JP2004300456A - Operation method for blowing synthetic resin particle to blast furnace - Google Patents

Operation method for blowing synthetic resin particle to blast furnace Download PDF

Info

Publication number
JP2004300456A
JP2004300456A JP2003091342A JP2003091342A JP2004300456A JP 2004300456 A JP2004300456 A JP 2004300456A JP 2003091342 A JP2003091342 A JP 2003091342A JP 2003091342 A JP2003091342 A JP 2003091342A JP 2004300456 A JP2004300456 A JP 2004300456A
Authority
JP
Japan
Prior art keywords
synthetic resin
particles
blast furnace
pipe
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003091342A
Other languages
Japanese (ja)
Inventor
Yoshitoku Matsukura
良徳 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003091342A priority Critical patent/JP2004300456A/en
Publication of JP2004300456A publication Critical patent/JP2004300456A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent clogging in a pipe due to synthetic resin grains, which occurs during transportation of the granular synthetic resin with gas. <P>SOLUTION: This operation method comprises mixing the fine grains of the synthetic resin having the maximum grain size of less than 3 mm with the coarse grains of the synthetic resin having grain sizes of 3 to 10 mm at rates of respectively 40 to 90 mass% with 10 to 60 mass%, introducing the mixed grains of the synthetic resin 5 into the transportation pipe 3 with a gas 6, transporting them to a tuyere portion while fluidizing them, and blowing them into a furnace. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、粒状合成樹脂を輸送配管内に気体と共に導入して流動させながら、また輸送管の閉塞を防止しながら羽口部まで気体輸送して高炉に吹き込む高炉の操業方法に関する。
【0002】
【従来の技術】
近年、合成樹脂を用いた製品の大量消費に伴いその廃棄量も増大している。廃棄された合成樹脂は埋め立てや焼却により処理されている。しかしながら、埋め立て地の確保がますます困難になりつつあり、また焼却処理の場合は焼却に伴う環境汚染の問題もあって、その処理方法が社会的な問題となっている。
【0003】
その解決手段の一つとして、高炉に使用されている微粉炭、石油等の補助燃料の代替材として、廃棄された合成樹脂製品を粉砕して粒状にし、高炉羽口部から炉内へ吹き込んで使用されるようになった。
【0004】
高炉への合成樹脂の吹き込みに関して、粒状合成樹脂による輸送配管内壁の摩耗抑制や燃焼効率の向上のための開発が進められてきた。
高炉への合成樹脂粒子の吹き込みは、燃焼効率を向上させるために、一般的に微細に粉砕した細粒の合成樹脂粒子が使用される。しかし、粒径が小さな合成樹脂粒子を気体搬送すると、配管内における搬送性が低下することが一般に知られており、この搬送性の低下に伴い配管内に細粒合成樹脂が付着・堆積し、搬送配管を詰まらせると言う問題が発生し、その改善が求められている。
【0005】
輸送配管の摩耗抑制方法として、特許文献1に粒子径10mm以上の粗粒樹脂粒子と最大粒子径が2mm以下の細粒樹脂粒子とを混合して、細粒樹脂粒子を摩耗防止材として粗粒の3〜20%配合して粗粒合成樹脂粒子による配管摩耗を防止する高炉吹き込み方法が開示されている。
【0006】
また、燃焼効率を改善する方法として、特許文献2には高炉羽口から廃プラスチック粒、つまり合成樹脂粒子を炉内に吹き込む際に、その粒度に応じて、合成樹脂粒子吹込みランスの先端位置を制御する高炉羽口吹き込み方法が開示されている。
【0007】
輸送管が閉塞した場合の対策として特許文献3には、輸送配管に複数の遮断装置を接続して、吹込みノズル内や輸送配管内で閉塞が生じた場合に、複数の遮断装置を利用して輸送配管を保護し、吹込みの早期再開を容易にする方法が開示されている。
【0008】
このように、合成樹脂粒子の気体による輸送時に生じる配管の摩耗や粒状合成樹脂の燃焼性についての検討はなされてきた。また、配管が閉塞した場合の対処方法についても提案されている。しかし、配管閉塞の防止方法についての報文はなく、配管の閉塞防止方法の開発が望まれていた。
【0009】
【特許文献1】特開平10−219319号公報
【特許文献2】特開平9−202907号公報
【特許文献3】特開2000−192157号公報
【0010】
【発明が解決しようとする課題】
しかしながら、合成樹脂粒子を高炉へ吹き込む場合、安定した高炉操業をおこなうために必要なのは輸送配管の摩耗防止や樹脂粒の燃焼性の改善だけでなく、羽口部に至るまでの輸送配管が微細な合成樹脂粒により閉塞されるのを防止しながら合成樹脂粒子を安定して供給することが重要である。従来、輸送管の摩耗や燃焼性を考慮して高炉に吹き込む粒状合成樹脂の最大粒径は10mm以下がよいとされているが、粒状合成樹脂が細粒になるに従い燃焼性は向上するが、流動性が低下して輸送管を閉塞させる危険性が増大する。
【0011】
本発明の課題は、合成樹脂粒子の気体による輸送時に発生する配管閉塞を防止し、常時安定した合成樹脂粒子の輸送を維持しながら、高炉吹き込みを行う方法を提供することにある。
【0012】
【課題を解決するための手段】
一般に高炉へ吹込まれる微粉炭の粒度は200 メッシュ(74μm)以下が70〜80%に対し、合成樹腑の場合は微粉砕が困難なこともあり、ミリメートルオーダの粒径のものが使用される場合が多い。従って、合成樹脂粒子の気体による輸送特性は、微粉炭の気体による輸送特性とは異なることが容易に予想されたため、本発明者らは、実際の高炉の補助燃料吹き込み設備の輸送配管部分を模擬した気体による輸送試験設備を製作して種々輸送試験を実施し、検討した結果、以下の知見を得るに至った。
【0013】
a)輸送配管の閉塞は、合成樹脂の細粒粉が配管継ぎ目等の小さな段差部、あるいは他の要因によって配管の壁面へ付着し、それを起点として更に細粒粉の合成樹脂が付着、成長して発生する。
【0014】
b)したがって、小さな段差に引っかからず、付着し難くするためには樹脂の粒径を大きくすればよい。
c)しかし、合成樹脂の粒径を大きくすれば燃焼性が低下してしまうが、燃焼性の低下を抑制しつつ輸送配管内における閉塞を防止するには、合成樹脂の粗粒と細粒とを混合して輸送すればよい。
【0015】
d)輸送中に管内壁に付着しない粒径(粗粒)の粒状合成樹脂を混入させることにより、付着、成長する細粒子の割合が減少するので付着する頻度が減少するとともに、付着物の成長速度も低下する。また、粗粒子が混合されていることから、細粒子が輸送管の内壁に付着して成長し始めても、粗粒子が付着物に衝突することで付着物が剥がれてしまうため、閉塞に至らない。さらに、粗粒子の混合により粒径の小さい合成樹脂同士の凝集、圧密も減少する。
【0016】
e)燃焼性の低下を抑制しつつ輸送配管内における閉塞を防止するには、最大粒径3mm未満の合成樹脂粒子を40〜90質量%、粒径3〜10mmの合成樹脂粒子を10〜60質量%の割合にすればよい。
【0017】
本発明は、上記の知見に基づきなされたもので、その要旨は以下のとおりである。
高炉の羽口部から炉内へ最大粒径10mmの合成樹脂粒子を吹込む操業方法であって最大粒径が3mm未満の細粒合成樹脂と、粒径が3〜10mmの範囲内にある粗粒合成樹脂とを下記の割合で混合し、混合した粒状合成樹脂を輸送配管内に気体と共に導入して流動させながら羽口部に気体輸送し、該羽口部から該合成樹脂粒子混合物を炉内に吹込むことを特徴とする高炉の合成樹脂粒子吹込み操業方法。
【0018】
細粒合成樹脂粒子 :40〜90質量%
粗粒合成樹脂粒子 :10〜60質量%
【0019】
【発明の実施の形態】
以下、本発明の閉塞を防止する合成樹脂粒子の高炉吹き込み操業方法において規定した各条件について詳細に説明する。
【0020】
細粒合成樹脂粒子と粗粒合成樹脂粒子との混合:
粒状合成樹脂は、廃棄された合成樹脂を破砕、粉砕することにより得らる。この場合粉砕して得られた粒子の形状は異形なものとなる。また、廃棄された合成樹脂がフィルムやシート状の場合は、一旦溶融してから造粒して粒状化することにより得られ、形状はほぼ球状となる。
【0021】
本発明では、細粒合成樹脂とは粒子の最大直径が3mm未満である粒子をいい、また粗粒合成樹脂とは粒子の最大直径が3〜10mmの範囲にある粒子をいう。
燃焼効率を向上させるためには、細粒であることが好ましいが、細粒合成樹脂のみではそれが輸送管の内壁に付着し、配管を閉塞させる。したがって、細粒による閉塞を防止するために粗粒を混合する。粗粒を混合することにより閉塞が防止される理由は、前記知見d)で述べたとおりである。
【0022】
粗粒合成樹脂の最大粒径と混合割合(3〜10mm、10〜60%):
粗粒合成樹脂の最大粒径を10mm以下としたのは、気体による輸送配管径は一般には20〜25mmが多く、合成樹脂の粒径が10mmを超える場合は配管径に対して粒径が大きすぎて、輸送、吹き込みに支障をきたすおそれがあるからである。それを避けるためには配管径を拡大すればよいが、安定に気体による輸送をするためにはある一定以上のガス流速を確保する必要があることから、管径を大きくすると輸送ガス量が増大し操業コストが嵩む上、高炉等の高温域で使用する場合には温度の低下等の支障も生じるため現実的ではない。また、粒径が10mmを超えると配管内壁の摩耗も増大する。好ましくは8mm以下である。
【0023】
一方、粗粒合成樹脂の粒径の下限を3mmとしたのは、輸送試験による輸送配管閉塞時の閉塞部分の観察、調査によれば、その根部および初期成長部は主に粒径1mm以下の微粉および1〜2mm程度の細粒の合成樹脂で形成されており、3mm以下の粒径では輸送配管内での閉塞防止効果が低減するからである。好ましい下限は4mmである。
【0024】
粗粒合成樹脂の割合の上限を60質量%としたのは、60質量%を超えると貯蔵タンクからの切り出しの際、粗粒合成樹脂の間隙が増加することにより、より粒径の小さい合成樹脂がタンク内を降下、切り出され易くなり、所定割合での切り出しが困難になること、および粗粒の割合が60質量%を超えると燃焼性が低下するためである。好ましい上限は50%である。
【0025】
また、粗粒合成樹脂の割合の下限を10質量%としたのは、それ未満になると輸送配管内での閉塞防止効果が低減するからである。好ましい下限は15%である。細粒合成樹脂の最大粒径と混合割合(3mm未満、40〜90%):
細粒樹脂は輸送管内の摩耗を抑制したり、輸送後の合成樹脂を燃焼させる場合に燃焼性を向上させるために混入するもので、粒径は3mm未満でそれらの効果が期待できるので細粒の上限は3mm未満とした。粒径が小さくなるに従い輸送管の閉塞が生じ易くなるが、粗粒と混合する場合は下限はいくらであってもよいので特に限定するものではない。合成樹脂を微粉砕するのは困難で通常小さいもので1mm前後となる。
【0026】
混合割合を40〜90%としたのは、40%未満では燃焼性と輸送性が悪化するためである。一方、90%を超えると粗粒量が減少し、閉塞防止ができなくなるため上限を90%とした。好ましくは50〜85%である。
【0027】
なお、上記の粗粒と細粒の粒度構成を得るには、予め細粒と粗粒の粒子を作っておきそれらを混合してもよく、また予め廃棄樹脂を上記粒度構成が得られるように粉砕してもよい。
【0028】
本発明における合成樹脂粒子の吹込み量、搬送ガス流量などは従来法に準じるものであれば特に制限ないが、本発明によれば搬送配管に閉塞がみられないことから、従来の方法に比較してより多量の合成樹脂粒子を供給できる。
【0029】
【実施例】
図1は、本実施例で使用した実高炉の補助燃料吹き込み設備の輸送配管部分を実寸で再現した輸送試験設備の概略図である。
【0030】
タンク1に貯蔵された粒状合成樹脂5は、ロータリフィーダ2で定量切り出しされ、所定の固気比に調整された輸送ガス6で輸送管内3で流動されながら受けタンク4まで輸送されて吹き込まれる。吹き込まれた合成樹脂は、受けタンク4内に溜まり、輪送ガスは受けタンク4外に放散される。実高炉と条件を揃えるため、受けタンク4には内圧0.5 MPa をかけている。図中符号7は圧力計であり、符号8は差圧計で各差圧計間の流送状態、閉塞状態を圧損の変化で監視するために設けたものである。
【0031】
実施例1:
用いた粒状合成樹脂は、廃棄された合成樹脂製品を破砕、粉砕して得られた樹脂粒であった。最大粒径3mm未満の粒状合成樹脂に、粗粒合成樹脂として粒径3〜10mmの範囲内にある粒状合成樹脂を全粒状合成樹脂量に対して、0 、5、10、15、30、50、60、70の各質量%の割合で混合した。
【0032】
輸送ガスの流速は全て51m/秒とし、同一条件での輸送時間は60分とした。
輸送中にタンクから切り出された合成樹脂の粗粒と細粒の混合割合の安定性を受けタンク4に留まった合成樹脂の粒度分布 (篩い分け) により測定した。
【0033】
また、高炉の羽口前条件を模した燃焼試験装置を使用して測定した合成樹脂の燃焼性を合わせて示す。燃焼試験は、羽口1本を有するコークス充填層型の粉体燃焼試験炉を用い、吹込み酸素量および窒素量の調整により高炉の羽口前条件 (燃焼条件) を模した燃焼空間に所定の合成樹脂を吹込み、付帯する水冷ゾンデで炉内のガスおよび煤を採取し、採取した煤と、吹込み前の合成樹脂について炭素(C) 濃度とAl濃度を測定し、下記▲1▼式により燃焼率を求めることにより行った。
【0034】
【数1】

Figure 2004300456
【0035】
Figure 2004300456
また、差圧計による配管内各部の圧損変化および終了後に、配管を接続部より外して内部観察することにより輸送配管閉塞の有無を調べた。
【0036】
試験結果を表1に示す。輸送管の閉塞の評価は、管の内壁に少しでも樹脂粒が堆積している場合は×、全く堆積していない場合を○とした。タンクの切り出し性は、細粒と粗粒との混合割合が本発明で規定する範囲を外れた場合を×、範囲内にあった場合を○とした。また、燃焼性の評価は、燃焼率が70%未満あるいは燃焼率が70%以上であっても所定の切り出し量 (=吹込み量) が吹き込めなかった場合を×、所定の切り出し量が吹き込めた上で燃焼率が70%以上であった場合を○とした。
【0037】
表1から明らかなように、本発明で規定する細粒と粗粒の混合割合を満足する場合は、輸送管の閉塞が全くなく、タンクからの切り出し、燃焼性とも良好であった。
【0038】
【表1】
Figure 2004300456
【0039】
実施例2:
粗粒として粒径が3mmの粒状合成樹脂を選別して用い、また細粒として最大粒径が1mmの粒状合成樹脂を選別して用いたこと以外は実施例1と同様の条件で輸送試験および評価を実施した。
【0040】
試験結果を表2に示す。
【0041】
【表2】
Figure 2004300456
【0042】
表2から明らかなように、本発明で規定する粗粒の粒径の範囲の中で最小値の3mmの樹脂粒を用いた場合であっても、10〜60質量%の量で含有させれば閉塞が防止でき、切り出し性および燃焼性においても問題ないことが分かる。
【0043】
【発明の効果】
本発明によれば、高炉の羽口部から炉内へ粒状合成樹脂を吹き込む際、羽口部までの合成樹脂粒子の気体による輸送時の輸送配管閉塞が防止でき、切り出し性もよく輸送後に合成樹脂を燃焼させる場合でも燃焼性が良く、今日の合成樹脂粒子の高炉吹き込みにおける各種問題をいずれも防止できることから、その実際上の意義は大きい。
【図面の簡単な説明】
【図1】輸送試験設備の概略図である。
【符号の説明】
1:タンク
2:ロータリフィーダ
3:輸送記管
4:受けタンク
5:合成樹脂粒
6:輸送ガス
7:圧力計
8:差圧計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for operating a blast furnace, in which a granular synthetic resin is introduced into a transportation pipe together with a gas and caused to flow, and while the transportation pipe is prevented from being blocked, the gas is transported to a tuyere and blown into a blast furnace.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the mass consumption of products using synthetic resins, the amount of waste has also increased. The discarded synthetic resin is treated by landfill or incineration. However, it is becoming more and more difficult to secure landfill sites, and in the case of incineration, there is a problem of environmental pollution due to incineration, and the disposal method has become a social problem.
[0003]
As one of the solutions, pulverized coal used in the blast furnace, as a substitute for an auxiliary fuel such as petroleum, a discarded synthetic resin product is pulverized into granules, and blown into the furnace from the tuyere of the blast furnace. Became used.
[0004]
Regarding the injection of synthetic resin into the blast furnace, developments have been promoted for suppressing the abrasion of the inner wall of the transport pipe and improving the combustion efficiency by using granular synthetic resin.
When the synthetic resin particles are blown into the blast furnace, fine synthetic resin particles are generally used in order to improve the combustion efficiency. However, it is generally known that when gaseous synthetic resin particles having a small particle diameter are transported by gas, transportability in the pipe is reduced, and fine-particle synthetic resin adheres and accumulates in the pipe due to the reduced transportability. The problem of clogging the transfer pipe has occurred, and its improvement has been demanded.
[0005]
As a method for suppressing abrasion of a transportation pipe, Patent Document 1 discloses a method in which coarse resin particles having a particle diameter of 10 mm or more and fine resin particles having a maximum particle diameter of 2 mm or less are mixed, and the fine particles are used as an anti-wear material. A blast furnace blowing method for preventing abrasion of piping by coarse synthetic resin particles by blending 3 to 20% of the above is disclosed.
[0006]
Further, as a method for improving the combustion efficiency, Patent Document 2 discloses that when waste plastic particles, that is, synthetic resin particles are blown into a furnace from a tuyere of a blast furnace, the tip position of a synthetic resin particle injection lance is determined according to the particle size. A blast furnace tuyere blowing method for controlling the temperature is disclosed.
[0007]
As a countermeasure for the case where the transport pipe is blocked, Patent Document 3 discloses that a plurality of shut-off devices are connected to the transport pipe and a plurality of shut-off devices are used when a blockage occurs in the blowing nozzle or the transport pipe. A method is disclosed that protects the transport piping and facilitates the early resumption of blowing.
[0008]
As described above, studies have been made on the abrasion of the piping and the flammability of the granular synthetic resin caused when the synthetic resin particles are transported by the gas. In addition, a method for coping with the blockage of the pipe has been proposed. However, there is no report on a method for preventing pipe blockage, and development of a method for preventing pipe blockage has been desired.
[0009]
[Patent Document 1] JP-A-10-219319 [Patent Document 2] JP-A-9-202907 [Patent Document 3] JP-A-2000-192157 [0010]
[Problems to be solved by the invention]
However, when blowing synthetic resin particles into a blast furnace, it is necessary to not only prevent abrasion of the transportation pipes and improve the flammability of the resin particles, but also to ensure that the transportation pipes to the tuyere are fine for stable blast furnace operation. It is important to stably supply the synthetic resin particles while preventing the resin particles from being blocked by the synthetic resin particles. Conventionally, it is considered that the maximum particle size of the granular synthetic resin blown into the blast furnace in consideration of the abrasion and flammability of the transport pipe is preferably 10 mm or less, but the flammability improves as the granular synthetic resin becomes finer, The flowability decreases and the risk of clogging the transport tube increases.
[0011]
It is an object of the present invention to provide a method for blowing a blast furnace while preventing the clogging of a pipe which occurs at the time of transport of synthetic resin particles by gas, and constantly maintaining stable transport of synthetic resin particles.
[0012]
[Means for Solving the Problems]
In general, the particle size of pulverized coal blown into a blast furnace is 70 to 80% for 200 mesh (74 μm) or less, whereas in the case of synthetic wood, it may be difficult to finely pulverize coal. In many cases. Therefore, since it was easily expected that the transport characteristics of the synthetic resin particles by gas were different from the transport characteristics of pulverized coal by gas, the present inventors simulated the transport piping part of the auxiliary fuel injection equipment of the actual blast furnace. A transport test facility using a gas was manufactured and various transport tests were conducted. As a result of the examination, the following knowledge was obtained.
[0013]
a) The blockage of the transportation pipe is caused by the fine powder of the synthetic resin adhering to the pipe wall due to a small step portion such as a seam of the pipe or other factors, and the synthetic resin of the fine powder further adheres and grows from the starting point. And occur.
[0014]
b) Therefore, the particle size of the resin may be increased so as not to be caught on a small step and to make it difficult to adhere.
c) However, if the particle size of the synthetic resin is increased, the flammability decreases. However, in order to prevent the decrease in flammability and to prevent clogging in the transportation pipe, it is necessary to use coarse and fine particles of the synthetic resin. May be mixed and transported.
[0015]
d) By mixing a granular synthetic resin having a particle size (coarse particle) that does not adhere to the inner wall of the pipe during transportation, the ratio of fine particles that adhere and grow decreases, so that the frequency of adhesion decreases, and the growth of the adhered matter Speed also decreases. Further, since the coarse particles are mixed, even if the fine particles adhere to the inner wall of the transport pipe and start to grow, the coarse particles collide with the adherent and the adhered substance is peeled off, so that the clogging does not occur. . Further, by mixing the coarse particles, the aggregation and compaction of the synthetic resins having a small particle diameter are reduced.
[0016]
e) In order to prevent clogging in the transportation pipe while suppressing a decrease in flammability, 40 to 90% by mass of synthetic resin particles having a maximum particle size of less than 3 mm and 10 to 60% of synthetic resin particles having a particle size of 3 to 10 mm. What is necessary is just to make it the ratio of the mass%.
[0017]
The present invention has been made based on the above findings, and the gist is as follows.
An operation method in which synthetic resin particles having a maximum particle size of 10 mm are blown into a furnace from a tuyere portion of a blast furnace, wherein the fine synthetic resin having a maximum particle size of less than 3 mm and a coarse synthetic resin having a particle size in a range of 3 to 10 mm. The granular synthetic resin is mixed at the following ratio, and the mixed granular synthetic resin is introduced into a transport pipe together with a gas and gas-transported to the tuyere while flowing, and the synthetic resin particle mixture is furnace-cooled from the tuyere. A method for injecting synthetic resin particles into a blast furnace, characterized by injecting into a blast furnace.
[0018]
Fine synthetic resin particles: 40 to 90% by mass
Coarse synthetic resin particles: 10 to 60% by mass
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each condition specified in the blast furnace blowing operation method of synthetic resin particles for preventing clogging of the present invention will be described in detail.
[0020]
Mixing fine and coarse synthetic resin particles:
The granular synthetic resin is obtained by crushing and pulverizing the discarded synthetic resin. In this case, the shape of the particles obtained by pulverization is irregular. Further, when the discarded synthetic resin is in the form of a film or sheet, it is obtained by melting and then granulating and granulating, and the shape becomes substantially spherical.
[0021]
In the present invention, fine-grained synthetic resin refers to particles having a maximum diameter of less than 3 mm, and coarse-grained synthetic resin refers to particles having a maximum diameter of 3 to 10 mm.
In order to improve the combustion efficiency, it is preferable that the fine particles are fine. However, only fine synthetic resin adheres to the inner wall of the transport pipe and closes the pipe. Therefore, coarse particles are mixed to prevent clogging by fine particles. The reason why the blockage is prevented by mixing the coarse particles is as described in the above finding d).
[0022]
Maximum particle size and mixing ratio of coarse synthetic resin (3 to 10 mm, 10 to 60%):
The reason why the maximum particle size of the coarse-grained synthetic resin is set to 10 mm or less is that the diameter of the transportation pipe by gas is generally 20 to 25 mm, and when the particle diameter of the synthetic resin exceeds 10 mm, the particle diameter is larger than the pipe diameter. This is because there is a danger that transportation and blowing will be hindered. To avoid this, the diameter of the pipe should be increased, but it is necessary to secure a gas flow rate of a certain level or more for stable gas transport. In addition, the operation cost is increased, and when used in a high-temperature region such as a blast furnace, there is a problem such as a decrease in temperature. When the particle size exceeds 10 mm, the abrasion of the inner wall of the pipe increases. Preferably it is 8 mm or less.
[0023]
On the other hand, the lower limit of the particle size of the coarse-grained synthetic resin is set to 3 mm. According to the observation and investigation of the clogged portion at the time of clogging of the transport pipe by the transport test, the root portion and the initial growth portion mainly have a particle size of 1 mm or less. This is because it is formed of fine powder and a synthetic resin having a fine particle size of about 1 to 2 mm. When the particle size is 3 mm or less, the effect of preventing blockage in the transport pipe is reduced. A preferred lower limit is 4 mm.
[0024]
The reason why the upper limit of the ratio of the coarse synthetic resin is set to 60% by mass is that if the amount exceeds 60% by mass, the gap between the coarse synthetic resins increases when cut out from the storage tank, so that the synthetic resin having a smaller particle size is obtained. This is because it is easy to drop and cut out in the tank, making it difficult to cut out at a predetermined ratio, and to reduce the flammability when the ratio of coarse particles exceeds 60% by mass. A preferred upper limit is 50%.
[0025]
The reason why the lower limit of the ratio of the coarse-grained synthetic resin is set to 10% by mass is that if the ratio is less than 10%, the effect of preventing blockage in the transport pipe is reduced. A preferred lower limit is 15%. Maximum particle size and mixing ratio of fine synthetic resin (less than 3 mm, 40-90%):
Fine-grained resin is mixed to suppress abrasion in the transport pipe or to improve the flammability when burning the synthetic resin after transportation. Is less than 3 mm. The smaller the particle size, the more likely the clogging of the transport tube occurs. However, when mixing with coarse particles, the lower limit may be any value and is not particularly limited. It is difficult to pulverize the synthetic resin, and it is usually small and about 1 mm.
[0026]
The reason for setting the mixing ratio to 40 to 90% is that if it is less than 40%, the flammability and transportability deteriorate. On the other hand, if it exceeds 90%, the amount of coarse particles is reduced and clogging cannot be prevented, so the upper limit was made 90%. Preferably it is 50 to 85%.
[0027]
In addition, in order to obtain the above-mentioned coarse-grained and fine-grained particle configuration, fine-grained and coarse-grained particles may be prepared in advance and mixed with each other. It may be ground.
[0028]
The blowing amount of synthetic resin particles, the flow rate of the carrier gas, and the like in the present invention are not particularly limited as long as they are in accordance with the conventional method. Thus, a larger amount of synthetic resin particles can be supplied.
[0029]
【Example】
FIG. 1 is a schematic view of a transport test facility in which a transport pipe portion of an auxiliary fuel injection facility of an actual blast furnace used in the present embodiment is reproduced in an actual size.
[0030]
The granular synthetic resin 5 stored in the tank 1 is cut out in a fixed amount by the rotary feeder 2, transported to the receiving tank 4 while flowing in the transport pipe 3 with the transport gas 6 adjusted to a predetermined solid-gas ratio, and blown. The injected synthetic resin accumulates in the receiving tank 4, and the transported gas is diffused outside the receiving tank 4. In order to match the conditions with the actual blast furnace, an internal pressure of 0.5 MPa is applied to the receiving tank 4. In the figure, reference numeral 7 denotes a pressure gauge, and reference numeral 8 denotes a differential pressure gauge provided for monitoring a flowing state and a closed state between the differential pressure gauges by a change in pressure loss.
[0031]
Example 1
The granular synthetic resin used was a resin particle obtained by crushing and pulverizing a discarded synthetic resin product. A granular synthetic resin having a maximum particle size of less than 3 mm and a coarse synthetic resin having a particle size of 3 to 10 mm within a range of 0 to 5, 5, 10, 15, 30, 50 are added to the total amount of the synthetic resin. , 60, and 70 at the respective mass% ratios.
[0032]
The transport gas flow rates were all 51 m / sec, and the transport time under the same conditions was 60 minutes.
The stability of the mixing ratio of the coarse particles and the fine particles of the synthetic resin cut out from the tank during transportation was measured by the particle size distribution (sieving) of the synthetic resin remaining in the tank 4.
[0033]
In addition, the flammability of the synthetic resin measured using a combustion test apparatus that simulates the conditions before tuyere of a blast furnace is also shown. In the combustion test, a coke packed bed type powder combustion test furnace with one tuyere was used, and by adjusting the amount of oxygen and nitrogen blown into the combustion space simulating the tuyere precondition (combustion condition) of the blast furnace Gas and soot in the furnace were sampled with an accompanying water-cooled sonde, and the carbon (C) concentration and Al 2 O 3 concentration of the collected soot and the synthetic resin before injection were measured. The determination was performed by determining the combustion rate according to equation (1).
[0034]
(Equation 1)
Figure 2004300456
[0035]
Figure 2004300456
Also, after the pressure loss change of each part in the pipe by the differential pressure gauge and the end, the pipe was removed from the connection part and the inside was observed to check for the presence of blockage of the transport pipe.
[0036]
Table 1 shows the test results. The evaluation of the blockage of the transport pipe was evaluated as x when any resin particles were deposited on the inner wall of the pipe, and as ○ when no resin particles were deposited. The cut-out property of the tank was evaluated as x when the mixing ratio of the fine particles and the coarse particles was out of the range specified in the present invention, and evaluated as ○ when the mixing ratio was within the range. In addition, the evaluation of flammability was evaluated as x when the predetermined cut-out amount (= blowing amount) could not be blown even if the burning rate was less than 70% or the burning rate was 70% or more. The case where the burning rate was 70% or more was evaluated as ○.
[0037]
As is clear from Table 1, when the mixing ratio of the fine particles and the coarse particles specified in the present invention was satisfied, there was no blockage of the transport pipe, and the cutout from the tank and the combustibility were good.
[0038]
[Table 1]
Figure 2004300456
[0039]
Example 2:
A transportation test was performed under the same conditions as in Example 1 except that a granular synthetic resin having a particle size of 3 mm was selected and used as coarse particles, and a granular synthetic resin having a maximum particle size of 1 mm was selected and used as fine particles. An evaluation was performed.
[0040]
Table 2 shows the test results.
[0041]
[Table 2]
Figure 2004300456
[0042]
As is clear from Table 2, even when a resin particle having a minimum value of 3 mm in the range of the particle size of the coarse particles specified in the present invention is used, it is contained in an amount of 10 to 60% by mass. It can be seen that clogging can be prevented and there is no problem in cutting out property and combustion property.
[0043]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, when blowing synthetic resin into the furnace from the tuyere part of a blast furnace, the transportation piping blockage at the time of transport of the synthetic resin particles to the tuyere part by gas can be prevented, the cut-out property is good and the synthetic resin is synthesized after the transportation. The resin has good flammability even when the resin is burned, and can prevent any of the various problems of blowing synthetic resin particles into a blast furnace today.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a transportation test facility.
[Explanation of symbols]
1: tank 2: rotary feeder 3: transport pipe 4: receiving tank 5: synthetic resin particles 6: transport gas 7: pressure gauge 8: differential pressure gauge

Claims (1)

高炉の羽口部から炉内へ最大粒径10mmの合成樹脂粒子を吹込む高炉の操業方法であって、最大粒径が3mm未満の細粒合成樹脂粒子と、粒径が3〜10mmの範囲内にある粗粒合成樹脂粒子とを下記の割合で混合し、得られた合成樹脂粒子混合物を、前記羽口部に至る輸送配管内に気体と共に導入して流動させながら羽口部へ気体輸送し、該羽口部から該合成樹脂粒子混合物を炉内に吹き込むことを特徴とする高炉の合成樹脂粒子吹込み操業方法。
細粒合成樹脂粒子 :40〜90質量%
粗粒合成樹脂粒子 :10〜60質量%
A method of operating a blast furnace in which synthetic resin particles having a maximum particle size of 10 mm are blown into a furnace from a tuyere portion of a blast furnace, wherein the fine synthetic resin particles having a maximum particle size of less than 3 mm and a particle size range of 3 to 10 mm. The coarse synthetic resin particles in the mixture are mixed at the following ratio, and the resulting synthetic resin particle mixture is introduced together with gas into the transport pipe leading to the tuyere and gas is transported to the tuyere while flowing. And blowing the synthetic resin particle mixture into the furnace from the tuyere.
Fine synthetic resin particles: 40 to 90% by mass
Coarse synthetic resin particles: 10 to 60% by mass
JP2003091342A 2003-03-28 2003-03-28 Operation method for blowing synthetic resin particle to blast furnace Withdrawn JP2004300456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091342A JP2004300456A (en) 2003-03-28 2003-03-28 Operation method for blowing synthetic resin particle to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091342A JP2004300456A (en) 2003-03-28 2003-03-28 Operation method for blowing synthetic resin particle to blast furnace

Publications (1)

Publication Number Publication Date
JP2004300456A true JP2004300456A (en) 2004-10-28

Family

ID=33404729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091342A Withdrawn JP2004300456A (en) 2003-03-28 2003-03-28 Operation method for blowing synthetic resin particle to blast furnace

Country Status (1)

Country Link
JP (1) JP2004300456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455676C (en) * 2007-07-03 2009-01-28 上海宝钢工程技术有限公司 Technical method for spraying waste plastics particle into blast furnace and production facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455676C (en) * 2007-07-03 2009-01-28 上海宝钢工程技术有限公司 Technical method for spraying waste plastics particle into blast furnace and production facility

Similar Documents

Publication Publication Date Title
KR20080106216A (en) Method of handling substance from which combustible gas volatilizes, process for producing solid fuel, method of storing solid fuel, method of using solid fuel, and apparatus using s0lid fuel
JP2004300456A (en) Operation method for blowing synthetic resin particle to blast furnace
JPH1060508A (en) Production of pulverized fine coal for blowing from tuyere in blast furnace
US6637354B2 (en) Coal combustion products recovery process
JP6256701B2 (en) Method of injecting pulverized coal into the blast furnace
TWI312334B (en) Method and apparatus for the pneumatic conveying of solids
JP5741319B2 (en) Pulverized coal injection method
JP6885282B2 (en) Blast furnace operation method
JP2002194408A (en) Method for producing pulverized coal to be injected into reacting furnace
CA2374906C (en) Coal combustion products recovery process
JPS63274707A (en) Operation method for blowing fine powdered coal in blast furnace
JP5143037B2 (en) Woody biomass supply method to fluidized bed boiler
JP2010175215A (en) Method and facility for crushing woody biomass for fluidized bed boiler
CN108603237B (en) Method for manufacturing molten iron
JP2005068474A (en) Method and system for blowing pulverized fine coal into blast furnace
CN114152085B (en) Biomass fuel and biomass fuel energy supply cement kiln
JP2002275512A (en) Pneumatic transportation method for pulverized coal
EP4095218A1 (en) Powdery alternative fuel
JP3863359B2 (en) Blow operation method
JP4105864B2 (en) Recycling method of fly ash in fluidized bed boiler.
JPH05222415A (en) Method for adjusting pulverized coal for injection into blast furnace
KR100306154B1 (en) Method and apparatus for supplying fine coal
JP6834720B2 (en) Manufacturing method of compounding raw materials for sintering
JP5029453B2 (en) Transportation method of landfill ash
JP2005213622A (en) Method for treating waste wood

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606