2 (en) | Honeycomb filter and exhaust gas purification system | |
WO2008066767A1 (en) | Partial wall-flow filter and diesel exhaust system and method | |
KR100747088B1 (en) | Dpf with improving heat durability | |
JP2004019498A (en) | Emission gas purification filter type promoter | |
JP2007098274A (en) | Porous honeycomb structure and apparatus for purifying exhaust gas using the same | |
EP2296781A1 (en) | Partial wall-flow filter and method | |
JP2007192055A (en) | Exhaust emission control device and exhaust emission control method | |
WO2007070344A1 (en) | Low pressure drop coated diesel exhaust filter | |
JP2010269205A (en) | Catalyst for cleaning exhaust gas | |
JP3900421B2 (en) | Wall flow type diesel exhaust gas purification filter type catalyst and diesel exhaust gas purification device | |
EP1880763B1 (en) | Honeycomb filter, its manufacturing, exhaust gas purification system using it | |
JP2002336627A (en) | Apparatus for decreasing carbon particles | |
JP2002119867A (en) | Catalytic structural body for purifying waste gas | |
JP4736724B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2002349234A (en) | Diesel exhaust emission control filter | |
JP2008151100A (en) | Exhaust emission control device | |
JP4412641B2 (en) | Exhaust gas purification device and exhaust gas purification method | |
JP2004251266A (en) | Ceramic honeycomb filter type and exhaust gas purifying method | |
JP3874246B2 (en) | Filter type catalyst for diesel exhaust gas purification | |
JP2001355431A (en) | Exhaust emission control device for diesel engine | |
JP2009228618A (en) | Exhaust emission control device | |
JP2006077672A (en) | Exhaust emission control filter and exhaust emission control device | |
JP2001205108A (en) | Particulate filter | |
JP2004084502A (en) | Exhaust emission control filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070116 |