WO2019022092A1 - Laminate production method - Google Patents

Laminate production method Download PDF

Info

Publication number
WO2019022092A1
WO2019022092A1 PCT/JP2018/027768 JP2018027768W WO2019022092A1 WO 2019022092 A1 WO2019022092 A1 WO 2019022092A1 JP 2018027768 W JP2018027768 W JP 2018027768W WO 2019022092 A1 WO2019022092 A1 WO 2019022092A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber layer
polymer latex
laminate
base material
polymer
Prior art date
Application number
PCT/JP2018/027768
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 早坂
赤羽 徹也
邦彦 牧野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019532650A priority Critical patent/JP7163919B2/en
Publication of WO2019022092A1 publication Critical patent/WO2019022092A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to a laminate comprising a substrate and a rubber layer formed from a polymer latex.
  • the present invention also relates to a method for producing a protective glove using the above laminate.
  • the fiber gloves are coated with rubber, resin or the like to improve the solvent resistance, grip property, abrasion resistance etc.
  • Protective gloves are used.
  • Patent Document 1 discloses a protective glove formed by impregnating a fibrous glove with a coagulant solution and then bringing a latex composition containing nitrile rubber into contact to form a rubber layer.
  • the protective glove obtained by the technique of Patent Document 1 when the rubber layer is formed so as to penetrate from the front surface to the back surface of the fiber glove, when the protective glove is actually worn in the hand, the rubber penetrated to the back surface When the layers come into contact with the hand, the hand feels unpleasant to the hand, and there is a problem that the comfort upon wearing is inferior.
  • the present invention has been made in view of such a situation, and provides a method of manufacturing a laminate excellent in flexibility and wear resistance, moreover, hardly feeling fatigue at the time of wearing, and excellent in comfort at the time of wearing.
  • the purpose is to Another object of the present invention is to provide a method of producing a protective glove using the laminate obtained by such a production method.
  • the inventors of the present invention conducted intensive studies to achieve the above object, and as a result, a polymer latex was obtained by bringing the substrate supported on the immersion mold into contact with the polymer latex in a heated state. It is found that the above object can be achieved by forming a rubber layer penetrating from one surface of the substrate to the other surface by infiltrating the polymer constituting the into the substrate and coagulating the infiltrated polymer.
  • the present invention has been completed.
  • a method of manufacturing a laminate comprising a base material and a rubber layer formed to penetrate from one surface of the base material to the other surface, which is formed on an immersion mold.
  • the polymer constituting the polymer latex is allowed to permeate the base material, and the permeated polymer is solidified.
  • a method of manufacturing a laminate comprising the step of solidifying the rubber layer.
  • the polymer latex in the coagulation step, is preferably brought into contact in a state where the base material supported on the immersion mold is heated to 30 ° C. or higher. In the method for producing a laminate of the present invention, it is more preferable that the polymer latex is brought into contact in a state where the substrate supported on the immersion mold is heated to 45 ° C. or more in the coagulation step.
  • the polymer constituting the polymer latex is preferably a nitrile rubber.
  • the polymer latex preferably contains a nonionic surfactant.
  • the manufacturing method of a protective glove using the laminated body obtained by said manufacturing method is provided.
  • the present invention it is possible to provide a method for producing a laminate which is excellent in flexibility and wear resistance, is not easily felt when worn, and is also excellent in wearing comfort. Furthermore, according to the present invention, it is possible to provide a method for producing a protective glove using the laminate obtained by such a production method.
  • FIG. 1 (A) is a cross-sectional view of the fiber base before forming the rubber layer
  • FIG. 1 (B) is a protective glove formed by laminating the rubber layer on the fiber base shown in FIG. 1 (A).
  • the method for producing a laminate of the present invention is a method for producing a laminate comprising a substrate and a rubber layer formed to penetrate from one surface of the substrate to the other surface, The polymer which has penetrated the polymer which constitutes the polymer latex into the substrate by making the polymer latex come into contact by bringing the substrate supported on the immersion mold into contact with the polymer latex in a heated state, the polymer And coagulating the rubber layer to form a rubber layer.
  • the laminate of the present invention comprises a substrate and a rubber layer.
  • the laminate of the present invention can be used for applications requiring flexibility, and is not particularly limited.
  • a laminate comprising a fiber substrate and a rubber layer
  • using a fiber substrate as the substrate It is preferable to use it, and it is particularly preferable to use as working gloves, especially protective gloves for household use, agriculture use, fishery use and industrial use, etc. in contact with human bodies.
  • a protective glove having a fiber base and a rubber layer will be illustrated and described as an embodiment of the laminate of the present invention.
  • 1 (A) is a cross-sectional view of the fiber base before forming the rubber layer
  • FIG. 1 (B) is a polymer latex relative to the fiber base shown in FIG. 1 (A).
  • the fiber base material may be made of fiber, and is not particularly limited, but natural fibers such as cotton, hair, hemp and wool, synthetic fibers such as polyester, polyurethane, acrylic and nylon may be used as the material Among these, it is preferable to use nylon.
  • the fiber base material may be knitted or sewn, and may be woven or non-woven.
  • the thickness of the fiber substrate (average thickness d of the substrate layer of the fiber substrate described later) is not particularly limited, but preferably 0.05 to 3.00 mm, more preferably 0.10 to 2.00 mm, and still more preferably It is 0.15 to 1.5 mm.
  • the linear density of the fiber substrate is not particularly limited, but preferably 50 to 500 denier.
  • the gauge number of the fiber substrate is not particularly limited, but is preferably 7 to 18 gauge. Here, the number of gauges refers to the number of needles of the knitting machine between 1 inch.
  • the fibrous base material is supported on the immersion mold having a shape corresponding to the fibrous base material, and the fibrous base material is brought into contact with the polymer latex while being heated.
  • a method in which a polymer constituting the polymer latex is infiltrated into a fiber substrate, and the infiltrated polymer is coagulated by heat of the fiber substrate, that is, a rubber layer is formed by a thermal coagulation method (thermal immersion method)
  • a laminate including a fiber base and a rubber layer formed penetrating from one side to the other side of the fiber base is manufactured.
  • a glove-shaped fiber base is covered on a glove type as an immersion mold, and a glove-shaped fiber base is heated.
  • the polymer which has been infiltrated by the heat of the fiber substrate while the polymer constituting the polymer latex is infiltrated into the glove-shaped fiber substrate by the thermal coagulation method, that is, by immersing the polymer latex in the polymer latex By the method of coagulating, a rubber layer composed of the polymer constituting the polymer latex is formed.
  • a polymer latex is formed into a glove shape by immersing the fiber substrate covered in the glove shape in the polymer latex in a heated state.
  • the surface of the coated fiber substrate (the surface on the outer surface of the protective glove) is allowed to penetrate between the fibers constituting the fiber substrate, and the polymer latex is gelled by contact with the heated fiber substrate. Solidification proceeds to form a rubber layer penetrating from one side of the fiber substrate to the other side.
  • the fiber base material not only the fiber base material but also the glove type may be heated, and in particular, the polymer latex which penetrates the fiber base and reaches the glove type is better along the surface of the glove type From the viewpoint that the rubber layer formed by penetrating from one surface to the other surface of the fiber substrate can be more appropriately formed, with the fiber substrate covered in a glove shape, It is preferred to heat the fiber substrate together with the glove mold and use it.
  • thermosensitive coagulation method by immersing the heated fiber substrate in the polymer latex, the polymer latex is sufficiently permeated into the fiber substrate while the heat of the fiber substrate is heated.
  • the polymer latex which has sufficiently permeated to the inside of the fiber substrate can be appropriately gelled and coagulated by the action of And thereby, the rubber layer which penetrated from the surface of a fiber base material to the back (surface which becomes the inner surface of protective gloves) of the fiber base put on a glove type can be formed appropriately.
  • the above thermal coagulation method it is possible to continuously form a rubber layer penetrating from the surface of the fiber substrate to the back surface of the fiber substrate over substantially the whole of the fiber substrate, thereby providing flexibility It can be excellent. Moreover, according to the above thermal coagulation method, the rubber layer can be made less uneven on the surface of the fiber substrate, and the surface state can be made smooth, whereby the abrasion resistance is excellent.
  • the protective gloves obtained can be actually worn and used In this case, even if the rubber layer comes in contact with the hand, it is possible to reduce the unpleasant feel on the hand (the unpleasant feel due to the minute stick), thereby making it difficult to feel fatigue at the time of wearing The comfort of the can be excellent.
  • FIG. 1 (B) is a protective glove (laminated body) in which a rubber layer formed by coagulating while penetrating the polymer latex is provided to the fiber base shown in FIG. 1 (A).
  • a surface rubber layer for covering the fiber substrate is formed on the surface of the fiber substrate, and the surface rubber layer penetrates into the gaps of the fibers of the fiber substrate continuously.
  • the surface rubber layer and the permeation rubber layer are integrally formed to form a rubber layer.
  • the rubber layer formed by coagulating the polymer latex may have a multilayer laminated structure by carrying out the coagulation by the above-mentioned thermal coagulation method a plurality of times.
  • the rubber layer to be formed may be formed so as to penetrate substantially from the entire surface of the fiber substrate to the back surface of the fiber substrate, but in part, such penetrating It does not have to be in the state.
  • the rubber layer partially penetrates the fiber base and solidifies in a non-uniform shape in the part in contact with the immersion mold, and aggregates are formed around the penetrated part to form a lump
  • the surface of the rubber layer has large irregularities on the inner surface of the protective glove (surface that comes in contact with the immersion mold during the production of the laminate). If the rubber layer becomes hard, it becomes inferior in durability and flexibility, and furthermore, when the rubber layer comes in contact with the hand at the time of wearing, the hand feels unpleasant to the hand. , The wearer feels tired It becomes so, there has been a problem that it is inferior in comfort at the time of mounting.
  • thermosensitive coagulation method as a method of producing a laminate having a rubber layer penetrating the fiber substrate, the fiber substrate is substantially covered throughout
  • the rubber layer penetrating from the surface to the back surface of the fiber substrate can be continuously formed, and furthermore, on the surface of the fiber substrate, the occurrence of unevenness and aggregation caused by the rubber layer can be effectively suppressed, and the surface state Can be made smooth, so that the laminate obtained is excellent in flexibility and, in addition, when it is actually worn and used as a protective glove etc., the unpleasant feel to the hand is reduced. It can be difficult to feel fatigue at the time of wearing, and can be excellent in comfort at the time of wearing.
  • the thickness t 1 of the permeation rubber layer of the laminate obtained by the production method of the present invention, from the viewpoint of durability is further improved when using the laminate as a protective glove or the like, preferably 0.05 to 1 More preferably, it is 0.10 to 0.8 mm, and more preferably, 0.15 to 0.70 mm.
  • the thickness t 1 of the permeation rubber layer is a thickness equivalent to the thickness of the fiber base material, a portion of the rubber layer fibers When the base material is not penetrated (when a part of the rubber layer does not reach from the one surface of the fiber base material to the other surface), the thickness t 1 of the permeation rubber layer May be thinner than the thickness of the fiber substrate.
  • the thickness t 2 of the surface rubber layer is further improved when using the laminate as a protective gloves and the like, preferably 0.01 ⁇ 3.00 mm, more preferably 0.02-2 And more preferably 0.03 to 2.0 mm.
  • the ratio of the thickness t 1 of the permeation rubber layer to the thickness t 2 of the surface rubber layer (t 1 / t 2), the durability at the time of using the laminate as a protective gloves, comfort of flexibility and mounting From the viewpoint of achieving a high degree of balance, preferably from 0.5 to 0.2, preferably from 0.25 to 4.80, more preferably from 0.30 to 4.60.
  • the thickness t of the surface rubber layer relative to the average thickness d of the base layer of the fiber base from the viewpoint of highly balancing the durability, flexibility and comfort upon wearing when the laminate is used as a protective glove etc.
  • the ratio of 2 (t 2 / d) is preferably 0.10 to 0.95, more preferably 0.1 to 0.90, and still more preferably 0.15 to 0.8.
  • the total thickness of the laminate (the thickness t 2 of the surface rubber layer, the sum of the base layer the average thickness d of the fiber substrate) is preferably from 0.75 to 3.70 mm, more preferably 0.75 to It is 3.5 mm.
  • the fiber base material may differ in thickness between the portion where the degree of fiber overlap is dense and the portion where the degree of fiber overlap is sparse in the microstructure.
  • the base material layer average thickness d of the base material is determined as the average value of the thickness of the portion of the fiber base material where the overlapping degree of the fibers is dense.
  • the polymer constituting the polymer latex used in the present invention is not particularly limited, but examples thereof include natural rubber; conjugated diene rubbers obtained by polymerizing or copolymerizing conjugated dienes such as butadiene and isoprene; Among these, conjugated diene rubbers are preferable.
  • conjugated diene rubbers include so-called nitrile rubbers obtained by copolymerizing nitriles, isoprene rubbers, styrene-butadiene rubbers, chloroprene rubbers and the like. Among these, nitrile rubbers are particularly preferable.
  • the nitrile rubber is not particularly limited, but one obtained by copolymerizing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer and another copolymerizable monomer optionally used can be used.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited, but an ethylenically unsaturated compound having a nitrile group and having a carbon number of preferably 3 to 18 can be used.
  • examples of such ⁇ , ⁇ -ethylenically unsaturated nitrile monomers include acrylonitrile, methacrylonitrile, halogen-substituted acrylonitrile and the like, and among these, acrylonitrile is particularly preferable.
  • These ⁇ , ⁇ -ethylenically unsaturated nitrile monomers may be used alone or in combination of two or more.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the nitrile rubber is preferably 10 to 45% by weight, more preferably 20 to 40% by weight, based on all the monomer units. Preferably, it is 30 to 40% by weight.
  • the rubber layer is formed by a thermal coagulation method using a polymer latex containing such nitrile rubber by setting the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit to the above range. Then, the nitrile rubber is gelled and solidified better, and the rubber layer is formed better, whereby the laminate in which the rubber layer penetrates the fiber base is attached to the hand as a protective glove or the like. In use, the unpleasant feel on the hand can be further reduced, and the comfort upon wearing can be further improved.
  • the nitrile rubber is preferably one containing a conjugated diene monomer unit from the viewpoint of imparting rubber elasticity.
  • Conjugated diene monomers that form conjugated diene monomer units include, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene, etc.
  • Conjugated diene monomers of 6 are preferred, 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred.
  • These conjugated diene monomers may be used alone or in combination of two or more.
  • the content ratio of conjugated diene monomer units is preferably 40 to 80% by weight, more preferably 52 to 78% by weight, based on all the monomer units constituting the nitrile rubber.
  • the nitrile rubber is a monomer that forms an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, and another ethylenic unsaturated copolymerizable with a monomer that forms a conjugated diene monomer unit It may contain an acid monomer.
  • Such copolymerizable other ethylenically unsaturated acid monomers are not particularly limited, and, for example, carboxyl group-containing ethylenically unsaturated monomers, sulfonic acid groups-containing ethylenically unsaturated monomers, A phosphoric acid group-containing ethylenic unsaturated monomer etc. are mentioned.
  • the carboxyl group-containing ethylenic unsaturated monomer is not particularly limited.
  • Ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid; fumaric acid, maleic acid, itaconic acid, maleic anhydride, anhydride
  • Ethylenically unsaturated polyvalent carboxylic acids such as itaconic acid and anhydrides thereof; Partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as methyl maleate and methyl itaconate;
  • the sulfonic acid group-containing ethylenic unsaturated monomer is not particularly limited, but vinylsulfonic acid, methylvinylsulfonic acid, styrenesulfonic acid, (meth) allylsulfonic acid, ethyl (meth) acrylic acid-2-sulfonate And 2-acrylamido-2-hydroxypropane sulfonic acid.
  • the phosphoric acid group-containing ethylenic unsaturated monomer is not particularly limited, and is, for example, propyl (meth) acrylate 3-chloro-2-phosphate, ethyl (meth) acrylate 2-phosphate, 3-allyloxy -2-hydroxypropane phosphoric acid and the like.
  • These other copolymerizable ethylenically unsaturated acid monomers can also be used as an alkali metal salt or ammonium salt, and may be used alone or in combination of two or more. .
  • a carboxyl group-containing ethylenically unsaturated monomer is preferable, an ethylenically unsaturated monocarboxylic acid is more preferable, and methacrylic acid is particularly preferable.
  • the polymer latex can be obtained, for example, by emulsion polymerization of a monomer mixture containing the above-mentioned monomers.
  • emulsion polymerization commonly used secondary polymerization materials such as an emulsifier, a polymerization initiator, a molecular weight modifier and the like can be used.
  • the emulsifier used for the emulsion polymerization is not particularly limited, and examples thereof include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • a nonionic surfactant is preferable from the viewpoint of advancing.
  • an anionic surfactant is suitable as an emulsifier used for emulsion polymerization from the viewpoint of efficiently advancing salt coagulation.
  • a nonionic surfactant is preferable and a water-soluble nonionic polymer having a cloud point of normal temperature or more and 100 ° C.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester and the like.
  • the amount of the emulsifier used for the emulsion polymerization is preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight with respect to 100 parts by weight of all the monomers used.
  • the polymerization initiator is not particularly limited, but a radical initiator is preferable.
  • the radical initiator is not particularly limited.
  • inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide and the like; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanoyl Peroxides, organic peroxides such as t-butylperoxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile and
  • inorganic peroxides or organic peroxides are preferred, inorganic peroxides are more preferable, persulfate are particularly preferred.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight, based on 100 parts by weight of all the monomers used.
  • the molecular weight modifier is not particularly limited, and examples thereof include: ⁇ -methylstyrene dimer; mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan and octyl mercaptan; halogenation such as carbon tetrachloride, methylene chloride and methylene bromide Hydrocarbons; sulfur-containing compounds such as tetraethylthiuram disulphide, dipentamethylenethiuram disulphide, diisopropyl xanthene disulphide, etc .; among these, mercaptans are preferred, and t-dodecyl mercaptan is more preferred.
  • molecular weight modifiers may be used alone or in combination of two or more.
  • the amount of the molecular weight modifier used varies depending on the type, but it is preferably 0.1 to 1.5 parts by weight, more preferably 0.2 to 1.0 parts by weight, based on 100 parts by weight of all the monomers used. It is a department.
  • Emulsion polymerization is usually carried out in water.
  • the amount of water used is preferably 80 to 500 parts by weight, more preferably 100 to 200 parts by weight, based on 100 parts by weight of all the monomers used.
  • polymerization auxiliary materials may be further used.
  • a polymerization auxiliary material a chelating agent, a dispersing agent, a pH regulator, an oxygen scavenger, a particle size regulator and the like can be mentioned, and the type and the amount thereof are not particularly limited.
  • a method of adding monomers for example, a method of adding monomers to be used in a reaction vessel at once, a method of adding continuously or intermittently as polymerization progresses, a part of monomers is added The reaction may be carried out to a specific conversion rate, and then the remaining monomers may be continuously or intermittently added and polymerized, and any method may be employed.
  • the composition of the mixture may be constant or may be changed.
  • each monomer may be added to the reaction container after previously mixing various monomers to be used, or may be separately added to the reaction container.
  • the polymerization temperature in the emulsion polymerization is not particularly limited, but it is usually 0 to 95 ° C., preferably 5 to 70 ° C.
  • the polymerization time is not particularly limited, but is usually about 5 to 40 hours.
  • the monomers are emulsion-polymerized, and when reaching a predetermined polymerization conversion rate, the polymerization reaction is stopped by cooling the polymerization system or adding a polymerization terminator.
  • the polymerization conversion rate at the time of stopping the polymerization reaction is usually 80% by weight or more, preferably 90% by weight or more.
  • the polymerization terminator is not particularly limited as long as it is generally used in emulsion polymerization, and specific examples thereof include hydroxylamine, hydroxylamine sulfate, diethylhydroxyamine, hydroxylamine sulfonic acid and alkali metal thereof Hydroxyamine compounds such as salts; sodium dimethyldithiocarbamate; hydroquinone derivatives; catechol derivatives; aromatic hydroxydithiocarboxylic acids such as hydroxydimethylbenzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, hydroxydibutylbenzenedithiocarboxylic acid and alkali metal salts thereof And aromatic hydroxydithiocarboxylic acid compounds such as
  • the use amount of the polymerization terminator is not particularly limited, but is usually 0.05 to 2 parts by weight with respect to 100 parts by weight of all the monomers used.
  • unreacted monomers may be removed to adjust the solid concentration and pH.
  • the weight average particle size of the particles of the polymer constituting the polymer latex is usually 30 to 1000 nm, preferably 50 to 500 nm, more preferably 70 to 200 nm.
  • the viscosity of the polymer latex becomes appropriate and the handleability of the polymer latex is further improved, and the moldability at the time of molding the rubber layer Is improved to obtain a laminate having a more homogeneous rubber layer.
  • the solid concentration of the polymer latex is usually 20 to 65% by weight, preferably 30 to 60% by weight, more preferably 35 to 55% by weight.
  • the pH of the polymer latex is usually 5 to 13, preferably 7 to 10, and more preferably 7.5 to 9.
  • the pH of the polymer latex is usually 5 to 13, preferably 7 to 10, and more preferably 7.5 to 9.
  • the polymer latex it is preferable to use one in which compounding agents such as a crosslinking agent and a heat sensitive coagulant are blended. That is, it is preferable to use as a composition of latex.
  • the viscosity in the state of containing the compounding agent such as the crosslinking agent and the heat sensitive coagulant, and the compounding agent such as the emulsifying agent and the thickener described later It is preferable to adjust so as to be in an appropriate range.
  • a sulfur-based crosslinking agent it is preferable to use a sulfur-based crosslinking agent.
  • the sulfur-based crosslinking agent is not particularly limited, and powder sulfur, sulfur oxide, precipitated sulfur, colloidal sulfur, surface-treated sulfur, sulfur such as insoluble sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothia Sulfur-containing compounds such as zyl disulfide, caprolactam disulfide, phosphorus-containing polysulfides, high molecular weight polysulfides; sulfur-donating compounds such as tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, 2- (4'-morpholinodithio) benzothiazole, etc. Can be mentioned.
  • These crosslinking agents may be used alone or in combination of two or more.
  • crosslinking accelerator vulcanization accelerator
  • zinc oxide zinc oxide
  • the crosslinking accelerator (vulcanization accelerator) is not particularly limited, and examples thereof include dithiocarbamates such as diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyl dithiocarbamic acid, dicyclohexyl dithiocarbamic acid, diphenyl dithiocarbamic acid, and dibenzyl dithiocarbamic acid.
  • the heat-sensitive coagulant may be any compound as long as it exhibits the function of coagulating the polymer latex by heating, and is not particularly limited.
  • the blending amount of the heat sensitive coagulant in the case of blending the heat sensitive coagulant to the polymer latex is preferably 0.1 to 10 parts by weight, more preferably 0 based on 100 parts by weight of the polymer contained in the polymer latex. 1 to 8 parts by weight, more preferably 0.1 to 5 parts by weight.
  • the heat-sensitive coagulant has the function of coagulating the polymer latex by heating and also has the function of a thickener for thickening the polymer latex.
  • the compounding amount of the heat sensitive coagulant may be in the above range. preferable.
  • the viscosity at 25 ° C. of the polymer latex is preferably 500 to 20,000 mPa ⁇ s, more preferably 1,000 to 10,000 mPa ⁇ s.
  • the viscosity at 25 ° C. of the polymer latex can be measured, for example, using a B-type viscometer under the conditions of 25 ° C. and 6 rpm.
  • an emulsifier may be further added to the polymer latex from the viewpoint of further enhancing the stability of the polymer latex.
  • the emulsifier as in the case of the emulsion polymerization, nonionic surfactants are preferable, water-soluble nonionic polymers having a cloud point of 30 ° C. or more and 100 ° C. or less are preferable, and the cloud points are 45 ° C. or more and 90 ° C. The following water-soluble nonionic polymers are more preferable.
  • the content ratio of the emulsifier compounded in the polymer latex is preferably 20 to 0.01 weight. %, More preferably 15 to 0.02% by weight, still more preferably 10 to 0.05% by weight.
  • the rubber layer is formed by the thermal coagulation method using the composition of the obtained latex by setting the content ratio of the emulsifier to the above range, the rubber layer is formed better, whereby the rubber layer is a fiber group.
  • a thickener other than the thermosensitive coagulant may be appropriately blended in the polymer latex.
  • thickeners include, but are not limited to, vinyl compounds such as polyvinyl alcohol and polyvinyl pyrrolidone; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose salts; polycarboxylic acid compounds and sodium thereof Salts; polyoxyethylene derivatives such as polyethylene glycol ether; and the like.
  • the fiber substrate supported on the immersion mold is contacted with the polymer latex in a heated state to constitute the fiber substrate.
  • the polymer latex By causing the polymer latex to sufficiently penetrate between the fibers and causing the polymer latex to come into contact with the heated fiber base and the immersion mold, gelation and solidification are carried out, and if necessary, the fiber base is It is possible to form a rubber layer penetrating from one side of the material to the other side, thereby using a method of obtaining a laminate comprising a fiber base and a rubber layer.
  • the rubber layer may have a multilayer structure laminated a plurality of times.
  • the method for bringing the fiber substrate into contact with the polymer latex is not particularly limited, but, for example, the fiber substrate is supported in advance by mounting the fiber substrate on a dipping mold of a desired shape, the polymer A method of immersing in latex may, for example, be mentioned.
  • the crosslinking agent as a polymer latex
  • the immersion mold for supporting the fiber substrate is not particularly limited, but various materials such as porcelain, glass, metal and plastic can be used.
  • the shape of the immersion mold may be a desired shape in accordance with the shape of the final product.
  • an immersion mold for covering various types of gloves such as an immersion mold having a shape from the wrist to the fingertip, is used as an immersion mold for covering the fiber substrate. It is preferred to use.
  • the immersion die and the fiber substrate are previously heated (also referred to as preheating), and the fiber substrate supported on the immersion die is heated. , In contact with the polymer latex.
  • the temperature (also referred to as the preheating temperature) of the fiber substrate supported on the immersion mold at the time of contacting with the polymer latex is preferably 30 to 100 ° C., more preferably 40 to 95 ° C., still more preferably 45 to 45 ° C. 90 ° C., particularly preferably 50 to 90 ° C.
  • the temperature of the fiber base material supported on the immersion mold just before contacting with the polymer latex is made the following preferable range be able to.
  • the temperature of the fiber substrate supported on the immersion mold immediately before contacting with the polymer latex is preferably 25 to 100 ° C., more preferably 35 to 95 ° C., still more preferably 40 to 90 ° C., particularly preferably 45 It is ⁇ 90 ° C.
  • the rubber layer is formed more uniformly when the rubber layer is formed by the thermal coagulation method using the polymer latex
  • the uncomfortable feel to the hand can be reduced, and the comfort when attached is more enhanced. improves.
  • the drying temperature in this case is not particularly limited, it is preferably 10 to 80 ° C., more preferably 15 to 80 ° C.
  • the drying time is not particularly limited, but preferably 5 seconds to 120 minutes, more preferably 10 seconds to 60 minutes.
  • the fiber substrate may be dipped in the polymer latex and dried, and then the fiber substrate may be dipped in the polymer latex to form a multilayer structure in which the fiber substrate is laminated a plurality of times.
  • crosslinking agent when a crosslinking agent is mix
  • a laminated body can be obtained by desorbing the fiber base material in which the rubber layer was formed from the immersion type
  • the desorption method it is possible to employ a method of peeling off from the immersion mold by hand, or peeling by means of water pressure or pressure of compressed air.
  • a laminate having a fiber base and a rubber layer can be obtained as an example of a laminate having a rubber layer.
  • Thickness t 1 of the penetration rubber layer and thickness t 2 of the surface rubber layer The protective glove (laminate) is penetrated by observing the cross section of the rubber layer of the palm portion of 12 cm from the tip of the middle finger by using an optical microscope (product name “VHX-200”, manufactured by Keyence Corporation) The thickness t 1 of the rubber layer and the thickness t 2 of the surface rubber layer were measured. Referring to FIG. 1 for specific measuring method, the thickness t 1 of the permeation rubber layer from the surface of the fiber substrate, the distance to the deepest penetration rubber, measured 10 locations, the measurement results It calculated
  • the dip molding latex composition attached to the fiber base material is dropped from the fiber base material until it solidifies. The presence of dripping was evaluated by visually checking the scale.
  • the time from when it is pulled up to when the dip molding latex composition attached to the fiber base material starts to sag the dip molding latex composition is deformed by gravity
  • the protective gloves laminate
  • Wearability Evaluation of wearability was performed by actually wearing protective gloves (laminated body) and performing simple operations such as cleaning and transportation, and then surveying the feeling of fatigue felt by the hands. We carried out for 10 people and counted the number of people who felt fatigue at the time of wearing, and evaluated it by the following criteria as fatigue degree at the time of wearing. Good: The number of people who felt fatigue is less than 3 people Allowed: The number of people who felt fatigue is 3 or more and less than 6 people Poor: The number of people who felt fatigue is 6 or more
  • Wearing Comfort Wearing comfort is evaluated by actually wearing the protective gloves manufactured in the examples and comparative examples and performing simple operations such as cleaning and transportation, and then questioning the unpleasant feel felt by the hands. It went by. The survey was conducted for 10 people, and the number of people who felt an unpleasant feel due to a small stick was counted. The results are shown in Table 1.
  • the abrasion test was evaluated according to the method described in EN 388, using a Martindale-type abrasion tester (product name “STM633, manufactured by SATRA”). Specifically, with respect to a protective glove (laminate), friction was repeated while applying a predetermined load, and the number of times of friction until breakage was obtained. It is divided into levels from level 0 to level 4 according to the number of times of friction leading to breakage, and the higher the level, the better the abrasion resistance.
  • LEVEL 4 Number of rotations 8,000 or more
  • LEVEL 3 Number of rotations 2,000 or more, less than 8,000 rotations
  • LEVEL 2 Number of rotations 500 or more, less than 2,000 rotations
  • LEVEL 1 Number of rotations 100 or more, 500 Less than rotation
  • LEVEL 0 less than 100 rotations
  • Example 1 Preparation of Latex Composition for Dip Molding
  • aqueous dispersion of each compounding agent When the aqueous dispersion of each compounding agent was added, a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while stirring the latex. Thereafter, the solid content concentration of the latex composition is adjusted to 45% by weight, and then aging (also called pre-vulcanization) is performed under conditions of a temperature of 30 ° C. for 48 hours to use a B-type viscometer. A dip molding latex composition having a viscosity of 1,800 mPa ⁇ s measured at 25 ° C. and 6 rpm is obtained.
  • a glove-shaped fiber base (material: nylon, base layer average thickness of fiber base d) coated on a metal glove type using the obtained latex composition for dip molding
  • a rubber layer was formed by a thermal coagulation method at 0.70 mm, 13 gauge). Specifically, the fiber base covered with the metal glove mold is preheated to 76 ° C., immersed in the above dip molding latex composition for 2 seconds, and pulled up from the dip molding latex composition, as described above. Evaluation of dripping was performed according to the method described above. The temperature of the fiber base immediately before dipping was 75.degree. Then, the rubber composition was formed by drying the dip molding latex composition attached to the fiber substrate under conditions of a temperature of 80 ° C. for 30 minutes.
  • Example 2 The heating temperature (preheating temperature) of the fiber base covered with the metal glove mold was changed from 76 ° C. to 71 ° C. when the metal glove mold covered with the fiber base was immersed in the dip molding latex composition.
  • a protective glove (laminate) was obtained and evaluated in the same manner as in Example 1 except for the above.
  • the temperature of the fiber base immediately before dipping was 70.degree. The results are shown in Table 1.
  • Example 3 The heating temperature (preheating temperature) of the fiber base covered with the metal glove mold was changed from 76 ° C. to 56 ° C. when the metal glove mold covered with the fiber base was immersed in the dip molding latex composition.
  • a protective glove (laminate) was obtained and evaluated in the same manner as in Example 1 except for the above.
  • the temperature of the fiber base immediately before dipping was 55.degree. The results are shown in Table 1.
  • Comparative Example 1 A latex of nitrile rubber (a) (trade name “Nipol LX511A", manufactured by Nippon Zeon Co., Ltd.) having a content ratio of acrylonitrile units of 35% by weight is prepared as a polymer latex, and 100 parts of nitrile rubber (a) in the latex To 0.01 parts of a defoaming agent (trade name “SM5512” manufactured by Toray Dow Corning Co., Ltd.), 1.00 parts of colloidal sulfur (manufactured by Hosoi Chemical Industry Co., Ltd.), and zinc dibutyldithiocarbamate.
  • a defoaming agent trade name “SM5512” manufactured by Toray Dow Corning Co., Ltd.
  • colloidal sulfur manufactured by Hosoi Chemical Industry Co., Ltd.
  • zinc dibutyldithiocarbamate zinc dibutyldithiocarbamate
  • An aqueous dispersion of each compounding agent was prepared to have 0.50 parts (manufactured by Ouchi Emerging Chemical Industry Co., Ltd.), 1.50 parts of zinc oxide and 3.00 parts of titanium oxide, and the prepared aqueous dispersion was added To obtain a latex composition.
  • a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while stirring the latex. Then, aging (also referred to as pre-vulcanization) was performed under conditions of a temperature of 30 ° C. and 48 hours.
  • sodium polyacrylate (trade name “ARON A-7100”, manufactured by Toagosei Co., Ltd.) as a thickener is further added at a ratio of 0.4% by weight.
  • a rubber layer was formed on the glove-shaped fiber base material (material: nylon, base layer average thickness d of fiber base material: 0.70 mm, 13 gauge) by the adhesion immersion method. Specifically, after heating a glove-shaped fiber substrate covered with a metal glove type to 42 ° C., a calcium nitrate methanol solution (calcium nitrate concentration: 2.0% by weight) as a coagulant solution is used. It was immersed for a second, pulled up from the coagulant solution, and dried at a temperature of 30 ° C. for 60 seconds.
  • a calcium nitrate methanol solution calcium nitrate methanol solution (calcium nitrate concentration: 2.0% by weight) as a coagulant solution. It was immersed for a second, pulled up from the coagulant solution, and dried at a temperature of 30 ° C. for 60 seconds.
  • the fiber base covered with the metal glove mold is dipped in the above dip molding latex composition for 3 seconds, pulled up from the dip molding latex composition, and then dried under conditions of temperature 30 ° C. for 30 minutes. Formed a rubber layer.
  • the temperature of the fiber base immediately before dipping was 23 ° C.
  • heat treatment was performed at a temperature of 100 ° C. for 60 minutes to crosslink the nitrile rubber in the rubber layer to form a rubber layer.
  • the fiber base on which the rubber layer was formed was peeled off from the metal glove mold to obtain a protective glove (laminate).
  • the obtained protective gloves (laminate) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the protective gloves of Comparative Example 1 the thickness t 1 of the permeation rubber layer measured by the method described above has become thinner than the base layer the average thickness of the fiber base material d (0.70 mm), part Betrayal had occurred.
  • Nitrile rubber (b) (trade name “Nipol LX550L”, Nippon Zeon, having a content ratio of acrylonitrile units of 27% by weight, instead of nitrile rubber (a), as nitrile rubber for producing a latex composition for dip molding
  • a protective glove (laminate) was obtained and evaluated in the same manner as in Comparative Example 1 except that a company-made product was used.
  • the temperature of the fiber base immediately before dipping was 22 ° C.
  • the results are shown in Table 1.
  • the protective gloves of Comparative Example 2 the thickness t 1 of the permeation rubber layer measured by the method described above has become thinner than the base layer the average thickness of the fiber base material d (0.70 mm), part Betrayal had occurred.
  • thermosensitive coagulation method when used as a method of producing a laminate having a rubber layer penetrating the fiber substrate, occurrence of dripping of the resulting laminate is prevented. Rubber layer was well formed, and was excellent in the mounting property, the mounting comfort, the flexibility and the abrasion resistance (Examples 1 to 3).
  • the polymer latex is brought into contact with the fiber substrate to which the coagulant solution is attached.
  • the method of forming the rubber layer on the fiber base by coagulating the polymer in the polymer latex is used, dripping of the polymer latex occurs when the rubber layer is formed.
  • the resulting laminate was inferior in both the mounting property and the flexibility (Comparative Examples 1 and 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Gloves (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Provided is a production method for a laminate having a base material and a rubber layer formed penetrating from one surface to the other surface of the base material, the laminate production method involving a solidification step in which the rubber layer is formed by bringing the base material, which is supported on a dipping mold, into contact in a heated state with a polymer latex, whereby the polymer forming the polymer latex is caused to permeate the base material and the permeating polymer is solidified.

Description

積層体の製造方法Method of manufacturing laminate
 本発明は、基材と、重合体ラテックスから形成されるゴム層とを備える積層体に関する。また、本発明は、上記積層体を用いる保護手袋の製造方法に関するものである。 The present invention relates to a laminate comprising a substrate and a rubber layer formed from a polymer latex. The present invention also relates to a method for producing a protective glove using the above laminate.
 従来、工場での製造作業、軽作業、工事作業、農作業等の様々な用途で、繊維製手袋をゴムや樹脂等により被覆することで、耐溶剤性、グリップ性、耐摩耗性等を向上させた保護手袋が用いられている。 Conventionally, in various applications such as factory manufacturing work, light work, construction work, agricultural work, etc., the fiber gloves are coated with rubber, resin or the like to improve the solvent resistance, grip property, abrasion resistance etc. Protective gloves are used.
 このような保護手袋は、通常、人体と接触して使用されるものであるため、耐摩耗性などの機械的強度や耐久性に優れていることに加え、柔軟性に優れていることが求められている。 Since such protective gloves are usually used in contact with the human body, in addition to being excellent in mechanical strength and durability such as abrasion resistance, they are also required to be excellent in flexibility. It is done.
 たとえば、特許文献1には、繊維製手袋に、凝固剤溶液を含浸させた後、ニトリルゴムを含むラテックス組成物を接触させてゴム層を形成してなる保護手袋が開示されている。しかしながら、特許文献1の技術により得られる保護手袋は、ゴム層が繊維製手袋の表面から裏面まで貫通するようにして形成された場合、保護手袋を実際に手に装着すると、裏面まで貫通したゴム層が手に接触することで、手に不快な感触を受けることとなり、装着時の快適性に劣るという問題があった。 For example, Patent Document 1 discloses a protective glove formed by impregnating a fibrous glove with a coagulant solution and then bringing a latex composition containing nitrile rubber into contact to form a rubber layer. However, in the case of the protective glove obtained by the technique of Patent Document 1, when the rubber layer is formed so as to penetrate from the front surface to the back surface of the fiber glove, when the protective glove is actually worn in the hand, the rubber penetrated to the back surface When the layers come into contact with the hand, the hand feels unpleasant to the hand, and there is a problem that the comfort upon wearing is inferior.
国際公開第2017/014029号International Publication No. 2017/014029
 本発明は、このような実状に鑑みてなされたものであり、柔軟性および耐摩耗性に優れ、しかも装着時に疲労を感じにくく、装着時の快適性にも優れた積層体の製造方法を提供することを目的とする。また、本発明は、このような製造方法により得られた積層体を用いる保護手袋の製造方法を提供することも目的とする。 The present invention has been made in view of such a situation, and provides a method of manufacturing a laminate excellent in flexibility and wear resistance, moreover, hardly feeling fatigue at the time of wearing, and excellent in comfort at the time of wearing The purpose is to Another object of the present invention is to provide a method of producing a protective glove using the laminate obtained by such a production method.
 本発明者等は、上記目的を達成するために鋭意検討を行った結果、浸漬用型上に支持された基材を、加熱させた状態で、重合体ラテックスに接触させることで、重合体ラテックスを構成する重合体を基材に浸透させ、浸透した重合体を凝固させることで、基材の一方の面から他方の面まで貫通したゴム層を形成することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 The inventors of the present invention conducted intensive studies to achieve the above object, and as a result, a polymer latex was obtained by bringing the substrate supported on the immersion mold into contact with the polymer latex in a heated state. It is found that the above object can be achieved by forming a rubber layer penetrating from one surface of the substrate to the other surface by infiltrating the polymer constituting the into the substrate and coagulating the infiltrated polymer. The present invention has been completed.
 すなわち、本発明によれば、基材と、前記基材の一方の面から他方の面まで貫通して形成されたゴム層と、を備える積層体の製造方法であって、浸漬用型上に支持された前記基材を、加熱した状態で、重合体ラテックスに接触させることで、前記重合体ラテックスを構成する重合体を前記基材に浸透させつつ、浸透した前記重合体を凝固させることにより、前記ゴム層を形成する凝固工程を備える積層体の製造方法が提供される。 That is, according to the present invention, there is provided a method of manufacturing a laminate comprising a base material and a rubber layer formed to penetrate from one surface of the base material to the other surface, which is formed on an immersion mold. By bringing the supported base material into contact with a polymer latex in a heated state, the polymer constituting the polymer latex is allowed to permeate the base material, and the permeated polymer is solidified. There is provided a method of manufacturing a laminate, comprising the step of solidifying the rubber layer.
 本発明の積層体の製造方法では、前記凝固工程において、前記浸漬用型上に支持された前記基材を、30℃以上に加熱した状態で、前記重合体ラテックスを接触させることが好ましい。
 本発明の積層体の製造方法では、前記凝固工程において、前記浸漬用型上に支持された前記基材を、45℃以上に加熱した状態で、前記重合体ラテックスを接触させることがより好ましい。
 本発明の積層体の製造方法において、前記重合体ラテックスを構成する重合体がニトリルゴムであることが好ましい。
 本発明の積層体の製造方法において、前記重合体ラテックスがノニオン性界面活性剤を含有することが好ましい。
In the method for manufacturing a laminate of the present invention, in the coagulation step, the polymer latex is preferably brought into contact in a state where the base material supported on the immersion mold is heated to 30 ° C. or higher.
In the method for producing a laminate of the present invention, it is more preferable that the polymer latex is brought into contact in a state where the substrate supported on the immersion mold is heated to 45 ° C. or more in the coagulation step.
In the method of producing a laminate of the present invention, the polymer constituting the polymer latex is preferably a nitrile rubber.
In the method for producing a laminate of the present invention, the polymer latex preferably contains a nonionic surfactant.
 また、本発明によれば、上記の製造方法により得られる積層体を用いる保護手袋の製造方法が提供される。 Moreover, according to this invention, the manufacturing method of a protective glove using the laminated body obtained by said manufacturing method is provided.
 本発明によれば、柔軟性および耐摩耗性に優れ、しかも装着時に疲労を感じにくく、装着時の快適性にも優れた積層体の製造方法を提供することができる。また、本発明によれば、このような製造方法により得られた積層体を用いる保護手袋の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a laminate which is excellent in flexibility and wear resistance, is not easily felt when worn, and is also excellent in wearing comfort. Furthermore, according to the present invention, it is possible to provide a method for producing a protective glove using the laminate obtained by such a production method.
図1(A)は、ゴム層を形成する前の繊維基材の断面図であり、図1(B)は、図1(A)に示す繊維基材にゴム層が積層されてなる保護手袋の断面図である。FIG. 1 (A) is a cross-sectional view of the fiber base before forming the rubber layer, and FIG. 1 (B) is a protective glove formed by laminating the rubber layer on the fiber base shown in FIG. 1 (A). FIG.
 本発明の積層体の製造方法は、基材と、前記基材の一方の面から他方の面まで貫通して形成されたゴム層と、を備える積層体の製造方法であって、
 浸漬用型上に支持された前記基材を、加熱させた状態で、重合体ラテックスに接触させることで、前記重合体ラテックスを構成する重合体を前記基材に浸透させ、浸透した前記重合体を凝固させることにより、前記ゴム層を形成する凝固工程を備える。
The method for producing a laminate of the present invention is a method for producing a laminate comprising a substrate and a rubber layer formed to penetrate from one surface of the substrate to the other surface,
The polymer which has penetrated the polymer which constitutes the polymer latex into the substrate by making the polymer latex come into contact by bringing the substrate supported on the immersion mold into contact with the polymer latex in a heated state, the polymer And coagulating the rubber layer to form a rubber layer.
 本発明の積層体は、基材とゴム層とを備える。本発明の積層体は、柔軟性が必要とされる用途に用いることができ、特に限定されないが、たとえば、基材として繊維基材を用いて、繊維基材とゴム層とを備える積層体として用いることが好ましく、作業用手袋、特に家庭用、農業用、漁業用および工業用などの保護手袋などの人体と接触して用いられるものとして用いることが特に好ましい。
 以下においては、図1(A)および図1(B)を参照し、本発明の積層体の一実施形態として、繊維基材とゴム層とを有する保護手袋を例示して説明する。なお、図1(A)は、ゴム層を形成する前の繊維基材の断面図であり、図1(B)は、図1(A)に示す繊維基材に対して、重合体ラテックスが浸透しつつ凝固することで形成されたゴム層が設けられてなる保護手袋の断面図である。
The laminate of the present invention comprises a substrate and a rubber layer. The laminate of the present invention can be used for applications requiring flexibility, and is not particularly limited. For example, as a laminate comprising a fiber substrate and a rubber layer, using a fiber substrate as the substrate It is preferable to use it, and it is particularly preferable to use as working gloves, especially protective gloves for household use, agriculture use, fishery use and industrial use, etc. in contact with human bodies.
In the following, with reference to FIG. 1 (A) and FIG. 1 (B), a protective glove having a fiber base and a rubber layer will be illustrated and described as an embodiment of the laminate of the present invention. 1 (A) is a cross-sectional view of the fiber base before forming the rubber layer, and FIG. 1 (B) is a polymer latex relative to the fiber base shown in FIG. 1 (A). It is a cross-sectional view of a protective glove provided with a rubber layer formed by infiltration and solidification.
 繊維基材としては、繊維製のものであればよく、特に限定されないが、綿、毛、麻、羊毛などの天然繊維、ポリエステル、ポリウレタン、アクリル、ナイロンなどの合成繊維などを素材として用いることができ、これらの中でも、ナイロンを用いることが好ましい。また、繊維基材は、編まれたものであってもよいし、縫製されたものであってもよく、織布であっても、不織布であってもよい。 The fiber base material may be made of fiber, and is not particularly limited, but natural fibers such as cotton, hair, hemp and wool, synthetic fibers such as polyester, polyurethane, acrylic and nylon may be used as the material Among these, it is preferable to use nylon. In addition, the fiber base material may be knitted or sewn, and may be woven or non-woven.
 繊維基材の厚み(後述する繊維基材の基材層平均厚みd)は、特に限定されないが、好ましくは0.05~3.00mm、より好ましくは0.10~2.00mm、さらに好ましくは0.15~1.5mmである。繊維基材の線密度は、特に限定されないが、好ましくは50~500デニールである。繊維基材のゲージ数は、特に限定されないが、好ましくは7~18ゲージである。ここで、ゲージ数は、1インチの間にある編機の針の数をいう。 The thickness of the fiber substrate (average thickness d of the substrate layer of the fiber substrate described later) is not particularly limited, but preferably 0.05 to 3.00 mm, more preferably 0.10 to 2.00 mm, and still more preferably It is 0.15 to 1.5 mm. The linear density of the fiber substrate is not particularly limited, but preferably 50 to 500 denier. The gauge number of the fiber substrate is not particularly limited, but is preferably 7 to 18 gauge. Here, the number of gauges refers to the number of needles of the knitting machine between 1 inch.
 本発明の製造方法においては、繊維基材に対応した形状を有する浸漬用型上に繊維基材が支持された状態とし、繊維基材を加熱した状態としながら、重合体ラテックスに接触させることで、重合体ラテックスを構成する重合体を繊維基材に浸透させ、浸透した重合体を、繊維基材の熱により凝固させる方法、すなわち、感熱凝固法(感熱浸漬法)により、ゴム層を形成し、これにより、繊維基材と、繊維基材の一方の面から他方の面まで貫通して形成されたゴム層と、を備える積層体を製造するものである。 In the production method of the present invention, the fibrous base material is supported on the immersion mold having a shape corresponding to the fibrous base material, and the fibrous base material is brought into contact with the polymer latex while being heated. A method in which a polymer constituting the polymer latex is infiltrated into a fiber substrate, and the infiltrated polymer is coagulated by heat of the fiber substrate, that is, a rubber layer is formed by a thermal coagulation method (thermal immersion method) Thus, a laminate including a fiber base and a rubber layer formed penetrating from one side to the other side of the fiber base is manufactured.
 たとえば、積層体の一例としての保護手袋を例示して説明すると、浸漬用型としての手袋型上に、手袋形状の繊維基材を被せた状態とし、手袋形状の繊維基材を加熱した状態とし、感熱凝固法により、すなわち、重合体ラテックス中に浸漬させることで、重合体ラテックスを構成する重合体を手袋形状の繊維基材に浸透させつつ、繊維基材の熱により、浸透した重合体を凝固させる方法により、重合体ラテックスを構成する重合体からなるゴム層を形成する。 For example, to illustrate a protective glove as an example of a laminate, a glove-shaped fiber base is covered on a glove type as an immersion mold, and a glove-shaped fiber base is heated. The polymer which has been infiltrated by the heat of the fiber substrate while the polymer constituting the polymer latex is infiltrated into the glove-shaped fiber substrate by the thermal coagulation method, that is, by immersing the polymer latex in the polymer latex By the method of coagulating, a rubber layer composed of the polymer constituting the polymer latex is formed.
 具体的には、積層体として保護手袋を製造する場合には、手袋型に被せた繊維基材を、加熱した状態で、重合体ラテックス中に浸漬させることで、重合体ラテックスを、手袋型に被せた繊維基材の表面(保護手袋の外面となる面)から、繊維基材を構成する繊維の間に浸透させ、重合体ラテックスが、加熱された繊維基材に接触することでゲル化および凝固を進行させ、これにより、繊維基材の一方の面から他方の面まで貫通するゴム層が形成される。この際には、繊維基材だけでなく手袋型も加熱しておいてもよく、特に、繊維基材を貫通して手袋型まで到達した重合体ラテックスが、手袋型の表面に沿ってより良好に凝固し、これにより、繊維基材の一方の面から他方の面まで貫通して形成されたゴム層をより適切に形成できるという観点より、繊維基材を手袋型に被せた状態にて、繊維基材を手袋型とともに加熱し、これを用いる方法が好ましい。 Specifically, in the case of producing protective gloves as a laminate, a polymer latex is formed into a glove shape by immersing the fiber substrate covered in the glove shape in the polymer latex in a heated state. The surface of the coated fiber substrate (the surface on the outer surface of the protective glove) is allowed to penetrate between the fibers constituting the fiber substrate, and the polymer latex is gelled by contact with the heated fiber substrate. Solidification proceeds to form a rubber layer penetrating from one side of the fiber substrate to the other side. In this case, not only the fiber base material but also the glove type may be heated, and in particular, the polymer latex which penetrates the fiber base and reaches the glove type is better along the surface of the glove type From the viewpoint that the rubber layer formed by penetrating from one surface to the other surface of the fiber substrate can be more appropriately formed, with the fiber substrate covered in a glove shape, It is preferred to heat the fiber substrate together with the glove mold and use it.
 特に、このような感熱凝固法によれば、加熱した繊維基材を、重合体ラテックス中に浸漬させることで、重合体ラテックスを、繊維基材内部まで十分に浸透させながら、繊維基材の熱の作用により、繊維基材内部まで十分に浸透させた重合体ラテックスを、適切にゲル化および凝固させることができるものである。そして、これにより、繊維基材の表面から、手袋型に被せた繊維基材の裏面(保護手袋の内面となる面)まで貫通したゴム層を適切に形成できるものである。具体的には、上記の感熱凝固法によれば、繊維基材のほぼ全体にわたり、繊維基材の表面から繊維基材の裏面まで貫通したゴム層を連続的に形成でき、これにより柔軟性に優れたものとすることができるものである。しかも、上記の感熱凝固法によれば、ゴム層を、繊維基材の表面においては、表面の凹凸が少なく、表面状態を滑らかなものとすることができ、これにより、耐摩耗性に優れたものとすることができ、さらには、繊維基材の裏面においても、ゴム層に起因する凹凸や凝集等の発生を有効に抑制できるため、得られる保護手袋を、実際に手に装着して使用する場合に、手にゴム層が接触しても、手への不快な感触(微小な突き刺しに起因する不快な感触)を低減することができ、これにより、装着時に疲労を感じにくく、装着時の快適性に優れたものとすることができるものである。 In particular, according to such a thermosensitive coagulation method, by immersing the heated fiber substrate in the polymer latex, the polymer latex is sufficiently permeated into the fiber substrate while the heat of the fiber substrate is heated. The polymer latex which has sufficiently permeated to the inside of the fiber substrate can be appropriately gelled and coagulated by the action of And thereby, the rubber layer which penetrated from the surface of a fiber base material to the back (surface which becomes the inner surface of protective gloves) of the fiber base put on a glove type can be formed appropriately. Specifically, according to the above thermal coagulation method, it is possible to continuously form a rubber layer penetrating from the surface of the fiber substrate to the back surface of the fiber substrate over substantially the whole of the fiber substrate, thereby providing flexibility It can be excellent. Moreover, according to the above thermal coagulation method, the rubber layer can be made less uneven on the surface of the fiber substrate, and the surface state can be made smooth, whereby the abrasion resistance is excellent. In addition, since the occurrence of unevenness, aggregation and the like due to the rubber layer can be effectively suppressed even on the back surface of the fiber base, the protective gloves obtained can be actually worn and used In this case, even if the rubber layer comes in contact with the hand, it is possible to reduce the unpleasant feel on the hand (the unpleasant feel due to the minute stick), thereby making it difficult to feel fatigue at the time of wearing The comfort of the can be excellent.
 本発明の積層体の一実施形態である保護手袋としては、たとえば、図1(B)に示す構造を備えるものを例示することができる。ここで、図1(B)は、図1(A)に示す繊維基材に対して、重合体ラテックスが浸透しつつ凝固することで形成されたゴム層が設けられてなる保護手袋(積層体)の断面図である。図1(B)に示す保護手袋においては、繊維基材の表面に、繊維基材を被覆する表面ゴム層が形成され、この表面ゴム層に連続して、繊維基材の繊維の隙間に浸透してなる浸透ゴム層が形成され、これらの表面ゴム層および浸透ゴム層が一体となってゴム層を形成している。 As a protective glove which is one embodiment of a layered product of the present invention, for example, one having a structure shown in FIG. 1 (B) can be exemplified. Here, FIG. 1 (B) is a protective glove (laminated body) in which a rubber layer formed by coagulating while penetrating the polymer latex is provided to the fiber base shown in FIG. 1 (A). Is a cross-sectional view of FIG. In the protective glove shown in FIG. 1 (B), a surface rubber layer for covering the fiber substrate is formed on the surface of the fiber substrate, and the surface rubber layer penetrates into the gaps of the fibers of the fiber substrate continuously. The surface rubber layer and the permeation rubber layer are integrally formed to form a rubber layer.
 なお、重合体ラテックスを凝固させて形成されるゴム層は、上記の感熱凝固法による凝固を複数回実施することで多層積層構造としてもよい。 The rubber layer formed by coagulating the polymer latex may have a multilayer laminated structure by carrying out the coagulation by the above-mentioned thermal coagulation method a plurality of times.
 また、形成されるゴム層は、繊維基材のほぼ全体にわたり、繊維基材の表面から繊維基材の裏面まで貫通した状態で形成されればよいが、一部においては、このような貫通した状態となっていなくてもよい。 Also, the rubber layer to be formed may be formed so as to penetrate substantially from the entire surface of the fiber substrate to the back surface of the fiber substrate, but in part, such penetrating It does not have to be in the state.
 なお、従来においては、繊維基材を貫通するゴム層を備える積層体を製造する方法として、繊維基材に、凝固剤溶液を付着させた後、凝固剤溶液が付着した繊維基材に、重合体ラテックスを接触させて重合体ラテックス中の重合体を凝固させることで、繊維基材上にゴム層を形成する方法(凝着浸漬法)が用いられている。しかしながら、このような従来の方法では、重合体が凝固する前に、重合体ラテックスが繊維基材から液垂れしてしまい、このような状態で重合体の凝固が進行してしまうと、形成されるゴム層は、部分的に繊維基材を貫通して、浸漬用型と接触した部分で不均一な形状のまま凝固してしまい、また、貫通した部分を中心として凝集して塊が形成されてしまい、結果として、得られる積層体を保護手袋等して使用する場合に、保護手袋等の内面(積層体の製造時に浸漬用型と接触する面)において、ゴム層の表面の凹凸が大きくなってしまったり、ゴム層が硬くなってしまったりすることで、耐久性および柔軟性に劣るものとなり、しかも、装着時に手にゴム層が接触することで、手に不快な感触を受けることとなり、装着者が疲労感を覚えるようになってしまい、装着時の快適性にも劣るという問題があった。 In the prior art, as a method of manufacturing a laminate having a rubber layer penetrating the fiber substrate, after the coagulant solution is attached to the fiber substrate, the weight is applied to the fiber substrate to which the coagulant solution is attached. A method (adhesion and immersion method) of forming a rubber layer on a fiber substrate by bringing a coalesced latex into contact and coagulating a polymer in the polymer latex is used. However, in such a conventional method, the polymer latex is dripped from the fiber substrate before the polymer is coagulated, and it is formed when the coagulation of the polymer proceeds in such a state. The rubber layer partially penetrates the fiber base and solidifies in a non-uniform shape in the part in contact with the immersion mold, and aggregates are formed around the penetrated part to form a lump As a result, when the resulting laminate is used as a protective glove or the like, the surface of the rubber layer has large irregularities on the inner surface of the protective glove (surface that comes in contact with the immersion mold during the production of the laminate). If the rubber layer becomes hard, it becomes inferior in durability and flexibility, and furthermore, when the rubber layer comes in contact with the hand at the time of wearing, the hand feels unpleasant to the hand. , The wearer feels tired It becomes so, there has been a problem that it is inferior in comfort at the time of mounting.
 これに対して、本発明によれば、繊維基材を貫通するゴム層を備える積層体を製造する方法として、上述した感熱凝固法を用いることにより、繊維基材のほぼ全体にわたり、繊維基材の表面から繊維基材の裏面まで貫通したゴム層を連続的に形成でき、さらには、繊維基材の表面においては、ゴム層に起因する凹凸や凝集等の発生を有効に抑制でき、表面状態を滑らかなものとすることができるため、得られる積層体について、柔軟性に優れ、しかも、実際に保護手袋等として手に装着して使用する場合に、手への不快な感触を低減することができ、装着時に疲労を感じにくく、装着時の快適性に優れたものとすることができる。 On the other hand, according to the present invention, by using the above-mentioned thermosensitive coagulation method as a method of producing a laminate having a rubber layer penetrating the fiber substrate, the fiber substrate is substantially covered throughout The rubber layer penetrating from the surface to the back surface of the fiber substrate can be continuously formed, and furthermore, on the surface of the fiber substrate, the occurrence of unevenness and aggregation caused by the rubber layer can be effectively suppressed, and the surface state Can be made smooth, so that the laminate obtained is excellent in flexibility and, in addition, when it is actually worn and used as a protective glove etc., the unpleasant feel to the hand is reduced. It can be difficult to feel fatigue at the time of wearing, and can be excellent in comfort at the time of wearing.
 なお、本発明の製造方法により得られる積層体の浸透ゴム層の厚みtは、積層体を保護手袋等として用いた際の耐久性がより向上するという観点より、好ましくは0.05~1.0mm、より好ましくは0.10~0.8mm、より好ましくは0.15~0.70mmである。なお、ゴム層は、繊維基材を貫通した状態となっているため、通常、浸透ゴム層の厚みtは、繊維基材の厚みと同等の厚みとなるが、ゴム層の一部が繊維基材を貫通していない状態となっている場合には(ゴム層の一部が繊維基材の一方の面から他方の面まで到達していない場合には)、浸透ゴム層の厚みtは、一部が、繊維基材の厚みより薄いものとなっていてもよい。 The thickness t 1 of the permeation rubber layer of the laminate obtained by the production method of the present invention, from the viewpoint of durability is further improved when using the laminate as a protective glove or the like, preferably 0.05 to 1 More preferably, it is 0.10 to 0.8 mm, and more preferably, 0.15 to 0.70 mm. Incidentally, rubber layer, because in a state of penetrating the fibrous substrate, usually, the thickness t 1 of the permeation rubber layer is a thickness equivalent to the thickness of the fiber base material, a portion of the rubber layer fibers When the base material is not penetrated (when a part of the rubber layer does not reach from the one surface of the fiber base material to the other surface), the thickness t 1 of the permeation rubber layer May be thinner than the thickness of the fiber substrate.
 また、表面ゴム層の厚みtは、積層体を保護手袋等として用いた際の耐久性がより向上するという観点より、好ましくは0.01~3.00mm、より好ましくは0.02~2.5mm、さらに好ましくは0.03~2.0mmである。 The thickness t 2 of the surface rubber layer, from the viewpoint of durability is further improved when using the laminate as a protective gloves and the like, preferably 0.01 ~ 3.00 mm, more preferably 0.02-2 And more preferably 0.03 to 2.0 mm.
 さらに、表面ゴム層の厚みtに対する浸透ゴム層の厚みtの比(t/t)は、積層体を保護手袋等として用いた際の耐久性、柔軟性および装着時の快適性を高度にバランスさせるという観点より、0.5~0.2であればよく、好ましくは0.25~4.80、より好ましくは0.30~4.60である。 Furthermore, the ratio of the thickness t 1 of the permeation rubber layer to the thickness t 2 of the surface rubber layer (t 1 / t 2), the durability at the time of using the laminate as a protective gloves, comfort of flexibility and mounting From the viewpoint of achieving a high degree of balance, preferably from 0.5 to 0.2, preferably from 0.25 to 4.80, more preferably from 0.30 to 4.60.
 また、積層体を保護手袋等として用いた際の耐久性、柔軟性および装着時の快適性を高度にバランスさせるという観点より、繊維基材の基材層平均厚みdに対する表面ゴム層の厚みtの比(t/d)は、好ましくは0.10~0.95であり、より好ましくは0.1~0.90、さらに好ましくは0.15~0.8である。また、積層体の全厚み(表面ゴム層の厚みtと、繊維基材の基材層平均厚みdとの合計)は、好ましくは0.75~3.70mm、より好ましくは0.75~3.5mmである。なお、繊維基材は、そのミクロ構造においては、繊維の重なり度合いが密になっている部分と、繊維の重なり度合いが疎になっている部分とで、その厚みが異なる場合があるが、繊維基材の基材層平均厚みdは、繊維基材について、繊維の重なり度合いが密になっている部分の厚みを、その厚みとした平均値として、求めることとする。 In addition, the thickness t of the surface rubber layer relative to the average thickness d of the base layer of the fiber base from the viewpoint of highly balancing the durability, flexibility and comfort upon wearing when the laminate is used as a protective glove etc. The ratio of 2 (t 2 / d) is preferably 0.10 to 0.95, more preferably 0.1 to 0.90, and still more preferably 0.15 to 0.8. The total thickness of the laminate (the thickness t 2 of the surface rubber layer, the sum of the base layer the average thickness d of the fiber substrate) is preferably from 0.75 to 3.70 mm, more preferably 0.75 to It is 3.5 mm. The fiber base material may differ in thickness between the portion where the degree of fiber overlap is dense and the portion where the degree of fiber overlap is sparse in the microstructure. The base material layer average thickness d of the base material is determined as the average value of the thickness of the portion of the fiber base material where the overlapping degree of the fibers is dense.
 また、本発明の用いる重合体ラテックスを構成する重合体としては、特に限定されないが、天然ゴム;ブタジエンやイソプレンなどの共役ジエンを重合または共重合してなる共役ジエン系ゴム;等が挙げられ、これらの中でも、共役ジエン系ゴムが好ましい。共役ジエン系ゴムとしては、ニトリルを共重合してなるいわゆるニトリルゴム、イソプレンゴム、スチレン-ブタジエンゴム、クロロプレンゴム等が挙げられ、これらの中でも、ニトリルゴムが特に好ましい。 Further, the polymer constituting the polymer latex used in the present invention is not particularly limited, but examples thereof include natural rubber; conjugated diene rubbers obtained by polymerizing or copolymerizing conjugated dienes such as butadiene and isoprene; Among these, conjugated diene rubbers are preferable. Examples of conjugated diene rubbers include so-called nitrile rubbers obtained by copolymerizing nitriles, isoprene rubbers, styrene-butadiene rubbers, chloroprene rubbers and the like. Among these, nitrile rubbers are particularly preferable.
 ニトリルゴムとしては、特に限定されないが、α,β-エチレン性不飽和ニトリル単量体および必要に応じて用いられる共重合可能なその他の単量体を共重合したものを用いることができる。 The nitrile rubber is not particularly limited, but one obtained by copolymerizing an α, β-ethylenically unsaturated nitrile monomer and another copolymerizable monomer optionally used can be used.
 α,β-エチレン性不飽和ニトリル単量体としては、特に限定されないが、ニトリル基を有し、炭素数が、好ましくは3~18であるエチレン性不飽和化合物を用いることができる。このようなα,β-エチレン性不飽和ニトリル単量体としては、たとえば、アクリロニトリル、メタクリロニトリル、ハロゲン置換アクリロニトリルなどが挙げられ、これらの中でも、アクリロニトリルが特に好ましい。なお、これらのα,β-エチレン性不飽和ニトリル単量体は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 The α, β-ethylenically unsaturated nitrile monomer is not particularly limited, but an ethylenically unsaturated compound having a nitrile group and having a carbon number of preferably 3 to 18 can be used. Examples of such α, β-ethylenically unsaturated nitrile monomers include acrylonitrile, methacrylonitrile, halogen-substituted acrylonitrile and the like, and among these, acrylonitrile is particularly preferable. These α, β-ethylenically unsaturated nitrile monomers may be used alone or in combination of two or more.
 ニトリルゴムにおけるα,β-エチレン性不飽和ニトリル単量体単位の含有割合は、全単量体単位に対して、好ましくは10~45重量%、より好ましくは20~40重量%であり、さらに好ましくは30~40重量%である。α,β-エチレン性不飽和ニトリル単量体単位の含有割合を上記範囲にすることにより、積層体を、より耐溶剤性に優れ、かつ、より風合いに優れたものとすることができる。さらには、α,β-エチレン性不飽和ニトリル単量体単位の含有割合を上記範囲にすることにより、このようなニトリルゴムを含む重合体ラテックスを用いて感熱凝固法によりゴム層を形成する場合に、ニトリルゴムがより良好にゲル化および凝固し、ゴム層がより良好に形成され、これにより、ゴム層が繊維基材を貫通してなる積層体を、保護手袋等として手に装着して使用する際に、手への不快な感触をより低減することができるようになり、装着時の快適性をより向上させることができる。 The content of the α, β-ethylenically unsaturated nitrile monomer unit in the nitrile rubber is preferably 10 to 45% by weight, more preferably 20 to 40% by weight, based on all the monomer units. Preferably, it is 30 to 40% by weight. By setting the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit in the above range, the laminate can be made more excellent in solvent resistance and more excellent in feeling. Furthermore, when the rubber layer is formed by a thermal coagulation method using a polymer latex containing such nitrile rubber by setting the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit to the above range Then, the nitrile rubber is gelled and solidified better, and the rubber layer is formed better, whereby the laminate in which the rubber layer penetrates the fiber base is attached to the hand as a protective glove or the like. In use, the unpleasant feel on the hand can be further reduced, and the comfort upon wearing can be further improved.
 また、ニトリルゴムとしては、ゴム弾性を付与するという観点より、共役ジエン単量体単位を含有するものが好ましい。共役ジエン単量体単位を形成する共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレンなどの炭素数4~6の共役ジエン単量体が好ましく、1,3-ブタジエンおよびイソプレンがより好ましく、1,3-ブタジエンが特に好ましい。なお、これらの共役ジエン単量体は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 The nitrile rubber is preferably one containing a conjugated diene monomer unit from the viewpoint of imparting rubber elasticity. Conjugated diene monomers that form conjugated diene monomer units include, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene, etc. Conjugated diene monomers of 6 are preferred, 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred. These conjugated diene monomers may be used alone or in combination of two or more.
 共役ジエン単量体単位の含有割合は、ニトリルゴムを構成する全単量体単位に対して、好ましくは40~80重量%、より好ましくは52~78重量%である。共役ジエン単量体単位の含有割合を上記範囲にすることにより、積層体を、耐溶剤性に優れ、かつ、風合いに優れたものとすることができる。 The content ratio of conjugated diene monomer units is preferably 40 to 80% by weight, more preferably 52 to 78% by weight, based on all the monomer units constituting the nitrile rubber. By making the content rate of a conjugated diene monomer unit into the said range, a laminated body can be made into what was excellent in solvent resistance and excellent in the feel.
 また、ニトリルゴムは、α,β-エチレン性不飽和ニトリル単量体単位を形成する単量体、および共役ジエン単量体単位を形成する単量体と共重合可能なその他のエチレン性不飽和酸単量体を含んでいてもよい。 In addition, the nitrile rubber is a monomer that forms an α, β-ethylenically unsaturated nitrile monomer unit, and another ethylenic unsaturated copolymerizable with a monomer that forms a conjugated diene monomer unit It may contain an acid monomer.
 このような共重合可能なその他のエチレン性不飽和酸単量体としては、特に限定されないが、たとえば、カルボキシル基含有エチレン性不飽和単量体、スルホン酸基含有エチレン性不飽和単量体、リン酸基含有エチレン性不飽和単量体などが挙げられる。 Such copolymerizable other ethylenically unsaturated acid monomers are not particularly limited, and, for example, carboxyl group-containing ethylenically unsaturated monomers, sulfonic acid groups-containing ethylenically unsaturated monomers, A phosphoric acid group-containing ethylenic unsaturated monomer etc. are mentioned.
 カルボキシル基含有エチレン性不飽和単量体としては、特に限定されないが、アクリル酸、メタクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のエチレン性不飽和多価カルボン酸およびその無水物;マレイン酸メチル、イタコン酸メチル等のエチレン性不飽和多価カルボン酸の部分エステル化物;などが挙げられる。 The carboxyl group-containing ethylenic unsaturated monomer is not particularly limited. Ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid; fumaric acid, maleic acid, itaconic acid, maleic anhydride, anhydride Ethylenically unsaturated polyvalent carboxylic acids such as itaconic acid and anhydrides thereof; Partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as methyl maleate and methyl itaconate;
 スルホン酸基含有エチレン性不飽和単量体としては、特に限定されないが、ビニルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-ヒドロキシプロパンスルホン酸などが挙げられる。 The sulfonic acid group-containing ethylenic unsaturated monomer is not particularly limited, but vinylsulfonic acid, methylvinylsulfonic acid, styrenesulfonic acid, (meth) allylsulfonic acid, ethyl (meth) acrylic acid-2-sulfonate And 2-acrylamido-2-hydroxypropane sulfonic acid.
 リン酸基含有エチレン性不飽和単量体としては、特に限定されないが、(メタ)アクリル酸-3-クロロ-2-リン酸プロピル、(メタ)アクリル酸-2-リン酸エチル、3-アリロキシ-2-ヒドロキシプロパンリン酸などが挙げられる。 The phosphoric acid group-containing ethylenic unsaturated monomer is not particularly limited, and is, for example, propyl (meth) acrylate 3-chloro-2-phosphate, ethyl (meth) acrylate 2-phosphate, 3-allyloxy -2-hydroxypropane phosphoric acid and the like.
 これらの共重合可能なその他のエチレン性不飽和酸単量体は、アルカリ金属塩またはアンモニウム塩として用いることもでき、また、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。上記の共重合可能なその他のエチレン性不飽和酸単量体のなかでも、カルボキシル基含有エチレン性不飽和単量体が好ましく、エチレン性不飽和モノカルボン酸がより好ましく、メタクリル酸が特に好ましい。 These other copolymerizable ethylenically unsaturated acid monomers can also be used as an alkali metal salt or ammonium salt, and may be used alone or in combination of two or more. . Among the above-mentioned other copolymerizable ethylenically unsaturated acid monomers, a carboxyl group-containing ethylenically unsaturated monomer is preferable, an ethylenically unsaturated monocarboxylic acid is more preferable, and methacrylic acid is particularly preferable.
 重合体ラテックスは、たとえば、上記の単量体を含有してなる単量体混合物を乳化重合することにより得ることができる。乳化重合に際しては、通常用いられる、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。 The polymer latex can be obtained, for example, by emulsion polymerization of a monomer mixture containing the above-mentioned monomers. In the case of emulsion polymerization, commonly used secondary polymerization materials such as an emulsifier, a polymerization initiator, a molecular weight modifier and the like can be used.
 乳化重合に用いる乳化剤としては、特に限定されないが、たとえば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、および両性界面活性剤などが挙げられるが、感熱凝固をより適切に進行させるという観点より、ノニオン性界面活性剤が好ましい。特に、硝酸カルシウムなどの凝固剤を含む凝固剤溶液を使用した塩凝固の場合には、塩凝固を効率的に進行させるという観点より、乳化重合に用いる乳化剤としては、アニオン性界面活性剤が好適に用いられるが、本発明においては、感熱凝固をより適切に進行させるという観点より、ノニオン性界面活性剤が好ましく、曇点が常温以上、100℃以下の水溶性のノニオン性高分子が好ましい。ノニオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステルなどが挙げられる。
 乳化重合に用いる乳化剤の使用量は、使用する全単量体100重量部に対して、好ましくは0.5~10重量部、より好ましくは1~8重量部である。
The emulsifier used for the emulsion polymerization is not particularly limited, and examples thereof include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. A nonionic surfactant is preferable from the viewpoint of advancing. In particular, in the case of salt coagulation using a coagulant solution containing a coagulant such as calcium nitrate, an anionic surfactant is suitable as an emulsifier used for emulsion polymerization from the viewpoint of efficiently advancing salt coagulation. In the present invention, a nonionic surfactant is preferable and a water-soluble nonionic polymer having a cloud point of normal temperature or more and 100 ° C. or less is preferable from the viewpoint of promoting thermal coagulation more appropriately. Specific examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester and the like.
The amount of the emulsifier used for the emulsion polymerization is preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight with respect to 100 parts by weight of all the monomers used.
 重合開始剤としては、特に限定されないが、ラジカル開始剤が好ましい。ラジカル開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;などが挙げられ、これらの中でも、無機過酸化物または有機過酸化物が好ましく、無機過酸化物がより好ましく、過硫酸塩が特に好ましい。これらの重合開始剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。
 重合開始剤の使用量は、使用する全単量体100重量部に対して、好ましくは0.01~2重量部、より好ましくは0.05~1.5重量部である。
The polymerization initiator is not particularly limited, but a radical initiator is preferable. The radical initiator is not particularly limited. For example, inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide and the like; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanoyl Peroxides, organic peroxides such as t-butylperoxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile and methyl azobisisobutyrate; . Among these, inorganic peroxides or organic peroxides are preferred, inorganic peroxides are more preferable, persulfate are particularly preferred. These polymerization initiators may be used alone or in combination of two or more.
The amount of the polymerization initiator used is preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight, based on 100 parts by weight of all the monomers used.
 分子量調整剤としては、特に限定されないが、たとえば、α-メチルスチレンダイマー;t-ドデシルメルカプタン、n-ドデシルメルカプタン、オクチルメルカプタン等のメルカプタン類;四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素;テトラエチルチウラムダイサルファイド、ジペンタメチレンチウラムダイサルファイド、ジイソプロピルキサントゲンダイサルファイド等の含硫黄化合物;などが挙げられ、これらの中でも、メルカプタン類が好ましく、t-ドデシルメルカプタンがより好ましい。これらの分子量調整剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。
 分子量調整剤の使用量は、その種類によって異なるが、使用する全単量体100重量部に対して、好ましくは0.1~1.5重量部、より好ましくは0.2~1.0重量部である。
The molecular weight modifier is not particularly limited, and examples thereof include: α-methylstyrene dimer; mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan and octyl mercaptan; halogenation such as carbon tetrachloride, methylene chloride and methylene bromide Hydrocarbons; sulfur-containing compounds such as tetraethylthiuram disulphide, dipentamethylenethiuram disulphide, diisopropyl xanthene disulphide, etc .; among these, mercaptans are preferred, and t-dodecyl mercaptan is more preferred. These molecular weight modifiers may be used alone or in combination of two or more.
The amount of the molecular weight modifier used varies depending on the type, but it is preferably 0.1 to 1.5 parts by weight, more preferably 0.2 to 1.0 parts by weight, based on 100 parts by weight of all the monomers used. It is a department.
 乳化重合は、通常、水中で行なわれる。水の使用量は、使用する全単量体100重量部に対して、好ましくは80~500重量部、より好ましくは100~200重量部である。 Emulsion polymerization is usually carried out in water. The amount of water used is preferably 80 to 500 parts by weight, more preferably 100 to 200 parts by weight, based on 100 parts by weight of all the monomers used.
 乳化重合に際し、必要に応じて、上記以外の重合副資材をさらに用いてもよい。重合副資材としては、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等が挙げられ、これらの種類、使用量とも特に限定されない。 In the emulsion polymerization, if necessary, other polymerization auxiliary materials may be further used. As a polymerization auxiliary material, a chelating agent, a dispersing agent, a pH regulator, an oxygen scavenger, a particle size regulator and the like can be mentioned, and the type and the amount thereof are not particularly limited.
 単量体の添加方法としては、たとえば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。
 また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。
As a method of adding monomers, for example, a method of adding monomers to be used in a reaction vessel at once, a method of adding continuously or intermittently as polymerization progresses, a part of monomers is added The reaction may be carried out to a specific conversion rate, and then the remaining monomers may be continuously or intermittently added and polymerized, and any method may be employed. When the monomers are mixed and added continuously or intermittently, the composition of the mixture may be constant or may be changed.
In addition, each monomer may be added to the reaction container after previously mixing various monomers to be used, or may be separately added to the reaction container.
 乳化重合する際の重合温度は、特に限定されないが、通常、0~95℃であり、好ましくは5~70℃である。重合時間は、特に限定されないが、通常、5~40時間程度である。 The polymerization temperature in the emulsion polymerization is not particularly limited, but it is usually 0 to 95 ° C., preferably 5 to 70 ° C. The polymerization time is not particularly limited, but is usually about 5 to 40 hours.
 以上のように単量体を乳化重合し、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして、重合反応を停止する。重合反応を停止する際の重合転化率は、通常、80重量%以上であり、好ましくは90重量%以上である。 As described above, the monomers are emulsion-polymerized, and when reaching a predetermined polymerization conversion rate, the polymerization reaction is stopped by cooling the polymerization system or adding a polymerization terminator. The polymerization conversion rate at the time of stopping the polymerization reaction is usually 80% by weight or more, preferably 90% by weight or more.
 重合停止剤は、通常、乳化重合において使用されているものであれば、特に限定されないが、その具体例としては、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシアミン、ヒドロキシアミンスルホン酸及びそのアルカリ金属塩等のヒドロキシアミン化合物;ジメチルジチオカルバミン酸ナトリウム;ハイドロキノン誘導体;カテコール誘導体;ヒドロキシジメチルベンゼンチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸等の芳香族ヒドロキシジチオカルボン酸及びこれらのアルカリ金属塩等の芳香族ヒドロキシジチオカルボン酸化合物;等が挙げられる。
 重合停止剤の使用量は、特に限定されないが、通常、使用する全単量体100重量部に対して、0.05~2重量部である。
The polymerization terminator is not particularly limited as long as it is generally used in emulsion polymerization, and specific examples thereof include hydroxylamine, hydroxylamine sulfate, diethylhydroxyamine, hydroxylamine sulfonic acid and alkali metal thereof Hydroxyamine compounds such as salts; sodium dimethyldithiocarbamate; hydroquinone derivatives; catechol derivatives; aromatic hydroxydithiocarboxylic acids such as hydroxydimethylbenzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, hydroxydibutylbenzenedithiocarboxylic acid and alkali metal salts thereof And aromatic hydroxydithiocarboxylic acid compounds such as
The use amount of the polymerization terminator is not particularly limited, but is usually 0.05 to 2 parts by weight with respect to 100 parts by weight of all the monomers used.
 重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整してもよい。 After termination of the polymerization reaction, if desired, unreacted monomers may be removed to adjust the solid concentration and pH.
 重合体ラテックスを構成する重合体の粒子の重量平均粒子径は、通常、30~1000nm、好ましくは50~500nm、より好ましくは70~200nmである。重合体の粒子の重量平均粒子径を上記範囲にすることにより、重合体ラテックスの粘度が適度なものとなって重合体ラテックスの取扱性がより向上するとともに、ゴム層を成形する際の成形性が向上してより均質なゴム層を有する積層体が得られるようになる。 The weight average particle size of the particles of the polymer constituting the polymer latex is usually 30 to 1000 nm, preferably 50 to 500 nm, more preferably 70 to 200 nm. By setting the weight average particle diameter of the particles of the polymer in the above range, the viscosity of the polymer latex becomes appropriate and the handleability of the polymer latex is further improved, and the moldability at the time of molding the rubber layer Is improved to obtain a laminate having a more homogeneous rubber layer.
 重合体ラテックスの固形分濃度は、通常、20~65重量%であり、好ましくは30~60重量%、より好ましくは35~55重量%である。この重合体ラテックスの固形分濃度を上記範囲にすることにより、ラテックスの輸送効率を向上させることができ、かつ、重合体ラテックスの粘度が適度なものとなって重合体ラテックスの取扱性が向上する。 The solid concentration of the polymer latex is usually 20 to 65% by weight, preferably 30 to 60% by weight, more preferably 35 to 55% by weight. By setting the solid content concentration of the polymer latex in the above range, the transport efficiency of the latex can be improved, and the viscosity of the polymer latex becomes appropriate to improve the handleability of the polymer latex. .
 重合体ラテックスのpHは、通常、5~13であり、好ましくは7~10、より好ましくは7.5~9である。重合体ラテックスのpHを上記範囲にすることにより、機械的安定性が向上して重合体ラテックスの移送時における粗大凝集物の発生を抑制することができ、かつ、重合体ラテックスの粘度が適度なものとなって重合体ラテックスの取扱性が向上する。 The pH of the polymer latex is usually 5 to 13, preferably 7 to 10, and more preferably 7.5 to 9. By setting the pH of the polymer latex to the above-mentioned range, mechanical stability is improved and generation of coarse aggregates at the time of transfer of the polymer latex can be suppressed, and the viscosity of the polymer latex is appropriate. As a result, the handleability of the polymer latex is improved.
 また、重合体ラテックスとしては、架橋剤、感熱凝固剤等の配合剤を配合したものを用いることが好ましい。すなわち、ラテックスの組成物として用いることが好ましい。尚、重合体ラテックスを前記のようにラテックス組成物として用いる場合には、前記の架橋剤、感熱凝固剤等の配合剤、後述する乳化剤、増粘剤等の配合剤を含有する状態での粘度が適度な範囲となるように調整するのが好ましい。 In addition, as the polymer latex, it is preferable to use one in which compounding agents such as a crosslinking agent and a heat sensitive coagulant are blended. That is, it is preferable to use as a composition of latex. When the polymer latex is used as a latex composition as described above, the viscosity in the state of containing the compounding agent such as the crosslinking agent and the heat sensitive coagulant, and the compounding agent such as the emulsifying agent and the thickener described later. It is preferable to adjust so as to be in an appropriate range.
 架橋剤としては、硫黄系架橋剤を用いることが好ましい。硫黄系架橋剤としては、特に限定されないが、粉末硫黄、硫黄華、沈降性硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、カプロラクタムジスルフィド、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、2-(4’-モルホリノジチオ)ベンゾチアゾールなどの硫黄供与性化合物;などが挙げられる。これらの架橋剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 As a crosslinking agent, it is preferable to use a sulfur-based crosslinking agent. The sulfur-based crosslinking agent is not particularly limited, and powder sulfur, sulfur oxide, precipitated sulfur, colloidal sulfur, surface-treated sulfur, sulfur such as insoluble sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothia Sulfur-containing compounds such as zyl disulfide, caprolactam disulfide, phosphorus-containing polysulfides, high molecular weight polysulfides; sulfur-donating compounds such as tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, 2- (4'-morpholinodithio) benzothiazole, etc. Can be mentioned. These crosslinking agents may be used alone or in combination of two or more.
 また、架橋剤として硫黄を使用する場合には、架橋促進剤(加硫促進剤)や、酸化亜鉛を併用することが好ましい。
 架橋促進剤(加硫促進剤)としては、特に限定されないが、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホリニル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられ、これらの中でも、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛が好ましい。これらの架橋促進剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。
Moreover, when using sulfur as a crosslinking agent, it is preferable to use a crosslinking accelerator (vulcanization accelerator) and zinc oxide in combination.
The crosslinking accelerator (vulcanization accelerator) is not particularly limited, and examples thereof include dithiocarbamates such as diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyl dithiocarbamic acid, dicyclohexyl dithiocarbamic acid, diphenyl dithiocarbamic acid, and dibenzyl dithiocarbamic acid. Acids and their zinc salts; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2- (N, N-diethylthio carbamoylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino dithio) benzothiazole, 4-mole Among these, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, 2-mercaptobenzothiazole, 2-mercapto, and the like can be mentioned. Benzothiazole zinc is preferred. These crosslinking accelerators may be used alone or in combination of two or more.
 感熱凝固剤としては、加熱により重合体ラテックスを凝固させる作用を示す化合物であればよく、特に限定されないが、エポキシ変性シリコーンオイル、アルキル変性シリコーンオイル、アルキルアラルキル変性シリコーンオイル、アミノ変性シリコーンオイル、カルボキシル変性シリコーンオイル、アルコール変性シリコーンオイル、フッ素変性シリコーンオイル、ポリエーテル変性シリコーンオイルなどのシリコーンオイル;ジメチルポリシロキサン、メチルフェニルポリシロキサン、メチルハイドロジェンポリシロキサンおよびジオルガノポリシロキサンジオールなどのポリシロキサン;1,1-ジヒドロペルフルオロオクチルアクリレートポリマー、パーフルオロアルキルエチルアクリレート-アルキルアクリレート共重合体などのフロロアルキルエステル系重合体;などが挙げられる。重合体ラテックスに、感熱凝固剤を配合することにより、重合体ラテックスの感熱凝固をより適切に進行させることができる。 The heat-sensitive coagulant may be any compound as long as it exhibits the function of coagulating the polymer latex by heating, and is not particularly limited. Epoxy-modified silicone oil, alkyl-modified silicone oil, alkylaralkyl-modified silicone oil, amino-modified silicone oil, carboxyl Silicone oils such as modified silicone oils, alcohol modified silicone oils, fluorine modified silicone oils, polyether modified silicone oils; polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane, methylhydrogenpolysiloxane and diorganopolysiloxane diol; 1 , 1-Dihydroperfluorooctyl acrylate polymer, perfluoroalkyl ethyl acrylate-alkyl acrylate copolymer, etc. Fluoroalkyl ester polymers; and the like. By blending a thermal coagulant into the polymer latex, thermal coagulation of the polymer latex can be more appropriately progressed.
 重合体ラテックスに感熱凝固剤を配合する場合における、感熱凝固剤の配合量は、重合体ラテックス中に含まれる重合体100重量部に対し、好ましくは0.1~10重量部、より好ましくは0.1~8重量部、さらに好ましくは0.1~5重量部である。感熱凝固剤の配合量を上記範囲とすることにより、重合体ラテックスの感熱凝固をより適切に進行させることができる。なお、本発明において、感熱凝固剤は、加熱により重合体ラテックスを凝固させる作用を示す他、重合体ラテックスを増粘させるための増粘剤としての作用をも有する。そのため、重合体ラテックスの粘度を調整し、これにより、ゴム層が繊維基材を貫通してなる積層体をより適切に得るという観点からも、感熱凝固剤の配合量は上記範囲とすることが好ましい。なお、重合体ラテックスの25℃における粘度は、好ましくは500~20,000mPa・s、より好ましくは1,000~10,000mPa・sである。重合体ラテックスの25℃における粘度は、たとえば、B型粘度計を用いて、25℃、回転数6rpmの条件で測定することができる。 The blending amount of the heat sensitive coagulant in the case of blending the heat sensitive coagulant to the polymer latex is preferably 0.1 to 10 parts by weight, more preferably 0 based on 100 parts by weight of the polymer contained in the polymer latex. 1 to 8 parts by weight, more preferably 0.1 to 5 parts by weight. By setting the blending amount of the heat sensitive coagulant in the above range, the heat sensitive coagulation of the polymer latex can be more appropriately advanced. In the present invention, the heat-sensitive coagulant has the function of coagulating the polymer latex by heating and also has the function of a thickener for thickening the polymer latex. Therefore, also from the viewpoint of adjusting the viscosity of the polymer latex and thereby more appropriately obtaining a laminate in which the rubber layer penetrates the fiber base, the compounding amount of the heat sensitive coagulant may be in the above range. preferable. The viscosity at 25 ° C. of the polymer latex is preferably 500 to 20,000 mPa · s, more preferably 1,000 to 10,000 mPa · s. The viscosity at 25 ° C. of the polymer latex can be measured, for example, using a B-type viscometer under the conditions of 25 ° C. and 6 rpm.
 また、重合体ラテックスには、重合体ラテックスの安定性をより高めるという観点より、乳化剤をさらに配合してもよい。乳化剤としては、乳化重合の場合と同様に、ノニオン性界面活性剤が好ましく、曇点が30℃以上、100℃以下の水溶性のノニオン性高分子が好ましく、曇点が45℃以上、90℃以下の水溶性のノニオン性高分子がより好ましい。 In addition, an emulsifier may be further added to the polymer latex from the viewpoint of further enhancing the stability of the polymer latex. As the emulsifier, as in the case of the emulsion polymerization, nonionic surfactants are preferable, water-soluble nonionic polymers having a cloud point of 30 ° C. or more and 100 ° C. or less are preferable, and the cloud points are 45 ° C. or more and 90 ° C. The following water-soluble nonionic polymers are more preferable.
 重合体ラテックスに乳化剤を配合する場合には、重合体ラテックス中における配合した乳化剤の含有割合(重合体ラテックスの乳化重合に用いたものも含めた含有割合)は、好ましくは20~0.01重量%、より好ましくは15~0.02重量%、さらに好ましくは10~0.05重量%である。乳化剤の含有割合を上記範囲とすることにより、得られるラテックスの組成物を用いて感熱凝固法によりゴム層を形成する場合に、ゴム層がより良好に形成され、これにより、ゴム層が繊維基材を貫通してなる積層体を、保護手袋等として手に装着して使用する際に、手への不快な感触をより低減することができるようになり、装着時の快適性がより向上する。 When the emulsifier is compounded into the polymer latex, the content ratio of the emulsifier compounded in the polymer latex (content ratio including those used for emulsion polymerization of the polymer latex) is preferably 20 to 0.01 weight. %, More preferably 15 to 0.02% by weight, still more preferably 10 to 0.05% by weight. When the rubber layer is formed by the thermal coagulation method using the composition of the obtained latex by setting the content ratio of the emulsifier to the above range, the rubber layer is formed better, whereby the rubber layer is a fiber group. When the laminated body formed by penetrating the material is used by attaching it to a hand as a protective glove or the like, the unpleasant feeling to the hand can be further reduced, and the comfort at the time of wearing is further improved. .
 また、重合体ラテックスには、上述した感熱凝固剤に加えて、感熱凝固剤以外の増粘剤を適宜配合してもよい。このような増粘剤としては、特に限定されないが、たとえば、ポリビニルアルコール、ポリビニルピロリドン等のビニル系化合物;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩等のセルロース誘導体;ポリカルボン系酸化合物およびそのナトリウム塩;ポリエチレングリコールエーテル等のポリオキシエチレン誘導体;等が挙げられる。 In addition to the above-mentioned thermosensitive coagulant, a thickener other than the thermosensitive coagulant may be appropriately blended in the polymer latex. Examples of such thickeners include, but are not limited to, vinyl compounds such as polyvinyl alcohol and polyvinyl pyrrolidone; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose salts; polycarboxylic acid compounds and sodium thereof Salts; polyoxyethylene derivatives such as polyethylene glycol ether; and the like.
 本発明の積層体を製造する方法としては、上述したように、浸漬用型上に支持した繊維基材を、加熱させた状態で、重合体ラテックスに接触させることで、繊維基材を構成する繊維の間に重合体ラテックスを十分に浸透させるとともに、加熱された繊維基材および浸漬用型に重合体ラテックスを接触させることでゲル化および凝固させ、必要に応じて乾燥させることにより、繊維基材の一方の面から他方の面まで貫通するゴム層を形成することができ、これにより、繊維基材とゴム層とからなる積層体を得る方法を用いる。また、ゴム層は、複数回積層させた多層構造であってもよい。繊維基材を重合体ラテックスに接触させる方法としては、特に限定されないが、たとえば、予め、所望の形状の浸漬用型上に繊維基材を装着等によって支持した状態で、繊維基材を重合体ラテックスに浸漬させる方法などが挙げられる。なお、重合体ラテックスとして、架橋剤を添加したものを用いる場合には、重合体ラテックスとして、予め熟成(前加硫ともいう。)させたものを用いてもよい。 As a method of manufacturing the laminate of the present invention, as described above, the fiber substrate supported on the immersion mold is contacted with the polymer latex in a heated state to constitute the fiber substrate. By causing the polymer latex to sufficiently penetrate between the fibers and causing the polymer latex to come into contact with the heated fiber base and the immersion mold, gelation and solidification are carried out, and if necessary, the fiber base is It is possible to form a rubber layer penetrating from one side of the material to the other side, thereby using a method of obtaining a laminate comprising a fiber base and a rubber layer. In addition, the rubber layer may have a multilayer structure laminated a plurality of times. The method for bringing the fiber substrate into contact with the polymer latex is not particularly limited, but, for example, the fiber substrate is supported in advance by mounting the fiber substrate on a dipping mold of a desired shape, the polymer A method of immersing in latex may, for example, be mentioned. In addition, when using what added the crosslinking agent as a polymer latex, you may use what was made to ripen in advance (it is also called pre-vulcanization) as a polymer latex.
 繊維基材を支持する浸漬用型としては、特に限定されないが、材質は磁器製、ガラス製、金属製、プラスチック製など種々のものを用いることができる。浸漬用型の形状は、最終製品の形状に合わせて、所望の形状とすればよい。たとえば、ゴム層を有する積層体が、保護手袋である場合には、繊維基材を被せる浸漬用型として、手首から指先までの形状を有する浸漬用型など、各種の手袋用の浸漬用型を用いることが好ましい。 The immersion mold for supporting the fiber substrate is not particularly limited, but various materials such as porcelain, glass, metal and plastic can be used. The shape of the immersion mold may be a desired shape in accordance with the shape of the final product. For example, when the laminate having the rubber layer is a protective glove, an immersion mold for covering various types of gloves, such as an immersion mold having a shape from the wrist to the fingertip, is used as an immersion mold for covering the fiber substrate. It is preferred to use.
 繊維基材を重合体ラテックスに接触させる際には、予め浸漬用型および繊維基材を加熱(予熱ともいう)しておき、浸漬用型上に支持された繊維基材を、加熱した状態で、重合体ラテックスに接触させる。重合体ラテックスに接触させる際における、浸漬用型上に支持された繊維基材の温度(予熱温度ともいう)は、好ましくは30~100℃、より好ましくは40~95℃、さらに好ましくは45~90℃、特に好ましくは50~90℃である。浸漬用型上に支持された繊維基材の予熱温度を上記範囲とすることにより、重合体ラテックスに接触させる直前の浸漬用型上に支持された繊維基材の温度を以下の好ましい範囲とすることができる。重合体ラテックスに接触させる直前の浸漬用型上に支持された繊維基材の温度は、好ましくは25~100℃、より好ましくは35~95℃、さらに好ましくは40~90℃、特に好ましくは45~90℃である。浸漬用型上に支持された繊維基材の温度を上記範囲とすることにより、重合体ラテックスを用いて感熱凝固法によりゴム層を形成する場合に、ゴム層がより均一に形成され、これにより、ゴム層が繊維基材を貫通してなる保護手袋等の積層体を、手に装着した際に、手への不快な感触を低減することができるようになり、装着時の快適性がより向上する。 When the fiber substrate is brought into contact with the polymer latex, the immersion die and the fiber substrate are previously heated (also referred to as preheating), and the fiber substrate supported on the immersion die is heated. , In contact with the polymer latex. The temperature (also referred to as the preheating temperature) of the fiber substrate supported on the immersion mold at the time of contacting with the polymer latex is preferably 30 to 100 ° C., more preferably 40 to 95 ° C., still more preferably 45 to 45 ° C. 90 ° C., particularly preferably 50 to 90 ° C. By setting the preheating temperature of the fiber base material supported on the immersion mold to the above range, the temperature of the fiber base material supported on the immersion mold just before contacting with the polymer latex is made the following preferable range be able to. The temperature of the fiber substrate supported on the immersion mold immediately before contacting with the polymer latex is preferably 25 to 100 ° C., more preferably 35 to 95 ° C., still more preferably 40 to 90 ° C., particularly preferably 45 It is ~ 90 ° C. By setting the temperature of the fiber base material supported on the immersion mold in the above range, the rubber layer is formed more uniformly when the rubber layer is formed by the thermal coagulation method using the polymer latex When a laminate such as a protective glove in which the rubber layer penetrates the fiber substrate is attached to the hand, the unpleasant feel to the hand can be reduced, and the comfort when attached is more enhanced. improves.
 また、繊維基材を重合体ラテックスに接触させた後、繊維基材に付着した重合体ラテックスを乾燥させることが好ましい。この際における乾燥温度は、特に限定されないが、好ましくは10~80℃、より好ましくは15~80℃である。また、乾燥時間は、特に限定されないが、好ましくは5秒間~120分間、より好ましくは10秒間~60分間である。 Moreover, after contacting a fiber base material with polymer latex, it is preferable to dry the polymer latex adhering to the fiber base material. Although the drying temperature in this case is not particularly limited, it is preferably 10 to 80 ° C., more preferably 15 to 80 ° C. The drying time is not particularly limited, but preferably 5 seconds to 120 minutes, more preferably 10 seconds to 60 minutes.
 さらに、繊維基材を重合体ラテックスに浸漬させ、乾燥した後に、さらに繊維基材を重合体ラテックスに浸漬させ、複数回積層させた多層構造としてもよい。 Furthermore, the fiber substrate may be dipped in the polymer latex and dried, and then the fiber substrate may be dipped in the polymer latex to form a multilayer structure in which the fiber substrate is laminated a plurality of times.
 また、重合体ラテックスに架橋剤を配合した場合には、必要に応じて、加熱することにより架橋させてもよい。 Moreover, when a crosslinking agent is mix | blended with polymer latex, you may make it bridge | crosslink by heating as needed.
 さらに、繊維基材を浸漬用型により支持した状態でゴム層を形成した場合には、ゴム層が形成された繊維基材を、浸漬用型から脱着することによって、積層体を得ることができる。脱着方法としては、手で浸漬用型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。
 このようにして、ゴム層を有する積層体の一例としての、繊維基材とゴム層とを有する積層体を得ることができる。
Furthermore, when a rubber layer is formed in the state which supported the fiber base material by the immersion type | mold, a laminated body can be obtained by desorbing the fiber base material in which the rubber layer was formed from the immersion type | mold. . As the desorption method, it is possible to employ a method of peeling off from the immersion mold by hand, or peeling by means of water pressure or pressure of compressed air.
Thus, a laminate having a fiber base and a rubber layer can be obtained as an example of a laminate having a rubber layer.
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明はこの実施例に限られるものではない。以下において、特記しない限り、「部」は重量基準である。物性および特性の試験または評価方法は以下のとおりである。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples. In the following, unless otherwise stated, "parts" is by weight. The test or evaluation method of physical properties and characteristics is as follows.
 浸透ゴム層の厚みt 、および表面ゴム層の厚みt
 保護手袋(積層体)について、中指の先から12cmの掌部分のゴム層が積層された断面を、光学顕微鏡(製品名「VHX-200」、キーエンス社製)を用いて観察することで、浸透ゴム層の厚みt、および表面ゴム層の厚みtを測定した。具体的な測定方法について図1を参照して説明すると、浸透ゴム層の厚みtは、繊維基材の表面から、浸透したゴムの最深部までの距離を、10カ所測定し、測定結果の数平均値を算出することにより求めた。また、表面ゴム層の厚みtは、繊維基材の表面から、ゴム層の表面までの距離を、10カ所測定し、測定結果の数平均値を算出することにより求めた。
Thickness t 1 of the penetration rubber layer and thickness t 2 of the surface rubber layer
The protective glove (laminate) is penetrated by observing the cross section of the rubber layer of the palm portion of 12 cm from the tip of the middle finger by using an optical microscope (product name “VHX-200”, manufactured by Keyence Corporation) The thickness t 1 of the rubber layer and the thickness t 2 of the surface rubber layer were measured. Referring to FIG. 1 for specific measuring method, the thickness t 1 of the permeation rubber layer from the surface of the fiber substrate, the distance to the deepest penetration rubber, measured 10 locations, the measurement results It calculated | required by calculating a number average value. The thickness t 2 of the surface rubber layer, the surface of the fiber substrate, the distance to the surface of the rubber layer was measured 10 locations were determined by calculating the number average value of the measurement results.
 液垂れ
 繊維基材をディップ成形用ラテックス組成物に浸漬させた状態から引き上げた後、繊維基材に付着したディップ成形用ラテックス組成物が、凝固するまでの間に、繊維基材から滴下した否かを目視にて確認することで、液垂れの有無を評価した。また、ディップ成形用ラテックス組成物から引き上げた繊維基材について、引き上げた時点から、繊維基材に付着したディップ成形用ラテックス組成物が垂れ始めるまでの時間(ディップ成形用ラテックス組成物が重力により変形し始めるまでの時間)を計測した。
After pulling up from a state in which the liquid dripping fiber base material is immersed in the dip molding latex composition, the dip molding latex composition attached to the fiber base material is dropped from the fiber base material until it solidifies. The presence of dripping was evaluated by visually checking the scale. In addition, for the fiber base material pulled up from the dip molding latex composition, the time from when it is pulled up to when the dip molding latex composition attached to the fiber base material starts to sag (the dip molding latex composition is deformed by gravity) The time to start doing was measured.
 裏抜け
 保護手袋(積層体)について、繊維基材の一方の面から浸透したゴム層の少なくとも一部が、繊維基材を貫通しての他方の面まで到達しているか否かを目視にて確認することで、裏抜けの有無を評価した。
In the case of the protective gloves (laminate), it is visually observed whether at least a part of the rubber layer which has permeated from one surface of the fiber substrate reaches the other surface through the fiber substrate. By checking, the presence or absence of strikethrough was evaluated.
 装着性
 装着性の評価は、保護手袋(積層体)を、実際に手に着用して清掃や運搬等の簡易的な作業した後、手に感じる疲労感をアンケートすることにより行った。10人を対象として実施し、着用時に疲労を感じた人数を集計し、装着時疲労度として以下の基準で評価した。
  良好:疲労を感じた人数が3人未満
   可:疲労を感じた人数が3人以上6人未満
  不良:疲労を感じた人数が6人以上
Wearability Evaluation of wearability was performed by actually wearing protective gloves (laminated body) and performing simple operations such as cleaning and transportation, and then surveying the feeling of fatigue felt by the hands. We carried out for 10 people and counted the number of people who felt fatigue at the time of wearing, and evaluated it by the following criteria as fatigue degree at the time of wearing.
Good: The number of people who felt fatigue is less than 3 people Allowed: The number of people who felt fatigue is 3 or more and less than 6 people Poor: The number of people who felt fatigue is 6 or more
 装着快適性
 装着快適性の評価は、実施例及び比較例において製造した保護手袋を、実際に手に着用して清掃や運搬等の簡易的な作業した後、手に感じる不快な感触をアンケートすることにより行った。10人を対象として実施し、微小な突き刺しに起因する不快な感触を感じた人数を集計した。結果を表1に示す。
Wearing Comfort Wearing comfort is evaluated by actually wearing the protective gloves manufactured in the examples and comparative examples and performing simple operations such as cleaning and transportation, and then questioning the unpleasant feel felt by the hands. It went by. The survey was conducted for 10 people, and the number of people who felt an unpleasant feel due to a small stick was counted. The results are shown in Table 1.
 柔軟性
 保護手袋(積層体)を10人にそれぞれ着用してもらい、その柔軟性を下記の5段階の評価点で評価してもらい、評価点の平均値を求め、評価点の平均値が最も近いものを、各実施例における評価点とした(たとえば、平均値が4.1である場合には、「4:柔らかい」等とした。)。
  5:非常に柔らかい
  4:柔らかい
  3:やや柔らかい
  2:硬い
  1:非常に硬い
Ten people wear flexible protective gloves (laminates), and their flexibility is evaluated by the following five-point evaluation points, and the average value of the evaluation points is determined, and the average value of the evaluation points is the best. The near thing was made into the evaluation point in each Example (For example, when average value is 4.1, it was set as "4: soft" etc.).
5: very soft 4: soft 3: somewhat soft 2: hard 1: very hard
 耐摩耗性
 摩耗試験はEN388に記載の方法に則って、マーチンデール式摩耗試験機(製品名「STM633」、SATRA社製)を用いて評価を実施した。具体的には、保護手袋(積層体)について、所定の加重をかけながら摩擦を繰り返し、破損までの摩擦回数を得た。破損に至るまでの摩擦回数に従い、レベル0からレベル4までのレベルに分けられ、レベルが高いほど耐摩耗性に優れる。
  LEVEL 4:回転数8,000回転以上
  LEVEL 3:回転数2,000回転以上、8,000回転未満
  LEVEL 2:回転数500回転以上、2,000回転未満
  LEVEL 1:回転数100回転以上、500回転未満
  LEVEL 0:回転数100回転未満
Abrasion Resistance The abrasion test was evaluated according to the method described in EN 388, using a Martindale-type abrasion tester (product name “STM633, manufactured by SATRA”). Specifically, with respect to a protective glove (laminate), friction was repeated while applying a predetermined load, and the number of times of friction until breakage was obtained. It is divided into levels from level 0 to level 4 according to the number of times of friction leading to breakage, and the higher the level, the better the abrasion resistance.
LEVEL 4: Number of rotations 8,000 or more LEVEL 3: Number of rotations 2,000 or more, less than 8,000 rotations LEVEL 2: Number of rotations 500 or more, less than 2,000 rotations LEVEL 1: Number of rotations 100 or more, 500 Less than rotation LEVEL 0: less than 100 rotations
 実施例1
 ディップ成形用ラテックス組成物の調製
 重合体ラテックスとして、アクリロニトリル単位の含有割合が35重量%であるニトリルゴム(a)のラテックス(商品名「Nipol LX511A」、日本ゼオン社製、乳化剤:ノニオン性界面活性剤)を準備し、ラテックス中のニトリルゴム(a)100部に対して、それぞれ固形分換算で、乳化剤としてのポリオキシエチレンアルキルエーテル(商品名「エマルゲン 709」、曇点56℃、花王社製)2.50部、感熱凝固剤としてのポリエーテル変性シリコーンオイル(商品名「TPA 4380」、東芝シリコーン社製)0.3部、消泡剤(商品名「SM5512」、東レ・ダウコーニング社製)0.01部、コロイド硫黄(細井化学工業社製)1.00部、ジブチルジチオカルバミン酸亜鉛(大内新興化学工業社製)0.50部、酸化亜鉛1.50部、酸化チタン3.00部となるように、各配合剤の水分散液を調製し、調製した水分散液を添加し、ラテックス組成物を得た。なお、各配合剤の水分散液を添加する際には、ラテックスを撹拌した状態で、各配合剤の水分散液を所定の量をゆっくり添加した。その後、ラテックス組成物の固形分濃度を45重量%に調整し、次いで、温度30℃、48時間の条件で、熟成(前加硫ともいう。)を施すことで、B型粘度計を使用し、温度25℃、回転数6rpmの条件で測定される粘度が1,800mPa・sであるディップ成形用ラテックス組成物を得た。
Example 1
Preparation of Latex Composition for Dip Molding A latex of nitrile rubber (a) having a content of acrylonitrile unit of 35% by weight as a polymer latex (trade name "Nipol LX511A, manufactured by Nippon Zeon Co., Emulsifier: nonionic surface activity Preparation, and 100 parts of nitrile rubber (a) in the latex, each in terms of solid content, in terms of solid content, polyoxyethylene alkyl ether as an emulsifier (trade name "Emulgen 709", cloud point 56 ° C, manufactured by Kao Corporation 2.50 parts, polyether-modified silicone oil (trade name "TPA 4380" manufactured by Toshiba Silicone Co., Ltd.) as a heat sensitive coagulant, 0.3 parts, antifoamer (trade name "SM5512" manufactured by Toray Dow Corning Co., Ltd.) 0.01 parts, colloidal sulfur (made by Hosoi Chemical Industries, Ltd.) 1.00 parts, dibutyl dithiocarbamic acid An aqueous dispersion of each compounding agent was prepared to have 0.50 parts (manufactured by Ouchi Emerging Chemical Industry Co., Ltd.), 1.50 parts of zinc oxide and 3.00 parts of titanium oxide, and the prepared aqueous dispersion was added To obtain a latex composition. When the aqueous dispersion of each compounding agent was added, a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while stirring the latex. Thereafter, the solid content concentration of the latex composition is adjusted to 45% by weight, and then aging (also called pre-vulcanization) is performed under conditions of a temperature of 30 ° C. for 48 hours to use a B-type viscometer. A dip molding latex composition having a viscosity of 1,800 mPa · s measured at 25 ° C. and 6 rpm is obtained.
 積層体(保護手袋)の製造
 得られたディップ成形用ラテックス組成物を用いて、金属製手袋型に被せた手袋形状の繊維基材(材質:ナイロン、繊維基材の基材層平均厚みd:0.70mm、13ゲージ)に対して、感熱凝固法により、ゴム層を形成した。具体的には、金属製手袋型に被せた繊維基材を、76℃に予熱した後、上記のディップ成形用ラテックス組成物に2秒間浸漬し、ディップ成形用ラテックス組成物から引き上げた後、上述した方法に従い、液垂れの評価を行った。なお、ディップ直前の繊維基材の温度は、75℃であった。その後、繊維基材に付着したディップ成形用ラテックス組成物を、温度80℃、30分間の条件で乾燥させることでゴム層を形成した。次いで、温度100℃、60分間の条件で熱処理を行う事で、ゴム層中のニトリルゴムに架橋処理を施し、ゴム層を形成した。次いで、ゴム層が形成された繊維基材を金属製手袋型から剥がすことで、保護手袋(積層体)を得た。得られた保護手袋(積層体)について、上述した方法に従い、浸透ゴム層の厚みtの測定、表面ゴム層の厚みtの測定、裏抜け、装着性(装着時疲労度)、装着快適性、柔軟性、および耐摩耗性の各評価を行った。結果を表1に示す。
Production of Laminate (Protective Glove) A glove-shaped fiber base (material: nylon, base layer average thickness of fiber base d) coated on a metal glove type using the obtained latex composition for dip molding A rubber layer was formed by a thermal coagulation method at 0.70 mm, 13 gauge). Specifically, the fiber base covered with the metal glove mold is preheated to 76 ° C., immersed in the above dip molding latex composition for 2 seconds, and pulled up from the dip molding latex composition, as described above. Evaluation of dripping was performed according to the method described above. The temperature of the fiber base immediately before dipping was 75.degree. Then, the rubber composition was formed by drying the dip molding latex composition attached to the fiber substrate under conditions of a temperature of 80 ° C. for 30 minutes. Next, heat treatment was performed at a temperature of 100 ° C. for 60 minutes to crosslink the nitrile rubber in the rubber layer to form a rubber layer. Next, the fiber base on which the rubber layer was formed was peeled off from the metal glove mold to obtain a protective glove (laminate). About the obtained protective glove (laminated body), according to the method mentioned above, measurement of thickness t 1 of a penetration rubber layer, measurement of thickness t 2 of a surface rubber layer, strike-through, wearing property (wearing degree at wearing), wearing comfort Each evaluation of the property, the flexibility, and the abrasion resistance was performed. The results are shown in Table 1.
 実施例2
 繊維基材を被せた金属製手袋型をディップ成形用ラテックス組成物に浸漬する際に、金属製手袋型に被せた繊維基材の加熱温度(予熱温度)を、76℃から71℃に変更した以外は、実施例1と同様にして、保護手袋(積層体)を得て、同様に評価を行った。なお、ディップ直前の繊維基材の温度は、70℃であった。結果を表1に示す。
Example 2
The heating temperature (preheating temperature) of the fiber base covered with the metal glove mold was changed from 76 ° C. to 71 ° C. when the metal glove mold covered with the fiber base was immersed in the dip molding latex composition. A protective glove (laminate) was obtained and evaluated in the same manner as in Example 1 except for the above. The temperature of the fiber base immediately before dipping was 70.degree. The results are shown in Table 1.
 実施例3
 繊維基材を被せた金属製手袋型をディップ成形用ラテックス組成物に浸漬する際に、金属製手袋型に被せた繊維基材の加熱温度(予熱温度)を、76℃から56℃に変更した以外は、実施例1と同様にして、保護手袋(積層体)を得て、同様に評価を行った。なお、ディップ直前の繊維基材の温度は、55℃であった。結果を表1に示す。
Example 3
The heating temperature (preheating temperature) of the fiber base covered with the metal glove mold was changed from 76 ° C. to 56 ° C. when the metal glove mold covered with the fiber base was immersed in the dip molding latex composition. A protective glove (laminate) was obtained and evaluated in the same manner as in Example 1 except for the above. The temperature of the fiber base immediately before dipping was 55.degree. The results are shown in Table 1.
 比較例1
 重合体ラテックスとして、アクリロニトリル単位の含有割合が35重量%であるニトリルゴム(a)のラテックス(商品名「Nipol LX511A」、日本ゼオン社製)を準備し、ラテックス中のニトリルゴム(a)100部に対して、それぞれ固形分換算で、消泡剤(商品名「SM5512」、東レ・ダウコーニング社製)0.01部、コロイド硫黄(細井化学工業社製)1.00部、ジブチルジチオカルバミン酸亜鉛(大内新興化学工業社製)0.50部、酸化亜鉛1.50部、酸化チタン3.00部となるように、各配合剤の水分散液を調製し、調製した水分散液を添加し、ラテックス組成物を得た。
 なお、各配合剤の水分散液を添加する際には、ラテックスを撹拌した状態で、各配合剤の水分散液を所定の量をゆっくり添加した。次いで、温度30℃、48時間の条件で、熟成(前加硫ともいう。)を施した。そして、熟成後のラテックス組成物に対して、増粘剤として、ポリアクリル酸ナトリウム(商品名「アロン A-7100」、東亜合成(株)製)を0.4重量%の割合でさらに添加し、B型粘度計を使用し、温度25℃、回転数6rpmの条件で測定される粘度が1,500mPa・sであるディップ成形用ラテックス組成物を得た。
Comparative Example 1
A latex of nitrile rubber (a) (trade name "Nipol LX511A", manufactured by Nippon Zeon Co., Ltd.) having a content ratio of acrylonitrile units of 35% by weight is prepared as a polymer latex, and 100 parts of nitrile rubber (a) in the latex To 0.01 parts of a defoaming agent (trade name “SM5512” manufactured by Toray Dow Corning Co., Ltd.), 1.00 parts of colloidal sulfur (manufactured by Hosoi Chemical Industry Co., Ltd.), and zinc dibutyldithiocarbamate. An aqueous dispersion of each compounding agent was prepared to have 0.50 parts (manufactured by Ouchi Emerging Chemical Industry Co., Ltd.), 1.50 parts of zinc oxide and 3.00 parts of titanium oxide, and the prepared aqueous dispersion was added To obtain a latex composition.
When the aqueous dispersion of each compounding agent was added, a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while stirring the latex. Then, aging (also referred to as pre-vulcanization) was performed under conditions of a temperature of 30 ° C. and 48 hours. Then, to the latex composition after aging, sodium polyacrylate (trade name “ARON A-7100”, manufactured by Toagosei Co., Ltd.) as a thickener is further added at a ratio of 0.4% by weight. A dip molding latex composition having a viscosity of 1,500 mPa · s measured under conditions of a temperature of 25 ° C. and a rotational speed of 6 rpm was obtained using a B-type viscometer.
 次いで、手袋形状の繊維基材(材質:ナイロン、繊維基材の基材層平均厚みd:0.70mm、13ゲージ)に対して、凝着浸漬法により、ゴム層を形成した。具体的には、金属製手袋型に被せた手袋形状の繊維基材を、42℃に加熱した後、凝固剤溶液としての硝酸カルシウムのメタノール溶液(硝酸カルシウム濃度:2.0重量%)に5秒間浸漬し、凝固剤溶液から引き上げた後、温度30℃、60秒間の条件で乾燥させた。その後、金属製手袋型に被せた繊維基材を、上記のディップ成形用ラテックス組成物に3秒間浸漬し、ディップ成形用ラテックス組成物から引き上げた後、温度30℃、30分間の条件で乾燥させることでゴム層を形成した。なお、ディップ直前の繊維基材の温度は、23℃であった。次いで、温度100℃、60分間の条件で熱処理を行う事で、ゴム層中のニトリルゴムに架橋処理を施し、ゴム層を形成した。次いで、ゴム層が形成された繊維基材を金属製手袋型から剥がすことで、保護手袋(積層体)を得た。得られた保護手袋(積層体)について、実施例1と同様に評価を行った。結果を表1に示す。なお、比較例1の保護手袋は、上述した方法により測定した浸透ゴム層の厚みtは、繊維基材の基材層平均厚みd(0.70mm)よりも薄いものとなったが、部分的に裏抜けが発生しているものであった。 Next, a rubber layer was formed on the glove-shaped fiber base material (material: nylon, base layer average thickness d of fiber base material: 0.70 mm, 13 gauge) by the adhesion immersion method. Specifically, after heating a glove-shaped fiber substrate covered with a metal glove type to 42 ° C., a calcium nitrate methanol solution (calcium nitrate concentration: 2.0% by weight) as a coagulant solution is used. It was immersed for a second, pulled up from the coagulant solution, and dried at a temperature of 30 ° C. for 60 seconds. Thereafter, the fiber base covered with the metal glove mold is dipped in the above dip molding latex composition for 3 seconds, pulled up from the dip molding latex composition, and then dried under conditions of temperature 30 ° C. for 30 minutes. Formed a rubber layer. The temperature of the fiber base immediately before dipping was 23 ° C. Next, heat treatment was performed at a temperature of 100 ° C. for 60 minutes to crosslink the nitrile rubber in the rubber layer to form a rubber layer. Next, the fiber base on which the rubber layer was formed was peeled off from the metal glove mold to obtain a protective glove (laminate). The obtained protective gloves (laminate) were evaluated in the same manner as in Example 1. The results are shown in Table 1. The protective gloves of Comparative Example 1, the thickness t 1 of the permeation rubber layer measured by the method described above has become thinner than the base layer the average thickness of the fiber base material d (0.70 mm), part Betrayal had occurred.
 比較例2
 ディップ成形用ラテックス組成物を作製するためのニトリルゴムとして、ニトリルゴム(a)に代えて、アクリロニトリル単位の含有割合が27重量%であるニトリルゴム(b)(商品名「Nipol LX550L」、日本ゼオン社製)を使用した以外は、比較例1と同様にして、保護手袋(積層体)を得て、同様に評価を行った。なお、ディップ直前の繊維基材の温度は、22℃であった。結果を表1に示す。なお、比較例2の保護手袋は、上述した方法により測定した浸透ゴム層の厚みtは、繊維基材の基材層平均厚みd(0.70mm)よりも薄いものとなったが、部分的に裏抜けが発生しているものであった。
Comparative example 2
Nitrile rubber (b) (trade name “Nipol LX550L”, Nippon Zeon, having a content ratio of acrylonitrile units of 27% by weight, instead of nitrile rubber (a), as nitrile rubber for producing a latex composition for dip molding A protective glove (laminate) was obtained and evaluated in the same manner as in Comparative Example 1 except that a company-made product was used. The temperature of the fiber base immediately before dipping was 22 ° C. The results are shown in Table 1. The protective gloves of Comparative Example 2, the thickness t 1 of the permeation rubber layer measured by the method described above has become thinner than the base layer the average thickness of the fiber base material d (0.70 mm), part Betrayal had occurred.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、繊維基材を貫通するゴム層を備える積層体を製造する方法として、上述した感熱凝固法を用いた場合には、得られる積層体は、液垂れの発生が防止されてゴム層が良好に形成されたものであり、装着性、装着快適性、柔軟性および耐摩耗性に優れるものであった(実施例1~3)。 As shown in Table 1, when the above-mentioned thermosensitive coagulation method is used as a method of producing a laminate having a rubber layer penetrating the fiber substrate, occurrence of dripping of the resulting laminate is prevented. Rubber layer was well formed, and was excellent in the mounting property, the mounting comfort, the flexibility and the abrasion resistance (Examples 1 to 3).
 一方、繊維基材を貫通するゴム層を備える積層体を製造する方法として、繊維基材に、凝固剤溶液を付着させた後、凝固剤溶液が付着した繊維基材に、重合体ラテックスを接触させて重合体ラテックス中の重合体を凝固させることで、繊維基材上にゴム層を形成する方法を用いた場合には、ゴム層を形成する際に重合体ラテックスの液垂れが発生してしまい、得られる積層体は、装着性および柔軟性がいずれも劣るものであった(比較例1,2)。特に、ディップ成形用ラテックス組成物を作製するためのニトリルゴムとして、アクリロニトリル単位の含有割合が比較的少ないものを用いた場合には、得られる積層体は、装着快適性にも劣るものであった(比較例2)。 On the other hand, as a method of producing a laminate having a rubber layer penetrating the fiber substrate, after the coagulant solution is attached to the fiber substrate, the polymer latex is brought into contact with the fiber substrate to which the coagulant solution is attached. When the method of forming the rubber layer on the fiber base by coagulating the polymer in the polymer latex is used, dripping of the polymer latex occurs when the rubber layer is formed. As a result, the resulting laminate was inferior in both the mounting property and the flexibility (Comparative Examples 1 and 2). In particular, in the case of using a nitrile rubber having a relatively small content ratio of acrylonitrile units as a nitrile rubber for producing a latex composition for dip molding, the obtained laminate was also inferior in wearing comfort (Comparative example 2).

Claims (6)

  1.  基材と、前記基材の一方の面から他方の面まで貫通して形成されたゴム層と、を備える積層体の製造方法であって、
     浸漬用型上に支持された前記基材を、加熱した状態で、重合体ラテックスに接触させることで、前記重合体ラテックスを構成する重合体を前記基材に浸透させつつ、浸透した前記重合体を凝固させることにより、前記ゴム層を形成する凝固工程を備える積層体の製造方法。
    A method for producing a laminate, comprising: a base material; and a rubber layer formed to penetrate from one surface of the base material to the other surface of the base material,
    The above-mentioned polymer which permeated the polymer which constitutes the above-mentioned polymer latex to the above-mentioned base material by making the above-mentioned base material supported on the mold for immersion contact the polymer latex in a heated state The manufacturing method of the laminated body provided with the coagulation | solidification process which forms the said rubber layer by coagulating.
  2.  前記凝固工程において、前記浸漬用型上に支持された前記基材を、30℃以上に加熱した状態で、前記重合体ラテックスを接触させる請求項1に記載の積層体の製造方法。 The method for producing a laminate according to claim 1, wherein the polymer latex is brought into contact in a state in which the base material supported on the immersion mold is heated to 30 ° C. or more in the coagulation step.
  3.  前記凝固工程において、前記浸漬用型上に支持された前記基材を、45℃以上に加熱した状態で、前記重合体ラテックスを接触させる請求項1または2に記載の積層体の製造方法。 The method for producing a laminate according to claim 1 or 2, wherein the polymer latex is brought into contact in a state where the substrate supported on the immersion mold is heated to 45 ° C or more in the coagulating step.
  4.  前記重合体ラテックスを構成する重合体がニトリルゴムである請求項1~3のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 3, wherein the polymer constituting the polymer latex is a nitrile rubber.
  5.  前記重合体ラテックスがノニオン性界面活性剤を含有する請求項1~4のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 4, wherein the polymer latex contains a nonionic surfactant.
  6.  請求項1~5のいずれかに記載の製造方法により得られる積層体を用いる保護手袋の製造方法。 A method of producing a protective glove using a laminate obtained by the method according to any one of claims 1 to 5.
PCT/JP2018/027768 2017-07-27 2018-07-24 Laminate production method WO2019022092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019532650A JP7163919B2 (en) 2017-07-27 2018-07-24 Laminate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145395 2017-07-27
JP2017-145395 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019022092A1 true WO2019022092A1 (en) 2019-01-31

Family

ID=65039707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027768 WO2019022092A1 (en) 2017-07-27 2018-07-24 Laminate production method

Country Status (2)

Country Link
JP (1) JP7163919B2 (en)
WO (1) WO2019022092A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088542A (en) * 2000-09-19 2002-03-27 Sumitomo Rubber Ind Ltd Working glove and method for producing the same
JP2002105722A (en) * 2000-09-25 2002-04-10 Sumitomo Rubber Ind Ltd Gloves for operation
JP2004107813A (en) * 2002-09-17 2004-04-08 Sumitomo Rubber Ind Ltd Supporting glove
JP2004300596A (en) * 2003-03-31 2004-10-28 Showa Co Aramid-made work glove

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660260B2 (en) * 1987-10-16 1994-08-10 第一工業製薬株式会社 Method for producing polyurethane foam
JP2002103355A (en) * 2000-09-29 2002-04-09 Sumitomo Rubber Ind Ltd Method for producing rubber product using deproteinized natural rubber latex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088542A (en) * 2000-09-19 2002-03-27 Sumitomo Rubber Ind Ltd Working glove and method for producing the same
JP2002105722A (en) * 2000-09-25 2002-04-10 Sumitomo Rubber Ind Ltd Gloves for operation
JP2004107813A (en) * 2002-09-17 2004-04-08 Sumitomo Rubber Ind Ltd Supporting glove
JP2004300596A (en) * 2003-03-31 2004-10-28 Showa Co Aramid-made work glove

Also Published As

Publication number Publication date
JP7163919B2 (en) 2022-11-01
JPWO2019022092A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
CN107848273B (en) Rubber molded article and protective glove
JPWO2016104057A1 (en) Dip molding latex composition and dip molded product
JP7167917B2 (en) Laminate manufacturing method
JP6561999B2 (en) Dip molded product
JP6922923B2 (en) Method of manufacturing a laminate
WO2020111097A1 (en) Latex composition for dip molding and dip-molded article
WO2019022092A1 (en) Laminate production method
WO2019139087A1 (en) Latex composition
JP2020050810A (en) Polymer latex and laminate
CN112739761B (en) Polymer latex and laminate
JP7095601B2 (en) Laminate
JP7023111B2 (en) Manufacturing method of dip molded products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532650

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839313

Country of ref document: EP

Kind code of ref document: A1