JP2004300458A - Steel for high-frequency induction hardening superior in low-temperature impact resistance at high-frequency induction hardened portion, and steel bar - Google Patents

Steel for high-frequency induction hardening superior in low-temperature impact resistance at high-frequency induction hardened portion, and steel bar Download PDF

Info

Publication number
JP2004300458A
JP2004300458A JP2003091570A JP2003091570A JP2004300458A JP 2004300458 A JP2004300458 A JP 2004300458A JP 2003091570 A JP2003091570 A JP 2003091570A JP 2003091570 A JP2003091570 A JP 2003091570A JP 2004300458 A JP2004300458 A JP 2004300458A
Authority
JP
Japan
Prior art keywords
less
steel
excluding
low
impact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003091570A
Other languages
Japanese (ja)
Other versions
JP4025229B2 (en
Inventor
Goro Anami
吾郎 阿南
Shoichi Ikeda
正一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003091570A priority Critical patent/JP4025229B2/en
Publication of JP2004300458A publication Critical patent/JP2004300458A/en
Application granted granted Critical
Publication of JP4025229B2 publication Critical patent/JP4025229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a low-temperature impact resistance at a high-frequency induction hardened portion, while maintaining a high quenching hardness of the high-frequency induction hardened portion. <P>SOLUTION: The steel having the low-temperature impact resistance balanced with the high quenching hardness of the high-frequency induction hardened portion comprises 0.30-0.5% C, 0.01% or more but less than 0.40% Si, 0.05-1.5% Mn, 0.06% or less (excluding 0%) S, 0.010% or less (excluding 0%) P and the balance Fe with unavoidable impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ステアリングラック、歯車などの高周波焼入部品(特に歯部が高周波焼入された部品)を製造するのに有用な高周波焼入部の低温耐衝撃特性に優れた高周波焼入用鋼及び棒鋼、並びにこれら高周波焼入用鋼、棒鋼などから製造される高周波焼入部品に関するものである。
【0002】
【従来の技術】
ステアリングラック、歯車などの歯部を有する部品は耐摩耗性などを高めるため歯部が高周波焼入されており、例えばステアリングラックの歯部は、約600HV程度にまで硬さが高められている。ところで一般的に鋼は硬さが増大する程、耐衝撃特性は低下するが、近年、高い歯部硬さを有するにも拘わらず、優れた耐衝撃特性をも両立できるような部品が求められている。耐衝撃特性を高めることができれば、自動車が縁石に乗り上げたような場合でも、歯部の割れを防止することができる。
【0003】
特にステアリングラックは車の走行方向を決める部品であり、歯部が割れると走行方向の制御が難しくなるため、高い歯部硬さと優れた歯部耐衝撃特性の両立が強く求められている。しかも耐衝撃特性は低温になる程低下しやすいため、例えば北米などの−40℃程度となるような極寒地でも優れた歯部耐衝撃特性を達成できるような部品が求められるようになってきている。さらに近年の自動車は、パワーステアリングユニットが油圧制御から電動制御にシフトしてきている。油圧制御の場合には高い油温によってステアリングラックが暖められていたが、電動制御ではかかる暖化が期待できないため、低温時の耐衝撃特性向上に対する要求がさらに高まっている。
【0004】
特許文献1には、直接切削用高靭性非調質鋼が開示されている。しかしこの文献でいう高靭性とは、圧延後、焼入れ焼戻しを行わなくても調質材に匹敵する靭性を保てるという程度の意味であり、高周波焼入したときの耐衝撃特性、低温耐衝撃特性などについての教示はない。またこの非調質鋼は、Cr,V、Nbなどの合金元素を少なからず添加している一方、Pについての配慮はない。
【0005】
特許文献2には、低温靭性に優れた非調質棒鋼が開示されている。しかし、この文献も、フェライト・パーライト型の鋼の調質を省略したときに低温靭性が調質鋼に比べて劣ってしまうという問題点を解決しようとするものであり、その低温靭性は格別のものではない。またこの非調質鋼も、Cr、Vなどを少なからず添加している一方、Pについての配慮はない。
【0006】
特許文献3には高強度高靭性非調質鋼材が開示されており、自動車部品や機械構造部品に用いることが記載されている。しかし、この文献にいう高靭性も、従来の調質鋼を非調質鋼としたときの靭性低下を改善できるという意味であり、高周波焼入したときの耐衝撃特性、低温耐衝撃特性などについての教示はない。またこの非調質鋼は、多量のCu、Ni、Vなどが添加されている。なおこの特許文献3には、比較例としてC:約0.3〜0.4%、Si:0.22%、Mn:約0.8%、S:約0.02%、Al:約0.025%からなる鋼において、Pを0.008%又は0.016%としたものが開示されている(鋼X、Y)。しかしこれら鋼X及びYは、比較例であって自動車部品や機械構造部品に使用することを否定された鋼である。しかもPが0.008%と少ないときの靭性(鋼Y;uE20=90〜115J/cm)よりもPが0.016%と多いときの靭性(鋼X;uE20=107〜146J/cm)の方がよくなることを教示している。
【0007】
特許文献4には、Si:0.40〜1.50%、Nb:0.005〜0.050%を含有し、熱間圧延、焼入れ、及び焼戻しを所定の条件で行うことによって製造される低温靭性に優れた高硬度耐摩耗鋼が開示されている。この文献には、HB500以上の高硬度材で靭性を得るには細粒化が必要であること、しかし焼入れまま材では高靭性が得られないため、低温焼戻しが必要であること、そして焼戻し処理においてはSiとNbを組み合わせて添加することによって焼戻し脆化と焼戻し軟化を抑制する必要があることを教示している。またこの文献には、P、Sはいずれも低温靭性を低下させる有害な不純物であるとして、P≦0.010%、S≦0.005%とすることを教示している。しかしこの特許文献4にいう低温靭性とは、焼入れ・焼戻し鋼における低温靭性に過ぎない。高周波焼入を行った場合、高周波焼入組織の粒度は極めて微細(例えば、粒度番号が少なくとも10以上)になってしまうため、靭性が通常の焼入れ・焼戻し鋼よりもよくなる。結晶粒径が微細となって靭性が元々高くなっている高周波焼入用鋼において、さらに低温時の耐衝撃特性を向上させるためにどのようにすればよいかに関しては、前記特許文献4は何ら教示するところがない。しかも特許文献4の実施例の欄では、P及びSの量は常に少ないままであり、その臨界性について教示するところはない。さらに特許文献4の鋼は、Cr、Ti、Moなどが添加されている。
【0008】
特許文献5には、靭性が高い構造用・構築用強力鋼が開示されている。しかしこの文献にいう靭性も、通常の焼入れ、焼戻し材としての靭性であり、靭性挙動が異なってくる高周波焼入部の靭性(特に低温靭性)については何ら教示がない。加えて特許文献5の鋼はTaが添加されている。なおこの文献には、比較材としてC:0.32%、Si:0.30%、Mn:0.67%、P:0.007%、S:0.018%となる鋼が開示されているが、比較例であることから明らかなようにその使用が否定された鋼である。
【0009】
以上のように、特許文献1〜5の鋼は高周波焼入用鋼ではなく、従って高周波焼入部の低温耐衝撃特性がどのようになるかについても教示していない。
【0010】
一方、特許文献6には高周波焼入用鋼が開示されている。またこの特許文献6には、P及びSが靭性を低下させること、従ってPを0.010%以下、Sを0.030%以下にすることが開示されている。しかし特許文献6は疲れ限度を改善する発明であり、前記P及びSが靭性に与える影響及びその量も、疲れ限度を改善する観点から記載されているに過ぎない。従って特許文献6にも、高周波焼入部の低温耐衝撃特性を改善するための教示はない。また特許文献6では、高周波焼入によって高い表面強度を得る目的で、Siを0.40%以上となるようにしており、具体的には約1%程度も添加している。
【0011】
【特許文献1】
特許第3036061号公報(請求項1,第2頁左欄第8〜11行)
【特許文献2】
特開平6−17126号公報(請求項1〜2、段落0006、0009、0041)
【特許文献3】
特開2002−160285号公報(請求項1、段落0002〜0007、表1−1、表1−2、表2−2)
【特許文献4】
特開平8−41535号公報(請求項1、段落0009、段落0013、実施例)
【特許文献5】
特公昭39−28873号公報(請求項1、第2頁右欄第3行、第1表)
【特許文献6】
特開昭60−169544号公報(請求項1、第3頁左上第6行〜右上第3行、第2頁右上欄第20行〜左下欄第4行、第5頁左下欄第12行〜右上欄第4行)
【0012】
【発明が解決しようとする課題】
本発明の目的は、高周波焼入部の高い焼入れ硬さを維持しながら、前記高周波焼入部の低温耐衝撃特性をも改善できる高周波焼入用鋼及び棒鋼、並びにこれら高周波焼入用鋼、棒鋼などから製造される高周波焼入部品を提供する点にある。
【0013】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、高周波焼入部硬さを確保するために所定量のC、Si、及びMnが添加された特定の成分系の鋼では、驚くべきことにS及びPが低温耐衝撃特性に極めて大きな影響を及ぼすこと、すなわちS及びPを低減するだけで、ある値を境に低温耐衝撃特性が急激に向上することを見出し、本発明を完成した。なお本発明者らが知る限り、上記特定成分の鋼が高周波焼入部品(特に低温靭性が要求される高周波焼入部品、例えば極寒地で使用するステアリングラック、歯車など)の用途に使用されている例はない。
【0014】
すなわち、本発明に係る高周波焼入部の低温耐衝撃特性に優れた高周波焼入用鋼は、C:0.30〜0.5%(質量%の意、以下同じ)、Si:0.01%以上、0.40%未満、Mn:0.05〜1.5%、S:0.06%以下(0%を含まない)、P:0.010%以下(0%を含まない)を含有し、残部はFe及び不可避不純物(例えば0.05%以下のAl、0.02%以下のN)からなることを要旨とするものである。この高周波焼入用鋼は、さらに、Pb:0.3%以下(0%を含まない)、Bi:0.2%以下(0%を含まない)、Te:0.1%以下(0%を含まない)、Mg:0.01%以下(0%を含まない)、Ca:0.01%以下(0%を含まない)、REM:0.01%以下(0%を含まない)、Zr:0.3%以下(0%を含まない)などを適宜含有していてもよい。好ましい高周波焼入用鋼は、長径30μm以上の硫化物系介在物が、2mm×2mmの視野当たり、平均22個以下となっているものであり、例えば棒鋼であれば、表面から直径(D)方向に深さD/8となる部分の硫化物系介在物が前記のようになっている。
【0015】
本発明には前記高周波焼入用鋼(棒鋼など)から得られる高周波焼入部品も含まれる。
【0016】
【発明の実施の形態】
本発明の高周波焼入用鋼は、所定量のC、Si、Mn、P、及びSを含有しており、残部はFe及び不可避的不純物である。以下、各成分の量及びその限定理由について説明する。
【0017】
C:0.30〜0.5%
Cは高周波焼入部の硬さを確保するのに必要な元素である。C量は0.30%以上、好ましくは0.33%以上、さらに好ましくは0.35%以上、特に0.38%以上である。一方Cが過剰になると、脆くなって疲労強度が低下する。従ってCは、0.5%以下、好ましくは0.48%以下、さらに好ましくは0.45%以下程度とする。
【0018】
Si:0.01%以上、0.40%未満
Siは焼入性を改善し、高周波焼入部の硬さを確保するのに必要な元素である。Si量は0.01%以上、好ましくは0.1%以上、さらに好ましくは0.15%以上、特に0.18%以上である。一方Siが過剰になると、被削性を低下させるだけでなく、低温耐衝撃特性をも低下させる。従ってSi量は0.40%未満、好ましくは0.35%以下、さらに好ましくは0.30%以下とする。
【0019】
Mn:0.05〜1.5%
Mnも焼入性を改善するのに必要な元素である。Mn量は0.05%以上、好ましくは0.3%以上、さらに好ましくは0.5%以上、特に0.7%以上である。一方Mnを過剰に添加すると焼き割れが生じる場合がある。従ってMn量は1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下である。
【0020】
S:0.06%以下(0%を含まない)
本発明にとってSは極めて重要な元素である。従来、Sは靭性を低下させる元素としては知られていたが、低温耐衝撃特性との関係については知られておらず、ましてや低温耐衝撃特性が所定のS量を境にして急激に向上することについては全くの驚きであった。S量はこの臨界性を考慮して、0.06%以下、好ましくは0.058%以下、さらに好ましくは0.055%以下とする。一方、Sを0%とすることは技術的な困難性を伴う。またSはMnと共に硫化物系介在物を形成し、被削性を改善するため、かかる観点からは多い方が望ましい。従ってS量は、0%超、好ましくは0.01%以上、さらに好ましくは0.03%以上、特に0.04%%以上(例えば0.045%以上)とする。
【0021】
P:0.010%以下(0%を含まない)
Pも前記Sと同様、本発明にとって極めて重要な元素である。低温耐衝撃特性が所定のP量を境にして急激に向上することについては全くの驚きであった。P量はこの臨界性を考慮して、0.010%以下、好ましくは0.009%以下、さらに好ましくは0.008%以下とする。一方、Pを低減し過ぎても効果が飽和し、かつ脱Pコストが高くなるだけである。従ってP量は、0%超、好ましくは0.003%以上、さらに好ましくは0.005%以上、特に0.007%以上とする。
【0022】
不可避不純物
不可避不純物としては、原料(鉄鉱石など)に由来するもの、製銑・製鋼方法に由来するもの、リサイクル鋼に由来するものなどがあり、Al、N、Oなどが代表的である。特にAl及びNは重要であるため、好ましくは以下の範囲に設定する。
【0023】
Al:0.05%以下(0%を含まない)
Alは脱酸のために添加される場合があり、かかる場合は必ず鋼中に残存する。しかしAlが多くなると酸化物系介在物が増大して疲労特性が低下する。また理由は明らかでないが、Alが多くなると低温靭性が低下する傾向がある。従ってAl量は、好ましくは0.05%以下、さらに好ましくは0.03%以下、特に0.025%以下とする。
【0024】
N:0.02%以下(0%を含まず)
Nが多くなると熱間加工性が低下して鋼材の表面疵を多くしてしまう。また理由は明らかでないが、Nが多くなると低温靭性が低下する傾向がある。従ってN量は、好ましくは0.02%以下、さらに好ましくは0.01%以下、特に0.008%以下とする。なおNを0%とすることは技術的に困難である。また切削時の切屑処理性を改善する点からはN量を多くするのが望ましい。従ってN量は、例えば0.001%以上、好ましくは0.003%以上、さらに好ましくは0.004%以上とする。
【0025】
上記のような鋼は、成分の種類が少ないにも拘わらず、高周波焼入部の硬さと低温耐衝撃特性とを両立でき、製造コストの点からは最も好ましい鋼である。また必要に応じて、さらに他の元素、例えば、Pb、Bi、Te、Mg、Ca、REM、Zrなどを単独で又は2種以上組み合わせて添加してもよい。これら元素は、鋼の被削性向上に寄与する。好ましい添加量は以下の通りである。
【0026】
Pb:0.3%以下(0%を含まない)
Bi:0.2%以下(0%を含まない)
Pb、Bi(及び後述するTe)は、過度に添加すると圧延時に疵が発生しやすくなるため、この点に留意しながら添加するのが望ましい。Pbは、例えば0.3%以下、好ましくは0.2%以下、さらに好ましくは0.1%以下とする。またBiは、例えば0.2%以下、好ましくは0.15%以下、さらに好ましくは0.1%以下とする。一方、被削性向上の点からは多い程望ましい。従ってPbは、例えば0.01%以上、好ましくは0.03%以上、さらに好ましくは0.05%以上とする。Biは、例えば0.01%以上、好ましくは0.03%以上、さらに好ましくは0.05%以上とする。
【0027】
これらPb、Bi(及び後述するTe)は、単独で又は組み合わせて添加できる。
【0028】
Mg :0.01%以下(0%を含まない)
Ca :0.01%以下(0%を含まない)
REM:0.01%以下(0%を含まない)
Zr :0.3%以下(0%を含まない)
Te :0.1%以下(0%を含まない)
Mg、Ca、及びREMは、多量に添加しても鋼中にとどまらせるのが困難であり、Zrは多量に添加しても効果が飽和するため、いずれもコスト高となる。従ってMgは、例えば0.01%以下、好ましくは0.005%以下、さらに好ましくは0.003%以下とする。Caは、例えば0.01%以下、好ましくは0.005%以下、さらに好ましくは0.003%以下とする。REMは、例えば0.01%以下、好ましくは0.005%以下、さらに好ましくは0.003%以下とする。Zrは、例えば0.3%以下、好ましくは0.2%以下、さらに好ましくは0.1%以下とする。
【0029】
Teは、上記Pb及びBiと同様、過度に添加すると圧延時に疵が発生しやすくなる。従ってTeは、例えば0.1%以下、好ましくは0.05%以下、さらに好ましくは0.02%以下とする。
【0030】
一方、Mg、Ca、REM、Zr、及びTeは被削性を向上させる点からは多いほど好ましい。特にCa、Zr、TeはMnSを球状化させるため、硫化物系介在物の長さを短くできる(このことによる利点の詳細は後述する)。従ってMgは、例えば0.0001%以上、好ましくは0.0005%以上、さらに好ましくは0.0010%以上とする。Caは、例えば0.0001%以上、好ましくは0.0005%以上、さらに好ましくは0.0008%以上とする。REMは、例えば0.0001%以上、好ましくは0.0003%以上、さらに好ましくは0.0005%以上とする。Zrは、例えば0.01%以上、好ましくは0.03%以上、さらに好ましくは0.05%以上とする。Teは、例えば0.001%以上、好ましくは0.002%以上、さらに好ましくは0.003%以上とする。
【0031】
上記Mg、Ca、REM、Zr、及びTe(例えばCa、Zr及びTe)は、単独で添加してもよく、2種以上組み合わせて添加してもよい。
【0032】
また本発明の鋼は、硫化物系介在物(MnSなど)の長さが制御されているのが望ましい。長く展伸した硫化物系介在物は脆性破壊の原因となるため、P及びS削減による低温耐衝撃特性向上効果を最大限に利用する場合には、硫化物系介在物を短くする。具体的には長径30μm以上の硫化物系介在物を、2mm×2mmの視野当たり、例えば平均22個以下、好ましくは平均20個以下、さらに好ましくは平均15個以下、特に平均10個以下とする。
【0033】
なお前記個数は、鋼中の硫化物系介在物を均等に複数箇所測定したときの平均値を意味しており、測定箇所が多いほど正確な値となる。
【0034】
また本発明の鋼は、後述するように好ましくは棒鋼(特にステアリングラック用棒鋼)である。ステアリングラックに切削加工する場合には、棒鋼の表面から直径(D)方向に深さD/8となる部分(以下、D/8部と称する)が歯の略中央部に当たる。従って、棒鋼ではこのD/8部の硫化物系介在物が上記範囲に制御されていればよい。
【0035】
硫化物系介在物の長さは、鋳造時の冷却速度を調整することによって制御できる。硫化物系介在物の長さを上記範囲に制御する場合、冷却速度は、例えば0.3〜9℃/分程度、好ましくは0.6〜6℃/分程度、さらに好ましくは1.0〜4℃/秒程度の範囲から選択するのが推奨される。
【0036】
本発明の鋼は、高周波焼入部の硬さが確保でき、しかもこの高周波焼入部の低温耐衝撃特性をも改善できるため、ステアリングラック、歯車(特にステアリングラック)などの高周波焼入部品(特に歯部が高周波焼入された部品)を製造するのに好適である。
【0037】
本発明の鋼の形態は特に限定されないが、その使用用途を考慮すると棒鋼であるのが望ましい。
【0038】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0039】
実験例1
表1〜2に示す組成の鋼を鋳造し、熱間圧延して冷却した後、焼入れ(加熱温度:860℃、冷却条件:水冷)・焼戻し(加熱温度600℃、保持時間:1時間)することにより、直径30mmの棒鋼を得た。なお実験系C(No.8〜No.12)については鋳造時の冷却速度を0.01〜12.0℃/秒の間で調整することで、MnSの大きさ及び個数を調整しており、他の鋼では前記冷却速度を2.5℃/秒とした。
【0040】
前記棒鋼を切削して凸部(歯部)を形成することにより、図1〜3に示す試験片形状に加工した。図1は試験片の概略上面図であり、図2は概略正面図であり、図3は概略側面図である。すなわちこの試験片は、上面中央に1つの歯部が形成されており、残りは面一に切削されている。前記歯部は上面が4mm幅、基底部が6mm幅、高さが5mmであり、歯の立ち上がり部分のRは0.5mmである。次いで歯部を高周波焼入れ[使用コイル:面焼入れ用(直径30mm、厚さ2mm)、電圧:4.0kV、電流:4.5A、設備の最大電力:200kW、周波数:40kHz、加熱方式:移動焼入れ、移動速度:3.5mm/秒、冷却:ソリュブル油と水の混合媒体による]した後、焼戻し(加熱温度:180℃、保持時間30分)して試験片とした。
【0041】
上記棒鋼中の硫化物系介在物の個数、及び上記試験の低温靭性を下記のようにして評価した。また試験片の歯部の硬度も測定した。
【0042】
[硫化物系介在物の個数]
上記棒鋼の表面から直径(D)方向に深さD/8となる部分(以下、D/8部と称する)を圧延方向と平行に切断し、該断面を画像解析装置(株式会社ニレコ製 LUZEX F)を用い、2mm×2mmの視野を100倍で観察して該視野中の硫化物系介在物の長径を測定した。なお、測定は観察した画像を二値化処理して行った。なお画像データはRGBで取り込み、R:125/180,G:110/180,B:120/180に調製し、グレーレベルは明るさによってMnS系介在物がマトリックスに対して十分区別できるように、その都度調整した。長径が30μm以上となる硫化物系介在物の個数を計数した。
【0043】
[低温靭性]
試験片を温度−40℃まで冷却した後、その凸部を上に向けながら試験台の上に載置した。上方から円柱状の鋼製錘(直径300mm、重さ100kg)を凸部に向けて落下させた。錘を種々の高さから落下させ、凸部(歯部)に割れが生じるときの速度(衝突時の錘の速度)を調べた。なお割れ発生の有無は目視にて確認した。
【0044】
結果を表1〜2に示す。また下記表1〜2中、実験系A(S量を変化させた実験系;No.1〜3)、実験系B(P量を変化させた実験系;No.4〜7及びNo.1)、実験系C(硫化物系介在物の個数を変化させた実験系;No.8〜12及びNo.1)の結果を図4〜6に示す。
【0045】
【表1】

Figure 2004300458
【0046】
【表2】
Figure 2004300458
【0047】
表1〜2及び図4〜5から明らかなように、S及びPを所定量以下に制限すると、歯部の低温靭性が急激に改善される。なお割れ発生速度を所定値以上(例えば5km/秒以上)とすることをも目的とする場合には、表1〜2及び図6から明らかなように、硫化物系介在物を少なくする必要がある。
【0048】
なお実験No.13より明らかなように、C量が不足すると歯部硬さも不足する。また実験No.28より明らかなように、Siが過剰になると割れ発生速度が所定値未満(例えば5km/秒未満)となる。
【0049】
【発明の効果】
本発明によれば、高周波焼入部硬さを確保するために所定量のC、Si、及びMnが添加された特定の成分系の鋼において、S及びPを所定量以下に低減しているため、低温耐衝撃特性を著しく向上することができる。
【図面の簡単な説明】
【図1】図1は実施例の試験片の概略上面図である。
【図2】図2は実施例の試験片の概略正面図である。
【図3】図3は実施例の試験片の概略側面図である。
【図4】図4はS量と割れ発生速度との関係を示すグラフである。
【図5】図5はP量と割れ発生速度との関係を示すグラフである。
【図6】図6は硫化物系介在物の個数と割れ発生速度との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel for induction hardening excellent in low-temperature impact resistance of an induction hardened part useful for manufacturing an induction hardened part such as a steering rack and a gear (particularly, a part whose teeth are induction hardened). The present invention relates to a steel bar, and an induction hardened component manufactured from the steel for induction hardening, the steel bar or the like.
[0002]
[Prior art]
Parts having teeth such as steering racks and gears are induction hardened to increase wear resistance and the like. For example, the teeth of the steering rack are increased in hardness to about 600 HV. By the way, in general, as the hardness of steel increases, the impact resistance decreases, but in recent years, despite the fact that it has a high tooth hardness, there is a demand for parts that can also have excellent impact resistance. ing. If the impact resistance can be enhanced, it is possible to prevent cracks in the teeth even when the vehicle rides on a curb.
[0003]
In particular, the steering rack is a component that determines the traveling direction of the vehicle, and if the teeth are broken, it becomes difficult to control the traveling direction. Therefore, it is strongly required that both high tooth hardness and excellent tooth impact resistance be achieved. In addition, since the impact resistance tends to decrease as the temperature becomes lower, there is a demand for a component that can achieve excellent tooth impact resistance even in an extremely cold region such as North America where the temperature is about -40 ° C. I have. In recent automobiles, the power steering unit has shifted from hydraulic control to electric control. In the case of hydraulic control, the steering rack is warmed by a high oil temperature. However, since such warming cannot be expected in electric control, the demand for improving the shock resistance at low temperatures is further increasing.
[0004]
Patent Literature 1 discloses a high-toughness non-heat treated steel for direct cutting. However, high toughness referred to in this document means that toughness comparable to that of tempered material can be maintained without quenching and tempering after rolling. There is no teaching about. Further, this non-heat-treated steel does not add much alloying elements such as Cr, V, and Nb, but does not consider P.
[0005]
Patent Document 2 discloses a non-heat treated steel bar having excellent low-temperature toughness. However, this document also attempts to solve the problem that low temperature toughness is inferior to tempered steel when tempering of ferritic / pearlite type steel is omitted, and the low temperature toughness is exceptional. Not something. This non-heat treated steel also contains Cr, V, and the like, but does not consider P.
[0006]
Patent Literature 3 discloses a high-strength, high-toughness non-heat treated steel material, and describes that it is used for automobile parts and mechanical structural parts. However, the high toughness referred to in this document also means that the toughness reduction when the conventional tempered steel is made to be a non-heat treated steel can be improved, and the impact resistance characteristics at the time of induction hardening, the low temperature impact resistance characteristics, etc. There is no teaching. Further, a large amount of Cu, Ni, V, etc. is added to this non-heat treated steel. In Patent Document 3, as comparative examples, C: about 0.3 to 0.4%, Si: 0.22%, Mn: about 0.8%, S: about 0.02%, Al: about 0 A steel with a P content of 0.008% or 0.016% is disclosed in steel of 0.025% (Steel X, Y). However, these steels X and Y are comparative examples and are steels denied to be used for automobile parts and mechanical structural parts. Moreover, the toughness when P is as large as 0.016% (steel X; uE 20 = 107 to 146 J /) is higher than the toughness when P is as small as 0.008% (steel Y; uE 20 = 90 to 115 J / cm 2 ). cm 2 ) is better.
[0007]
Patent Document 4 contains Si: 0.40 to 1.50% and Nb: 0.005 to 0.050%, and is manufactured by performing hot rolling, quenching, and tempering under predetermined conditions. A high-hardness wear-resistant steel excellent in low-temperature toughness is disclosed. According to this document, it is necessary to reduce the grain size in order to obtain toughness with a high-hardness material of HB500 or more. However, since high toughness cannot be obtained with as-quenched material, low-temperature tempering is necessary. Teach that it is necessary to suppress temper embrittlement and temper softening by adding Si and Nb in combination. Further, this document teaches that P ≦ 0.010% and S ≦ 0.005% assuming that P and S are harmful impurities that lower the low-temperature toughness. However, the low-temperature toughness described in Patent Document 4 is only the low-temperature toughness of a quenched and tempered steel. When induction hardening is performed, the grain size of the induction hardened structure becomes extremely fine (for example, the grain size number is at least 10 or more), so that the toughness is better than that of normal quenched and tempered steel. In the case of induction hardening steel in which the crystal grain size is fine and the toughness is originally high, as to how to improve the impact resistance at low temperature, Patent Document 4 does not disclose any method. There is no place to teach. Moreover, in the examples section of Patent Document 4, the amounts of P and S are always small, and there is no teaching about the criticality. Further, Cr, Ti, Mo and the like are added to the steel of Patent Document 4.
[0008]
Patent Literature 5 discloses a structural / structural high-strength steel having high toughness. However, the toughness described in this document is also the toughness as a normal quenched and tempered material, and there is no teaching about the toughness (particularly low-temperature toughness) of the induction hardened portion where the toughness behavior differs. In addition, Ta is added to the steel of Patent Document 5. This reference discloses a steel having C: 0.32%, Si: 0.30%, Mn: 0.67%, P: 0.007%, and S: 0.018% as comparative materials. However, as is apparent from the comparative example, the use of the steel was denied.
[0009]
As described above, the steels of Patent Literatures 1 to 5 are not steels for induction hardening, and thus do not teach how low-temperature impact resistance of the induction hardened portion is.
[0010]
On the other hand, Patent Document 6 discloses an induction hardening steel. Further, Patent Document 6 discloses that P and S reduce toughness, that is, P is set to 0.010% or less and S is set to 0.030% or less. However, Patent Document 6 is an invention for improving the fatigue limit, and the effects of P and S on the toughness and the amount thereof are only described from the viewpoint of improving the fatigue limit. Therefore, there is no teaching in Patent Document 6 for improving the low-temperature impact resistance of the induction hardened portion. In Patent Document 6, in order to obtain high surface strength by induction hardening, the content of Si is set to 0.40% or more, and specifically, about 1% is added.
[0011]
[Patent Document 1]
Japanese Patent No. 3036061 (Claim 1, page 2, left column, lines 8-11)
[Patent Document 2]
JP-A-6-17126 (Claims 1-2, paragraphs 0006, 0009, 0041)
[Patent Document 3]
JP-A-2002-160285 (Claim 1, paragraphs 0002 to 0007, Table 1-1, Table 1-2, Table 2-2)
[Patent Document 4]
Japanese Patent Application Laid-Open No. 8-41535 (Claim 1, Paragraph 0009, Paragraph 0013, Examples)
[Patent Document 5]
JP-B-39-28873 (Claim 1, page 2, right column, third line, table 1)
[Patent Document 6]
JP-A-60-169544 (Claim 1, page 3, upper left line 6 to upper right line 3, page 2, upper right column line 20 to lower left column line 4, line 5 lower left column line 12, Upper right column, 4th line)
[0012]
[Problems to be solved by the invention]
An object of the present invention is to improve the low-temperature impact resistance of the induction-quenched portion while maintaining the high quenching hardness of the induction-quenched portion. The present invention is to provide an induction hardened part manufactured from the company.
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, in order to secure the induction hardened portion hardness, a predetermined amount of C, Si, and Mn-added steel of a specific component system added. Surprisingly, they found that S and P had a very large effect on the low-temperature impact resistance, that is, only by reducing S and P, the low-temperature impact resistance sharply improved at a certain value. Completed the invention. As far as the present inventors know, steel of the above-mentioned specific component is used for induction hardened parts (particularly, induction hardened parts requiring low-temperature toughness, such as steering racks and gears used in extremely cold regions). There is no example.
[0014]
That is, the steel for induction hardening, which is excellent in the low-temperature impact resistance of the induction hardened portion according to the present invention, has C: 0.30 to 0.5% (mean% by mass, the same applies hereinafter), and Si: 0.01%. Above, less than 0.40%, Mn: 0.05 to 1.5%, S: 0.06% or less (excluding 0%), P: 0.010% or less (excluding 0%) The gist is that the balance consists of Fe and unavoidable impurities (for example, 0.05% or less of Al and 0.02% or less of N). This induction hardening steel further contains Pb: 0.3% or less (excluding 0%), Bi: 0.2% or less (excluding 0%), Te: 0.1% or less (0%). , Mg: 0.01% or less (excluding 0%), Ca: 0.01% or less (excluding 0%), REM: 0.01% or less (excluding 0%), Zr: 0.3% or less (not including 0%) may be appropriately contained. Preferred steel for induction hardening is one having an average of 22 or less sulfide-based inclusions having a major axis of 30 μm or more per 2 mm × 2 mm field of view. The portion of the sulfide-based inclusions having a depth D / 8 in the direction is as described above.
[0015]
The present invention also includes an induction hardened part obtained from the steel for induction hardening (such as a steel bar).
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The steel for induction hardening of the present invention contains predetermined amounts of C, Si, Mn, P, and S, with the balance being Fe and unavoidable impurities. Hereinafter, the amounts of the respective components and the reasons for the limitations will be described.
[0017]
C: 0.30-0.5%
C is an element necessary to secure the hardness of the induction hardened portion. The C content is at least 0.30%, preferably at least 0.33%, more preferably at least 0.35%, especially at least 0.38%. On the other hand, when C is excessive, it becomes brittle and the fatigue strength decreases. Therefore, C is set to 0.5% or less, preferably 0.48% or less, and more preferably about 0.45% or less.
[0018]
Si: 0.01% or more and less than 0.40% Si is an element necessary for improving the hardenability and ensuring the hardness of the induction hardened portion. The amount of Si is 0.01% or more, preferably 0.1% or more, more preferably 0.15% or more, and particularly 0.18% or more. On the other hand, when Si is excessive, not only does the machinability deteriorate, but also the low-temperature impact resistance decreases. Therefore, the Si content is less than 0.40%, preferably 0.35% or less, and more preferably 0.30% or less.
[0019]
Mn: 0.05-1.5%
Mn is also an element necessary for improving hardenability. The Mn content is at least 0.05%, preferably at least 0.3%, more preferably at least 0.5%, especially at least 0.7%. On the other hand, if Mn is excessively added, burning cracks may occur. Therefore, the Mn content is 1.5% or less, preferably 1.3% or less, more preferably 1.0% or less.
[0020]
S: 0.06% or less (excluding 0%)
S is a very important element for the present invention. Conventionally, S is known as an element that lowers toughness, but its relationship with low-temperature impact resistance is not known. Even more, low-temperature impact resistance sharply improves at a predetermined S content. That was a complete surprise. Considering this criticality, the amount of S is set to 0.06% or less, preferably 0.058% or less, and more preferably 0.055% or less. On the other hand, setting S to 0% involves technical difficulty. In addition, since S forms sulfide-based inclusions with Mn and improves machinability, it is preferable that S is large from this viewpoint. Therefore, the S content is more than 0%, preferably 0.01% or more, more preferably 0.03% or more, particularly 0.04% or more (for example, 0.045% or more).
[0021]
P: 0.010% or less (excluding 0%)
P is an extremely important element for the present invention, like S. It was completely surprising that the low-temperature impact resistance sharply improved at a predetermined P amount. Considering this criticality, the P content is set to 0.010% or less, preferably 0.009% or less, and more preferably 0.008% or less. On the other hand, if P is excessively reduced, the effect is saturated, and the cost of removing P only increases. Therefore, the P content is more than 0%, preferably 0.003% or more, more preferably 0.005% or more, and particularly 0.007% or more.
[0022]
Inevitable impurities The inevitable impurities include those derived from raw materials (such as iron ore), those derived from pig iron and steelmaking methods, those derived from recycled steel, and the like, such as Al, N, and O. It is a target. Since Al and N are particularly important, they are preferably set in the following ranges.
[0023]
Al: 0.05% or less (excluding 0%)
Al is sometimes added for deoxidation, and in such a case, it always remains in the steel. However, when the amount of Al increases, the amount of oxide-based inclusions increases and the fatigue characteristics deteriorate. Although the reason is not clear, there is a tendency that as the amount of Al increases, the low-temperature toughness decreases. Therefore, the Al content is preferably 0.05% or less, more preferably 0.03% or less, and particularly preferably 0.025% or less.
[0024]
N: 0.02% or less (excluding 0%)
When N is increased, hot workability is reduced, and surface defects of the steel material are increased. Although the reason is not clear, low-temperature toughness tends to decrease as N increases. Therefore, the N content is preferably 0.02% or less, more preferably 0.01% or less, and particularly 0.008% or less. It is technically difficult to set N to 0%. In addition, it is desirable to increase the amount of N from the viewpoint of improving the chip disposability during cutting. Therefore, the N content is, for example, 0.001% or more, preferably 0.003% or more, and more preferably 0.004% or more.
[0025]
The steel as described above is the most preferable steel from the viewpoint of production cost because it can achieve both the hardness of the induction hardened portion and the low-temperature impact resistance, despite the small number of components. Further, if necessary, other elements such as Pb, Bi, Te, Mg, Ca, REM, Zr, etc. may be added alone or in combination of two or more. These elements contribute to improving the machinability of steel. Preferred addition amounts are as follows.
[0026]
Pb: 0.3% or less (excluding 0%)
Bi: 0.2% or less (excluding 0%)
If Pb and Bi (and Te, which will be described later) are added excessively, flaws are likely to occur during rolling, so it is desirable to add Pb and Bi while paying attention to this point. Pb is, for example, 0.3% or less, preferably 0.2% or less, and more preferably 0.1% or less. Bi is, for example, 0.2% or less, preferably 0.15% or less, and more preferably 0.1% or less. On the other hand, from the viewpoint of improvement in machinability, it is more desirable. Therefore, Pb is, for example, 0.01% or more, preferably 0.03% or more, and more preferably 0.05% or more. Bi is, for example, 0.01% or more, preferably 0.03% or more, and more preferably 0.05% or more.
[0027]
These Pb and Bi (and Te described later) can be added alone or in combination.
[0028]
Mg: 0.01% or less (excluding 0%)
Ca: 0.01% or less (excluding 0%)
REM: 0.01% or less (excluding 0%)
Zr: 0.3% or less (excluding 0%)
Te: 0.1% or less (excluding 0%)
Mg, Ca, and REM are difficult to remain in the steel even if added in large amounts, and the effect is saturated even if Zr is added in large amounts, so that all of them increase the cost. Therefore, Mg is, for example, 0.01% or less, preferably 0.005% or less, and more preferably 0.003% or less. Ca is, for example, 0.01% or less, preferably 0.005% or less, and more preferably 0.003% or less. REM is, for example, 0.01% or less, preferably 0.005% or less, and more preferably 0.003% or less. Zr is, for example, 0.3% or less, preferably 0.2% or less, and more preferably 0.1% or less.
[0029]
As in the case of Pb and Bi, if Te is excessively added, flaws are likely to occur during rolling. Therefore, Te is, for example, 0.1% or less, preferably 0.05% or less, and more preferably 0.02% or less.
[0030]
On the other hand, Mg, Ca, REM, Zr, and Te are preferably as large as possible from the viewpoint of improving machinability. In particular, since Ca, Zr, and Te make MnS spherical, the length of the sulfide-based inclusions can be shortened (the advantages of this will be described in detail later). Therefore, Mg is, for example, 0.0001% or more, preferably 0.0005% or more, and more preferably 0.0010% or more. Ca is, for example, 0.0001% or more, preferably 0.0005% or more, and more preferably 0.0008% or more. REM is, for example, 0.0001% or more, preferably 0.0003% or more, and more preferably 0.0005% or more. Zr is, for example, 0.01% or more, preferably 0.03% or more, and more preferably 0.05% or more. Te is, for example, 0.001% or more, preferably 0.002% or more, and more preferably 0.003% or more.
[0031]
Mg, Ca, REM, Zr, and Te (for example, Ca, Zr, and Te) may be added alone or in combination of two or more.
[0032]
Further, in the steel of the present invention, it is desirable that the length of sulfide-based inclusions (such as MnS) is controlled. Since the sulfide-based inclusions that have been extended for a long time cause brittle fracture, the sulfide-based inclusions are shortened in order to maximize the effect of improving the low-temperature impact resistance by reducing P and S. Specifically, the sulfide-based inclusions having a major axis of 30 μm or more are, for example, 22 or less, preferably 20 or less, more preferably 15 or less, and particularly 10 or less per 2 mm × 2 mm visual field. .
[0033]
The number means an average value when the sulfide-based inclusions in the steel are uniformly measured at a plurality of locations, and the more the number of the measured locations, the more accurate the value.
[0034]
The steel of the present invention is preferably a steel bar (particularly a steel bar for a steering rack) as described later. When cutting the steering rack, a portion having a depth D / 8 in the diameter (D) direction from the surface of the steel bar (hereinafter, referred to as a D / 8 portion) corresponds to a substantially central portion of the tooth. Therefore, in a steel bar, D / 8 parts of the sulfide-based inclusions need only be controlled within the above range.
[0035]
The length of the sulfide-based inclusion can be controlled by adjusting the cooling rate during casting. When controlling the length of the sulfide-based inclusions within the above range, the cooling rate is, for example, about 0.3 to 9 ° C / min, preferably about 0.6 to 6 ° C / min, and more preferably about 1.0 to 6 ° C / min. It is recommended to select from a range of about 4 ° C./sec.
[0036]
Since the steel of the present invention can secure the hardness of the induction hardened part and can also improve the low-temperature impact resistance of the induction hardened part, the steel is hardened by induction hardened parts (particularly, teeth) such as steering racks and gears (particularly, steering racks). It is suitable for manufacturing parts whose parts are induction hardened.
[0037]
The form of the steel of the present invention is not particularly limited, but is preferably a steel bar in consideration of its intended use.
[0038]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following Examples, and may be appropriately modified within a range that can be adapted to the purpose of the preceding and the following. It is of course possible to carry out them, and all of them are included in the technical scope of the present invention.
[0039]
Experimental example 1
After casting steel having the composition shown in Tables 1-2, hot rolling and cooling, it is quenched (heating temperature: 860 ° C, cooling condition: water cooling) and tempered (heating temperature: 600 ° C, holding time: 1 hour). Thus, a steel bar having a diameter of 30 mm was obtained. For the experimental system C (No. 8 to No. 12), the size and number of MnS were adjusted by adjusting the cooling rate during casting between 0.01 and 12.0 ° C./sec. For other steels, the cooling rate was 2.5 ° C./sec.
[0040]
The bar was cut to form a convex portion (tooth portion), thereby processing into a test piece shape shown in FIGS. FIG. 1 is a schematic top view of the test piece, FIG. 2 is a schematic front view, and FIG. 3 is a schematic side view. That is, this test piece has one tooth portion formed at the center of the upper surface, and the rest is cut flush. The tooth portion has a width of 4 mm at the upper surface, a width of 6 mm at the base portion, and a height of 5 mm, and the R of the rising portion of the tooth is 0.5 mm. Next, the teeth were induction hardened [Coil used: Surface hardening (diameter 30 mm, thickness 2 mm), voltage: 4.0 kV, current: 4.5 A, maximum power of equipment: 200 kW, frequency: 40 kHz, heating method: moving hardening , Moving speed: 3.5 mm / sec, cooling: using a mixed medium of soluble oil and water], and then tempering (heating temperature: 180 ° C, holding time: 30 minutes) to obtain a test piece.
[0041]
The number of sulfide-based inclusions in the bar and the low-temperature toughness of the test were evaluated as follows. The hardness of the teeth of the test piece was also measured.
[0042]
[Number of sulfide inclusions]
A portion having a depth D / 8 in the diameter (D) direction from the surface of the steel bar (hereinafter, referred to as a D / 8 portion) is cut in parallel with the rolling direction, and the cross section is image-analyzed (LUZEX manufactured by Nireco Co., Ltd.). Using F), a 2 mm × 2 mm visual field was observed at a magnification of 100, and the major axis of the sulfide-based inclusions in the visual field was measured. The measurement was performed by binarizing the observed image. The image data is captured in RGB and adjusted to R: 125/180, G: 110/180, B: 120/180, and the gray level is set so that the MnS-based inclusions can be sufficiently distinguished from the matrix by the brightness. Adjusted each time. The number of sulfide-based inclusions having a major axis of 30 μm or more was counted.
[0043]
[Low temperature toughness]
After the test piece was cooled to a temperature of -40 ° C, it was placed on a test table with its convex portion facing upward. A cylindrical steel weight (diameter: 300 mm, weight: 100 kg) was dropped from above onto the convex portion. The weight was dropped from various heights, and the speed (crack speed at the time of collision) when a crack was generated in the convex portion (teeth portion) was examined. The presence or absence of cracks was visually checked.
[0044]
The results are shown in Tables 1 and 2. In Tables 1 and 2 below, experimental system A (experimental system with varied S content; No. 1 to 3), experimental system B (experimental system with varied P content; No. 4 to 7 and No. 1). ) And experimental system C (experimental systems in which the number of sulfide-based inclusions was changed; Nos. 8 to 12 and No. 1) are shown in FIGS.
[0045]
[Table 1]
Figure 2004300458
[0046]
[Table 2]
Figure 2004300458
[0047]
As is clear from Tables 1 and 2 and FIGS. 4 and 5, when S and P are limited to predetermined amounts or less, the low-temperature toughness of the tooth portion is rapidly improved. In addition, when the purpose is to increase the crack generation rate to a predetermined value or more (for example, 5 km / sec or more), it is necessary to reduce the amount of sulfide-based inclusions as is clear from Tables 1 and 2 and FIG. is there.
[0048]
Experiment No. As is clear from FIG. 13, when the amount of C is insufficient, the hardness of the teeth is also insufficient. Experiment No. As is clear from FIG. 28, when the amount of Si is excessive, the crack generation speed becomes less than a predetermined value (for example, less than 5 km / sec).
[0049]
【The invention's effect】
According to the present invention, in order to secure the hardness of the induction hardened part, in a specific component steel to which a predetermined amount of C, Si, and Mn is added, S and P are reduced to a predetermined amount or less. In addition, the low-temperature impact resistance can be significantly improved.
[Brief description of the drawings]
FIG. 1 is a schematic top view of a test piece of an example.
FIG. 2 is a schematic front view of a test piece of an example.
FIG. 3 is a schematic side view of a test piece of an example.
FIG. 4 is a graph showing the relationship between the S content and the crack generation rate.
FIG. 5 is a graph showing the relationship between the P content and the crack generation rate.
FIG. 6 is a graph showing the relationship between the number of sulfide-based inclusions and the crack generation rate.

Claims (6)

質量%で、
C :0.30〜0.5%、
Si:0.01%以上、0.40%未満、
Mn:0.05〜1.5%、
S :0.06%以下(0%を含まない)、
P :0.010%以下(0%を含まない)を含有し、
残部はFe及び不可避不純物からなることを特徴とする高周波焼入部の低温耐衝撃特性に優れた高周波焼入用鋼。
In mass%,
C: 0.30 to 0.5%,
Si: 0.01% or more, less than 0.40%,
Mn: 0.05-1.5%,
S: 0.06% or less (excluding 0%),
P: contains 0.010% or less (excluding 0%),
Induction hardening steel excellent in low-temperature impact resistance of the induction hardened portion, the balance being Fe and unavoidable impurities.
Al:0.05%以下、N:0.02%以下(0%を含まない)である請求項1に記載の高周波焼入用鋼。The steel for induction hardening according to claim 1, wherein Al: 0.05% or less and N: 0.02% or less (excluding 0%). さらに、
Pb :0.3%以下(0%を含まない)、
Bi :0.2%以下(0%を含まない)、
Te :0.1%以下(0%を含まない)、
Mg :0.01%以下(0%を含まない)、
Ca :0.01%以下(0%を含まない)、
REM:0.01%以下(0%を含まない)、
Zr :0.3%以下(0%を含まない)から選択された少なくとも1種を含有する請求項1又は2に記載の高周波焼入用鋼。
further,
Pb: 0.3% or less (excluding 0%),
Bi: 0.2% or less (excluding 0%),
Te: 0.1% or less (excluding 0%),
Mg: 0.01% or less (excluding 0%),
Ca: 0.01% or less (excluding 0%),
REM: 0.01% or less (excluding 0%),
3. The steel for induction hardening according to claim 1, wherein the steel contains at least one selected from the group consisting of Zr: 0.3% or less (excluding 0%).
長径30μm以上の硫化物系介在物が、2mm×2mmの視野当たり、平均22個以下である請求項1〜3のいずれかに記載の高周波焼入用鋼。The steel for induction hardening according to any one of claims 1 to 3, wherein the average number of sulfide-based inclusions having a major diameter of 30 µm or more is 22 or less per 2 mm × 2 mm visual field. 請求項1〜3のいずれかに記載の成分組成となる棒鋼であり、該棒鋼の表面から直径(D)方向に深さD/8となる部分に存在する長径30μm以上の硫化物系介在物が、2mm×2mmの視野当たり、22個以下であることを特徴とする棒鋼。A steel bar having the component composition according to any one of claims 1 to 3, wherein a sulfide-based inclusion having a major axis of 30 µm or more is present in a portion having a depth of D / 8 in the diameter (D) direction from the surface of the steel bar. The number of steel bars is 22 or less per 2 mm × 2 mm field of view. 請求項1〜5のいずれかに記載の高周波焼入用鋼又は棒鋼から得られる高周波焼入部品。An induction hardened part obtained from the steel for induction hardening or the steel bar according to claim 1.
JP2003091570A 2003-03-28 2003-03-28 Steel bars for steering racks and steering racks with excellent low-temperature impact resistance of induction-hardened parts Expired - Lifetime JP4025229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091570A JP4025229B2 (en) 2003-03-28 2003-03-28 Steel bars for steering racks and steering racks with excellent low-temperature impact resistance of induction-hardened parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091570A JP4025229B2 (en) 2003-03-28 2003-03-28 Steel bars for steering racks and steering racks with excellent low-temperature impact resistance of induction-hardened parts

Publications (2)

Publication Number Publication Date
JP2004300458A true JP2004300458A (en) 2004-10-28
JP4025229B2 JP4025229B2 (en) 2007-12-19

Family

ID=33404913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091570A Expired - Lifetime JP4025229B2 (en) 2003-03-28 2003-03-28 Steel bars for steering racks and steering racks with excellent low-temperature impact resistance of induction-hardened parts

Country Status (1)

Country Link
JP (1) JP4025229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959479A (en) * 2022-05-30 2022-08-30 包头钢铁(集团)有限责任公司 Steel for rare earth wear-resistant alloy steel bar and production method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280941A (en) * 1991-03-08 1992-10-06 Nippon Seiko Kk Steel for rolling parts
JPH09235654A (en) * 1996-02-28 1997-09-09 Sumitomo Metal Ind Ltd Steel for induction hardening and induction hardened part
JPH1017928A (en) * 1996-06-28 1998-01-20 Kawasaki Steel Corp Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength
JPH1036940A (en) * 1996-07-19 1998-02-10 Kobe Steel Ltd High strength bolt steel excellent in delayed fracture resistance, and bolt
JPH111749A (en) * 1997-06-10 1999-01-06 Kobe Steel Ltd Steel for induction hardening, excellent in bending fatigue strength and rolling fatigue strength
JP2002146473A (en) * 2000-08-30 2002-05-22 Kobe Steel Ltd Steel for machine structural use having excellent treatability of chip and mechanical property
JP2003041341A (en) * 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd Steel material with high toughness and method for manufacturing steel pipe thereof
JP2004027259A (en) * 2002-06-21 2004-01-29 Sanyo Special Steel Co Ltd Free-cutting steel for machine structural use having excellent quenching crack resistance
JP2004225073A (en) * 2003-01-20 2004-08-12 Sumitomo Metal Ind Ltd Non-heat treated bar steel for hot forging

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280941A (en) * 1991-03-08 1992-10-06 Nippon Seiko Kk Steel for rolling parts
JPH09235654A (en) * 1996-02-28 1997-09-09 Sumitomo Metal Ind Ltd Steel for induction hardening and induction hardened part
JPH1017928A (en) * 1996-06-28 1998-01-20 Kawasaki Steel Corp Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength
JPH1036940A (en) * 1996-07-19 1998-02-10 Kobe Steel Ltd High strength bolt steel excellent in delayed fracture resistance, and bolt
JPH111749A (en) * 1997-06-10 1999-01-06 Kobe Steel Ltd Steel for induction hardening, excellent in bending fatigue strength and rolling fatigue strength
JP2002146473A (en) * 2000-08-30 2002-05-22 Kobe Steel Ltd Steel for machine structural use having excellent treatability of chip and mechanical property
JP2003041341A (en) * 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd Steel material with high toughness and method for manufacturing steel pipe thereof
JP2004027259A (en) * 2002-06-21 2004-01-29 Sanyo Special Steel Co Ltd Free-cutting steel for machine structural use having excellent quenching crack resistance
JP2004225073A (en) * 2003-01-20 2004-08-12 Sumitomo Metal Ind Ltd Non-heat treated bar steel for hot forging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959479A (en) * 2022-05-30 2022-08-30 包头钢铁(集团)有限责任公司 Steel for rare earth wear-resistant alloy steel bar and production method thereof
CN114959479B (en) * 2022-05-30 2023-08-25 包头钢铁(集团)有限责任公司 Steel for rare earth wear-resistant alloy steel bar and production method thereof

Also Published As

Publication number Publication date
JP4025229B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP7240486B2 (en) Abrasion-resistant steel plate with excellent hardness and impact toughness and method for producing the same
US20170191149A1 (en) Railway vehicle wheel and method for manufacturing railway vehicle wheel
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
TWI591187B (en) High-carbon cold-rolled steel sheet and its manufacturing method
JP2010168624A (en) Rolled steel material for induction hardening and method for manufacturing the same
AU2016210110B2 (en) Rail
JP2009024233A (en) High carbon steel sheet excellent in hardenability, fatigue property and toughness, and method for producing the same
JP2012214832A (en) Steel for machine structure and method for producing the same
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP6798557B2 (en) steel
GB2345490A (en) High strength drive shaft and process for producing the same
JP2018150585A (en) Antifriction steel plate and manufacturing method of antifriction steel plate
JP2007321197A (en) Steel shaft component superior in impact characteristics and fatigue characteristics, and manufacturing method therefor
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3541844B1 (en) Hot-forged non-tempered steel bars
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP6064515B2 (en) rail
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP5459065B2 (en) Rolled steel for induction hardening and method for producing the same
JP5316242B2 (en) Steel for heat treatment
WO2015020028A1 (en) Soft high-carbon steel sheet
JP2009242918A (en) Component for machine structure having excellent rolling fatigue property, and method for producing the same
JP4025229B2 (en) Steel bars for steering racks and steering racks with excellent low-temperature impact resistance of induction-hardened parts
JP2007197813A (en) Wear-resistant steel sheet superior in bendability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Ref document number: 4025229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

EXPY Cancellation because of completion of term