JP2010104957A - Honeycomb structure and honeycomb catalyst body - Google Patents

Honeycomb structure and honeycomb catalyst body Download PDF

Info

Publication number
JP2010104957A
JP2010104957A JP2008281709A JP2008281709A JP2010104957A JP 2010104957 A JP2010104957 A JP 2010104957A JP 2008281709 A JP2008281709 A JP 2008281709A JP 2008281709 A JP2008281709 A JP 2008281709A JP 2010104957 A JP2010104957 A JP 2010104957A
Authority
JP
Japan
Prior art keywords
cell
cells
honeycomb structure
honeycomb
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008281709A
Other languages
Japanese (ja)
Other versions
JP5219742B2 (en
Inventor
Chika Saito
知佳 齋藤
Masahiro Yamamoto
昌弘 山本
Yukio Miyairi
由紀夫 宮入
Shogo Hirose
正悟 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008281709A priority Critical patent/JP5219742B2/en
Publication of JP2010104957A publication Critical patent/JP2010104957A/en
Application granted granted Critical
Publication of JP5219742B2 publication Critical patent/JP5219742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a honeycomb structure for efficiently removing toxic substances in exhaust gas by carrying a catalyst and for effectively restraining the increase of a pressure loss. <P>SOLUTION: The honeycomb structure is constituted as follows. A partition wall 1 has a porosity of 50-80% and an average pore size of 15-70 μm. A part 4 of a plurality of cells 4 are first cells 4a, the opening of each of which at the inflow-side end is opened and in the opening of each of which at the outflow-side end an open area reducing member 6 is arranged for plugging a part of the opening, and remaining cells 4 are second cells 4b the openings at both ends of each of which are opened. The first cell and the second cell are arranged alternately. A slit 7 is formed on both of the partition wall 1 and the open area reducing member 6 at the outflow-side end of at least one row of rows 5, in each of which the first cell 4a and the second cell 4b are arranged alternately, so that the slit travels the length of the row 5 of the cells. The depth of the slit 7 in the extending direction of the cell is made deeper than that of the open area reducing member 6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハニカム構造体及び触媒体に関する。更に詳しくは、触媒を担持することにより、自動車用、建設機械用、及び産業用定置エンジン、並びに燃焼機器等から排出される排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)の有害物質を効率的に浄化することが可能であるとともに、圧力損失の増加を有効に抑制することが可能なハニカム構造体、及びこのハニカム構造体に触媒が担持されたハニカム触媒体に関する。 The present invention relates to a honeycomb structure and a catalyst body. More specifically, by supporting the catalyst, carbon monoxide (CO), hydrocarbon (HC) contained in exhaust gas discharged from automobiles, construction machinery, industrial stationary engines, and combustion equipment, etc. A honeycomb structure capable of efficiently purifying harmful substances of nitrogen oxide (NO x ) and effectively suppressing an increase in pressure loss, and a catalyst supported on the honeycomb structure The present invention relates to a honeycomb catalyst body.

現在、各種エンジン等から排出される排気ガスを浄化するために、ハニカム構造体に触媒を担持したハニカム触媒体が用いられている(例えば、特許文献1参照)。このようなハニカム触媒体は、流入側の端面から各セルに流体(排気ガス)を流入させ、排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害物質を触媒により浄化するものである。 Currently, a honeycomb catalyst body in which a catalyst is supported on a honeycomb structure is used to purify exhaust gas discharged from various engines or the like (see, for example, Patent Document 1). In such a honeycomb catalyst body, fluid (exhaust gas) flows into each cell from the end face on the inflow side, and carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NO X ) contained in the exhaust gas. And other harmful substances are purified with a catalyst.

従来、このようなハニカム触媒体に使用されるハニカム構造体は、排気ガスの浄化性能を高めるために、セル密度を高め、触媒が担持される幾何学的面積を大きくし、排ガスと触媒との接触効率を高めるように作製されていた。   Conventionally, a honeycomb structure used for such a honeycomb catalyst body increases the cell density, increases the geometric area on which the catalyst is supported, and improves the exhaust gas purification performance. It was made to increase the contact efficiency.

特開平07−00766号公報Japanese Patent Laid-Open No. 07-00766

しかしながら、従来のハニカム構造体及びハニカム触媒体においては、浄化性能を向上させるためにハニカム構造体のセル密度を大きくすると、排気ガスがセル内を通過する際の圧力損失が増大してしまう。一方、ハニカム構造体の隔壁を薄壁化して圧力損失の増加を抑制しようとすると、排気ガスと触媒との接触効率が低下して、排気ガスの浄化性能が低下してしまう。   However, in the conventional honeycomb structure and honeycomb catalyst body, if the cell density of the honeycomb structure is increased in order to improve the purification performance, the pressure loss when the exhaust gas passes through the cell increases. On the other hand, if it is intended to suppress the increase in pressure loss by thinning the partition walls of the honeycomb structure, the contact efficiency between the exhaust gas and the catalyst is lowered, and the exhaust gas purification performance is lowered.

このように、従来のハニカム構造体及びハニカム触媒体においては、浄化性能を向上させることと、圧力損失を低減させることとは、二律背反の関係にあり、両者を両立させることは極めて困難であるという問題があった。   Thus, in the conventional honeycomb structure and honeycomb catalyst body, there is a tradeoff between improving the purification performance and reducing the pressure loss, and it is extremely difficult to achieve both. There was a problem.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、触媒を担持することにより、排気ガスに含まれる有害物質を効率的に浄化することが可能であるとともに、圧力損失の増加を有効に抑制することが可能なハニカム構造体、及びこのハニカム構造体に触媒が担持されたハニカム触媒体を提供するものである。   The present invention has been made in view of such problems of the prior art, and by carrying a catalyst, it is possible to efficiently purify harmful substances contained in exhaust gas, and pressure loss Is provided, and a honeycomb catalyst body in which a catalyst is supported on the honeycomb structure is provided.

上述の課題を解決するため、本発明は、以下のハニカム構造体及びハニカム触媒体を提供する。   In order to solve the above-described problems, the present invention provides the following honeycomb structure and honeycomb catalyst body.

[1] 流入側の端面から流出側の端面まで貫通する流体の流路となる複数のセルを区画形成する多孔質の隔壁を備え、前記隔壁は、気孔率が50〜80%であり、且つ平均細孔径が13〜70μmであり、前記複数のセルの中の一部のセルは、流入側の端部の開口部が開口され且つ流出側の端部の開口部にその前記開口部の一部を塞ぐように開口面積縮小部材が配設された第1のセルであり、残部のセルは、両端部の開口部が開口された第2のセルであり、前記第1のセルと前記第2のセルとが交互に配置され、前記第1のセルと前記第2のセルとが交互に並ぶセルの列の中の少なくとも一列の流出側端部において、前記セルの列を縦断するように前記隔壁及び前記開口面積縮小部材にスリットが形成され、前記スリットの、セルの延びる方向における深さが、前記開口面積縮小部材の、セルの延びる方向における深さより深いハニカム構造体。 [1] A porous partition wall that partitions and forms a plurality of cells serving as fluid flow paths that penetrate from the end surface on the inflow side to the end surface on the outflow side, and the partition wall has a porosity of 50 to 80%, and The average pore diameter is 13 to 70 μm, and some of the plurality of cells have an opening at the end on the inflow side and one opening of the opening at the end on the outflow side. A first cell in which an opening area reducing member is disposed so as to close the portion, and the remaining cell is a second cell in which openings at both ends are opened, and the first cell and the first cell Two cells are alternately arranged, and at the outflow side end of at least one row of cells in which the first cells and the second cells are alternately arranged, the rows of cells are vertically cut. A slit is formed in the partition wall and the opening area reducing member, and the cell extends in the slit. A honeycomb structure in which a depth in a direction is deeper than a depth in the cell extending direction of the opening area reducing member.

[2] 前記スリットが形成された前記セルの列が、流出側の端面において互いに平行に並ぶ複数のセルの列である[1]に記載のハニカム構造体。 [2] The honeycomb structure according to [1], wherein the row of cells in which the slits are formed is a row of a plurality of cells arranged in parallel with each other on an end face on the outflow side.

[3] 前記スリットが形成された前記セルの列が、流出側の端面において互いに平行に並ぶ複数のセルの列、及び前記平行に並ぶ複数のセルの列と交差する、他の互いに平行に並ぶ複数のセルの列である[1]に記載のハニカム構造体。 [3] The row of cells in which the slits are formed is arranged in parallel with each other at the outflow side end surface, and intersects with the row of cells arranged in parallel with each other and the row of cells arranged in parallel with each other. The honeycomb structure according to [1], which is a row of a plurality of cells.

[4] 前記スリットの、セルの延びる方向における深さの下限値が、1mmであり、上限値が30mm又はセルの延びる方向の全長の1/2のいずれか短い方の長さである[1]〜[3]のいずれかに記載のハニカム構造体。 [4] The lower limit of the depth of the slit in the cell extending direction is 1 mm, and the upper limit is 30 mm or 1/2 of the total length in the cell extending direction, whichever is shorter [1] ] The honeycomb structure according to any one of [3].

[5] 前記開口面積縮小部材が、気孔率が20〜80%の多孔質体からなる[1]〜[4]のいずれかに記載のハニカム構造体。 [5] The honeycomb structure according to any one of [1] to [4], wherein the opening area reducing member is made of a porous body having a porosity of 20 to 80%.

[6] [1]〜[5]のいずれかに記載のハニカム構造体と、前記ハニカム構造体の前記隔壁の細孔の内表面に担持されるとともに、隔壁表面に担持された触媒と、を備え、触媒担持量が100〜250g/Lであるハニカム触媒体。 [6] The honeycomb structure according to any one of [1] to [5], and a catalyst supported on the inner surface of the pores of the partition walls of the honeycomb structure and supported on the partition surface. A honeycomb catalyst body having a catalyst loading of 100 to 250 g / L.

本発明のハニカム構造体及びハニカム触媒体は、特定の気孔率及び平均細孔径の多孔質の隔壁を有するハニカム構造体において、第1のセルの流出側の端面におけるセルの開口部の面積が開口面積縮小部材によって小さくなっているため(セルの開口部が、開口面積縮小部材に形成されたスリットとして開口されているため)、第1のセルに流入した流体の一部を、第1のセルを区画形成する隔壁を透過させて隣接する第2のセルの内部に積極的に流出させることができ、排気ガスに含まれる有害物質を効率的に浄化することができる。   In the honeycomb structure and the honeycomb catalyst body of the present invention, in the honeycomb structure having a porous partition wall having a specific porosity and an average pore diameter, the area of the opening of the cell on the end face on the outflow side of the first cell is open. Since it is reduced by the area reducing member (since the opening of the cell is opened as a slit formed in the opening area reducing member), a part of the fluid flowing into the first cell is transferred to the first cell. Can be permeated through the partition wall forming the partition wall and actively flow out into the adjacent second cell, and the harmful substances contained in the exhaust gas can be efficiently purified.

また、本発明のハニカム構造体及びハニカム触媒体は、隔壁の気孔率及び平均細孔径が特定の範囲であり、且つ上記第1のセルにおいては、流出側の開口部の面積が縮小されてはいるものの、縮小された開口部(スリット)及び隔壁に形成されたスリットから流体の一部を流出させることができる(即ち、完全には開口部が封止されていない)ため、上述したように排気ガスの浄化効率を向上させたとしても、圧力損失の増加を有効に抑制、又は圧力損失を低減することができる。   In the honeycomb structure and the honeycomb catalyst body of the present invention, the porosity and average pore diameter of the partition walls are in a specific range, and the area of the opening on the outflow side is reduced in the first cell. However, as described above, a part of the fluid can flow out from the reduced opening (slit) and the slit formed in the partition wall (that is, the opening is not completely sealed). Even if the exhaust gas purification efficiency is improved, an increase in pressure loss can be effectively suppressed or the pressure loss can be reduced.

即ち、本発明のハニカム構造体及びハニカム触媒体は、排気ガスの浄化効率を向上と、圧力損失の増加の抑制という、従来の技術では両立困難であった問題を同時に解決することができる。また、浄化効率の向上により、担持触媒量を低減することが可能になる。   That is, the honeycomb structure and the honeycomb catalyst body of the present invention can simultaneously solve the problems that are difficult to achieve with the conventional techniques, such as improving the purification efficiency of exhaust gas and suppressing the increase in pressure loss. Further, the amount of the supported catalyst can be reduced by improving the purification efficiency.

以下、本発明を実施するための最良の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be specifically described. However, the present invention is not limited to the following embodiment, and is within the scope of the gist of the present invention. Based on this knowledge, it should be understood that design changes, improvements, etc. can be made as appropriate.

[1]ハニカム構造体:
図1〜図3に示すように、本実施形態のハニカム構造体100は、流入側の端面2から流出側の端面3まで貫通する流体の流路となる複数のセル4を区画形成する多孔質の隔壁1を備え、隔壁1は、気孔率が50〜80%であり、且つ平均細孔径が13〜70μmであり、複数のセル4の中の一部のセル4は、流入側の端部の開口部が開口され且つ流出側の端部の開口部にその開口部の一部を塞ぐように開口面積縮小部材6が配設された第1のセル4aであり、残部のセル4は、両端部の開口部が開口された第2のセル4bであり、第1のセル4aと第2のセル4bとが交互に配置され、第1のセル4aと第2のセル4bとが交互に並ぶ「セルの列5」の中の少なくとも一列の流出側端部において、セルの列5を縦断するように隔壁1及び開口面積縮小部材6にスリット7が形成され、スリット7の、セル4の延びる方向における深さ(スリット深さ)D1が、開口面積縮小部材6の、セル4の延びる方向における深さ(開口面積縮小部材深さ)D2より深いものである。第1のセル4aに配設される開口面積縮小部材6は、スリット7により、セル4の延びる方向に貫通した形状となっている。セルの列5は、第1のセル4aと第2のセル4bとが交互に並んで形成された一列に延びるセルの列である。ここで、図1は、本発明のハニカム構造体の一の実施形態を模式的に示す斜視図であり、図2は、本発明のハニカム構造体の一の実施形態の一部を模式的に示す、流出側端面側からみた平面図であり、図3は、図2のA−A’断面を示す模式図である。
[1] Honeycomb structure:
As shown in FIGS. 1 to 3, the honeycomb structure 100 of the present embodiment has a porous structure in which a plurality of cells 4 serving as fluid flow paths penetrating from the end surface 2 on the inflow side to the end surface 3 on the outflow side are formed. The partition wall 1 has a porosity of 50 to 80% and an average pore diameter of 13 to 70 μm, and some of the cells 4 in the plurality of cells 4 have end portions on the inflow side. Are the first cells 4a in which the opening area reducing member 6 is disposed so as to block a part of the opening at the opening on the outflow side, and the remaining cells 4 are It is the 2nd cell 4b by which the opening part of the both ends was opened, the 1st cell 4a and the 2nd cell 4b are arrange | positioned alternately, and the 1st cell 4a and the 2nd cell 4b are alternately arranged The partition wall 1 and the opening are formed so as to cut the cell row 5 longitudinally at the outflow side end of at least one row of the “cell row 5”. A slit 7 is formed in the area reducing member 6, and the depth (slit depth) D <b> 1 of the slit 7 in the cell 4 extending direction is the depth of the opening area reducing member 6 in the cell 4 extending direction (opening area reduction). The member depth is deeper than D2. The opening area reducing member 6 disposed in the first cell 4 a has a shape penetrating in the extending direction of the cell 4 by the slit 7. The cell row 5 is a row of cells extending in one row formed by alternately arranging the first cells 4a and the second cells 4b. Here, FIG. 1 is a perspective view schematically showing an embodiment of the honeycomb structure of the present invention, and FIG. 2 schematically shows a part of the embodiment of the honeycomb structure of the present invention. It is a top view seen from the outflow side end surface side shown, and FIG. 3 is a schematic diagram which shows the AA 'cross section of FIG.

本実施形態のハニカム構造体100は、各種エンジン等から排出される排気ガスを浄化するためのハニカム触媒体の触媒担体として好適に用いることができる。より具体的には、例えば、上記隔壁の細孔の内表面、及び隔壁表面に触媒を担持してハニカム触媒体を製造し、得られたハニカム触媒体を排気ガスの排気系内部に配置し、その流入側の端面から各セルに流体(排気ガス)を流入させ、流入した排気ガスを、隔壁を透過させることによって、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害物質を触媒により浄化するものである。 The honeycomb structure 100 of the present embodiment can be suitably used as a catalyst carrier of a honeycomb catalyst body for purifying exhaust gas discharged from various engines or the like. More specifically, for example, a honeycomb catalyst body is produced by supporting a catalyst on the inner surface of the pores of the partition walls and the partition surface, and the obtained honeycomb catalyst body is disposed inside the exhaust gas exhaust system, As from the end surface of the inlet side is allowed to flow the fluid (exhaust gas) in each cell, the inflowing exhaust gas, by transmitting the partition, carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO X ) And other harmful substances are purified with a catalyst.

本実施形態のハニカム構造体100は、隔壁1が、気孔率50〜80%、平均細孔径13〜70μmであり、従来のハニカム触媒体に使用されるハニカム構造体と比較して、気孔率が高く、且つ平均細孔径が大きな多孔質体によって隔壁1が形成されている。このため、ハニカム構造体に触媒を担持してハニカム触媒体として用いた場合に、圧力損失の増加を有効に抑制することができる。   In the honeycomb structure 100 of the present embodiment, the partition walls 1 have a porosity of 50 to 80% and an average pore diameter of 13 to 70 μm, and the porosity is higher than that of the honeycomb structure used in the conventional honeycomb catalyst body. The partition wall 1 is formed of a porous body that is high and has a large average pore diameter. For this reason, when a catalyst is supported on a honeycomb structure and used as a honeycomb catalyst body, an increase in pressure loss can be effectively suppressed.

なお、本明細書において、「気孔率」とは、水銀ポロシメータ(水銀圧入法)によって測定した値のことをいう。また、「平均細孔径」とは、水銀ポロシメータ(水銀圧入法)によって測定されたもので、多孔質基材(即ち、隔壁)に圧入された水銀の累積容量が、多孔質基材の全細孔容積の50%となった際の圧力から算出された細孔径のことをいう。   In this specification, “porosity” refers to a value measured by a mercury porosimeter (mercury intrusion method). The “average pore diameter” is measured by a mercury porosimeter (mercury intrusion method), and the cumulative volume of mercury injected into the porous substrate (ie, the partition wall) is the total fineness of the porous substrate. The pore diameter calculated from the pressure when the pore volume is 50%.

更に、本実施形態のハニカム構造体100においては、セルの列5を縦断するように隔壁1及び開口面積縮小部材6にスリット7を形成するため、ガスの流れの乱れが少なくなり、圧損上昇が抑えられる利点がある。   Further, in the honeycomb structure 100 of the present embodiment, the slits 7 are formed in the partition walls 1 and the opening area reducing member 6 so as to cut the cell rows 5 vertically, so that the gas flow is less disturbed and the pressure loss is increased. There is an advantage that can be suppressed.

更に、本実施形態のハニカム構造体100においては、第1のセル4aの開口部の開口面積(セルの流路方向に直交する断面における面積)が開口面積縮小部材6によって縮小されてはいるものの、縮小された開口部から流体の一部を流出させることができる(即ち、第1のセル4aの開口部は完全には封止されていない)ため、上述したように排気ガスの浄化効率を向上させながら、圧力損失の増加を有効に抑制、又は圧力損失を低減することができる。   Furthermore, in the honeycomb structure 100 of the present embodiment, the opening area of the opening of the first cell 4a (the area in the cross section perpendicular to the flow path direction of the cell) is reduced by the opening area reducing member 6. Since a part of the fluid can flow out from the reduced opening (that is, the opening of the first cell 4a is not completely sealed), the exhaust gas purification efficiency is improved as described above. While improving, the increase in pressure loss can be suppressed effectively or pressure loss can be reduced.

また、第2のセル4bにおいては、隣接する第1のセル4aから隔壁1を透過して流入する流体によって、第2のセル4bの内部を通過する流体が攪拌されるため、第2のセル4bを区画する隔壁1の表面に担持された触媒との接触効率が向上し、浄化性能をより有効に向上させることができる。   Further, in the second cell 4b, the fluid passing through the inside of the second cell 4b is agitated by the fluid flowing through the partition wall 1 from the adjacent first cell 4a, so that the second cell 4b is stirred. The contact efficiency with the catalyst supported on the surface of the partition wall 1 partitioning 4b is improved, and the purification performance can be improved more effectively.

本実施形態のハニカム構造体100は、多孔質の隔壁1を備え、この隔壁1によって流入側の端面2から流出側の端面3まで貫通する、流体の流路となる複数のセル4が区画形成されている。なお、本実施形態のハニカム構造体100は、セル4を区画形成する隔壁1の外周を囲むように配設された外周壁11を有している。   A honeycomb structure 100 according to the present embodiment includes a porous partition wall 1, and a plurality of cells 4 serving as fluid flow paths penetrating from the end surface 2 on the inflow side to the end surface 3 on the outflow side are partitioned by the partition wall 1. Has been. Note that the honeycomb structure 100 of the present embodiment has an outer peripheral wall 11 disposed so as to surround the outer periphery of the partition wall 1 that defines the cells 4.

上述したように、この隔壁は、気孔率が50〜80%であり、且つ平均細孔径が13〜70μmであるが、隔壁の気孔率は、60〜80%であることが好ましく、65〜75%であることが更に好ましい。このように構成することによって、排気ガスの浄化効率を良好に向上させることができるとともに、圧力損失の増加を有効に抑制し、更には圧力損失を低減することも可能となる。   As described above, this partition wall has a porosity of 50 to 80% and an average pore diameter of 13 to 70 μm, but the partition wall porosity is preferably 60 to 80%, and preferably 65 to 75. % Is more preferable. With this configuration, the exhaust gas purification efficiency can be improved satisfactorily, the increase in pressure loss can be effectively suppressed, and further the pressure loss can be reduced.

なお、隔壁の気孔率が50%未満であると、隔壁の気孔率が低すぎて、隔壁の細孔表面積が減少してしまい、浄化効率を向上する効果と、圧力損失の増加を抑制する効果との両立が不可能となる。特に、排気ガスの浄化効率が著しく低下してしまう。一方、隔壁の気孔率が80%を超えると、隔壁を透過する排気ガスの量(流量)が増大し排気ガスの浄化効率は向上するものの、ハニカム構造体の機械的強度が著しく低下することにより、破損等が生じ易く、触媒担体として使用することが困難になる。   In addition, when the porosity of the partition is less than 50%, the porosity of the partition is too low, the pore surface area of the partition is reduced, the effect of improving the purification efficiency, and the effect of suppressing the increase in pressure loss It becomes impossible to achieve both. In particular, the exhaust gas purification efficiency is significantly reduced. On the other hand, when the porosity of the partition walls exceeds 80%, the amount (flow rate) of the exhaust gas that permeates the partition walls increases and the exhaust gas purification efficiency is improved, but the mechanical strength of the honeycomb structure is significantly reduced. , Damage and the like are likely to occur, making it difficult to use as a catalyst carrier.

なお、従来、触媒担体として使用するハニカム構造体においては、機械的強度が著しく低下した場合に、貴金属を含む触媒を大量(過剰)に担持して、ハニカム触媒体の機械的強度を高めることが行われる場合があるが、上述した触媒に含まれる貴金属は、比較的高価なものが多く、触媒の使用量の増加に伴い、ハニカム触媒体の製造コストが増大してしまうという問題があった。本実施形態のハニカム構造体は、必要十分な触媒の担持量において、触媒担体としての使用に耐え得る機械的強度を有するものである。   Conventionally, in a honeycomb structure used as a catalyst carrier, when the mechanical strength is significantly reduced, a large amount (excess) of a catalyst containing a noble metal is supported to increase the mechanical strength of the honeycomb catalyst body. In some cases, the precious metals contained in the catalyst described above are relatively expensive, and there is a problem that the manufacturing cost of the honeycomb catalyst body increases with an increase in the amount of the catalyst used. The honeycomb structure of the present embodiment has a mechanical strength that can withstand use as a catalyst carrier in a necessary and sufficient amount of catalyst supported.

また、ハニカム構造体の隔壁の平均細孔径は、13〜60μmであり、15〜50μmであることが好ましく、18〜40μmであることが更に好ましい。このように構成することによって、排気ガスの浄化効率を良好に向上させることができるとともに、圧力損失の増加を有効に抑制し、更には圧力損失を低減することも可能となる。   The average pore diameter of the partition walls of the honeycomb structure is 13 to 60 μm, preferably 15 to 50 μm, and more preferably 18 to 40 μm. With this configuration, the exhaust gas purification efficiency can be improved satisfactorily, the increase in pressure loss can be effectively suppressed, and further the pressure loss can be reduced.

隔壁の平均細孔径が13μm未満であると、隔壁の細孔の内表面に触媒を担持してハニカム触媒体として使用した場合に、上記細孔が閉塞し、細孔の内表面による排気ガスの浄化が行われなくなり、浄化効率が著しく低下してしまう。一方、隔壁の平均細孔径が70μmを超えると、隔壁の細孔の内表面総面積が低下し、排気ガスの浄化効率が低下してしまう。   When the average pore diameter of the partition walls is less than 13 μm, when the catalyst is supported on the inner surface of the partition wall pores and used as a honeycomb catalyst body, the pores are blocked, and the exhaust gas from the inner surface of the pores is blocked. Purification is not performed, and purification efficiency is significantly reduced. On the other hand, if the average pore diameter of the partition walls exceeds 70 μm, the total inner surface area of the partition wall pores decreases, and the exhaust gas purification efficiency decreases.

本実施形態のハニカム構造体のセル密度は、16〜93セル/cm(100〜600cpsi)であることが好ましく、42〜62セル/cm(300〜400cpsi)であることが更に好ましい。セル密度が16セル/cm未満であると、排気ガスとの接触効率が低下し、浄化効率が低下することがあり、セル密度が93セル/cm超であると、圧力損失が増大することがある。なお、「cpsi」は「cells per square inch」の略であり、1平方インチ当りのセル数を表す単位である。 Cell density of the honeycomb structure of the present embodiment is preferably from 16 to 93 cells / cm 2 (100~600cpsi), more preferably from 42-62 cells / cm 2 (300~400cpsi). When the cell density is less than 16 cells / cm 2 , the contact efficiency with the exhaust gas is lowered, and the purification efficiency may be lowered. When the cell density is more than 93 cells / cm 2 , the pressure loss is increased. Sometimes. “Cpsi” is an abbreviation for “cells per square inch”, and is a unit representing the number of cells per square inch.

また、隔壁の厚さは、80〜450μmであることが好ましく、230〜330μmであることが更に好ましい。隔壁の厚さが、80μm未満であると、強度が不足して耐熱衝撃性が低下することがあり、450μmを超えると、圧力損失が増大することがある。セルの流路方向に垂直な断面の形状については、特に制限はなく、例えば、三角形、四角形、又は八角形のセルと四角形のセルと組み合わせたものであることが好ましい。このように構成することによって、ハニカム構造体の流出側の端面において、開口面積縮小部材を千鳥状に配設することが可能となり、第1のセルと第2のセルとを隔壁を隔てて隣接するように配置することができる。第1のセルが八角形で第2のセルが四角形、或いは第1のセルが四角形で第2のセルが八角形、というのも好ましい実施態様の一つである。   Moreover, it is preferable that the thickness of a partition is 80-450 micrometers, and it is still more preferable that it is 230-330 micrometers. If the partition wall thickness is less than 80 μm, the strength may be insufficient and thermal shock resistance may decrease, and if it exceeds 450 μm, pressure loss may increase. The shape of the cross section perpendicular to the cell flow path direction is not particularly limited, and for example, it is preferable to combine a triangular, quadrangular, or octagonal cell with a quadrangular cell. With this configuration, the opening area reducing members can be arranged in a staggered manner at the end face on the outflow side of the honeycomb structure, and the first cell and the second cell are adjacent to each other with a partition wall therebetween. Can be arranged to do. In one preferred embodiment, the first cell is octagonal and the second cell is square, or the first cell is square and the second cell is octagonal.

本実施形態のハニカム構造体の、中心軸に垂直な断面の形状は、即ち、隔壁を囲うように配置された外周壁の形状は、特に限定されないが、例えば、円、楕円、長円、台形、三角形、四角形、六角形、その他の多角形、又は左右非対称な異形形状を挙げることができる。なかでも、円、楕円、長円、及び四角形が好ましい。   The shape of the cross section perpendicular to the central axis of the honeycomb structure of the present embodiment, that is, the shape of the outer peripheral wall arranged so as to surround the partition wall is not particularly limited, but for example, a circle, an ellipse, an ellipse, a trapezoid , Triangles, squares, hexagons, other polygons, or left-right asymmetrical shapes. Among these, a circle, an ellipse, an ellipse, and a quadrangle are preferable.

本実施形態のハニカム構造体の隔壁を構成する材料としては、セラミックスを主成分とする材料を好適例として挙げることができる。セラミックスとしては、炭化珪素、コージェライト、チタン酸アルミニウム、サイアロン、ムライト、窒化珪素、リン酸ジルコニウム、ジルコニア、チタニア、アルミナ、若しくはシリカ、又はこれらを組み合わせたものを好適例として挙げることができる。特に、炭化珪素、コージェライト、ムライト、窒化珪素、アルミナ等のセラミックスが、耐アルカリ特性の観点から好適である。中でも、酸化物系のセラミックスは、コストが安い点でも好ましい。   As a material constituting the partition walls of the honeycomb structure of the present embodiment, a material mainly composed of ceramics can be given as a suitable example. Preferred examples of ceramics include silicon carbide, cordierite, aluminum titanate, sialon, mullite, silicon nitride, zirconium phosphate, zirconia, titania, alumina, silica, or a combination thereof. In particular, ceramics such as silicon carbide, cordierite, mullite, silicon nitride, and alumina are preferable from the viewpoint of alkali resistance. Among these, oxide-based ceramics are preferable because of their low cost.

なお、隔壁を囲うように配置された外周壁については、ハニカム構造体の成形時に、ハニカム構造体と一体的に形成させる成形一体壁であってもよいし、その外周に壁を有するハニカム構造体を成形した後、このハニカム構造体の外周の壁を研削して所定形状とし、セメント等で外周壁を形成するセメントコート壁であってもよい。このような外周壁は、例えば、上述した隔壁を構成する材料と同様の材料を用いて形成することができる。   Note that the outer peripheral wall disposed so as to surround the partition walls may be a molded integrated wall that is formed integrally with the honeycomb structure when the honeycomb structure is formed, or the honeycomb structure having a wall on the outer periphery thereof. Alternatively, the outer peripheral wall of the honeycomb structure may be ground to have a predetermined shape and the outer peripheral wall may be formed of cement or the like. Such an outer peripheral wall can be formed using the material similar to the material which comprises the partition mentioned above, for example.

本実施形態のハニカム構造体においては、多孔質の隔壁によって、流入側の端面から流出側の端面まで貫通する複数のセルが区画形成されている。このセルは、流体、即ち、排気ガスの流路となり、流入側の端面から流入した排気ガスの一部を、そのセルを区画する隔壁を透過させて、隣接するセル内に流出させ、その際に、隔壁の細孔の内表面、及び隔壁表面に担持された触媒によって有害物質を浄化し、得られた浄化ガスを流出側の端面から排出することができるように構成されている。   In the honeycomb structure of the present embodiment, a plurality of cells penetrating from the end surface on the inflow side to the end surface on the outflow side are partitioned by the porous partition walls. This cell serves as a flow path for fluid, that is, exhaust gas, and a part of the exhaust gas flowing in from the end surface on the inflow side passes through the partition wall that partitions the cell and flows out into the adjacent cell. In addition, harmful substances are purified by the inner surface of the pores of the partition walls and the catalyst supported on the partition surface, and the resulting purified gas can be discharged from the end face on the outflow side.

本実施形態のハニカム構造体は、図1〜図3に示すように、複数のセル4の中の一部のセル4は、流入側の端部の開口部が開口され且つ流出側の端部の開口部にその開口部の一部を塞ぐように開口面積縮小部材6が配設された第1のセル4aであり、残部のセル4は、両端部の開口部が開口された第2のセル4bであり、第1のセル4aと第2のセル4bとが交互に配置されたものである。   In the honeycomb structure of the present embodiment, as shown in FIGS. 1 to 3, some of the cells 4 in the plurality of cells 4 are open at the end on the inflow side and end at the outflow side. Is the first cell 4a in which the opening area reducing member 6 is disposed so as to block a part of the opening, and the remaining cell 4 is the second cell in which the opening at both ends is opened. This is a cell 4b, in which the first cells 4a and the second cells 4b are alternately arranged.

開口面積縮小部材6は、気孔率が20〜80%の多孔質体からなることが好ましい。このように構成することによって、排ガスが開口面積縮小部材6を透過することができるため、開口面積縮小部材6によっても排ガスを浄化することができる。なお、気孔率が20%未満では、第二のセルに排気ガスが流れなくなり、実質半分程度のセルしか浄化に利用されず、有害成分排出量が大幅に増加することがあり、一方、気孔率が80%を超えると、隔壁を透過する排ガスの量(流量)が増大し排ガスの浄化性能は向上するものの、ハニカム構造体の機械強度が低下することにより、破損等が生じ易くなることがあり、触媒担体として使用することが困難になることがある。   The opening area reducing member 6 is preferably made of a porous body having a porosity of 20 to 80%. With this configuration, the exhaust gas can permeate through the opening area reducing member 6, so that the exhaust gas can also be purified by the opening area reducing member 6. When the porosity is less than 20%, the exhaust gas does not flow to the second cell, and only about half of the cells are used for purification, and the harmful component emission amount may be greatly increased. If the amount exceeds 80%, the amount (flow rate) of the exhaust gas that permeates the partition wall increases, and the purification performance of the exhaust gas is improved. However, the mechanical strength of the honeycomb structure is reduced, so that damage or the like may easily occur. , It may be difficult to use as a catalyst support.

開口面積縮小部材6は、流出側開口部における端面(流出側端面)から、セルの流路方向(セルの延びる方向)における反対側の端面までの長さ、即ち、開口面積縮小部材深さD2が、0.3〜10mmであることが好ましく、0.5〜5mmであることが更に好ましい。開口面積縮小部材深さD2が、0.3mm未満であると、目封止部の機械的強度が低下し、また、目封止部と隔壁との接合力が十分に得られず、排気ガスの圧力や外部から振動等によって目封止部が破損し易くなることがある。開口面積縮小部材深さD2が、10mmを越えると、排気ガスが透過するための隔壁の有効な面積が減少してしまい、十分な浄化効率が得られないことがある。全ての開口面積縮小部材の開口面積縮小部材深さD2が同じであることが好ましいが、異なっていてもよい。   The opening area reducing member 6 has a length from an end face (outlet side end face) in the outflow side opening to an opposite end face in the cell flow path direction (cell extending direction), that is, the opening area reducing member depth D2. Is preferably 0.3 to 10 mm, and more preferably 0.5 to 5 mm. If the opening area reducing member depth D2 is less than 0.3 mm, the mechanical strength of the plugged portion is reduced, and a sufficient bonding force between the plugged portion and the partition wall cannot be obtained, and the exhaust gas. The plugging portion may be easily damaged by the pressure or vibration from the outside. When the opening area reducing member depth D2 exceeds 10 mm, the effective area of the partition wall through which the exhaust gas permeates decreases, and sufficient purification efficiency may not be obtained. The opening area reducing member depth D2 of all the opening area reducing members is preferably the same, but may be different.

スリット深さD1と、開口面積縮小部材深さD2との差は、最小値が1mm、最大値が30mm又はハニカム構造体のセルの延びる方向の全長の1/2のいずれか短い方の長さの範囲であることが好ましく、最小値が5mm、最大値が15mm又はハニカム構造体のセルの延びる方向の全長の1/4のいずれか短い方の長さの範囲であることが更に好ましく、最小値が8mm、最大値が10mm又はハニカム構造体のセルの延びる方向の全長の1/5のいずれか短い方の長さの範囲であることが更に好ましい。スリット深さD1と、開口面積縮小部材深さD2との差が、30mm又はハニカム構造体のセルの延びる方向の全長の1/2のいずれか短い方の長さより大きいと、スリットを通過する排ガスの量が多くなり、隔壁を透過する排ガスの量が少なくなるため、十分な浄化効率が得られないことがある。   The difference between the slit depth D1 and the opening area reducing member depth D2 is a minimum value of 1 mm, a maximum value of 30 mm, or 1/2 of the total length in the cell extending direction of the honeycomb structure, whichever is shorter Preferably, the minimum value is 5 mm, the maximum value is 15 mm, or 1/4 of the total length in the cell extending direction of the honeycomb structure, whichever is shorter, and the minimum value is It is more preferable that the value is 8 mm, the maximum value is 10 mm, or 1/5 of the total length in the cell extending direction of the honeycomb structure, whichever is shorter. If the difference between the slit depth D1 and the opening area reducing member depth D2 is larger than 30 mm or 1/2 of the total length in the cell extending direction of the honeycomb structure, whichever is shorter, the exhaust gas passing through the slit Since the amount of exhaust gas increases and the amount of exhaust gas that permeates through the partition walls decreases, sufficient purification efficiency may not be obtained.

開口面積縮小部材6を構成する材料としては、ハニカム構造体の隔壁の材料として挙げたものを好適に使用することができ、隔壁の材料と同じであることが更に好ましい。   As the material constituting the opening area reducing member 6, those mentioned as the material of the partition walls of the honeycomb structure can be preferably used, and more preferably the same as the material of the partition walls.

本実施形態のハニカム構造体は、図1〜図3に示すように、第1のセル4aと第2のセル4bとが交互に並ぶセルの列5の流出側端部において、セルの列5を縦断するように隔壁1及び開口面積縮小部材6にスリット7が形成されている。スリット7が形成されるセルの列5は、外周壁11を含むセル間に亘るセルの列5であることが好ましい。この場合、セルの列5の両端に位置するセル4,4は、ハニカム構造体100の最外周に位置するセル4になり、外周壁11にもスリット7が形成されることになる。スリット7は、ハニカム構造体100のセルの列5の全てに形成されることが好ましいが、セルの列5の数の25%以上に形成されていることが好ましく、50%以上に形成されていることが更に好ましい。スリット7の幅は、セル4の幅の30〜90%であることが好ましく、40〜80%であることが更に好ましい。セル4の幅は、セルの延びる方向に直交する断面において、流路の一辺の長さである(隔壁の厚さは含まれない)。30%より狭いと、排ガス通過時の圧力損失が大きくなることがあり、90%より広いと、浄化効率が低下することがある。全てのスリットの幅が同じであることが好ましいが、部位により異なっていてもよい。例えば、排ガス流量の大きい中央部ではスリット幅を狭くし、排ガス流量の少ない外周部ではスリット幅を広くするのも、好適な実施態様の1つである。スリット7は、セル4の中央を切断するように形成されることが好ましい。スリット7が形成されたセルの列5が、図2に示すように、流出側の端面3において互いに平行に並ぶ複数のセルの列5a、及び平行に並ぶ複数のセルの列5aと交差する、他の互いに平行に並ぶ複数のセルの列5bであることが好ましい。セル4のセルの延びる方向に直交する断面の形状が四角形の場合、セルの列5aとセルの列5bとは直交する。   As shown in FIGS. 1 to 3, the honeycomb structure of the present embodiment has a cell row 5 at the outflow side end portion of the cell row 5 in which the first cells 4 a and the second cells 4 b are alternately arranged. A slit 7 is formed in the partition wall 1 and the opening area reducing member 6 so as to be longitudinally cut. The row 5 of cells in which the slits 7 are formed is preferably the row 5 of cells extending between the cells including the outer peripheral wall 11. In this case, the cells 4 and 4 positioned at both ends of the cell row 5 become the cells 4 positioned at the outermost periphery of the honeycomb structure 100, and the slits 7 are also formed in the outer peripheral wall 11. The slits 7 are preferably formed in all the cell rows 5 of the honeycomb structure 100, but are preferably formed in 25% or more of the number of cell rows 5 and formed in 50% or more. More preferably. The width of the slit 7 is preferably 30 to 90% of the width of the cell 4, and more preferably 40 to 80%. The width of the cell 4 is the length of one side of the flow path in the cross section orthogonal to the cell extending direction (the partition wall thickness is not included). If it is narrower than 30%, the pressure loss when the exhaust gas passes may increase, and if it is larger than 90%, the purification efficiency may decrease. The widths of all the slits are preferably the same, but may vary depending on the site. For example, in a preferred embodiment, the slit width is narrowed at the central portion where the exhaust gas flow rate is large, and the slit width is widened at the outer peripheral portion where the exhaust gas flow rate is small. The slit 7 is preferably formed so as to cut the center of the cell 4. As shown in FIG. 2, the cell row 5 in which the slits 7 are formed intersects with the plurality of cell rows 5 a arranged in parallel to each other and the plurality of cell rows 5 a arranged in parallel on the end surface 3 on the outflow side. It is preferable that it is the row | line | column 5b of several other cells located in parallel with each other. When the cross-sectional shape of the cell 4 perpendicular to the cell extending direction is a quadrangle, the cell row 5a and the cell row 5b are orthogonal to each other.

スリット7の、セルの延びる方向における深さD1の下限値が、1mmであり、上限値が30mm又はハニカム構造体のセルの延びる方向の全長の1/2のいずれか短い方の長さであることが好ましい。1mmより短いと、圧力損失が低減され難くなることがある。30mm又はハニカム構造体のセルの延びる方向の全長の1/2のいずれか短い方の長さより長いと、排ガスの浄化効率が低減することがある。全てのスリットのスリット深さD1が同じであることが好ましいが、異なっていてもよい。スリットの幅、深さは、ノギスにより測定し、最も狭い部分の値を幅、深さとする。   The lower limit value of the depth D1 of the slit 7 in the cell extending direction is 1 mm, and the upper limit value is 30 mm or 1/2 of the total length in the cell extending direction of the honeycomb structure, whichever is shorter. It is preferable. If it is shorter than 1 mm, the pressure loss may be difficult to reduce. If it is longer than 30 mm or 1/2 of the total length in the cell extending direction of the honeycomb structure, whichever is shorter, exhaust gas purification efficiency may be reduced. The slit depths D1 of all the slits are preferably the same, but may be different. The width and depth of the slit are measured with a caliper, and the value of the narrowest portion is defined as the width and depth.

本実施形態のハニカム構造体は、流出側の端部において開口面積縮小部材と隔壁の両方にスリットが形成されているため、片方に形成される場合と比較して、流れが乱れることにより、浄化性能が向上するという利点がある。   In the honeycomb structure of the present embodiment, since the slits are formed in both the opening area reducing member and the partition wall at the end portion on the outflow side, the flow is disturbed as compared with the case where it is formed on one side, thereby purifying. There is an advantage that the performance is improved.

セルの延びる方向に直交する断面において、第1のセル4aに配設された開口面積縮小部材6の開口面積(スリットの面積)の、第2のセル4bの開口面積に対する比率(スリットの開口率)が、25〜100%であることが好ましく、30〜90%であることが更に好ましい。25%より小さいと、排ガスが通過するときの圧力損失が大きくなることがあり、90%より大きいと、浄化性能が低下することがある。   In a cross section orthogonal to the cell extending direction, the ratio of the opening area (slit area) of the opening area reducing member 6 disposed in the first cell 4a to the opening area of the second cell 4b (slit opening ratio). ) Is preferably 25 to 100%, more preferably 30 to 90%. If it is less than 25%, the pressure loss when the exhaust gas passes may increase, and if it exceeds 90%, the purification performance may deteriorate.

セルの延びる方向に直交する断面において、開口面積縮小部材6に形成されたスリットの総面積が、開口面積縮小部材6が配設されたセルの総面積に対して、25〜100%であることが好ましく30〜90%であることが更に好ましい。25%より小さいと、排ガスが通過するときの圧力損失が大きくなることがあり、90%より大きいと、浄化性能が低下することがある。   In the cross section orthogonal to the cell extending direction, the total area of the slits formed in the opening area reducing member 6 is 25 to 100% with respect to the total area of the cells in which the opening area reducing member 6 is disposed. Is more preferably 30 to 90%. If it is less than 25%, the pressure loss when the exhaust gas passes may increase, and if it exceeds 90%, the purification performance may deteriorate.

開口面積縮小部材が配設されているセルの中で、スリットが形成された開口面積縮小部材が配設されているセルの数は、開口面積縮小部材が配設されている全てのセルの数の90%以上であることが好ましい。90%より少ないと、圧力損失が大きくなることがある。ここで、スリットが形成されていない開口面積縮小部材は、セルの開口部を完全に塞ぐ目封止部材と同じものである。   Among the cells in which the opening area reducing member is provided, the number of cells in which the opening area reducing member in which the slit is formed is provided is the number of all cells in which the opening area reducing member is provided. It is preferable that it is 90% or more. If it is less than 90%, the pressure loss may increase. Here, the opening area reducing member in which no slit is formed is the same as the plugging member that completely closes the opening of the cell.

本発明のハニカム構造体の他の実施形態は、図4に示すように、スリット7が形成されたセルの列5が、流出側の端面3において互いに平行に並ぶ複数のセルの列5cである。そして、その他の構成は、上記本発明のハニカム構造体の一の実施形態と同様である。本実施形態のハニカム構造体200のように、平行なスリット7だけが形成された場合でも、排気ガスを効率的に浄化することが可能であるとともに、圧力損失の増加を有効に抑制することが可能である。図4は、本発明のハニカム構造体の他の実施形態の一部を模式的に示す、流出側端面側からみた平面図である。   In another embodiment of the honeycomb structure of the present invention, as shown in FIG. 4, the cell row 5 in which the slits 7 are formed is a plurality of cell rows 5 c arranged in parallel to each other on the end surface 3 on the outflow side. . The other configuration is the same as that of the embodiment of the honeycomb structure of the present invention. Even when only the parallel slits 7 are formed as in the honeycomb structure 200 of the present embodiment, the exhaust gas can be efficiently purified and the increase in pressure loss can be effectively suppressed. Is possible. Fig. 4 is a plan view schematically showing a part of another embodiment of the honeycomb structure of the present invention as seen from the outflow side end face side.

[2]ハニカム構造体の製造方法:
次に、本発明のハニカム構造体の一実施形態の製造方法について具体的に説明する。
[2] Manufacturing method of honeycomb structure:
Next, the manufacturing method of one embodiment of the honeycomb structure of the present invention will be specifically described.

本実施形態のハニカム構造体の製造方法は、セラミック成形原料を成形して、流体の流路となる複数のセルを区画形成する隔壁を有する柱状のハニカム成形体を得る工程(1)と、得られたハニカム成形体の一方の端面(流出側の端面)側の所定のセル(第1のセル)の開口部に目封止スラリーを充填して、当該所定のセルの流出側端部の開口部を目封止した目封止ハニカム成形体を得る工程(2)と、得られた目封止ハニカム成形体の流出側端部(一方の端面側の端部)に、スリットを形成して、一方の端面(流出側の端面)側において所定のセルの開口部の面積が縮小された開口面積縮小ハニカム成形体を得る工程(3)と、得られた開口面積縮小ハニカム成形体を焼成してハニカム構造体を得る工程(4)と、を備えたハニカム構造体の製造方法である。   The method for manufacturing a honeycomb structured body of the present embodiment includes a step (1) of obtaining a columnar honeycomb formed body having partition walls that form a plurality of cells serving as fluid flow paths by forming a ceramic forming raw material. The opening of a predetermined cell (first cell) on one end surface (outflow side end surface) side of the formed honeycomb molded body is filled with plugging slurry, and the opening at the outflow side end of the predetermined cell A step (2) of obtaining a plugged honeycomb formed body plugged with a portion, and forming a slit at an outflow side end (one end face side end) of the obtained plugged honeycomb formed body The step (3) of obtaining an opening area-reduced honeycomb formed body in which the area of the opening of a predetermined cell is reduced on one end face (end face on the outflow side), and firing the obtained open-area reduced honeycomb formed body And a step (4) for obtaining a honeycomb structure. It is a manufacturing method.

以下、本実施形態のハニカム構造体の製造方法を、各工程毎に更に詳細に説明する。   Hereinafter, the manufacturing method of the honeycomb structure of the present embodiment will be described in more detail for each step.

[2−1]工程(1):
工程(1)は、セラミック原料を含有するセラミック成形原料を成形して、流体の流路となる複数のセルを区画形成する隔壁を備えるハニカム成形体を得る工程である。この工程(1)は、従来公知のハニカム構造体の製造方法に準じて行うことができる。
[2-1] Step (1):
Step (1) is a step of forming a ceramic forming raw material containing a ceramic raw material to obtain a honeycomb formed body having partition walls that partition and form a plurality of cells serving as fluid flow paths. This step (1) can be performed according to a conventionally known method for manufacturing a honeycomb structure.

[2−2]工程(2):
工程(2)は、得られたハニカム成形体の一方の端面(流出側の端面)側の所定のセル(第1のセル)の開口部に目封止スラリーを充填して、第1のセルの流出側端部の開口部に目封止部を形成した目封止ハニカム成形体を得る工程である。目封止スラリーを充填する第1のセルと、目封止スラリーを充填しない第2のセルとが交互に配置されるようにする。
[2-2] Step (2):
In the step (2), the plugging slurry is filled in the opening of a predetermined cell (first cell) on one end face (end face on the outflow side) of the obtained honeycomb formed body, and the first cell This is a step of obtaining a plugged honeycomb formed body in which a plugged portion is formed in the opening at the outflow side end of the plug. The first cells filled with the plugging slurry and the second cells not filled with the plugging slurry are alternately arranged.

本実施形態のハニカム構造体の製造方法においては、目封止部を形成しない残余のセル(第2のセル)の流出側の端部をマスクで覆い、第1のセルのみに目封止スラリーを充填する。   In the method for manufacturing a honeycomb structure of the present embodiment, the end portion on the outflow side of the remaining cells (second cells) that do not form plugged portions is covered with a mask, and only the first cells are plugged slurry. Fill.

なお、第2のセルにマスクを配設する方法については特に制限はないが、例えば、ハニカム成形体の一方の端面(流出側の端面)全体に粘着性フィルムを貼着し、その粘着性フィルムの、「マスクを施さない第1のセル」の開口部に対応する位置に孔を開ける方法等を挙げることができる。より具体的には、ハニカム成形体の一方の端面全体に粘着性フィルムを貼着した後に、当該粘着性フィルムの、目封止部を形成しようとするセル(第1のセル)に相当する部分のみを、レーザーにより孔開けする方法等を好適に用いることができる。粘着性フィルムとしては、ポリエステル、ポリエチレン、熱硬化性樹脂等の樹脂からなるフィルムの一方の表面に粘着剤が塗布されたもの等を好適に用いることができる。   The method for disposing the mask in the second cell is not particularly limited. For example, an adhesive film is attached to the entire one end face (outflow end face) of the honeycomb formed body, and the adhesive film is used. And a method of forming a hole at a position corresponding to the opening of the “first cell without mask”. More specifically, after sticking an adhesive film to one whole end face of the honeycomb formed body, a portion of the adhesive film corresponding to a cell (first cell) in which a plugging portion is to be formed. For example, a method of making a hole with a laser can be suitably used. As an adhesive film, what applied the adhesive to one surface of the film which consists of resin, such as polyester, polyethylene, a thermosetting resin, etc. can be used conveniently.

目封止部を形成するための目封止スラリーとしては、例えば、上記のセラミック原料と添加剤を配合したスラリーを挙げることができる。添加剤として、水やバインダ、造孔材、界面活性剤等を混合して、粘度200〜400dPa・sに調整することが好ましい。   Examples of the plugging slurry for forming the plugging portion include a slurry in which the above ceramic raw material and additive are blended. It is preferable to adjust the viscosity to 200 to 400 dPa · s by mixing water, a binder, a pore former, a surfactant or the like as an additive.

また、このように目封止スラリーによって目封止部を形成した後、得られた目封止ハニカム成形体を更に乾燥してもよい。   In addition, after forming the plugged portions with the plugging slurry in this way, the obtained plugged honeycomb formed body may be further dried.

[2−3]工程(3):
工程(3)は、得られた目封止ハニカム成形体の流出側端部(一方の端面側の端部)に、スリットを形成して、一方の端面(流出側の端面)側において所定のセルの開口部の面積が縮小された開口面積縮小ハニカム成形体を得るものである。スリットの形成態様は、図2に示されるハニカム構造体100のように、スリット7が形成されるセルの列5が互いに交差するものであってもよいし、図3に示されるハニカム構造体200のように、スリット7が形成されるセルの列5が互いに並行なものであってもよい。
[2-3] Step (3):
In the step (3), a slit is formed in the outflow side end portion (one end surface side end portion) of the obtained plugged honeycomb formed body, and a predetermined end is formed on the one end surface (outflow side end surface) side. An opening area reduced honeycomb formed body in which the area of the cell opening is reduced is obtained. The slits may be formed in such a manner that the cell rows 5 in which the slits 7 are formed intersect each other as in the honeycomb structure 100 shown in FIG. 2, or the honeycomb structure 200 shown in FIG. As described above, the cell rows 5 in which the slits 7 are formed may be parallel to each other.

スリットの形成方法は特に限定されないが、例えば、未焼成のセラミックス成形体又は焼成済みのセラミックス焼成体であるハニカム構造体に流体を吹き付けることにより、スリットを形成することが好ましい。吹き付ける流体としては、圧縮空気等を挙げることができる。その他、カッター類も簡便なスリット形成手段であり、また、未焼成の段階であれば、シッピキ等も好適に用いられる。   The method for forming the slit is not particularly limited. For example, it is preferable to form the slit by spraying a fluid onto a honeycomb structure which is an unfired ceramic molded body or a fired ceramic fired body. Examples of the fluid to be sprayed include compressed air. In addition, cutters are also a simple slit forming means. In the unfired stage, shipping and the like are also preferably used.

[2−4]工程(4):
工程(4)は、得られた開口面積縮小ハニカム成形体を焼成してハニカム構造体を得る工程である。このようにして、本実施形態のハニカム構造体を簡便且つ低コストに製造することができる。この工程(4)は、従来公知のハニカム構造体の製造方法に準じて行うことができる。
[2-4] Step (4):
Step (4) is a step of firing the obtained aperture area-reduced honeycomb formed body to obtain a honeycomb structure. In this way, the honeycomb structure of the present embodiment can be manufactured easily and at low cost. This step (4) can be performed according to a conventionally known method for manufacturing a honeycomb structure.

[3]ハニカム触媒体:
次に、本発明のハニカム触媒体の一の実施形態について具体的に説明する。本実施形態のハニカム触媒体は、これまでに説明した本発明のハニカム構造体(図1〜図3に示すハニカム構造体100)と、このハニカム構造体の隔壁の細孔の内表面に担持されるとともに、隔壁表面に担持された触媒と、を備えたハニカム触媒体である。
[3] Honeycomb catalyst body:
Next, an embodiment of the honeycomb catalyst body of the present invention will be specifically described. The honeycomb catalyst body of the present embodiment is supported on the inner surfaces of the pores of the partition walls of the honeycomb structure of the present invention described above (the honeycomb structure 100 shown in FIGS. 1 to 3) and the honeycomb structure. And a catalyst supported on the partition wall surface.

このようなハニカム触媒体は、自動車用、建設機械用、及び産業用定置エンジン、並びに燃焼機器等から排出される排気ガスを、流入側の端面から各セルに流入させ、流入した排気ガスを、隔壁表面の触媒により浄化するとともに、隔壁を透過させて、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害物質を触媒により浄化するものである。隔壁を透過した透過流体(浄化ガス)は、隣接するセルの流出側の端面の開口部から流出される。 Such a honeycomb catalyst body allows exhaust gas discharged from automobile, construction machine, and industrial stationary engines, combustion equipment, and the like to flow into each cell from the end face on the inflow side, While purifying with the catalyst on the partition wall surface, it allows the partition wall to permeate and purifies harmful substances such as carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NO x ), etc. with the catalyst. The permeated fluid (purified gas) that has passed through the partition walls flows out from the opening on the end face on the outflow side of an adjacent cell.

本実施形態のハニカム触媒体は、上記本発明のハニカム構造体に触媒を担持したものであるため、第1のセルの流出側端面におけるセルの開口部の面積が開口面積縮小部材によって小さくなっているため、第1のセルに流入した流体の一部を、第1のセルを区画形成する隔壁を透過させて隣接する第2のセルの内部に積極的に流出させることができ、排気ガスに含まれる有害物質を効率的に浄化することができる。   Since the honeycomb catalyst body of the present embodiment is one in which the catalyst is supported on the honeycomb structure of the present invention, the area of the cell opening on the outflow side end face of the first cell is reduced by the opening area reducing member. Therefore, a part of the fluid that has flowed into the first cell can permeate through the partition wall that defines the first cell, and can actively flow out into the adjacent second cell. The contained harmful substances can be efficiently purified.

また、本実施形態のハニカム触媒体は、隔壁の気孔率及び平均細孔径が特定の範囲であり、且つ上記第1のセルにおいては、開口部の面積が縮小されてはいるものの、縮小された開口部から流体の一部を流出させることができる(即ち、完全には開口部が封止されていない)ため、上述したように排気ガスの浄化効率を向上させるとともに、圧力損失の増加を有効に抑制、又は圧力損失を低減することができる。   Further, in the honeycomb catalyst body of the present embodiment, the porosity and average pore diameter of the partition walls are in a specific range, and in the first cell, although the area of the opening is reduced, it is reduced. Since a part of the fluid can flow out from the opening (that is, the opening is not completely sealed), the exhaust gas purification efficiency is improved and the increase in pressure loss is effective as described above. Can be suppressed or pressure loss can be reduced.

即ち、本実施形態のハニカム触媒体は、排気ガスの浄化効率を向上と、圧力損失の増加の抑制という、従来の技術では両立困難であった問題を同時に解決することができる。   That is, the honeycomb catalyst body of the present embodiment can simultaneously solve the problems that are difficult to achieve with the conventional techniques, such as improving the purification efficiency of exhaust gas and suppressing the increase in pressure loss.

本実施形態のハニカム触媒体に用いられる触媒は、排気ガスに含まれる有害物質を浄化することができるものであれば、特に制限はないが、例えば、貴金属として白金(Pt)及びロジウム(Rh)を含有し、活性アルミナ、及び酸素吸蔵剤としてのセリアを更に含有するもの等が好ましい。このような触媒は、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害物質の浄化に特に有効である。 The catalyst used in the honeycomb catalyst body of the present embodiment is not particularly limited as long as it can purify harmful substances contained in the exhaust gas. For example, platinum (Pt) and rhodium (Rh) are used as noble metals. And further containing activated alumina and ceria as an oxygen storage agent are preferred. Such a catalyst is particularly effective for purification of harmful substances such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ).

触媒の担持量については、触媒の種類、触媒担体として使用するハニカム構造体の大きさやセル構造、及び浄化する排気ガスの種類や処理量等によっても異なるが、例えば、ハニカム構造体の容積1L当りに、100〜250gの触媒が担持されていることが好ましい。このように構成することによって、排気ガスの浄化効率を向上させることができ、且つ、圧力損失の増加を有効に抑制することができる。なお、触媒の担持量は、ハニカム構造体の容積1L当りに、150〜200gであることが更に好ましく、160〜180gであることが特に好ましい。   The amount of catalyst supported varies depending on the type of catalyst, the size and cell structure of the honeycomb structure used as the catalyst carrier, and the type and amount of exhaust gas to be purified. For example, per 1 L of the honeycomb structure volume Further, it is preferable that 100 to 250 g of catalyst is supported. By comprising in this way, the purification | cleaning efficiency of exhaust gas can be improved and the increase in pressure loss can be suppressed effectively. The catalyst loading is more preferably 150 to 200 g, and particularly preferably 160 to 180 g, per liter of the honeycomb structure volume.

隔壁の細孔の内表面に担持された触媒は、隔壁表面に担持される触媒の量に対し同量以上であることが好ましい。隔壁の細孔の内表面に担持された触媒が、隔壁表面に担持された触媒の量に対し同量以上でないと、細孔内表面積を有効に使えず浄化率が悪化することがある。   The amount of the catalyst supported on the inner surface of the pores of the partition walls is preferably equal to or greater than the amount of the catalyst supported on the partition surface. If the catalyst supported on the inner surface of the pores of the partition walls is not equal to or greater than the amount of the catalyst supported on the partition surface, the surface area in the pores cannot be used effectively and the purification rate may deteriorate.

[3−1]ハニカム触媒体の製造方法:
次に、本実施形態のハニカム触媒体を製造する方法の一例について説明する。なお、本実施形態のハニカム触媒体を製造する方法については、以下の方法に限定されることはない。
[3-1] Manufacturing method of honeycomb catalyst body:
Next, an example of a method for manufacturing the honeycomb catalyst body of the present embodiment will be described. Note that the method for manufacturing the honeycomb catalyst body of the present embodiment is not limited to the following method.

まず、本実施形態のハニカム触媒体の触媒担体を構成するハニカム構造体を作製する。本実施形態のハニカム触媒体においては、これまでに説明した本発明のハニカム構造体が使用されるため、上述した本発明のハニカム構造体の製造方法の一の実施形態に準じてハニカム構造体を製造することができる。   First, a honeycomb structure constituting the catalyst carrier of the honeycomb catalyst body of the present embodiment is manufactured. In the honeycomb catalyst body of the present embodiment, since the honeycomb structure of the present invention described so far is used, the honeycomb structure according to one embodiment of the method for manufacturing the honeycomb structure of the present invention described above is used. Can be manufactured.

次に、得られたハニカム構造体の隔壁表面と、隔壁の細孔の内表面とに触媒を担持する。触媒の担持方法については特に制限はなく、従来公知のハニカム触媒体の製造方法において用いられる方法に準じて触媒を担持することができる。例えば、ハニカム構造体に対して、触媒成分を含む触媒液をウォッシュコートした後、高温で熱処理して焼き付ける方法を挙げることができる。   Next, the catalyst is supported on the partition wall surfaces of the obtained honeycomb structure and the inner surfaces of the pores of the partition walls. The catalyst loading method is not particularly limited, and the catalyst can be loaded according to a method used in a conventionally known honeycomb catalyst body manufacturing method. For example, after the honeycomb structure is wash-coated with a catalyst solution containing a catalyst component, it can be heat treated at a high temperature and baked.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、各物性の測定は、下記の方法により行った。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. Each physical property was measured by the following method.

[平均細孔径(μm)]:細孔径は、水銀ポロシメータ(水銀圧入法)によって測定されたもので、多孔質基材に圧入された水銀の累積容量が、多孔質基材の全細孔容積の50%となった際の圧力から算出された細孔径を意味するものとする。水銀ポロシメータとしては、Micromeritics社製、商品名:Auto Pore III 型式9405を用いた。 [Average pore diameter (μm)]: The pore diameter was measured by a mercury porosimeter (mercury intrusion method), and the cumulative volume of mercury injected into the porous substrate is the total pore volume of the porous substrate. It means the pore diameter calculated from the pressure when it becomes 50%. As the mercury porosimeter, the product name: Auto Pore III Model 9405 manufactured by Micromeritics was used.

[気孔率(%)]:細孔径同様に、水銀ポロシメータを用いた。 [Porosity (%)]: Similar to the pore diameter, a mercury porosimeter was used.

[触媒担持量(g/L)]:触媒担体としてのハニカム構造体の容積1L当りの、触媒の担持量(g/L)を算出した。 [Catalyst loading (g / L)]: The catalyst loading (g / L) per liter of the volume of the honeycomb structure as the catalyst carrier was calculated.

[白金族金属担持量(g/L)]:触媒担体としてのハニカム構造体の容積1L当りの、触媒に含まれる白金族金属の担持量(g/L)を算出した。白金族金属は、白金(Pt)とロジウム(Rh)との割合(Pt:Rh)が、5:1となるように構成されている。 [Platinum group metal loading (g / L)]: The platinum group metal loading (g / L) contained in the catalyst per 1 L volume of the honeycomb structure as the catalyst carrier was calculated. The platinum group metal is configured such that the ratio of platinum (Pt) to rhodium (Rh) (Pt: Rh) is 5: 1.

[スリットの開口率]
セルの延びる方向に直交する断面において、第1のセルに配設された開口面積縮小部材の開口面積(スリットの面積)と、第2のセルの開口面積とを、画像解析で測定する。画像解析の適用範囲としては、端面中心部5×5セル分以上を解析範囲とし、開口面積縮小部材の導入箇所の最も開口面積が狭い部分を測定する。そして、「第1のセルの開口面積」に対する、「開口面積縮小部材の開口面積」の割合(貫通孔の開口率)を算出する。そして、「第2のセルの開口面積」に対する、「開口面積縮小部材の開口面積」の割合(スリットの開口率)を算出する。
[Aperture ratio of slit]
In the cross section orthogonal to the cell extending direction, the opening area (slit area) of the opening area reducing member disposed in the first cell and the opening area of the second cell are measured by image analysis. As an application range of the image analysis, an end surface center portion of 5 × 5 cells or more is set as an analysis range, and a portion having the narrowest opening area of the introduction area of the opening area reducing member is measured. Then, the ratio of the “opening area of the opening area reducing member” to the “opening area of the first cell” (opening ratio of the through hole) is calculated. Then, the ratio of the “opening area of the opening area reducing member” to the “opening area of the second cell” (opening ratio of the slit) is calculated.

[圧力損失(kPa)]:ハニカム触媒体に、25℃、1気圧の測定用ガス(空気)を一定量通気して、流入側の端面と流出側の端面との圧力をそれぞれ測定し、その圧力差を圧力損失(kPa)とした。上記圧力の測定は、測定用ガスの流量を、0.92Nm/分から9.91Nm/分まで、流量を約1Nm/分ずつ増加させて、合計10回の測定を行った。 [Pressure loss (kPa)]: A measurement gas (air) at 25 ° C. and 1 atm was passed through the honeycomb catalyst body to measure the pressures at the end face on the inflow side and the end face on the outflow side. The pressure difference was defined as pressure loss (kPa). Measurements of the pressure, the flow rate of the measurement gas, up to 0.92 nm 3 / min 9.91Nm 3 / min, to increase the flow rate by about 1 Nm 3 / min, was measured a total of 10 times.

[有害成分排出量(g/mile)]:有害成分排出量の測定は、排気量2リッターのガソリンエンジン車両の排気系に、各実施例又は比較例のハニカム触媒体を配設し、このガソリンエンジン車両を用いてFTP(米国連邦規制の、LA−4)運転モードで運転し、走行距離1mile(マイル)あたりに排出される排出ガスに含まれる有害成分の排出量(g)を測定した。有害成分としては、排出ガス中の炭化水素(HC)の量(g)(HC排出量)と、窒素酸化物(NO)の量(g)(NO排出量)とをそれぞれ測定した。なお、有害成分排出量の測定は、白金族金属担持量が1g/Lの場合と、白金族金属担持量が2g/Lの場合とで測定を行った。尚、実施例のハニカム触媒体の白金族金属担持量は2g/Lであり、比較例のハニカム触媒体の白金族金属担持量は2.5g/Lであるが、有害成分排出量測定のために、各実施例、比較例のハニカム触媒体において、白金族金属担持量が1g/Lのもの(比較例については、1g/L及び2g/Lのもの)を作製して測定を行った。 [Hazardous component emission (g / mile)]: The measurement of the harmful component emission was performed by disposing the honeycomb catalyst body of each example or comparative example in the exhaust system of a gasoline engine vehicle having a displacement of 2 liters. The engine vehicle was operated in the FTP (US federal regulation, LA-4) operation mode, and the emission amount (g) of harmful components contained in the exhaust gas discharged per mile of the mileage was measured. As harmful components, the amount (g) of hydrocarbon (HC) in the exhaust gas (HC emission amount) and the amount of nitrogen oxide (NO X ) (g) (NO X emission amount) were measured. The amount of harmful component discharge was measured when the platinum group metal loading was 1 g / L and when the platinum group metal loading was 2 g / L. In addition, the platinum group metal supported amount of the honeycomb catalyst body of the example is 2 g / L, and the platinum group metal supported amount of the honeycomb catalyst body of the comparative example is 2.5 g / L. In addition, in the honeycomb catalyst bodies of the examples and comparative examples, the platinum group metal loadings were 1 g / L (for the comparative examples, 1 g / L and 2 g / L) were measured and measured.

(実施例1)
タルク、カオリン、仮焼カオリン、アルミナ、水酸化アルミニウム、及びシリカのうちから複数を組み合わせて、その化学組成が、SiO:42〜56質量%、Al:30〜45質量%、及びMgO:12〜16質量%となるように所定の割合で調合されたコージェライト化原料100質量部に対して、造孔材としてグラファイトを10〜20質量部添加した。更に、メチルセルロース、及び界面活性剤をそれぞれ適当量添加した後、調製した杯土を真空脱気した後、押出成形することによりハニカム成形体を得た。このハニカム成形体の隔壁厚さは、200μm(8mil)であり、セル密度は62セル/cm(400cpsi)である。なお、「1(mil)」は1000分の1インチであり、「cpsi」は「セル/平方インチ」のことである。得られたハニカム成形体は、複数のセルを区画形成する隔壁を備えるものである。
Example 1
Talc, combined kaolin, calcined kaolin, alumina, aluminum hydroxide, and a plurality from among silica, the chemical composition, SiO 2: 42 to 56 wt%, Al 2 O 3: 30~45 wt%, and MgO: 10 to 20 parts by mass of graphite was added as a pore former to 100 parts by mass of the cordierite forming raw material prepared at a predetermined ratio so as to be 12 to 16% by mass. Furthermore, after adding appropriate amounts of methyl cellulose and surfactant, the prepared clay was vacuum degassed, and then extrusion molded to obtain a honeycomb formed body. The honeycomb molded body has a partition wall thickness of 200 μm (8 mil) and a cell density of 62 cells / cm 2 (400 cpsi). Note that “1 (mil)” is 1/1000 inch, and “cpsi” is “cell / square inch”. The obtained honeycomb formed body includes partition walls that partition and form a plurality of cells.

次に、得られたハニカム成形体の第1のセルの流出側の端部の開口部に、目封止部(開口面積縮小部材)を形成し、目封止ハニカム成形体を得た。目封止部を形成する目封止スラリーとしては、上記コージェライト化原料と添加物を配合したスラリーを用いた。添加剤を調製することによって、スラリーの粘度を180〜350dPa・sに調整した。目封止部(開口面積縮小部材)の、セルの延びる方向の長さ(開口面積縮小部材深さ)を3mmとした。目封止部を形成した第1のセルと、目封止部を形成しない第2のセルとが交互に並ぶようにした。   Next, a plugged portion (opening area reducing member) was formed in the opening of the end portion on the outflow side of the first cell of the obtained honeycomb formed body to obtain a plugged honeycomb formed body. As the plugging slurry for forming the plugging portion, a slurry in which the cordierite forming raw material and an additive were blended was used. The viscosity of the slurry was adjusted to 180 to 350 dPa · s by preparing the additive. The length of the plugging portion (opening area reducing member) in the cell extending direction (opening area reducing member depth) was 3 mm. The first cells in which the plugged portions are formed and the second cells in which the plugged portions are not formed are alternately arranged.

次に、得られた目封止ハニカム成形体の流出側の端部に、図4に示すような平行なスリットを形成して、開口面積縮小ハニカム成形体を得た。本実施例においては、第1のセルの開口面積縮小部材のスリットの開口率(%)が25%となるように、上記スリットを形成した。   Next, parallel slits as shown in FIG. 4 were formed at the end portion on the outflow side of the obtained plugged honeycomb molded body to obtain an aperture area-reduced honeycomb molded body. In this example, the slit was formed so that the aperture ratio (%) of the slit of the opening area reducing member of the first cell was 25%.

次に、得られた開口面積縮小ハニカム成形体を焼成してハニカム構造体を製造した。表1に、ハニカム構造体の、隔壁厚さ(μm)、セル密度(セル/cm)、平均細孔径(μm)、及び気孔率(%)を示す。 Next, the obtained opening area-reduced honeycomb formed body was fired to manufacture a honeycomb structure. Table 1 shows the partition wall thickness (μm), cell density (cell / cm 2 ), average pore diameter (μm), and porosity (%) of the honeycomb structure.

次に、得られたハニカム構造体に、白金(Pt)とロジウム(Rh)との割合(Pt:Rh)が、5:1となるように調製された白金族金属を含む触媒を、触媒担持量が160g/Lとなるように担持し、ハニカム触媒体を製造した(実施例1)。なお、担持した触媒の助触媒としては、セリウム(Ce)の酸化物(CeO)とジルコニウム(Zr)の酸化物(ZrO)を用いた。また、白金族金属担持量は2g/Lである。 Next, a catalyst containing a platinum group metal prepared so that the ratio (Pt: Rh) of platinum (Pt) and rhodium (Rh) is 5: 1 is added to the obtained honeycomb structure. A honeycomb catalyst body was manufactured by supporting the catalyst so that the amount was 160 g / L (Example 1). As the promoter of the supported catalyst, cerium (Ce) oxide (CeO 2 ) and zirconium (Zr) oxide (ZrO 2 ) were used. The platinum group metal loading is 2 g / L.

実施例1のハニカム触媒体について、上記、貫通孔の開口率を測定し、圧力損失及び有害成分排出量の測定を行った。貫通孔の開口率の測定結果を表1に示し、圧力損失の測定結果を表2に示し、有害成分排出量の測定結果を表3に示す。   With respect to the honeycomb catalyst body of Example 1, the above-described opening ratio of the through holes was measured, and the pressure loss and the harmful component discharge amount were measured. Table 1 shows the measurement results of the opening ratio of the through holes, Table 2 shows the measurement results of the pressure loss, and Table 3 shows the measurement results of the harmful component discharge amount.

Figure 2010104957
Figure 2010104957

Figure 2010104957
Figure 2010104957

Figure 2010104957
Figure 2010104957

(実施例2,3)
スリットの開口率を表1に示すように変化させた以外は、実施例1と同様に構成されたハニカム構造体を製造し、得られたハニカム構造体に、実施例1と同様の方法によって触媒を担持し、ハニカム触媒体を製造した(実施例2,3)。実施例2,3のそれぞれのハニカム触媒体について、上記スリットの開口率の測定、圧力損失の測定、及び有害成分排出量の測定を行った。結果を表1〜3に示す。
(Examples 2 and 3)
Except for changing the aperture ratio of the slits as shown in Table 1, a honeycomb structure having the same structure as in Example 1 was manufactured, and the obtained honeycomb structure was subjected to a catalyst by the same method as in Example 1. And honeycomb catalyst bodies were manufactured (Examples 2 and 3). The honeycomb catalyst bodies of Examples 2 and 3 were measured for the aperture ratio of the slit, the pressure loss, and the harmful component discharge amount. The results are shown in Tables 1-3.

(比較例1)
ハニカム構造体の、隔壁厚さ(μm)、セル密度(セル/cm)、平均細孔径(μm)、気孔率(%)が表1に示すような値であり、目封止部に貫通孔を有さないハニカム構造体を製造し、得られたハニカム構造体に、表1に示すように、触媒担持量が200g/Lとなるように触媒を担持し、ハニカム触媒体を製造した(比較例1)。尚、白金族金属担持量は2.5g/Lであった。比較例1のハニカム触媒体について、上記圧力損失の測定と、有害成分排出量の測定を行った。結果を表2及び表3に示す。
(Comparative Example 1)
The honeycomb structure has the partition wall thickness (μm), cell density (cell / cm 2 ), average pore diameter (μm), and porosity (%) as shown in Table 1, and penetrates the plugging portion. A honeycomb structure without pores was manufactured, and the resulting honeycomb structure was loaded with a catalyst so that the catalyst loading was 200 g / L, as shown in Table 1, and a honeycomb catalyst body was manufactured ( Comparative Example 1). The platinum group metal loading was 2.5 g / L. The honeycomb catalyst body of Comparative Example 1 was measured for the pressure loss and the harmful component discharge amount. The results are shown in Tables 2 and 3.

(比較例2,3)
スリットの開口率を表1に示すように変化させた以外は、実施例1と同様に構成されたハニカム構造体を製造し、得られたハニカム構造体に、実施例1と同様の方法によって触媒を担持し、ハニカム触媒体を製造した(比較例2,3)。比較例2,3のそれぞれのハニカム触媒体について、上記スリットの開口率の測定、圧力損失の測定、及び有害成分排出量の測定を行った。結果を表1〜3に示す。
(Comparative Examples 2 and 3)
Except for changing the aperture ratio of the slits as shown in Table 1, a honeycomb structure having the same structure as in Example 1 was manufactured, and the obtained honeycomb structure was subjected to a catalyst by the same method as in Example 1. To produce a honeycomb catalyst body (Comparative Examples 2 and 3). The honeycomb catalyst bodies of Comparative Examples 2 and 3 were measured for the aperture ratio of the slit, the pressure loss, and the harmful component discharge amount. The results are shown in Tables 1-3.

(結果1)
表2,3より、実施例1〜3のハニカム触媒体は、浄化効率が良好であるとともに圧力損失が小さいことがわかる。これに対し、比較例2のハニカム構造体は、スリットが形成されていないため、圧力損失が大きくなっていることがわかる。また、比較例3のハニカム構造体は、開口面積縮小部材が配設されていないため、圧力損失は小さいが、浄化効率が低いことがわかる。
(Result 1)
From Tables 2 and 3, it can be seen that the honeycomb catalyst bodies of Examples 1 to 3 have good purification efficiency and small pressure loss. On the other hand, it can be seen that the honeycomb structure of Comparative Example 2 has a large pressure loss because no slit is formed. Further, it can be seen that the honeycomb structure of Comparative Example 3 does not have the opening area reducing member, and therefore the pressure loss is small, but the purification efficiency is low.

(実施例4〜6、比較例4、5)
平均細孔径(μm)を、表4に示すように変化させたこと以外は、実施例2(スリットの開口率50%)と同様に構成されたハニカム構造体を製造し、得られたハニカム構造体に、実施例1と同様の方法によって触媒を担持し、ハニカム触媒体を製造した(実施例4〜6、比較例4,5)。実施例4〜6、比較例4,5のそれぞれのハニカム触媒体について、上記した圧力損失の測定と、有害成分排出量の測定を行った。結果を表5及び表6に示す。
(Examples 4 to 6, Comparative Examples 4 and 5)
A honeycomb structure manufactured in the same manner as in Example 2 (aperture ratio of slit 50%) except that the average pore diameter (μm) was changed as shown in Table 4 was obtained. The catalyst was supported on the body by the same method as in Example 1 to produce honeycomb catalyst bodies (Examples 4 to 6, Comparative Examples 4 and 5). With respect to each of the honeycomb catalyst bodies of Examples 4 to 6 and Comparative Examples 4 and 5, the above-described pressure loss measurement and harmful component discharge amount were measured. The results are shown in Tables 5 and 6.

Figure 2010104957
Figure 2010104957

Figure 2010104957
Figure 2010104957

Figure 2010104957
Figure 2010104957

(結果2)
表5,6より、実施例4〜6、比較例4,5のそれぞれのハニカム触媒体は、圧力損失については大きな差はなかったが、有害成分排出量についは、実施例4〜6のハニカム構造体の有害成分排出量が少なく、実施例4〜6のハニカム構造体が優れていることがわかる。
(Result 2)
From Tables 5 and 6, the honeycomb catalyst bodies of Examples 4 to 6 and Comparative Examples 4 and 5 did not have a large difference in pressure loss, but the harmful component discharge amount was the honeycombs of Examples 4 to 6. It can be seen that the amount of harmful components discharged from the structure is small, and the honeycomb structures of Examples 4 to 6 are excellent.

(実施例7〜9、比較例6、7)
平均細孔径(μm)を、表7に示すように変化させたこと以外は、実施例2(スリットの開口率50%)と同様に構成されたハニカム構造体を製造し、得られたハニカム構造体に、実施例1と同様の方法によって触媒を担持し、ハニカム触媒体を製造した(実施例7〜9、比較例6,7)。実施例7〜9、比較例6,7のそれぞれのハニカム触媒体について、上記した圧力損失の測定と、有害成分排出量の測定を行った。結果を表8及び表9に示す。
(Examples 7 to 9, Comparative Examples 6 and 7)
Except for changing the average pore diameter (μm) as shown in Table 7, a honeycomb structure having the same structure as in Example 2 (slit opening ratio 50%) was manufactured, and the resulting honeycomb structure was obtained. The catalyst was supported on the body by the same method as in Example 1 to produce honeycomb catalyst bodies (Examples 7 to 9, Comparative Examples 6 and 7). With respect to each of the honeycomb catalyst bodies of Examples 7 to 9 and Comparative Examples 6 and 7, the above-described pressure loss measurement and harmful component discharge amount were measured. The results are shown in Table 8 and Table 9.

Figure 2010104957
Figure 2010104957

Figure 2010104957
Figure 2010104957

Figure 2010104957
Figure 2010104957

(結果3)
表8,9より、実施例7〜9、比較例6,7のそれぞれのハニカム触媒体は、圧力損失については大きな差はなかったが、有害成分排出量についは、実施例7〜9のハニカム構造体の有害成分排出量が少なく、実施例7〜9のハニカム構造体が優れていることがわかる。
(Result 3)
From Tables 8 and 9, the honeycomb catalyst bodies of Examples 7 to 9 and Comparative Examples 6 and 7 did not have a large difference in pressure loss, but the amount of harmful components discharged was the honeycomb of Examples 7 to 9. It can be seen that the honeycomb structure of Examples 7 to 9 is excellent because the amount of harmful component emission from the structure is small.

(実施例10)
図2に示すハニカム構造体100のように、直交する2方向のスリットを形成した以外は、実施例1と同様に構成されたハニカム構造体を製造し、得られたハニカム構造体に、実施例1と同様の方法によって触媒を担持し、ハニカム触媒体を製造した(実施例10)。隔壁厚さ等の条件を表1に示す。実施例10のハニカム触媒体について、上記した圧力損失の測定と、有害成分排出量の測定を行った。結果を表2及び表3に示す。
(Example 10)
Like the honeycomb structure 100 shown in FIG. 2, a honeycomb structure configured in the same manner as in Example 1 except that slits in two orthogonal directions were formed, and the resulting honeycomb structure was A catalyst was supported by the same method as in Example 1 to produce a honeycomb catalyst body (Example 10). Conditions such as the partition wall thickness are shown in Table 1. With respect to the honeycomb catalyst body of Example 10, the above-described pressure loss measurement and harmful component discharge amount measurement were performed. The results are shown in Tables 2 and 3.

(結果4)
表2,3より、実施例1のハニカム触媒体と実施例10のハニカム触媒体とを対比すると、スリットが縦横(直交する2方向)に形成されている実施例10のハニカム触媒体の方が、流れが隔壁に満遍なく流れるため、浄化性能がよいことがわかる。
(Result 4)
From Tables 2 and 3, when comparing the honeycomb catalyst body of Example 1 and the honeycomb catalyst body of Example 10, the honeycomb catalyst body of Example 10 in which slits are formed in the vertical and horizontal directions (two directions orthogonal). It can be seen that the purification performance is good because the flow flows evenly through the partition walls.

本発明のハニカム構造体は、触媒を担持することにより、自動車用、建設機械用、及び産業用定置エンジン、並びに燃焼機器等から排出される排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)を効率的に浄化することが可能であるとともに、圧力損失の増加を有効に抑制することができ、ハニカム触媒体の触媒担体として好適に利用することができる。 The honeycomb structure according to the present invention supports carbon monoxide (CO) and hydrocarbons contained in exhaust gas discharged from automobiles, construction machines, industrial stationary engines, combustion equipment, and the like by supporting a catalyst. (HC) and nitrogen oxides (NO x ) can be efficiently purified, and an increase in pressure loss can be effectively suppressed, which can be suitably used as a catalyst carrier of a honeycomb catalyst body. it can.

また、本実施例のハニカム触媒体は、自動車用、建設機械用、及び産業用定置エンジン、並びに燃焼機器等から排出される排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害成分を浄化するために好適に利用することができる。 Moreover, the honeycomb catalyst body of the present example is a carbon monoxide (CO), hydrocarbon (HC) contained in exhaust gas discharged from automobiles, construction machinery, industrial stationary engines, combustion equipment, and the like. It can be suitably used to purify harmful components such as nitrogen oxides (NO x ).

本発明のハニカム構造体の一の実施形態を模式的に示す斜視図である。1 is a perspective view schematically showing an embodiment of a honeycomb structure of the present invention. 本発明のハニカム構造体の一の実施形態の一部を模式的に示す、流出側端面側からみた平面図である。Fig. 3 is a plan view schematically showing a part of one embodiment of the honeycomb structure of the present invention as seen from the outflow side end face side. 図2のA−A’断面を示す模式図である。It is a schematic diagram which shows the A-A 'cross section of FIG. 本発明のハニカム構造体の他の実施形態の一部を模式的に示す、流出側端面側からみた平面図である。Fig. 5 is a plan view schematically showing a part of another embodiment of the honeycomb structure of the present invention as seen from the outflow side end face side.

符号の説明Explanation of symbols

1:隔壁、2:流入側の端面、3:流出側の端面、4:セル、4a:第1のセル、4b:第2のセル、5,5a,5b,5c:セルの列、6:開口面積縮小部材、7:スリット、11:外周壁、100,200:ハニカム構造体、D1:スリット深さ、D2:開口面積縮小部材深さ。 1: partition wall, 2: end face on the inflow side, 3: end face on the outflow side, 4: cell, 4a: first cell, 4b: second cell, 5, 5a, 5b, 5c: row of cells, 6: Opening area reducing member, 7: slit, 11: outer peripheral wall, 100, 200: honeycomb structure, D1: slit depth, D2: opening area reducing member depth.

Claims (6)

流入側の端面から流出側の端面まで貫通する流体の流路となる複数のセルを区画形成する多孔質の隔壁を備え、
前記隔壁は、気孔率が50〜80%であり、且つ平均細孔径が13〜70μmであり、
前記複数のセルの中の一部のセルは、流入側の端部の開口部が開口され且つ流出側の端部の開口部にその前記開口部の一部を塞ぐように開口面積縮小部材が配設された第1のセルであり、残部のセルは、両端部の開口部が開口された第2のセルであり、
前記第1のセルと前記第2のセルとが交互に配置され、
前記第1のセルと前記第2のセルとが交互に並ぶセルの列の中の少なくとも一列の流出側端部において、前記セルの列を縦断するように前記隔壁及び前記開口面積縮小部材にスリットが形成され、
前記スリットの、セルの延びる方向における深さが、前記開口面積縮小部材の、セルの延びる方向における深さより深いハニカム構造体。
Comprising a porous partition wall defining a plurality of cells that serve as fluid flow paths penetrating from the end surface on the inflow side to the end surface on the outflow side;
The partition wall has a porosity of 50 to 80% and an average pore diameter of 13 to 70 μm,
In some of the plurality of cells, an opening area reducing member is formed so that an opening at an end portion on an inflow side is opened and a part of the opening portion is blocked by an opening at an end portion on an outflow side. The first cell disposed, the remaining cell is a second cell having openings at both ends,
The first cells and the second cells are alternately arranged,
A slit is formed in the partition wall and the opening area reducing member so as to cut the cell row vertically in at least one outflow side end portion of the cell row in which the first cells and the second cells are alternately arranged. Formed,
A honeycomb structure in which a depth of the slit in a cell extending direction is deeper than a depth of the opening area reducing member in a cell extending direction.
前記スリットが形成された前記セルの列が、流出側の端面において互いに平行に並ぶ複数のセルの列である請求項1に記載のハニカム構造体。   The honeycomb structure according to claim 1, wherein the row of cells in which the slits are formed is a row of a plurality of cells arranged in parallel with each other on an end face on the outflow side. 前記スリットが形成された前記セルの列が、流出側の端面において互いに平行に並ぶ複数のセルの列、及び前記平行に並ぶ複数のセルの列と交差する、他の互いに平行に並ぶ複数のセルの列である請求項1に記載のハニカム構造体。   The row of cells in which the slits are formed is parallel to each other on the end surface on the outflow side, and the other plurality of cells that are parallel to each other and intersect the row of the plurality of cells arranged in parallel. The honeycomb structure according to claim 1, which is a row of 前記スリットの、セルの延びる方向における深さの下限値が、1mmであり、上限値が30mm又はセルの延びる方向の全長の1/2のいずれか短い方の長さである請求項1〜3のいずれかに記載のハニカム構造体。   The lower limit of the depth of the slit in the cell extending direction is 1 mm, and the upper limit is 30 mm or 1/2 of the total length in the cell extending direction, whichever is shorter. The honeycomb structure according to any one of the above. 前記開口面積縮小部材が、気孔率が20〜80%の多孔質体からなる請求項1〜4のいずれかに記載のハニカム構造体。   The honeycomb structure according to any one of claims 1 to 4, wherein the opening area reducing member is made of a porous body having a porosity of 20 to 80%. 請求項1〜5のいずれかに記載のハニカム構造体と、前記ハニカム構造体の前記隔壁の細孔の内表面に担持されるとともに、隔壁表面に担持された触媒と、を備え、
触媒担持量が100〜250g/Lであるハニカム触媒体。
A honeycomb structure according to any one of claims 1 to 5, and a catalyst supported on the inner surface of the pores of the partition walls of the honeycomb structure and a catalyst supported on the partition wall surfaces,
A honeycomb catalyst body having a catalyst loading of 100 to 250 g / L.
JP2008281709A 2008-10-31 2008-10-31 Honeycomb structure and honeycomb catalyst body Active JP5219742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281709A JP5219742B2 (en) 2008-10-31 2008-10-31 Honeycomb structure and honeycomb catalyst body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281709A JP5219742B2 (en) 2008-10-31 2008-10-31 Honeycomb structure and honeycomb catalyst body

Publications (2)

Publication Number Publication Date
JP2010104957A true JP2010104957A (en) 2010-05-13
JP5219742B2 JP5219742B2 (en) 2013-06-26

Family

ID=42294928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281709A Active JP5219742B2 (en) 2008-10-31 2008-10-31 Honeycomb structure and honeycomb catalyst body

Country Status (1)

Country Link
JP (1) JP5219742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352211B2 (en) 2014-01-27 2019-07-16 Denso Corporation Exhaust gas purification filter and method of producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073377B (en) 2014-09-03 2021-02-26 康宁股份有限公司 Exhaust gas filter with active plugs

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037971A1 (en) * 1999-11-19 2001-05-31 Ngk Insulators, Ltd. Honeycomb structural body
JP2002119867A (en) * 2000-10-17 2002-04-23 Toyota Motor Corp Catalytic structural body for purifying waste gas
JP2002273124A (en) * 2001-03-16 2002-09-24 Ngk Insulators Ltd Honeycomb filter for cleaning exhaust gas
JP2003033664A (en) * 2001-07-25 2003-02-04 Ngk Insulators Ltd Honeycomb structure for cleaning exhaust gas and catalyst body for honeycomb for cleaning exhaust gas
JP2003166410A (en) * 2001-11-29 2003-06-13 Toyota Motor Corp Exhaust emission controlling particulate filter
JP2004130231A (en) * 2002-10-10 2004-04-30 Ngk Insulators Ltd Honeycomb structure, its production method, and exhaust gas cleaning system using the honeycomb structure
JP2004321851A (en) * 2003-04-21 2004-11-18 Ngk Insulators Ltd Honeycomb structure, its production method, mouth piece for molding and discharge fluid cleaning system
JP2006231162A (en) * 2005-02-23 2006-09-07 Ngk Insulators Ltd Production method of opening-sealed honeycomb structure, and opening-sealed honeycomb structure
WO2006095835A1 (en) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. Honeycomb structure and method of manufacturing the same
WO2007066671A1 (en) * 2005-12-07 2007-06-14 Ngk Insulators, Ltd. Honeycomb structure body and method of producing the same
WO2008096502A1 (en) * 2007-02-02 2008-08-14 Ngk Insulators, Ltd. Honeycomb structure
JP2008215337A (en) * 2007-02-09 2008-09-18 Ibiden Co Ltd Honeycomb structure body and exhaust gas treatment device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037971A1 (en) * 1999-11-19 2001-05-31 Ngk Insulators, Ltd. Honeycomb structural body
JP2002119867A (en) * 2000-10-17 2002-04-23 Toyota Motor Corp Catalytic structural body for purifying waste gas
JP2002273124A (en) * 2001-03-16 2002-09-24 Ngk Insulators Ltd Honeycomb filter for cleaning exhaust gas
JP2003033664A (en) * 2001-07-25 2003-02-04 Ngk Insulators Ltd Honeycomb structure for cleaning exhaust gas and catalyst body for honeycomb for cleaning exhaust gas
JP2003166410A (en) * 2001-11-29 2003-06-13 Toyota Motor Corp Exhaust emission controlling particulate filter
JP2004130231A (en) * 2002-10-10 2004-04-30 Ngk Insulators Ltd Honeycomb structure, its production method, and exhaust gas cleaning system using the honeycomb structure
JP2004321851A (en) * 2003-04-21 2004-11-18 Ngk Insulators Ltd Honeycomb structure, its production method, mouth piece for molding and discharge fluid cleaning system
JP2006231162A (en) * 2005-02-23 2006-09-07 Ngk Insulators Ltd Production method of opening-sealed honeycomb structure, and opening-sealed honeycomb structure
WO2006095835A1 (en) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. Honeycomb structure and method of manufacturing the same
WO2007066671A1 (en) * 2005-12-07 2007-06-14 Ngk Insulators, Ltd. Honeycomb structure body and method of producing the same
WO2008096502A1 (en) * 2007-02-02 2008-08-14 Ngk Insulators, Ltd. Honeycomb structure
JP2008215337A (en) * 2007-02-09 2008-09-18 Ibiden Co Ltd Honeycomb structure body and exhaust gas treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352211B2 (en) 2014-01-27 2019-07-16 Denso Corporation Exhaust gas purification filter and method of producing the same

Also Published As

Publication number Publication date
JP5219742B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
US7867598B2 (en) Honeycomb structure and honeycomb catalytic body
JP5073303B2 (en) Catalytic converter and manufacturing method of catalytic converter
US7695798B2 (en) Honeycomb structure and honeycomb catalyst
JP6023395B2 (en) Catalyst support filter
JP4819814B2 (en) Honeycomb structure and honeycomb catalyst body
JP5964564B2 (en) Wall flow type exhaust gas purification filter
JP5202298B2 (en) Honeycomb catalyst body and exhaust gas treatment system
JP4864061B2 (en) Honeycomb structure and manufacturing method thereof
JP6092068B2 (en) Catalyst supported honeycomb filter
JP6238791B2 (en) Plugged honeycomb structure
JP5649778B2 (en) Honeycomb structure and honeycomb catalyst body
JP5368770B2 (en) Honeycomb structure, manufacturing method thereof, and honeycomb catalyst body
JP5219741B2 (en) Honeycomb structure and honeycomb catalyst body
JP6534900B2 (en) Honeycomb structure
JP5219740B2 (en) Honeycomb structure and honeycomb catalyst body
JP5219742B2 (en) Honeycomb structure and honeycomb catalyst body
JP5408865B2 (en) Honeycomb catalyst body
US11085342B2 (en) Honeycomb filter
JP2011189252A (en) Honeycomb structure and honeycomb catalyst
JP6534899B2 (en) Honeycomb structure
JP5242341B2 (en) Honeycomb structure and honeycomb catalyst body
JP5916416B2 (en) Plugged honeycomb structure and honeycomb catalyst body using the same
US20220258148A1 (en) Plugged honeycomb structure
JP2013044319A (en) Honeycomb structure body and gas treatment system using the same
JP7354036B2 (en) honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150