JP2004300596A - Aramid-made work glove - Google Patents

Aramid-made work glove Download PDF

Info

Publication number
JP2004300596A
JP2004300596A JP2003092977A JP2003092977A JP2004300596A JP 2004300596 A JP2004300596 A JP 2004300596A JP 2003092977 A JP2003092977 A JP 2003092977A JP 2003092977 A JP2003092977 A JP 2003092977A JP 2004300596 A JP2004300596 A JP 2004300596A
Authority
JP
Japan
Prior art keywords
aramid
weight
spun yarn
rubber latex
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003092977A
Other languages
Japanese (ja)
Other versions
JP3789440B2 (en
Inventor
Hidetoshi Kishihara
英敏 岸原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Co Ltd
Original Assignee
Showa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Co Ltd filed Critical Showa Co Ltd
Priority to JP2003092977A priority Critical patent/JP3789440B2/en
Publication of JP2004300596A publication Critical patent/JP2004300596A/en
Application granted granted Critical
Publication of JP3789440B2 publication Critical patent/JP3789440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gloves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aramid-made work glove which can prevent the strike-through of a rubber latex, is flexible, and has high adhesion strength. <P>SOLUTION: This aramid-made work glove is characterized by coating with a rubber latex on a knitted glove substrate consisting mainly of aramid-made spun yarns having on the surfaces coating films comprising the condensation product of one or more hydrolysable substituent-having organic metal compounds comprising titanium, zirconium, aluminum and/or tin, and then integrally molding the coated knitted glove substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、食肉解体作業、ガラス取扱い作業または車や飛行機のエンジン組立作業などにおいて手を損傷しないように保護するためのアラミド製作業用手袋に関するものである。
【0002】
【従来の技術】
従来から知られているアラミド繊維は表面が不活性のため他の繊維素材と比較してゴムとの密着性が悪く、ゴムラテックスをアラミド繊維製基材に深く浸透させて物理的なアンカー効果を持たせ、密着性を向上させる方法にて加工された手袋が利用されている。ゴムとアラミド繊維との密着強度を実用に耐えるレベルにしようとするとアラミド繊維製基材の裏側までゴムラテックスを浸透させるか、あるいはアラミド繊維製基材の厚みを厚くするなどの手段があるが、手袋としての風合いや柔軟性を損ない作業性の悪い手袋となってしまう。そこで、アラミド繊維製基材の裏面までゴムラテックスを浸透させずにより厚みを薄くしてゴムとの密着強度を強くさせることにより柔軟で且つ風合いのいいものができる。アラミド繊維製基材とゴムとの密着性を向上させるために、例えば特許文献1に開示されているようにアラミド繊維表面を物理的にエッチングして凹凸を付ける方法や、硫酸による化学処理法やプラズマ放電によって表面改質を行なう方法が採られるが、アラミド繊維基材とゴムとの密着強度は上がらないという問題があった。
【0003】
【特許文献1】
特開平11−335972号公報
【0004】
【発明が解決しようとする課題】
本発明はこのような課題を解決するもので、ゴムラテックスの裏抜けを防止し、柔軟で且つ密着強度の強いアラミド製作業用手袋を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
この課題を解決するために本発明は、加水分解可能な置換基を持つチタン、ジルコニウム、アルミニウム、スズからなる一種以上の有機金属化合物の縮合体よりなる被膜を表面に持つアラミド製スパン糸を主体とする編み手袋基材上にゴムラテックスを被覆させ、加熱によって一体成形してなることを要旨とするものである。また本発明は、加水分解可能な置換基を持つチタン、ジルコニウム、アルミニウム、スズからなる一種以上の有機金属化合物によって硬化・固化したアルコキシシラン縮合体を表面被膜に持つアラミド製スパン糸を主体とする編み手袋基材上にゴムラテックスを被覆させ、加熱によって一体成形してなることを要旨とするものである。また本発明は、フェニル基を含有するアルコキシシラン縮合体を表面被膜に持つアラミド製スパン糸を主体とする編み手袋基材上にゴムラテックスを被覆させ、加熱によって一体成形してなることを要旨とするものである。さらに本発明は、加水分解可能な置換基を持つチタン、ジルコニウム、アルミニウム、スズからなる一種以上の有機金属化合物によって硬化・固化したフェニル基を2重量%〜72重量%含有するアルコキシシラン縮合体を表面被膜に持つアラミド製スパン糸を主体とする編み手袋基材上にゴムラテックスを被覆させ、加熱によって一体成形してなることを要旨とするものである。
【0006】
本発明の加水分解可能な置換基を持つチタン、ジルコニウム、アルミニウム、スズからなる一種以上の有機金属化合物よりなる縮合体とは、テトラプロポキシチタネート、テトラブトキシチタネート、テトラプロポキシジルコネート、テトラブトキシジルコネート、トリプロポキシアルミネート、アルミニウムアセチルアセテート、ジブチルスズジアセテートまたはジブチルスズジラウレートなどの単独縮合体もしくは混合縮合体であり、アルコキシシラン重量に対して少なくとも0.1重量%以上添加するとアラミド製スパン糸に撥水性が現れ、編み原手基材裏面までゴムラテックスを浸透させずに密着強度を上げることができる。アルコキシシラン縮合体は、1分子内に3個の加水分解可能な置換基を持つ3官能アルコキシシランと1分子内に2個の加水分解可能な置換基を持つ2官能アルコキシシランのモノマーもしくは2量体〜15量体のオリゴマーなどの単独縮合体もしくは混合縮合体であり、1分子内にエポキシ基、ビニル基、アミノ基、メルカプト基、スルフィド基、イソシアネート基、メタクリロキシ基、アクリロキシ基、ウレイド基、クロロプロピル基、フェニル基を含んでいても良い。特に、アルコキシシラン縮合体重量に対してフェニル基を2重量%〜72重量%含むと上記のような有機金属化合物の添加をしなくてもゴムとの密着強度が向上し、添加をすればさらに相乗効果がでる。アルコキシシラン、有機金属化合物の溶媒は、アラミド製スパン糸表面との化学反応をしやすいようにエチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコールなどのグリコール類、エタノール、メタノール、イソプロパノール、ブタノール、ヘキサン、トルエン、クロロベンゼンなどの単独または2種以上を混合して使用される。アラミド製スパン糸表面への処理方法は、アルコキシシラン、有機金属化合物を含む溶液にアラミド製スパン糸を浸漬もしくは、アラミド製スパン糸を主体とする編み手袋を浸漬して引き上げ繊維重量に対して1重量%〜8重量%付着するように絞り率を調整し、約150℃で10分間程度の乾燥にて繊維表面に被覆させる。アラミド繊維には紡績糸(スパン糸)、フィラメント糸がある。アラミド製スパン糸は単体で使用することも可能であるが、スパン糸を主体とするアクリル糸、ポリエチレン糸、PVC、ナイロン糸、ポリエステル糸、綿糸などとの複合糸を使用することも可能であり、このアラミド製スパン糸はフィラメント糸に比較してゴムとの密着強度が特に向上する。また、本発明に使用されるゴムラテックスは、天然ゴム、イソプレン、クロロプレン、アクリル酸エステル、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ウレタン、ブチルゴム、ポリブタジエンゴム、シリコーンゴムなどの単独重合体ラテックスあるいは共重合体ラテックス、10重量%以下のカルボキシル変性基などを持つ共重合体ラテックスであり、これらをブレンドして、周知の架橋剤、加硫促進剤、老化防止剤、増粘剤、有機や無機の充填剤、可塑剤などを添加したものである。天然ゴムなる語句は、天然ゴム単独だけでなく、天然ゴム−メチルメタクリレート共重合体やエポキシ化変性天然ゴム共重合体(ラテックス)などを包含する。アクリル酸エステルゴムなる語句は、n−ブチルアクリレート、n−ブチルメタクリレート、iso−ブチルアクリレート、iso−ブチルメタクリレート、エチルアクリレート、エチルメタクリレート、2−エチルヘキシルアクリレート、2−エチルヘキシルメタクリレート、iso−プロピルアクリレート、iso−プロピルメタクリレートなどの単独重合体、または共重合体であって、アクリロニトリル、メチルメタクリレート、アリルメタクリレート、N−メチロールアクリルアミド、アクリル酸、メタクリル酸などを含んだ共重合体を包含する。ゴム手袋の製造方法はアラミド繊維製の編み手袋を手型に被せ、感熱剤法もしくは凝固剤法にてゴムラテックスを被覆し、120〜130℃、約1時間の加熱にて固化させる。手袋のリーチングについては手袋を加熱する前後どちらでも構わない。感熱剤法とは、ゴムラテックスにある温度に到達するとゲル化するゲル化点を持たせ、ゴムラテックスの液温度と型温度調整によって浸透を抑えながらゴムと基材とを密着させる加工法であり、凝固剤法とは硝酸カルシウム、塩化カルシウム、塩化亜鉛などの2価金属塩の水もしくはメタノール溶液によって塩凝固させる加工法である。本発明のアルコキシシラン縮合体を被膜したアラミド製編み手袋を用いるとゴムが裏抜けをせず密着強度の強い手袋ができる。
【0007】
【発明の実施の形態】
以下、本発明を実施例に基づいて説明する。しかしながらこれらの実施例は本発明を限定するものではない。
【0008】
実施例1
ジブチルスズジアセテート(固形分1%)のイソプロピルアルコール溶液にアラミド製スパン糸を材料とする編み手袋を漬け込み、繊維重量に対して付着固形分が2重量%となるように絞り率を調整し、150℃で10分間乾燥させた。この表面処理をした編み手袋を手型に被せた後、これを凝固剤液に浸漬し、1分間の乾燥を行なった後、下記の配合(1)のコンパウンドに漬けて、130℃で40分間のキュアを行なった。離型した手袋の掌から試験片を切り取り、剥離強度テストを行なった。使用した凝固剤は、メタノール=100重量部に対して硝酸カルシウム(重量部)/塩化亜鉛(重量部)=0.4/0.2、0.6/0.3、0.8/0.4、1.0/0.5と変化させて試作を行ない、密着強度はゴムラテックスが浸透していない状態で、最大密着強度の相対比較とした。その試験結果を表1に示す。同様にして表面処理をしたアラミド製スパン糸を主体とする編み手袋を手型に被せた後、液温を23℃で一定に保った下記の配合(2)のコンパウンドに漬け、引き上げてから130℃で40分間のキュアを行なった。手型温度(℃)を65℃、70℃、80℃、90℃と変化させて試作を行ない、密着強度試験をした。その試験結果を表2に示す。
【0009】
実施例2
メチルトリメトキシシラン(固形分6%)、ジブチルスズジアセテート(固形分0.4%)のイソプロピルアルコール溶液にアラミド製スパン糸からなる編み手袋を浸漬して繊維重量に対して付着固形分が2重量%になるように絞り率を調整し、150℃で10分間乾燥させた。このメチルトリメトキシシランは(A)単量体、(B)約5量体、(C)約15量体をそれぞれ使用した。手袋の試作方法は実施例1と同様に行ない、剥離強度の結果は表1と表2に示した。
【0010】
実施例3
ジフェニルジエトキシシラン(固形分6%)のイソプロピルアルコール溶液にアラミド製スパン糸を材料とする編み手袋を浸漬して繊維重量に対して付着固形分が2重量%なるように絞り率を調整し、150℃で10分間乾燥させた。このジフェニルジエトキシシランは単量体を使用した。手袋の試作方法は実施例1と同様に行ない、剥離強度の結果は表1と表2に示した。
【0011】
実施例4
メチルトリメトキシシラン(固形分6%、約2量体)とフェニルトリエトキシシラン(固形分6%、単量体)のイソプロピルアルコール溶液にアラミド製スパン糸を材料とする編み手袋を浸漬して繊維重量に対して付着固形分が2重量%なるように絞り率を調整し、150℃で10分間乾燥させた。このメチルトリメトキシシラン(重量%)とフェニルトリエトキシシラン(重量%)の割合を90/10、50/50、0/100としたものと、このそれぞれの割合にジブチルスズジアセテート(固形分0.4%)を各々添加混合したものを使用した。手袋の試作方法は実施例1と同様に行ない、剥離強度の結果は表1と表2に示した。
【0012】
実施例5
N−フェニル−γ−アミノプロピルトリメトキシシラン(固形分6%、単量体)のイソプロピルアルコール溶液にアラミド製スパン糸を材料とする編み手袋を浸漬して繊維重量に対して付着固形分を2重量%なるように絞り率を調整し、150℃で10分間乾燥させた。手袋の試作方法は実施例1と同様に行ない、剥離強度の結果は表1と表2に示した。
【0013】
比較例1
表面処理のしていないアラミド製スパン糸を材料とする編み手袋を用いて実施例1と同様に手袋試作を行ない、剥離強度の結果は表1と表2に示した。
【0014】
比較例2
表面処理をしないアラミド製フィラメント糸を材料とする編み手袋と実施例1のジブチルスズジアセテート(固形分1%)のイソプロパノール溶液で処理したアラミド製フィラメント糸を材料とする編み手袋を用いて実施例1と同様に手袋試作を行ない、剥離強度の結果は表1と表2に示した。
【0015】
比較例3
メチルトリメトキシシラン(固形分6%)のイソプロピルアルコール溶液にアラミド製スパン糸を材料とする編み手袋を浸漬して繊維重量に対して付着固形分が2重量%になるように絞り率を調整し、150℃で10分間乾燥させた。このメチルトリメトキシシランは(A)単量体、(B)約5量体、(C)約15量体をそれぞれ使用した。手袋の試作方法は実施例1と同様に行ない、剥離強度の結果は表1と表2に示した。
【0016】
比較例4
メチルトリメトキシシラン(固形分6%、約2量体)とフェニルトリエトキシシラン(固形分6%、単量体)のイソプロピルアルコール溶液にアラミド製スパン糸を材料とする編み手袋を浸漬して繊維重量に対して2重量%なるように絞り率を調整し、150℃で10分間乾燥させた。このメチルトリメトキシシラン(重量%)とフェニルトリエトキシシラン(重量%)の割合は100/0、95/5とした。手袋の試作方法は実施例1と同様に行ない、剥離強度の結果は表1と表2に示した。
【0017】
・密着強度試験
試作した手袋の掌部から試験片;25mm×10cmを2枚切り取り、20mm剥離させた両端を試験機のつかみ具につかませ、引張速度;50mm/minで50mm剥離させた。剥離強度はJIS K 6256に準拠して測定した中央値とする。単位はkgf表示とした。
【0018】
・密着強度の評価
アラミド繊維製の編み手袋の裏側にゴムラテックスが浸透していないレベルで剥離強度を相対比較し、値が大きいほど密着強度が強いとした。
【0019】
・配合(1)
NBRラテックス(日本ゼオン(株)製 Lx550) 100重量部
G−15(花王(株)製 アニオン系乳化剤) 0.2重量部
コロイド硫黄 1.5重量部
酸化亜鉛 1.5重量部
加硫促進剤(ジチオカルバメート系) 0.5重量部
老化防止剤(ビスフェノール系) 0.5重量部
顔料 適量
増粘剤(ポリアクリル酸エステル系) 適量
・配合(2)
NRラテックス 100重量部
G−15(花王(株)製 アニオン系乳化剤) 0.2重量部
コロイド硫黄 1.0重量部
酸化亜鉛 0.8重量部
加硫促進剤(ジチオカルバメート系) 0.3重量部
老化防止剤(ビスフェノール系) 0.5重量部
顔料 適量
増粘剤(アルギン酸ソーダー) 適量
【0020】
【表1】

Figure 2004300596
【0021】
【表2】
Figure 2004300596
【0022】
比較例1のアラミド繊維(スパン糸)編み原手と凝固加工法によるNBRゴムとの最大密着強度は1.94kgfである。ここでの最大密着強度とは、NBRコンパウンドが原手裏面まで浸透していない状態でもっとも高い値のこととしている。これに比べ、実施例1の加水分解可能な置換基を持つ有機金属化合物のイソプロパノール溶液で処理すると2.81kgfとなり、約45%密着強度が向上している。比較例3のメチルトリエトキシシランのようなアルコキシシラン化合物で処理をした場合、密着強度の向上は見られないが、実施例2のように加水分解可能な置換基を持つ有機金属化合物を添加することによって39%〜47%向上する。また、アルコキシシラン化合物中にフェニル基を2重量%〜72重量%含有していると実施例3、実施例4、実施例5のように51%〜65%向上する。有機金属化合物を添加すればさらに71%まで効果が上がる。フェニル基が2重量%を下回れば比較例4のように効果は見られない。比較例2よりアラミド製フィラメント糸は表面処理効果が全く出なかった。
【0023】
比較例1の処理していないアラミド製スパン糸を材料とする編み手袋と感熱加工法によるNRゴムとの最大密着強度は2.06kgfである。これに比べ、実施例1の加水分解可能な置換基を持つ有機金属化合物のイソプロパノール溶液で処理すると3.40kgfとなり、約65%密着強度が向上する。比較例3のメチルトリエトキシシランのようなアルコキシシラン化合物で処理をした場合、密着強度の向上は見られないが、実施例2のように加水分解可能な置換基を持つ有機金属化合物を添加することによって38%〜48%向上する。また、アルコキシシラン化合物中にフェニル基を2重量%〜72重量%含むと実施例3、実施例4、実施例5のように50%〜66%向上する。有機金属化合物を添加すればさらに74%まで効果が上がる。フェニル基が2重量%を下回れば比較例4のように効果は見られない。比較例2よりアラミド製フィラメント糸は表面処理効果が全く出なかった。
【0024】
【発明の効果】
以上のように本発明によれば、有機金属化合物の添加もしくはアルコキシシラン化合物からなる縮合体を表面被覆させたアラミド製スパン糸の編み手袋を用いることによってゴムラテックスの裏抜けを防止し、柔軟で且つ密着強度の強いアラミド製作業用手袋を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aramid work glove for protecting a hand from being damaged in a meat dismantling operation, a glass handling operation, an engine assembling operation of a car or an airplane, and the like.
[0002]
[Prior art]
Conventionally known aramid fibers have an inactive surface and have poor adhesion to rubber compared to other fiber materials, so that rubber latex penetrates deeply into the aramid fiber base material to achieve a physical anchor effect. Gloves processed by a method of holding and improving adhesion are used. In order to make the adhesion strength between the rubber and the aramid fiber practically usable, there are means such as infiltrating the rubber latex to the back side of the aramid fiber base material, or increasing the thickness of the aramid fiber base material, Glove texture and flexibility are impaired, resulting in gloves with poor workability. Therefore, the rubbery latex is not penetrated to the back surface of the aramid fiber base material, but the thickness is reduced, and the adhesion strength with the rubber is increased, so that a flexible and handy product can be obtained. In order to improve the adhesion between the aramid fiber base material and the rubber, for example, a method of physically etching the surface of the aramid fiber to form irregularities as disclosed in Patent Document 1, a chemical treatment method using sulfuric acid, Although a method of performing surface modification by plasma discharge is adopted, there is a problem that the adhesion strength between the aramid fiber base material and the rubber does not increase.
[0003]
[Patent Document 1]
JP-A-11-335972
[Problems to be solved by the invention]
An object of the present invention is to solve such a problem, and an object of the present invention is to provide a work glove made of aramid, which is flexible and has high adhesion strength by preventing strike-through of rubber latex.
[0005]
[Means for Solving the Problems]
In order to solve this problem, the present invention mainly comprises aramid spun yarn having on its surface a coating made of a condensate of one or more organometallic compounds consisting of titanium, zirconium, aluminum and tin having a hydrolyzable substituent. A rubber latex is coated on a base material of a knitted glove to be formed, and is integrally formed by heating. Further, the present invention is mainly based on an aramid spun yarn having an alkoxysilane condensate cured and solidified by one or more organometallic compounds comprising titanium, zirconium, aluminum and tin having a hydrolyzable substituent on a surface coating. The gist of the present invention is that a rubber latex is coated on a knitted glove base material and is integrally formed by heating. The gist of the present invention is that a rubber latex is coated on a knitted glove base material mainly composed of an aramid spun yarn having a phenyl group-containing alkoxysilane condensate as a surface coating, and integrally molded by heating. Is what you do. Further, the present invention provides an alkoxysilane condensate containing 2% to 72% by weight of a phenyl group cured and solidified by one or more organometallic compounds including titanium, zirconium, aluminum and tin having a hydrolyzable substituent. The gist of the present invention is that a rubber latex is coated on a knitted glove base material mainly composed of aramid spun yarn having a surface coating and is integrally formed by heating.
[0006]
The condensate consisting of one or more organometallic compounds of titanium, zirconium, aluminum, and tin having a hydrolyzable substituent according to the present invention is tetrapropoxy titanate, tetrabutoxy titanate, tetrapropoxy zirconate, tetrabutoxy zirconate. A single condensate or a mixed condensate of tripropoxyaluminate, aluminum acetylacetate, dibutyltin diacetate or dibutyltin dilaurate. When added at least 0.1% by weight or more based on the weight of alkoxysilane, water repellency is imparted to aramid spun yarn. Appear, and the adhesion strength can be increased without penetrating the rubber latex to the back surface of the knitting original material substrate. The alkoxysilane condensate is a monomer or dimer of a trifunctional alkoxysilane having three hydrolyzable substituents in one molecule and a bifunctional alkoxysilane having two hydrolyzable substituents in one molecule. Is a single condensate or a mixed condensate such as an oligomer of isomer to 15-mer, and in one molecule, an epoxy group, a vinyl group, an amino group, a mercapto group, a sulfide group, an isocyanate group, a methacryloxy group, an acryloxy group, a ureide group, It may contain a chloropropyl group or a phenyl group. In particular, when the phenyl group is contained in an amount of 2% by weight to 72% by weight based on the weight of the alkoxysilane condensate, the adhesion strength to the rubber is improved without adding the above-mentioned organometallic compound. A synergistic effect appears. Alkoxysilanes, solvents of organometallic compounds, glycols such as ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, ethanol, methanol, etc. to facilitate chemical reaction with the aramid spun yarn surface Isopropanol, butanol, hexane, toluene, chlorobenzene and the like may be used alone or in combination of two or more. The surface of the aramid spun yarn is treated by dipping the aramid spun yarn in a solution containing an alkoxysilane or an organometallic compound, or dipping a knitted glove mainly composed of the aramid spun yarn, and pulling up the fiber with respect to the weight of the fiber. The squeezing rate is adjusted so as to adhere to a weight% to 8 weight%, and the fiber surface is coated by drying at about 150 ° C. for about 10 minutes. Aramid fibers include spun yarn (spun yarn) and filament yarn. Aramid spun yarn can be used alone, but it is also possible to use a composite yarn with acrylic yarn, polyethylene yarn, PVC, nylon yarn, polyester yarn, cotton yarn, etc. mainly consisting of spun yarn. This aramid spun yarn has particularly improved adhesion strength with rubber as compared with filament yarn. Further, the rubber latex used in the present invention may be a natural rubber, isoprene, chloroprene, acrylate ester, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, urethane, butyl rubber, polybutadiene rubber, silicone rubber, or other such homopolymer. Coated latex or copolymer latex is a copolymer latex having 10% by weight or less of a carboxyl-modified group. These are blended to form a known crosslinking agent, vulcanization accelerator, antioxidant, thickener, Organic or inorganic fillers, plasticizers and the like are added. The term natural rubber includes not only natural rubber alone but also natural rubber-methyl methacrylate copolymer and epoxidized modified natural rubber copolymer (latex). The term acrylic ester rubber is n-butyl acrylate, n-butyl methacrylate, iso-butyl acrylate, iso-butyl methacrylate, ethyl acrylate, ethyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, iso-propyl acrylate, iso A homopolymer such as -propyl methacrylate or a copolymer, including a copolymer containing acrylonitrile, methyl methacrylate, allyl methacrylate, N-methylolacrylamide, acrylic acid, methacrylic acid, and the like. The method for producing rubber gloves is as follows. A knitted glove made of aramid fiber is put on a hand mold, rubber latex is coated by a heat-sensitive agent method or a coagulant method, and solidified by heating at 120 to 130 ° C. for about 1 hour. Reaching of the glove may be performed before or after heating the glove. The heat-sensitive agent method is a processing method in which the rubber latex has a gel point at which it gels when it reaches a certain temperature, and the rubber and the base material adhere to each other while suppressing the penetration by adjusting the liquid temperature of the rubber latex and the mold temperature. The coagulant method is a processing method of coagulating a salt with a water or methanol solution of a divalent metal salt such as calcium nitrate, calcium chloride or zinc chloride. When the knitted glove made of aramid coated with the alkoxysilane condensate of the present invention is used, a glove having strong adhesion strength without rubber strikethrough can be obtained.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on examples. However, these examples do not limit the invention.
[0008]
Example 1
A knitted glove made of aramid spun yarn is immersed in an isopropyl alcohol solution of dibutyltin diacetate (solid content: 1%), and the drawing ratio is adjusted so that the attached solid content is 2% by weight based on the fiber weight. Dry at 10 ° C. for 10 minutes. After covering the surface-treated knitted gloves with a hand mold, the gloves are immersed in a coagulant solution, dried for 1 minute, and then immersed in a compound having the following composition (1), and then at 130 ° C. for 40 minutes. Was cured. A test piece was cut from the palm of the released glove, and a peel strength test was performed. The coagulant used was calcium nitrate (parts by weight) / zinc chloride (parts by weight) = 0.4 / 0.2, 0.6 / 0.3, 0.8 / 0. A trial production was performed with the ratio changed to 4, 1.0 / 0.5, and the adhesion strength was a relative comparison of the maximum adhesion strength in a state where the rubber latex did not penetrate. Table 1 shows the test results. A knitted glove mainly made of spun yarn made of aramid, which has been surface-treated in the same manner, is put on a hand mold, and then dipped in a compound having the following composition (2), which is kept at a constant liquid temperature of 23 ° C., and pulled up. Curing was performed at 40 ° C. for 40 minutes. Prototypes were manufactured by changing the hand mold temperature (° C.) to 65 ° C., 70 ° C., 80 ° C., and 90 ° C., and an adhesion strength test was performed. Table 2 shows the test results.
[0009]
Example 2
Gloves made of aramid spun yarn are immersed in an isopropyl alcohol solution of methyltrimethoxysilane (solid content 6%) and dibutyltin diacetate (solid content 0.4%), and the solid content adhered to the fiber weight is 2 weight. %, And dried at 150 ° C. for 10 minutes. The methyltrimethoxysilane used was (A) a monomer, (B) a pentamer, and (C) a 15-mer. The gloves were prototyped in the same manner as in Example 1, and the results of peel strength are shown in Tables 1 and 2.
[0010]
Example 3
A knitted glove made of aramid spun yarn is immersed in an isopropyl alcohol solution of diphenyldiethoxysilane (solid content: 6%), and the drawing ratio is adjusted so that the attached solid content is 2% by weight based on the fiber weight. Dry at 150 ° C. for 10 minutes. This diphenyldiethoxysilane used a monomer. The gloves were prototyped in the same manner as in Example 1, and the results of peel strength are shown in Tables 1 and 2.
[0011]
Example 4
Immerse knitted gloves made of aramid spun yarn in isopropyl alcohol solution of methyltrimethoxysilane (solid content 6%, about dimer) and phenyltriethoxysilane (solid content 6%, monomer) The squeezing rate was adjusted so that the attached solid content was 2% by weight with respect to the weight, and dried at 150 ° C. for 10 minutes. The ratios of methyltrimethoxysilane (wt%) and phenyltriethoxysilane (wt%) were 90/10, 50/50, 0/100, and dibutyltin diacetate (solid content of 0. 4%) was used. The gloves were prototyped in the same manner as in Example 1, and the results of peel strength are shown in Tables 1 and 2.
[0012]
Example 5
A knitted glove made of aramid spun yarn is immersed in an isopropyl alcohol solution of N-phenyl-γ-aminopropyltrimethoxysilane (solid content: 6%, monomer) to obtain a solid content of 2% based on the fiber weight. The squeezing rate was adjusted so as to be% by weight, and dried at 150 ° C. for 10 minutes. The gloves were prototyped in the same manner as in Example 1, and the results of peel strength are shown in Tables 1 and 2.
[0013]
Comparative Example 1
Gloves were prototyped in the same manner as in Example 1 using knitted gloves made of spun yarn made of aramid without surface treatment. The results of peel strength are shown in Tables 1 and 2.
[0014]
Comparative Example 2
Example 1 Using a knitted glove made of an aramid filament yarn without surface treatment and a knitted glove made of an aramid filament yarn treated with an isopropanol solution of dibutyltin diacetate (1% solids) of Example 1 A glove prototype was produced in the same manner as described above, and the results of the peel strength are shown in Tables 1 and 2.
[0015]
Comparative Example 3
A knitted glove made of aramid spun yarn is immersed in an isopropyl alcohol solution of methyltrimethoxysilane (solid content: 6%), and the drawing ratio is adjusted so that the attached solid content is 2% by weight based on the fiber weight. And dried at 150 ° C. for 10 minutes. The methyltrimethoxysilane used was (A) a monomer, (B) a pentamer, and (C) a 15-mer. The gloves were prototyped in the same manner as in Example 1, and the results of peel strength are shown in Tables 1 and 2.
[0016]
Comparative Example 4
Immerse knitted gloves made of aramid spun yarn in isopropyl alcohol solution of methyltrimethoxysilane (solid content 6%, about dimer) and phenyltriethoxysilane (solid content 6%, monomer) The squeezing rate was adjusted so as to be 2% by weight based on the weight, and dried at 150 ° C. for 10 minutes. The ratio of this methyltrimethoxysilane (% by weight) to phenyltriethoxysilane (% by weight) was 100/0 and 95/5. The gloves were prototyped in the same manner as in Example 1, and the results of peel strength are shown in Tables 1 and 2.
[0017]
-Adhesion strength test Two test pieces of 25 mm x 10 cm were cut from the palms of the prototype glove, and both ends having been peeled off by 20 mm were gripped by grips of a testing machine, and peeled off by 50 mm at a pulling speed of 50 mm / min. The peel strength is a median value measured according to JIS K6256. The unit was kgf.
[0018]
Evaluation of adhesion strength The peel strength was relatively compared at a level at which rubber latex did not penetrate into the back side of the knitted glove made of aramid fiber, and the larger the value, the stronger the adhesion strength.
[0019]
・ Formulation (1)
NBR latex (Lx550 manufactured by Zeon Corporation) 100 parts by weight G-15 (anionic emulsifier manufactured by Kao Corporation) 0.2 parts by weight Colloidal sulfur 1.5 parts by weight Zinc oxide 1.5 parts by weight Vulcanization accelerator (Dithiocarbamate type) 0.5 parts by weight Antioxidant (bisphenol type) 0.5 parts by weight Pigment suitable amount thickener (polyacrylate type) suitable amount / mixing (2)
NR latex 100 parts by weight G-15 (anionic emulsifier manufactured by Kao Corporation) 0.2 parts by weight Colloidal sulfur 1.0 part by weight Zinc oxide 0.8 parts by weight Vulcanization accelerator (dithiocarbamate type) 0.3 part by weight Part antiaging agent (bisphenol-based) 0.5 parts by weight pigment proper amount thickener (sodium alginate) proper amount [0020]
[Table 1]
Figure 2004300596
[0021]
[Table 2]
Figure 2004300596
[0022]
The maximum adhesion strength between the aramid fiber (spun yarn) knitted fabric of Comparative Example 1 and the NBR rubber by the coagulation method is 1.94 kgf. Here, the maximum adhesion strength is the highest value in a state where the NBR compound has not penetrated to the back side of the original hand. On the other hand, when treated with the isopropanol solution of the organometallic compound having a hydrolyzable substituent of Example 1, the weight becomes 2.81 kgf, and the adhesion strength is improved by about 45%. When treated with an alkoxysilane compound such as methyltriethoxysilane of Comparative Example 3, no improvement in adhesion strength is observed, but an organometallic compound having a hydrolyzable substituent as in Example 2 is added. This improves 39% to 47%. In addition, when the alkoxysilane compound contains 2% by weight to 72% by weight of a phenyl group, the content is improved by 51% to 65% as in Examples 3, 4, and 5. The effect is further increased to 71% by adding an organometallic compound. If the phenyl group content is less than 2% by weight, no effect is observed as in Comparative Example 4. From Comparative Example 2, the aramid filament yarn had no surface treatment effect.
[0023]
The maximum adhesion strength between the knitted glove made of the untreated aramid spun yarn of Comparative Example 1 and the NR rubber by the heat-sensitive processing method is 2.06 kgf. On the other hand, when treated with the isopropanol solution of the organometallic compound having a hydrolyzable substituent of Example 1, the weight becomes 3.40 kgf, and the adhesion strength is improved by about 65%. When treated with an alkoxysilane compound such as methyltriethoxysilane of Comparative Example 3, no improvement in adhesion strength is observed, but an organometallic compound having a hydrolyzable substituent as in Example 2 is added. This improves 38% to 48%. Further, when the alkoxysilane compound contains 2% by weight to 72% by weight of a phenyl group, the content is improved by 50% to 66% as in Examples 3, 4, and 5. The effect increases up to 74% if an organometallic compound is added. If the phenyl group content is less than 2% by weight, no effect is observed as in Comparative Example 4. From Comparative Example 2, the aramid filament yarn had no surface treatment effect.
[0024]
【The invention's effect】
As described above, according to the present invention, the addition of an organometallic compound or the use of an aramid spun yarn knitted glove whose surface is coated with a condensate formed of an alkoxysilane compound prevents the rubber latex from slipping through, and is flexible and flexible. In addition, it is possible to provide an aramid work glove having strong adhesion strength.

Claims (4)

加水分解可能な置換基を持つチタン、ジルコニウム、アルミニウム、スズからなる一種以上の有機金属化合物の縮合体よりなる被膜を表面に持つアラミド製スパン糸を主体とする編み手袋基材上にゴムラテックスを被覆させ、加熱によって一体成形してなることを特徴とするアラミド製作業用手袋。Rubber latex on a knitted glove base material mainly composed of spun yarn made of aramid with a coating consisting of a condensate of one or more organometallic compounds consisting of titanium, zirconium, aluminum and tin having hydrolyzable substituents An aramid working glove, which is coated and integrally formed by heating. 加水分解可能な置換基を持つチタン、ジルコニウム、アルミニウム、スズからなる一種以上の有機金属化合物によって硬化・固化したアルコキシシラン縮合体を表面被膜に持つアラミド製スパン糸を主体とする編み手袋基材上にゴムラテックスを被覆させ、加熱によって一体成形してなることを特徴とするアラミド製作業用手袋。On a knitted glove base material mainly composed of aramid spun yarn having an alkoxysilane condensate cured and solidified with one or more organometallic compounds consisting of titanium, zirconium, aluminum, and tin having a hydrolyzable substituent on its surface coating Aramid work gloves, characterized by being coated with rubber latex and integrally molded by heating. フェニル基を含有するアルコキシシラン縮合体を表面被膜に持つアラミド製スパン糸を主体とする編み手袋基材上にゴムラテックスを被覆させ、加熱によって一体成形してなることを特徴とするアラミド製作業用手袋。Aramid work, characterized in that a rubber latex is coated on a knitted glove base material mainly composed of aramid spun yarn having a phenyl group-containing alkoxysilane condensate on the surface coating and integrally molded by heating. gloves. 加水分解可能な置換基を持つチタン、ジルコニウム、アルミニウム、スズからなる一種以上の有機金属化合物によって硬化・固化したフェニル基を2重量%〜72重量%含有するアルコキシシラン縮合体を表面被膜に持つアラミド製スパン糸を主体とする編み手袋基材上にゴムラテックスを被覆させ、加熱によって一体成形してなることを特徴とするアラミド製作業用手袋。Aramid having, on its surface coating, an alkoxysilane condensate containing 2% to 72% by weight of a phenyl group cured and solidified by one or more organometallic compounds of titanium, zirconium, aluminum, and tin having a hydrolyzable substituent Aramid working gloves, characterized in that a rubber latex is coated on a knitted glove base mainly composed of spun yarn, and is integrally formed by heating.
JP2003092977A 2003-03-31 2003-03-31 Aramid work gloves Expired - Lifetime JP3789440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092977A JP3789440B2 (en) 2003-03-31 2003-03-31 Aramid work gloves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092977A JP3789440B2 (en) 2003-03-31 2003-03-31 Aramid work gloves

Publications (2)

Publication Number Publication Date
JP2004300596A true JP2004300596A (en) 2004-10-28
JP3789440B2 JP3789440B2 (en) 2006-06-21

Family

ID=33405877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092977A Expired - Lifetime JP3789440B2 (en) 2003-03-31 2003-03-31 Aramid work gloves

Country Status (1)

Country Link
JP (1) JP3789440B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100547231B1 (en) * 2004-01-27 2006-01-31 (주)신성메이저글러브 Manufacturing method of rubber coated gloves
WO2019022092A1 (en) * 2017-07-27 2019-01-31 日本ゼオン株式会社 Laminate production method
WO2019022091A1 (en) * 2017-07-27 2019-01-31 日本ゼオン株式会社 Laminate production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100547231B1 (en) * 2004-01-27 2006-01-31 (주)신성메이저글러브 Manufacturing method of rubber coated gloves
WO2019022092A1 (en) * 2017-07-27 2019-01-31 日本ゼオン株式会社 Laminate production method
WO2019022091A1 (en) * 2017-07-27 2019-01-31 日本ゼオン株式会社 Laminate production method
JPWO2019022092A1 (en) * 2017-07-27 2020-08-06 日本ゼオン株式会社 Method for manufacturing laminated body
JP7163919B2 (en) 2017-07-27 2022-11-01 日本ゼオン株式会社 Laminate manufacturing method

Also Published As

Publication number Publication date
JP3789440B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
US9579426B2 (en) Coated elastomeric article
AU2013280209B2 (en) Abrasion and cut resistant coating and coated glove
EP3071641B1 (en) Polymer blends of nitrile butadiene rubber and polychloroprene
CN109320807B (en) Graphene-latex protective gloves and preparation method thereof
JP3517246B2 (en) Formulation of soft nitrile rubber
US3856561A (en) Rubber articles having improved slip coating
US7032251B2 (en) Crosslinking agent for coated elastomeric articles
JPH04502291A (en) Products with improved slip coating
EP2010602A1 (en) Exterior-coated nitrile rubber article having natural rubber characteristics
JP2005519144A (en) Polyisoprene condom
EP1541630A1 (en) Crosslinking Polymer Composition
AU2014354564A1 (en) Glove having foam lining for sweat management
AU2769100A (en) Acrylic resin glove and internal surface treating agent thereof
JP2004300596A (en) Aramid-made work glove
JP2020037635A (en) Glove dip composition, method for manufacturing glove, and glove
JP2005528534A (en) Gloves with improved wearing characteristics
JP2002020913A (en) Glove and method for producing the same
JP3782268B2 (en) Manufacturing method of work gloves
JP2001192915A (en) Anti-slipping-processed glove
WO2012085587A1 (en) Elastomeric films
JP4350831B2 (en) gloves
AU2013204280B2 (en) Glove coating and manufacturing process
JP2004190164A (en) Glove
JP2001192916A (en) Anti-slipping-processed glove
JP2000290434A (en) Surface treatment agent for rubber product, and gloves of rubber treated with the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250