JP2004298811A - Heat-resistant and water-repellent combustion catalyst container - Google Patents

Heat-resistant and water-repellent combustion catalyst container Download PDF

Info

Publication number
JP2004298811A
JP2004298811A JP2003097284A JP2003097284A JP2004298811A JP 2004298811 A JP2004298811 A JP 2004298811A JP 2003097284 A JP2003097284 A JP 2003097284A JP 2003097284 A JP2003097284 A JP 2003097284A JP 2004298811 A JP2004298811 A JP 2004298811A
Authority
JP
Japan
Prior art keywords
combustion
water
heat
combustion catalyst
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003097284A
Other languages
Japanese (ja)
Other versions
JP2004298811A5 (en
JP4521595B2 (en
Inventor
Hisao Abe
久雄 阿部
Hideo Imazato
英雄 今里
Keiji Kawamoto
啓司 川本
Takashi Mimata
祟 三叉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chukoh Chemical Industries Ltd
Nagasaki Prefectural Government
Original Assignee
Chukoh Chemical Industries Ltd
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chukoh Chemical Industries Ltd, Nagasaki Prefectural Government filed Critical Chukoh Chemical Industries Ltd
Priority to JP2003097284A priority Critical patent/JP4521595B2/en
Publication of JP2004298811A publication Critical patent/JP2004298811A/en
Publication of JP2004298811A5 publication Critical patent/JP2004298811A5/ja
Application granted granted Critical
Publication of JP4521595B2 publication Critical patent/JP4521595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant and water-repellent combustion catalyst container which can prevent deactivation of the catalyst because of being covered with water or water-soluble ingredients, regulate the combustion speed of the catalyst by regulating the flow of a gas and remove harmful ingredients through much more improved combustion. <P>SOLUTION: This heat-resistant and water-repellent combustion catalyst container for housing the combustion catalyst has a cylindrical body 2 composed of two or more laminated donut-shaped disks 1 and disks 3 closing the openings at both ends of the body 2 and made of a porous material. The container allows a fuel gas, air and a combustion gas to pass through, performs internal catalytic combustion and blocks invasion of water and water-soluble ingredients from outside. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼触媒担持物を収納するための耐熱・撥水性燃焼触媒容器に関する。
【0002】
【従来の技術】
周知の如く、触媒燃焼容器では、燃焼触媒(担体)を耐熱性の燃焼触媒容器に入れ、その給排気用の孔若しくは空隙を通して、燃料ガスを空気と共に燃焼触媒に接触させ触媒燃焼を生じさせる方法や、アルコールランプのような構造で、碍子が燃焼触媒担体となっていて、燃料タンクから浸透性の心材を通って移動してきた燃料を、その多孔性の碍子表面で触媒燃焼させる方法などがあった。
【0003】
従来、こうした触媒燃焼させる技術としては、メチルアルコールを気化させて低温活性型酸化燃焼触媒に接触させて酸化燃焼させる技術(特許文献1)が知られている。また、液体燃料気化装置と、発熱体を備えた触媒体とから構成され、かつ、前記触媒体がアルミン酸石灰と耐熱性蓋骨材より構成される触媒担体と、少なくとも、ロジウム、パラジウム、ルテニウムよりなる群より選ばれる金属と白金より構成される触媒物質とより構成される液体燃料燃焼装置(特許文献2)が知られている。
【0004】
【特許文献1】
特開昭61−86510号公報(第2頁左上欄)
【0005】
【特許文献2】
特開昭60−207818号公報(第3頁左下欄10行目〜第4頁左下欄17行目)
【0006】
【発明が解決しようとする課題】
従来の触媒燃焼容器は触媒燃焼装置を兼用したもので、燃焼触媒の担体材料の他に、燃料タンク等が備わっている。こうした装置の場合、触媒燃焼の火力は燃焼触媒表面への燃料の供給量で規制されるか、または燃焼空気孔から流入する酸素量によって規制されているが、燃料は心材等の毛管現象と燃料の揮発により、また酸素量は比較的目開きの大きなスリット状の燃焼空気孔等により調節されるため、燃料と空気量の割合を適正に制御することは難しく、未燃の燃焼ガスが排気されて臭気を伴ったり、燃料ガスの種類によっては刺激性のガス成分を生成するという問題があった。
【0007】
また、担持触媒はその使用時には構造の外表面に露出されるので、水叉は水溶性成分と接触しこれらを吸収すると、触媒の活性が低下してしまうことがあった。従って、多くの燃焼触媒装置では、燃焼の開始をライターやヒーター等の熱源を用いて行うことが前提となっている。これは、使用する度に触媒の活性が低下していくことにより、再度使用する際においては触媒と燃料蒸気との接触のみでは燃焼を開始することができないためである。
【0008】
本発明は上記事情を考慮してなされたもので、ドーナツ型円状板を複数個積層してなる筒状体と、この筒状体の両端の開口部を閉じる多孔質材料からなる円板とを具備し、燃料ガス、空気及び燃焼ガスを透過、吸排気し、内部で触媒燃焼を行うとともに、外部からの水及び水溶性成分の侵入を阻止する構成とすることにより、触媒が水叉は水溶性成分で覆われて失活するのを防ぐことができるとともに、気体の通気量を調整することで触媒燃焼の速度を調節でき、更には燃焼をより完全なものとして有害成分をも燃焼によって除去することが可能な耐熱・撥水性燃焼触媒容器を提供することを目的とする。
【0009】
また、本発明は、多孔質材料からなる袋状体を具備し、燃料ガス、空気及び燃焼ガスを透過、吸排気し、内部で触媒燃焼を行うとともに、外部からの水及び水溶性成分の侵入を阻止する構成とすることにより、上記と同様、触媒の失活を防ぐことができるとともに、触媒燃焼の速度を調節でき、更には有害成分をも燃焼によって除去することが可能な耐熱・撥水性燃焼触媒容器を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る耐熱・撥水性燃焼触媒容器は、燃焼触媒を収納するための耐熱・撥水性燃焼触媒容器であり、ドーナツ型円状板を複数個積層してなる筒状体と、この筒状体の両端の開口部を閉じる多孔質材料からなる円板とを具備し、燃料ガス、空気及び燃焼ガスを透過、吸排気し、内部で触媒燃焼を行うとともに、外部からの水及び水溶性成分の侵入を阻止することを特徴とする。
【0011】
また、本発明に係る耐熱・撥水性燃焼触媒容器は、燃焼触媒を収納するための耐熱・撥水性燃焼触媒容器であり、多孔質材料からなる袋状体を具備し、燃料ガス、空気及び燃焼ガスを透過、吸排気し、内部で触媒燃焼を行うとともに、外部からの水及び水溶性成分の侵入を阻止することを特徴とする。
【0012】
前記袋状体としては、例えば、環状のふっ素樹脂製第1シートと、この第1シートの上下面側に夫々該第1シートと融着して積層され,第1シートとともに袋状体を構成する多孔質材料からなる第2シートとを備えたものが挙げられるが、これに限定されない。
【0013】
【発明の実施の形態】
以下、本発明について更に詳しく説明する。
本発明において、前記ドーナツ型円状板としては、例えばふっ素樹脂製の板等の耐熱性、撥水性を有するものが挙げられる。また、前記円板あるいは第2シートとしては、例えばふっ素樹脂を被覆した繊維叉は織物からなる多孔質体(ファブリック)、ふっ素樹脂製多孔質板、ふっ素樹脂製織布、ふっ素樹脂製不織布のいずれか等の耐熱性、撥水性を有するものが挙げられる。ここで、前記ファブリックにおける「被覆」とは、例えばふっ素樹脂ディスパージョンを織布に含浸,乾燥,焼成したものを意味する。
【0014】
本発明において、前記ふっ素樹脂としては、四ふっ化エチレン樹脂、四ふっ化エチレン−パーフロロアルキルビニルエーテル共重合樹脂、四ふっ化エチレン−六ふっ化プロピレンパーフロロアルキルビニールエーテル共重合体、四ふっ化エチレン−六ふっ化プロピレン共重合体樹脂、三ふっ化塩化エチレン−エチレン共重合体、四ふっ化エチレン−エチレン共重合樹脂、三ふっ化塩化エチレン樹脂、二ふっ化ビニリデンのいずれかが挙げられる。なお、上記ふっ素樹脂は耐熱性に優れた順に並べたもので、四ふっ化エチレン樹脂が広い温度範囲で使用できるので最も好ましい。
【0015】
[作用]
上記のような燃焼触媒容器では、容器の多孔質部に形成された気孔サイズや気孔率を変化させることで、容器の壁を透過する気体の量を規制することができるので、その結果として触媒燃焼温度の高低を制御することができる。また、燃料、空気のみならず触媒燃焼で生成するガスの排気量も同時に規制されることから、未反応の燃料ガスや不完全燃焼等に伴う刺激性ガスの発生を少なくすることができる。更に、燃焼触媒はその活性を常に維持できるので、別の点火装置を用いることなく、燃料蒸気との接触によって燃焼を開始することができる。
【0016】
【実施例】
以下、本発明の各実施例及び比較例について説明する。
(実施例1)
図1(A)〜(C)を参照して本発明に係る燃焼触媒容器について製造方法とともに説明する。
まず、種々の目開きのガラス繊維クロスに四フッ化エチレン樹脂(PTFE)ディスパージョンを含浸、乾燥、焼成して得られた多孔質材料(以下、単にファブリックと記す。)を、図1(A)に示すように、外径45mm、内径35mmのドーナツ形状に加工してドーナツ型円状板1とし、これらドーナツ型円状板1を30枚用意した。なお、図1(A)では便宜上3枚の円状板1が描かれている。次に、これらのドーナツ型円状板1を30枚重ねて加熱プレス機(図示せず)により400℃下で1MPaの圧力で1分間、加熱加圧し融着し、高さ3mmの筒状体2とした後、前記ドーナツ型円板1の上下に該円板1と同材質からなる円板3を夫々配置した(図1(B)図示)。つづいて、前記筒状体2及び上下の円板3からなる空間部にγアルミナ担持白金黒触媒(以下、担持触媒と記す。)を所定量入れた後、加熱プレスによって380℃下で1MPaの圧力で1分間、加熱加圧し融着することによって、担持触媒を充填した燃焼触媒容器4を作製した。
【0017】
ここで、γアルミナ担持白金黒触媒は、γアルミナビーズ(商品名:NKHD−24、住友化学工業製)に0.5wt%の塩化白金酸水溶液(HPtCl・6HO)に20mlを含浸させ、更に105℃で乾燥し蒸発乾固させた後、80℃に加熱し、更に36%ホルマリン水溶液を10ml加え、当該γアルミナビーズの表面が黒化するまで80℃で加熱して得た。
【0018】
上記したように、実施例1に係る燃焼触媒容器4は、図1(C)に示すように、ガラス繊維クロスを四フッ化エチレン樹脂(PTFE)で被覆した材料からなるドーナツ型円状板1を複数枚重ねて圧着した筒状体2と、この筒状体2の上下に夫々配置して全体を圧着した前記筒状体2と同材質の円板3と、前記筒状体2及び円板3で囲まれた空間部に充填された担持触媒とを具備した構成となっている。
【0019】
上記燃焼触媒容器4を、図2に示すような燃料容器5の開口部6に置き、燃料容器5の底に溜めたメタノールから発生するメタノール蒸気を、燃焼触媒容器4の下面から接触させた。ここで、燃料容器5の容積は150mlで、上部に直径35mmの開口部6を有するとともに、側面に4つの長穴(空気の吸入口)7を持つ円筒形の燃料容器である。燃焼触媒容器4に用いたファブリックの通気量、厚み、充填触媒量、燃焼温度、及びファブリックの直上で測定したホルムアルデヒド濃度(気体検知管による)を下記表1に示す。なお、ホルムアルデヒドは、メタノールの不完全な燃焼に伴って発生するガスで、刺激性で有害な物質である。
【0020】
【表1】

Figure 2004298811
【0021】
なお、表1において、通気量は、JIS L 1096 フラジール法により測定した。また、燃焼温度は、ファブリックの表面や場合によって触媒担体の表面にK熱電対を直接接触させて連続的にデジタルマルチメーター(直読式記録計)で測定した。更に、ホルムアルデヒド濃度は、(株)ガステック社製の気体検知管(ホルムアルデヒド用、No.91L、吸引装置はモデルGV−100 50−100ml用)で測定し、測定個所はファブリックの直上(ファブリックから5mmの距離)とした。
【0022】
触媒燃焼容器の温度変化を容器上面に貼付した熱電対により測定すると、何れの燃焼触媒容器も接触1〜2分後には昇温を開始し、約10分後には安定した燃焼状態に入り、その後は上記表1で最高温度とした平均の容器上面の平均温度を中心に概ね±3℃の安定した燃焼が持続した。燃焼触媒容器の上下面に用いたファブリックの通気量(圧損:12mmHO)は0.53〜48.8(cm/cm/sec)の範囲にあったが、燃焼温度は110〜138℃の範囲にあり、通気量の大きなものほど燃焼温度も高くなる傾向を示した。また、ホルムアルデヒド濃度は概ね1〜2ppmの範囲にあったが、これを図1記載の燃焼触媒容器と同じ外径寸法の目開き1mmの銅メッシュ容器に燃焼触媒を充填し、上記と同様の条件で燃焼を行ったときに得られたホルムアルデヒド濃度の17.5ppmに比べると、後述する表5より約10分の1になっていることから、本発明による燃焼触媒容器の使用効果も明らかである。
【0023】
因みに、銅メッシュ使用時の燃焼温度は240℃に達しており、本発明による燃焼温度の抑制効果も明らかである。更に、通気量が0.53cm/cm/secと最も小さかったNo.Gの試料は、燃焼温度は110℃と最も低かったが、それに応じてホルムアルデヒド濃度も0.2ppmと供試料中で最低となっており、通気量が小さなファブリックを用いるとホルムアルデヒド発生量を小さくできることがわかる。
【0024】
(実施例2)
実施例1で説明した燃焼触媒容器と基本的には同じ構造で、その筒状体の厚みを10mmにした燃焼触媒容器を作製し、その中に担持触媒を下記表2に記載されているように、2.5g,5.0g,7.5g及び10.0g充填した。この燃焼触媒容器を実施例1と同様に燃料容器の上に置き、メタノール蒸気を燃焼触媒容器の下面から接触させた。燃焼触媒容器に用いたファブリックの通気量、充填触媒量、燃焼温度、及びファブリックの直上で測定したホルムアルデヒド濃度(気体検知管による)を表2に示す。
【0025】
【表2】
Figure 2004298811
【0026】
これによれば、触媒充填量が多いほどファブリック表面温度は低くなった。一方、ホルムアルデヒド濃度は触媒充填量2.5gのものが1.25ppmを示したのに対し、5g以上充填した場合では0.25〜0.4ppmと大幅に減少している。この表面温度低下の原因は、触媒充填量の増加による燃焼温度低下や触媒担体による発生熱量が考えられるが、それに伴ってホルムアルデヒド濃度は大幅に低下することが分かる。なお、この実験で、触媒燃焼容器内の下部の触媒に熱電対を直接接触させてその表面温度を計測すると、140〜160℃に達しており、表面温度の低下は触媒燃焼容器の上部の空間で燃焼ガスが冷えた結果と考えられる。
【0027】
(実施例3)
実施例1で説明した燃焼触媒容器と基本的には同じ構造で、その筒状部の厚みを10mmにした燃焼触媒容器を作製し、その中に粒径が実施例1及び実施例2の約半分(1.2mm)の担持白金触媒を下記表3に記載されているように、何れも5g充填した。この燃焼触媒容器を実施例1と同様に燃料容器の上に置き、メタノール蒸気を燃焼触媒容器の下面から接触させた。燃焼触媒容器に用いたファブリックの通気量、充填触媒量、燃焼温度、及びファブリックの直上で測定したホルムアルデヒド濃度(気体検知管による)を表3に示す。
【0028】
【表3】
Figure 2004298811
【0029】
これによれば、触媒担体の種類が変わっても燃焼温度の変化はなく、また、ホルムアルデヒド濃度は0.4〜0.7であり、後述する表5より銅メッシュ使用時の1/20〜1/40に押えられていることが分かる。このように、本発明による燃焼触媒容器は、充填する触媒担体のサイズが変わっても、その影響は小さく、ファブリックの表面温度とホルムアルデヒド濃度を十分に抑制できることが分かる。
【0030】
(実施例4)
実施例3で説明した燃焼触媒容器と基本的には同じ構造で、その上下面に用いるファブリックを、通気量が18.5,0.53cm/cm/secと、実施例3と異なる2種を用いて燃焼触媒容器を作製し、その中に実施例2と実施例3で用いた、粒径が異なる担持白金触媒(直径が2.4mmφ及び1.2mmφ)を下記表4記載の条件でいずれも5g充填した。この燃焼触媒容器を実施例1と同様に燃料容器の上に置き、メタノール蒸気を燃焼触媒容器の下面から接触させた。燃焼触媒容器に用いたファブリックの通気量、充填触媒量、燃焼温度、及びファブリックの直上で測定したホルムアルデヒド濃度(気体検知管による)を表4に示す。
【0031】
【表4】
Figure 2004298811
【0032】
その結果、触媒燃焼容器の上下面に用いるファブリックの通気量が、実施例2の場合の約40%と減少しても、ファブリック表面温度は70〜80℃の範囲に維持されており、ホルムアルデヒド濃度も約0.8ppm程度で、基本的には同メッシュ使用時よりも表面温度、ホルムアルデヒドの発生量はともに大幅に抑制されていた。
【0033】
一方、ファブリックの通気量が実施例2の約10%とより小さくなると、ファブリックの表面温度は60℃叉は40℃と、上記の通気量が約40%の場合よりも明らかに低く、ホルムアルデヒド濃度も何れも0.1(痕跡)と大幅に抑制されていることが分かる。このように、本発明による燃焼触媒容器は、使用するファブリックの通気量を小さくすることで、ファブリック表面温度とホルムアルデヒドの発生を抑制することができることが分かる。
【0034】
(実施例5)
図3(A),(B)を参照する。
まず、PTFE樹脂(旭硝子(株)製の商品名:G353)500gと気孔形成剤としての精製ナフタリン(新日鉄化学(株)製)を粉砕加工したもの(平均粒径約140μm)330gを、ヘンシェルミキサー(三井三池工機(株)製、型式:FM10B)に投入し、1600rpmで2分間攪拌して気孔形成剤入り樹脂(PTFE:60重量%、気孔形成剤:40重量%)を製造した。次に、この樹脂を金型に入れ、単位圧力4.41MPa下で5分の条件で予備成形後、焼成を行い多孔質成形体11を得た。但し、焼成条件は、常温〜200℃/2.9hr→200〜370℃/4.3hr→370℃/3hrs→370℃〜常温/4.3hrとした。
【0035】
つづいて、前記多孔質成形体11を機械加工し、φ40×φ60×高さ20mmとした。なお、底面の厚みは0.5mmに仕上げた。更に、図3(A)に示すように、機械加工した多孔質成形体11内部に担持触媒を5g入れた後、多孔質成形体11の上面に100μm×φ40×φ60のPFAフィルム12を介してφ60のファブリック13を乗せ、これらを加熱プレス機によって380℃下で1MPaの圧力で1分間、加熱加圧し全体を融着することによって、担持触媒を充填した燃焼触媒容器14を作成した(図3(B)参照)。
【0036】
(実施例6)
なお、本実施例6は、実施例5とファブリックを除いて同様であるので、図面を省略する。
まず、PTFE樹脂(旭硝子(株)製の商品名:G353)500gと気孔形成剤としての精製ナフタリン(新日鉄化学(株)製)を粉砕加工したもの(平均粒径約140μm)330gを、ヘンシェルミキサー(三井三池工機(株)製、型式:FM10B)に投入し、1600rpmで2分間攪拌して気孔形成剤入り樹脂(PTFE:60重量%、気孔形成剤:40重量%)を製造した。次に、この樹脂を金型に入れ、単位圧力4.41MPa下で5分の条件で予備成形後、焼成を行い多孔質成形体11を得た。但し、焼成条件は、常温〜200℃/2.9hr→200〜370℃/4.3hr→370℃/3hr→370℃〜常温/4.3hrとした。
【0037】
つづいて、この多孔質成形体を機械加工し、φ40×φ60×高さ20mmとした。なお、底面の厚みは0.5mmに仕上げた。更に、機械加工した多孔質成形体内部に担持触媒を5g入れた後、多孔質成形体の上面に100μm×φ40×φ60のPFAフィルムを介してφ60のPTFE織編物(商品名:トヨフロン(型式#406P,#406W,#2512のいずれか)、東レ・ファインケミカル(株)製)を乗せ、これらを加熱プレス機によって380℃下で1MPaの圧力で1分間、加熱加圧し全体を融着することによって、担持触媒を充填した燃焼触媒容器を作成した。
【0038】
(実施例7)
図4(A)〜(C)を参照する。
まず、平面形状がコ字型のふっ素樹脂製第1シートとしてのPFAフィルム15と、第2シートとしてのPTFE不織布16a,16bを用意する。ここで、PFAフィルム15の形状は100μm厚み×5mm幅である。また、PTFE不織布16a,16bは、ダイキン工業(株)製の商品名:ポリフロンウェブBで、その大きさは50mm×50mmである。また、次に、これらを図4(A)のように、PTFE不織布16a,16b間にPFAフィルム15が介在するように配置させる。次に、前記PTFE不織布16a,16b及びPFAフィルム15を加熱プレス機によって380℃下で1MPaの圧力で1分間、加熱加圧し全体を融着することによって、袋状に加工した袋状体17を形成した(図4(B)参照)。つづいて、この袋状体17の内部に担持触媒を3g入れた後、袋状体の開口部側のPTFE不織布16a,16b間にPFAフィルム(図示せず)も介在させた状態で、上記と同様に加熱加圧して開口部を閉じ、燃焼触媒容器18を形成した(図4(C)参照)。
【0039】
上記したように、実施例7に係る燃焼触媒容器4は、図4に示すように、平面形状がコ字型のPFAフィルム15と、このPFAフィルム15の上下面側に夫々該フィルム15と融着して積層され,フィルム15とともに袋状体17を構成する多孔質材料からなるPTFE不織布16a,16bとを具備し、燃焼触媒容器を袋状体17に収納した後,袋状体17の開口側の一側部17aは閉じられるようになっている。
【0040】
なお、上記実施例7では、平面形状がコ字型のPFAフィルム(第1シート)とPTFE不織布(第2シート)とから袋状体を構成する場合について述べたが、これに限定されない。例えば、第1シートは必ずしも必要なものではなく、第2シートのみで袋状体を構成してもよい。また、第1シートの形状はコ字型に限らず、環状等の形状でもよい。更に、第1シートと第2シートの融着も上述したように加熱プレス機による加圧加圧に限らず、例えば接着剤等により第1シートと第2シートを接続してもよい。
【0041】
以上詳述した如く本発明によれば、以下に述べる効果を有する。
(1)本発明では、耐熱性で撥水性の多孔性燃焼触媒容器に担持触媒を収納するため、燃料蒸気や空気、及び燃焼ガスはその容器の壁を通過できるが、水や水溶性の成分、例えば水溶性の調味料や飲料等はその撥水性の壁で阻止されるので、触媒が水叉は水溶性の成分で覆われて失活するのを防ぐことができる。従って、メタノール等の低沸点の燃料では点火装置を用いずに燃焼を開始することができる。
【0042】
(2)燃焼触媒容器の壁(叉は主要部)は多孔性で、気孔の大きさ、あるいは織物の隙間を変化させることで、気体の通気量を調整することができ、その結果として触媒温度を調整することが可能となる。
【0043】
(3)更に、触媒燃焼ガスの中には刺激性で人体に有害な物質が含まれる事もあるが、本発明による燃焼触媒容器では、触媒と燃料ガス及び空気、さらには副生成ガスとの接触時間を充分にとることができるので、燃焼をより完全なものとして有害成分を燃焼によって除去することができる。
【0044】
(4)本発明による燃焼触媒容器は、加熱したい物体を直接に接触させることができる。例えば、液体や食品を入れたカップや皿をその上に置くことで、液体や食品を加熱する器具として機能する。
【0045】
(5)本発明による燃焼触媒容器は一般の触媒燃焼装置と異なり、装置の構造の一部ではないので、燃料を入れた容器との任意の組合せが可能である。単純なあるいは複雑な形状の燃料容器の開口部に設置することで、簡単に加熱装置となりうる。
【0046】
【表5】
Figure 2004298811
【0047】
なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
【0048】
【発明の効果】
以上詳述した如く本発明によれば、ドーナツ型円状板を複数個積層してなる筒状体と、この筒状体の両端の開口部を閉じる多孔質材料からなる円板とを具備し、燃料ガス、空気及び燃焼ガスを透過、吸排気し、内部で触媒燃焼を行うとともに、外部からの水及び水溶性成分の侵入を阻止する構成とすることにより、触媒が水叉は水溶性成分で覆われて失活するのを防ぐことができるとともに、気体の通気量を調整することで触媒燃焼の速度を調節でき、更には燃焼をより完全なものとして有害成分をも燃焼によって除去することが可能な耐熱・撥水性燃焼触媒容器を提供できる。
【0049】
また、本発明によれば、燃焼触媒を収納するための耐熱・撥水性燃焼触媒容器であり、平面形状がコ字型のふっ素樹脂製第1シートと、この第1シートの上下面側に夫々該第1シートと融着して積層され,第1シートとともに袋状体を構成する多孔質材料からなる第2シートとを具備し、前記袋状体の開口部は燃焼触媒を収納された後閉じられ、燃料ガス、空気及び燃焼ガスを透過、吸排気し、内部で触媒燃焼を行うとともに、外部からの水及び水溶性成分の侵入を阻止する構成とすることにより、上記と同様、触媒の失活を防ぐことができるとともに、触媒燃焼の速度を調節でき、更には有害成分をも燃焼によって除去することが可能な耐熱・撥水性燃焼触媒容器を提供できる。
【図面の簡単な説明】
【図1】(A)〜(C)は本発明の実施形態に係る燃焼触媒容器を製作するための方法を工程順に示す説明図。
【図2】図1の燃焼触媒容器を円筒形状燃焼容器に配置する場合の説明図。
【図3】(A)(B)は他の実施形態の燃焼触媒容器を製作するための方法を工程順に示す説明図。
【図4】(A)〜(C)は他の実施形態の燃焼触媒容器を製作するための方法を工程順に示す説明図。
【符号の説明】
1…ドーナツ型円状板、 2…筒状体、 3…円板、
4,14,18…燃焼触媒容器、 5…燃料容器、 5a…開口部、
7…長穴(空気吸入孔)、 11…多孔質成形体、
12、15…PFAフィルム、 13…ファブリック、
16a,16b…PTFE不織布、 17…筒状体。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant and water-repellent combustion catalyst container for storing a combustion catalyst carrier.
[0002]
[Prior art]
As is well known, in a catalytic combustion vessel, a method is used in which a combustion catalyst (carrier) is placed in a heat-resistant combustion catalyst vessel and fuel gas is brought into contact with the combustion catalyst together with air through holes or gaps for air supply and exhaust to cause catalytic combustion. Alternatively, there is a method in which an insulator is used as a combustion catalyst carrier in a structure like an alcohol lamp, and fuel that has moved from a fuel tank through a permeable core material is catalytically burned on the porous insulator surface. Was.
[0003]
Conventionally, as such a technique for catalytic combustion, there is known a technique in which methyl alcohol is vaporized and brought into contact with a low-temperature active oxidation combustion catalyst to perform oxidative combustion (Patent Document 1). Further, a liquid fuel vaporizer, a catalyst body comprising a heating element, and the catalyst body is a catalyst carrier comprising lime aluminate and heat-resistant lid aggregate, at least, rhodium, palladium, ruthenium 2. Description of the Related Art A liquid fuel combustion device including a metal selected from the group consisting of a metal and a catalyst material including platinum (Patent Document 2) is known.
[0004]
[Patent Document 1]
JP-A-61-86510 (upper left column on page 2)
[0005]
[Patent Document 2]
JP-A-60-207818 (page 3, lower left column, line 10 to page 4, lower left column, line 17)
[0006]
[Problems to be solved by the invention]
A conventional catalytic combustion container also serves as a catalytic combustion device, and includes a fuel tank and the like in addition to a carrier material for a combustion catalyst. In such a device, the thermal power of catalytic combustion is regulated by the amount of fuel supplied to the surface of the combustion catalyst or by the amount of oxygen flowing from the combustion air holes. As the amount of oxygen is regulated by the slit-shaped combustion air holes and the like with relatively large openings, it is difficult to properly control the ratio of fuel and air, and unburned combustion gas is exhausted. However, there is a problem in that odors are generated and irritating gas components are generated depending on the type of fuel gas.
[0007]
In addition, when the supported catalyst is used, it is exposed to the outer surface of the structure, and when the catalyst is brought into contact with or absorbs water or water-soluble components, the activity of the catalyst may be reduced. Therefore, in many combustion catalyst devices, it is premised that combustion is started using a heat source such as a lighter or a heater. This is because the activity of the catalyst decreases every time it is used, so that when it is used again, combustion cannot be started only by contacting the catalyst with the fuel vapor.
[0008]
The present invention has been made in view of the above circumstances, and a cylindrical body formed by laminating a plurality of donut-shaped circular plates, and a circular plate made of a porous material that closes the openings at both ends of the cylindrical body. By permeating, sucking and exhausting fuel gas, air and combustion gas, performing catalytic combustion inside, and preventing intrusion of water and water-soluble components from the outside, the catalyst In addition to being able to prevent deactivation due to being covered with water-soluble components, the rate of catalytic combustion can be adjusted by adjusting the gas flow rate. An object of the present invention is to provide a heat-resistant and water-repellent combustion catalyst container that can be removed.
[0009]
In addition, the present invention includes a bag-shaped body made of a porous material, permeates, sucks and exhausts fuel gas, air and combustion gas, performs catalytic combustion inside, and intrudes water and water-soluble components from outside. As described above, it is possible to prevent the deactivation of the catalyst, adjust the speed of catalytic combustion, and also remove harmful components by burning, as described above. It is an object to provide a combustion catalyst container.
[0010]
[Means for Solving the Problems]
The heat-resistant and water-repellent combustion catalyst container according to the present invention is a heat-resistant and water-repellent combustion catalyst container for housing a combustion catalyst, and a cylindrical body formed by laminating a plurality of donut-shaped circular plates, A disc made of a porous material that closes the openings at both ends of the body, permeates and sucks and exhausts fuel gas, air and combustion gas, performs catalytic combustion inside, and water and water-soluble components from outside. It is characterized by preventing the invasion of the object.
[0011]
Further, the heat-resistant / water-repellent combustion catalyst container according to the present invention is a heat-resistant / water-repellent combustion catalyst container for accommodating a combustion catalyst, includes a bag-shaped body made of a porous material, and includes a fuel gas, air and combustion gas. It is characterized by permeating, sucking and exhausting gas, performing catalytic combustion inside, and preventing intrusion of water and water-soluble components from outside.
[0012]
As the bag-like body, for example, a ring-shaped first sheet made of fluororesin, and the first sheet is laminated on the upper and lower surfaces of the first sheet by fusing with the first sheet, respectively, to form a bag-like body together with the first sheet. And a second sheet made of a porous material. However, the present invention is not limited to this.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
In the present invention, examples of the donut-shaped circular plate include a plate having heat resistance and water repellency, such as a plate made of fluororesin. The disc or the second sheet may be, for example, a porous body (fabric) made of a fiber or a woven fabric coated with a fluororesin, a fluororesin porous plate, a fluororesin woven fabric, or a fluororesin nonwoven fabric. Those having heat resistance and water repellency such as Here, the “coating” in the fabric means, for example, a woven fabric impregnated with a fluororesin dispersion, dried and fired.
[0014]
In the present invention, as the fluororesin, ethylene tetrafluoride, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer resin, ethylene tetrafluoride-propylene hexafluoropropylene perfluoroalkyl vinyl ether copolymer, tetrafluoride Ethylene-hexafluoropropylene copolymer resin, ethylene trifluoride-ethylene copolymer, ethylene tetrafluoride-ethylene copolymer resin, ethylene trifluoride chloride resin, and vinylidene difluoride. The above fluororesins are arranged in the order of excellent heat resistance, and ethylene tetrafluoride resin is most preferable because it can be used in a wide temperature range.
[0015]
[Action]
In the combustion catalyst container as described above, the amount of gas passing through the wall of the container can be regulated by changing the pore size and porosity formed in the porous portion of the container. The level of the combustion temperature can be controlled. Further, since not only the fuel and air but also the exhaust amount of gas generated by catalytic combustion are regulated at the same time, the generation of unreacted fuel gas and irritating gas due to incomplete combustion and the like can be reduced. Further, since the activity of the combustion catalyst can be maintained at all times, the combustion can be started by contact with the fuel vapor without using a separate ignition device.
[0016]
【Example】
Hereinafter, Examples and Comparative Examples of the present invention will be described.
(Example 1)
A combustion catalyst container according to the present invention will be described together with a manufacturing method with reference to FIGS.
First, a porous material (hereinafter, simply referred to as a fabric) obtained by impregnating a glass fiber cloth with various openings with a tetrafluoroethylene resin (PTFE) dispersion, drying, and firing is shown in FIG. 1 (A). As shown in (1), a donut-shaped circular plate 1 was processed into a donut shape having an outer diameter of 45 mm and an inner diameter of 35 mm, and 30 donut-shaped circular plates 1 were prepared. In FIG. 1A, three circular plates 1 are drawn for convenience. Next, 30 doughnut-shaped circular plates 1 are stacked and heated and pressed at 400 ° C. for 1 minute at 400 ° C. under a pressure of 1 MPa by a heating press machine (not shown) to be fused to form a cylindrical body having a height of 3 mm. After that, the discs 3 made of the same material as the disc 1 were arranged above and below the donut-shaped disc 1 (shown in FIG. 1B). Subsequently, after a predetermined amount of a platinum black catalyst supported on γ-alumina (hereinafter, referred to as a supported catalyst) is put into a space defined by the cylindrical body 2 and the upper and lower disks 3, the pressure is set to 1 MPa at 380 ° C. by a hot press. By heating and pressurizing at a pressure for 1 minute and fusing, a combustion catalyst container 4 filled with a supported catalyst was produced.
[0017]
Here, gamma alumina-supported platinum black catalyst, gamma alumina beads (trade name: NKHD-24, manufactured by Sumitomo Chemical Co., Ltd.) to 20ml in the 0.5 wt% of an aqueous solution of chloroplatinic acid (H 2 PtCl 6 · 6H 2 O) Impregnated, further dried at 105 ° C., evaporated to dryness, heated to 80 ° C., further added with 10 ml of 36% formalin aqueous solution, and heated at 80 ° C. until the surface of the γ-alumina beads blackened. .
[0018]
As described above, as shown in FIG. 1 (C), the combustion catalyst container 4 according to the first embodiment has a donut-shaped circular plate 1 made of a material in which a glass fiber cloth is coated with tetrafluoroethylene resin (PTFE). , A cylindrical plate 2 of the same material as that of the cylindrical body 2, which is disposed above and below the cylindrical body 2 and crimped as a whole, and the cylindrical body 2 and the circle And a supported catalyst filled in a space surrounded by the plate 3.
[0019]
The combustion catalyst container 4 was placed in the opening 6 of the fuel container 5 as shown in FIG. 2, and methanol vapor generated from methanol stored at the bottom of the fuel container 5 was brought into contact with the lower surface of the combustion catalyst container 4. Here, the capacity of the fuel container 5 is 150 ml, a cylindrical fuel container having an opening 6 with a diameter of 35 mm at the top and four long holes (air inlets) 7 on the side surface. Table 1 below shows the ventilation amount, thickness, filled catalyst amount, combustion temperature, and formaldehyde concentration (based on the gas detection tube) of the fabric used in the combustion catalyst container 4 measured just above the fabric. Formaldehyde is a gas generated by incomplete combustion of methanol and is an irritating and harmful substance.
[0020]
[Table 1]
Figure 2004298811
[0021]
In Table 1, the ventilation rate was measured by the JIS L 1096 Frazier method. The combustion temperature was continuously measured with a digital multimeter (direct reading recorder) by bringing a K thermocouple into direct contact with the surface of the fabric and optionally the surface of the catalyst carrier. Further, the formaldehyde concentration was measured using a gas detection tube (for formaldehyde, No. 91 L, suction device for model GV-100 50-100 ml) manufactured by Gastech Co., Ltd., and the measurement location was directly above the fabric (from the fabric). (5 mm distance).
[0022]
When the temperature change of the catalytic combustion vessel is measured by a thermocouple attached to the upper surface of the vessel, the temperature of the combustion catalyst vessel starts rising after 1 to 2 minutes of contact, enters a stable combustion state after about 10 minutes, and thereafter, In Table 1, stable combustion of about ± 3 ° C. continued around the average temperature on the upper surface of the container which was the highest temperature in Table 1 above. The air permeability (pressure loss: 12 mmH 2 O) of the fabric used on the upper and lower surfaces of the combustion catalyst container was in the range of 0.53 to 48.8 (cm 3 / cm 2 / sec), but the combustion temperature was 110 to 138. In the range of ° C, the larger the ventilation rate, the higher the combustion temperature. The formaldehyde concentration was generally in the range of 1 to 2 ppm. This was filled in a copper mesh container having an opening of 1 mm having the same outer diameter as the combustion catalyst container shown in FIG. As compared with the formaldehyde concentration of 17.5 ppm obtained when the combustion was carried out in the above, it is about 1/10 from Table 5 described later, and the effect of using the combustion catalyst container according to the present invention is also clear. .
[0023]
Incidentally, the combustion temperature when using the copper mesh has reached 240 ° C., and the effect of suppressing the combustion temperature according to the present invention is apparent. Further, No. 1 having the smallest ventilation rate of 0.53 cm 3 / cm 2 / sec. Sample G had the lowest combustion temperature of 110 ° C, but the corresponding formaldehyde concentration was 0.2 ppm, which was the lowest in the sample, and the use of a fabric with a small airflow could reduce the amount of formaldehyde generated. I understand.
[0024]
(Example 2)
A combustion catalyst container having basically the same structure as that of the combustion catalyst container described in Example 1 and having a cylindrical body having a thickness of 10 mm was prepared, and a supported catalyst was contained therein as shown in Table 2 below. Was filled with 2.5 g, 5.0 g, 7.5 g and 10.0 g. This combustion catalyst container was placed on the fuel container in the same manner as in Example 1, and methanol vapor was brought into contact with the lower surface of the combustion catalyst container. Table 2 shows the ventilation amount of the fabric used for the combustion catalyst container, the amount of the filled catalyst, the combustion temperature, and the formaldehyde concentration (using a gas detector tube) measured immediately above the fabric.
[0025]
[Table 2]
Figure 2004298811
[0026]
According to this, the higher the catalyst loading, the lower the fabric surface temperature. On the other hand, the formaldehyde concentration was 1.25 ppm when the catalyst loading was 2.5 g, and was significantly reduced to 0.25 to 0.4 ppm when the catalyst was charged at 5 g or more. The cause of the decrease in surface temperature is considered to be a decrease in combustion temperature due to an increase in the amount of filled catalyst, or the amount of heat generated by the catalyst carrier. However, it can be seen that the formaldehyde concentration is significantly reduced. In this experiment, when a thermocouple was directly contacted with the lower catalyst in the catalytic combustion vessel and its surface temperature was measured, the temperature reached 140 to 160 ° C., and the decrease in the surface temperature was caused by the space above the catalytic combustion vessel. This is considered to be the result of the combustion gas cooling.
[0027]
(Example 3)
A combustion catalyst container having basically the same structure as that of the combustion catalyst container described in Example 1 and having a cylindrical portion having a thickness of 10 mm was manufactured. Half (1.2 mm) of the supported platinum catalyst was filled with 5 g as described in Table 3 below. This combustion catalyst container was placed on the fuel container in the same manner as in Example 1, and methanol vapor was brought into contact with the lower surface of the combustion catalyst container. Table 3 shows the ventilation amount of the fabric used in the combustion catalyst container, the amount of the filled catalyst, the combustion temperature, and the formaldehyde concentration (using a gas detector tube) measured immediately above the fabric.
[0028]
[Table 3]
Figure 2004298811
[0029]
According to this, even if the type of the catalyst carrier changes, there is no change in the combustion temperature, and the formaldehyde concentration is 0.4 to 0.7. It can be seen that it is held down by / 40. Thus, it can be seen that the combustion catalyst container according to the present invention has a small effect even if the size of the catalyst carrier to be charged changes, and can sufficiently suppress the fabric surface temperature and the formaldehyde concentration.
[0030]
(Example 4)
It has basically the same structure as the combustion catalyst container described in the third embodiment, and the fabric used on the upper and lower surfaces thereof is different from the third embodiment in that the air permeability is 18.5, 0.53 cm 3 / cm 2 / sec. A combustion catalyst container was prepared using the seeds, and supported platinum catalysts (diameters of 2.4 mmφ and 1.2 mmφ) having different particle diameters used in Example 2 and Example 3 were used therein under the conditions shown in Table 4 below. In each case, 5 g was filled. This combustion catalyst container was placed on the fuel container in the same manner as in Example 1, and methanol vapor was brought into contact with the lower surface of the combustion catalyst container. Table 4 shows the ventilation amount of the fabric used in the combustion catalyst container, the amount of the filled catalyst, the combustion temperature, and the formaldehyde concentration (using a gas detector tube) measured immediately above the fabric.
[0031]
[Table 4]
Figure 2004298811
[0032]
As a result, even if the air permeability of the fabric used for the upper and lower surfaces of the catalytic combustion vessel was reduced to about 40% of that in Example 2, the fabric surface temperature was maintained in the range of 70 to 80 ° C., and the formaldehyde concentration was maintained. Was about 0.8 ppm, and basically, both the surface temperature and the amount of formaldehyde generated were significantly suppressed as compared with when the same mesh was used.
[0033]
On the other hand, when the air permeability of the fabric is smaller than about 10% of Example 2, the surface temperature of the fabric is 60 ° C. or 40 ° C., which is clearly lower than the case where the air permeability is about 40%, and the formaldehyde concentration is lower. It can be seen that both were significantly suppressed to 0.1 (trace). As described above, it can be seen that the combustion catalyst container according to the present invention can suppress the fabric surface temperature and the generation of formaldehyde by reducing the ventilation rate of the used fabric.
[0034]
(Example 5)
Referring to FIGS. 3A and 3B, FIG.
First, 500 g of PTFE resin (trade name: G353, manufactured by Asahi Glass Co., Ltd.) and 330 g of pulverized naphthalene (manufactured by Nippon Steel Chemical Co., Ltd.) as a pore-forming agent (average particle size: about 140 μm) were added to a Henschel mixer. (Model: FM10B, manufactured by Mitsui Miike Koki Co., Ltd.) and stirred at 1600 rpm for 2 minutes to produce a resin containing a pore-forming agent (PTFE: 60% by weight, pore-forming agent: 40% by weight). Next, this resin was put into a mold, pre-formed under a unit pressure of 4.41 MPa for 5 minutes, and then fired to obtain a porous formed body 11. However, the firing conditions were from ordinary temperature to 200 ° C./2.9 hr → 200 to 370 ° C./4.3 hr → 370 ° C./3 hrs → 370 ° C. to ordinary temperature / 4.3 hr.
[0035]
Subsequently, the porous molded body 11 was machined to have φ40 × φ60 × 20 mm in height. In addition, the thickness of the bottom surface was finished to 0.5 mm. Further, as shown in FIG. 3 (A), after loading 5 g of the supported catalyst inside the machined porous molded body 11, a 100 μm × φ40 × φ60 PFA film 12 is placed on the upper surface of the porous molded body 11. The combustion catalyst container 14 filled with the supported catalyst was prepared by placing the φ13 fabrics 13 and heating and pressurizing them at 380 ° C. at a pressure of 1 MPa for 1 minute at 380 ° C. using a heating press machine (FIG. 3). (B)).
[0036]
(Example 6)
Note that the sixth embodiment is the same as the fifth embodiment except for the fabric, and the drawings are omitted.
First, 500 g of PTFE resin (trade name: G353, manufactured by Asahi Glass Co., Ltd.) and 330 g of pulverized naphthalene (manufactured by Nippon Steel Chemical Co., Ltd.) as a pore-forming agent (average particle size: about 140 μm) were added to a Henschel mixer. (Model: FM10B, manufactured by Mitsui Miike Koki Co., Ltd.) and stirred at 1600 rpm for 2 minutes to produce a resin containing a pore-forming agent (PTFE: 60% by weight, pore-forming agent: 40% by weight). Next, this resin was put into a mold, pre-formed under a unit pressure of 4.41 MPa for 5 minutes, and then fired to obtain a porous formed body 11. However, the firing conditions were from ordinary temperature to 200 ° C./2.9 hr → 200 to 370 ° C./4.3 hr → 370 ° C./3 hr → 370 ° C. to ordinary temperature / 4.3 hr.
[0037]
Subsequently, the porous molded body was machined to have a size of φ40 × φ60 × height of 20 mm. In addition, the thickness of the bottom surface was finished to 0.5 mm. Furthermore, after 5 g of the supported catalyst is put inside the machined porous molded body, a φ60 PTFE woven or knitted fabric (trade name: TOYOFLON (model #) is placed on the upper surface of the porous molded body via a 100 μm × φ40 × φ60 PFA film. 406P, # 406W, or # 2512) or Toray Fine Chemical Co., Ltd.), and these are heated and pressed at 380 ° C. for 1 minute at 380 ° C. to fuse the whole. Then, a combustion catalyst container filled with a supported catalyst was prepared.
[0038]
(Example 7)
4 (A) to 4 (C).
First, a PFA film 15 as a first sheet made of a fluororesin having a U-shaped planar shape and PTFE nonwoven fabrics 16a and 16b as a second sheet are prepared. Here, the shape of the PFA film 15 is 100 μm thickness × 5 mm width. The PTFE nonwoven fabrics 16a and 16b are trade names of polyflon web B manufactured by Daikin Industries, Ltd., and have a size of 50 mm × 50 mm. Next, as shown in FIG. 4A, these are arranged so that the PFA film 15 is interposed between the PTFE nonwoven fabrics 16a and 16b. Next, the PTFE nonwoven fabrics 16a and 16b and the PFA film 15 were heated and pressed at 380 ° C. under a pressure of 1 MPa at 380 ° C. for 1 minute, and the whole was fused to form a bag-like body 17 processed into a bag. It was formed (see FIG. 4B). Subsequently, after 3 g of the supported catalyst was put in the bag-like body 17, the above-mentioned conditions were also carried out with a PFA film (not shown) interposed between the PTFE nonwoven fabrics 16a and 16b on the opening side of the bag-like body. Similarly, the opening was closed by heating and pressing to form a combustion catalyst container 18 (see FIG. 4C).
[0039]
As described above, as shown in FIG. 4, the combustion catalyst container 4 according to the seventh embodiment has a PFA film 15 having a U-shape in plan view, and the PFA film 15 on the upper and lower surfaces thereof. PTFE nonwoven fabrics 16a and 16b made of a porous material constituting the bag-like body 17 together with the film 15, and the combustion catalyst container is stored in the bag-like body 17, and the opening of the bag-like body 17 is opened. One side 17a of the side is closed.
[0040]
In the above-described Example 7, the case where the bag-like body is formed from the PFA film (first sheet) and the PTFE non-woven fabric (second sheet) having a U-shape in plan view has been described, but the present invention is not limited to this. For example, the first sheet is not always necessary, and the bag-like body may be constituted only by the second sheet. Further, the shape of the first sheet is not limited to the U-shape, and may be an annular shape or the like. Further, the fusion of the first sheet and the second sheet is not limited to the pressurization by the heating press as described above, and the first sheet and the second sheet may be connected by, for example, an adhesive.
[0041]
According to the present invention as described in detail above, the following effects can be obtained.
(1) In the present invention, since the supported catalyst is housed in the heat-resistant and water-repellent porous combustion catalyst container, fuel vapor, air, and combustion gas can pass through the wall of the container. For example, water-soluble seasonings and beverages are blocked by the water-repellent wall, so that the catalyst can be prevented from being deactivated by being covered with water or water-soluble components. Therefore, combustion can be started with a low boiling point fuel such as methanol without using an ignition device.
[0042]
(2) The wall (or main part) of the combustion catalyst vessel is porous, and the gas flow rate can be adjusted by changing the size of the pores or the gap between the fabrics. Can be adjusted.
[0043]
(3) Furthermore, the catalytic combustion gas may contain a substance that is irritating and harmful to the human body. Since the contact time can be sufficiently long, harmful components can be removed by combustion by making combustion more complete.
[0044]
(4) The combustion catalyst container according to the present invention can directly contact an object to be heated. For example, placing a cup or dish containing liquid or food on it functions as an instrument for heating the liquid or food.
[0045]
(5) Since the combustion catalyst container according to the present invention is not a part of the structure of the device, unlike a general catalytic combustion device, any combination with a container containing fuel is possible. By installing the fuel container in the opening of the fuel container having a simple or complex shape, the heating device can be easily formed.
[0046]
[Table 5]
Figure 2004298811
[0047]
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements in an implementation stage without departing from the scope of the invention. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Further, components of different embodiments may be appropriately combined.
[0048]
【The invention's effect】
As described above in detail, according to the present invention, a cylindrical body formed by laminating a plurality of donut-shaped circular plates, and a circular plate made of a porous material that closes the openings at both ends of the cylindrical body are provided. The fuel gas, air and combustion gas are permeated, sucked and exhausted, the catalyst is burned inside, and the intrusion of water and water-soluble components from the outside is prevented. In addition to being able to prevent deactivation by being covered with, it is also possible to adjust the rate of catalytic combustion by adjusting the gas flow rate, and to further remove harmful components by making combustion more complete The present invention can provide a heat-resistant / water-repellent combustion catalyst container that can perform the heat treatment.
[0049]
Further, according to the present invention, there is provided a heat-resistant and water-repellent combustion catalyst container for accommodating a combustion catalyst, wherein a first sheet made of a fluororesin having a U-shaped planar shape and upper and lower surfaces of the first sheet are provided respectively. A second sheet made of a porous material that is fused and laminated with the first sheet and constitutes a bag together with the first sheet. The opening of the bag contains a combustion catalyst. Closed, permeate, inhale and exhaust fuel gas, air and combustion gas, perform catalytic combustion inside, and prevent intrusion of water and water-soluble components from the outside. It is possible to provide a heat-resistant and water-repellent combustion catalyst container which can prevent deactivation, adjust the speed of catalytic combustion, and can also remove harmful components by combustion.
[Brief description of the drawings]
FIGS. 1A to 1C are explanatory views showing a method for manufacturing a combustion catalyst container according to an embodiment of the present invention in the order of steps.
FIG. 2 is an explanatory diagram in the case where the combustion catalyst container of FIG. 1 is arranged in a cylindrical combustion container.
FIGS. 3A and 3B are explanatory views showing a method for manufacturing a combustion catalyst container of another embodiment in the order of steps.
4A to 4C are explanatory views showing a method for manufacturing a combustion catalyst container of another embodiment in the order of steps.
[Explanation of symbols]
1 ... donut-shaped circular plate, 2 ... cylindrical body, 3 ... disk,
4, 14, 18: combustion catalyst container, 5: fuel container, 5a: opening,
7 ... elongated hole (air suction hole), 11 ... porous molded body,
12, 15: PFA film, 13: Fabric,
16a, 16b: PTFE non-woven fabric; 17: tubular body.

Claims (6)

燃焼触媒を収納するための耐熱・撥水性燃焼触媒容器であり、ドーナツ型円状板を複数個積層してなる筒状体と、この筒状体の両端の開口部を閉じる多孔質材料からなる円板とを具備し、燃料ガス、空気及び燃焼ガスを透過、吸排気し、内部で触媒燃焼を行うとともに、外部からの水及び水溶性成分の侵入を阻止することを特徴とする耐熱・撥水性燃焼触媒容器。A heat-resistant and water-repellent combustion catalyst container for containing a combustion catalyst, which is formed of a cylindrical body formed by laminating a plurality of donut-shaped circular plates, and a porous material that closes openings at both ends of the cylindrical body. A heat-repellent and / or heat-repellent material characterized by having a circular plate for permeating, sucking and exhausting fuel gas, air and combustion gas, performing catalytic combustion inside, and preventing intrusion of water and water-soluble components from outside. Aqueous combustion catalyst container. 燃焼触媒を収納するための耐熱・撥水性燃焼触媒容器であり、多孔質材料からなる袋状体を具備し、燃料ガス、空気及び燃焼ガスを透過、吸排気し、内部で触媒燃焼を行うとともに、外部からの水及び水溶性成分の侵入を阻止することを特徴とする耐熱・撥水性燃焼触媒容器。A heat-resistant and water-repellent combustion catalyst container for storing a combustion catalyst, which is provided with a bag-shaped body made of a porous material, and through which fuel gas, air, and combustion gas are permeated, sucked and exhausted, and perform catalytic combustion inside. A heat-resistant and water-repellent combustion catalyst container, which prevents entry of water and water-soluble components from the outside. 前記ドーナツ型円状板は、ふっ素樹脂製の板であることを特徴とする請求項1記載の耐熱・撥水性燃焼触媒容器。The heat-resistant and water-repellent combustion catalyst container according to claim 1, wherein the donut-shaped circular plate is a plate made of fluororesin. 前記円板は、ふっ素樹脂を被覆した繊維叉は織物、ふっ素樹脂製織布、ふっ素樹脂製織布、ふっ素樹脂製多孔質板のいずれかであることを特徴とする請求項1記載の耐熱・撥水性燃焼触媒容器。The heat-resistant / heat-resistant plate according to claim 1, wherein the disk is any one of a fiber or woven fabric coated with a fluororesin, a woven fabric made of a fluororesin, a woven fabric made of a fluororesin, and a porous plate made of a fluororesin. Water-repellent combustion catalyst container. 前記袋状体は、ふっ素樹脂を被覆した繊維叉は織物、ふっ素樹脂製織布、ふっ素樹脂製織布、ふっ素樹脂製多孔質板のいずれかことを特徴とする請求項2記載の耐熱・撥水性燃焼触媒容器。The heat-resistant / repellent material according to claim 2, wherein the bag-like body is any one of a fiber or woven fabric coated with fluororesin, a woven fabric made of fluororesin, a woven fabric made of fluororesin, and a porous plate made of fluororesin. Aqueous combustion catalyst container. 前記ふっ素樹脂は、四ふっ化エチレン樹脂、三ふっ化塩化エチレン樹脂、二ふっ化ビニリデン、四ふっ化エチレン−六ふっ化プロピレン共重合体樹脂、四ふっ化エチレン−パーフロロアルキルビニルエーテル共重合樹脂、四ふっ化エチレン−エチレン共重合樹脂、四ふっ化エチレン−六ふっ化プロピレンパーフロロアルキルビニールエーテル共重合体、三ふっ化塩化エチレン−エチレン共重合体のいずれかであることを特徴とする請求項3若しくは請求項4記載の耐熱・撥水性燃焼触媒容器。The fluororesin is ethylene tetrafluoride resin, ethylene trifluoride chloride resin, vinylidene difluoride, ethylene tetrafluoride-propylene hexafluoride copolymer resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer resin, It is any one of ethylene tetrafluoride-ethylene copolymer resin, ethylene tetrafluoride-propylene hexafluoride perfluoroalkyl vinyl ether copolymer, and ethylene trifluoride-ethylene copolymer. The heat-resistant and water-repellent combustion catalyst container according to claim 3 or 4.
JP2003097284A 2003-03-31 2003-03-31 Heat and water repellent combustion catalyst container Expired - Fee Related JP4521595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097284A JP4521595B2 (en) 2003-03-31 2003-03-31 Heat and water repellent combustion catalyst container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097284A JP4521595B2 (en) 2003-03-31 2003-03-31 Heat and water repellent combustion catalyst container

Publications (3)

Publication Number Publication Date
JP2004298811A true JP2004298811A (en) 2004-10-28
JP2004298811A5 JP2004298811A5 (en) 2006-06-15
JP4521595B2 JP4521595B2 (en) 2010-08-11

Family

ID=33409116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097284A Expired - Fee Related JP4521595B2 (en) 2003-03-31 2003-03-31 Heat and water repellent combustion catalyst container

Country Status (1)

Country Link
JP (1) JP4521595B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134616A (en) * 1981-02-12 1982-08-19 Juichi Shimizu Secondary combustion net device
JPS59195349U (en) * 1983-06-08 1984-12-25 株式会社日立ホームテック oxidation catalyst device
JPS6186510A (en) * 1984-10-02 1986-05-02 Hakukin Kairo Kk Method for heating in pocket warmer
JPS6235003B2 (en) * 1982-02-01 1987-07-30 Yunaitetsudo Tekunorojiizu Corp
JPH07109669A (en) * 1993-10-13 1995-04-25 Tomoegawa Paper Co Ltd Metal-supporting porous fluorofiber sheet and its production
JP2000004783A (en) * 1998-06-25 2000-01-11 Toshiba Corp Structure for retaining freshness for refrigerator
JP2000296337A (en) * 1999-04-12 2000-10-24 Mitsui Chemicals Inc Method for packing organopolysiloxane catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134616A (en) * 1981-02-12 1982-08-19 Juichi Shimizu Secondary combustion net device
JPS6235003B2 (en) * 1982-02-01 1987-07-30 Yunaitetsudo Tekunorojiizu Corp
JPS59195349U (en) * 1983-06-08 1984-12-25 株式会社日立ホームテック oxidation catalyst device
JPS6186510A (en) * 1984-10-02 1986-05-02 Hakukin Kairo Kk Method for heating in pocket warmer
JPH07109669A (en) * 1993-10-13 1995-04-25 Tomoegawa Paper Co Ltd Metal-supporting porous fluorofiber sheet and its production
JP2000004783A (en) * 1998-06-25 2000-01-11 Toshiba Corp Structure for retaining freshness for refrigerator
JP2000296337A (en) * 1999-04-12 2000-10-24 Mitsui Chemicals Inc Method for packing organopolysiloxane catalyst

Also Published As

Publication number Publication date
JP4521595B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
Chun et al. Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells
JPH02234358A (en) Fuel cell
JP6576297B2 (en) Catalyst parts and vent filters, vent plugs and lead-acid batteries including the same
JP2007521453A (en) Capillary pump for liquid vaporization
JP6540260B2 (en) Honeycomb structure and automotive catalytic converter
Giménez-Mañogil et al. Catalyzed particulate filter regeneration by platinum versus noble metal-free catalysts: from principles to real application
CN108479844A (en) A kind of CO cryogenic selectives methanation nickel-base catalyst and its preparation method and application
JP4084296B2 (en) Direct liquid fuel cell power generator and harmful substance removal filter for direct liquid fuel cell
JP4521595B2 (en) Heat and water repellent combustion catalyst container
JP2009039633A (en) Particulate filter equipped with catalyst
JP3736020B2 (en) Gas sensor
JP4022341B2 (en) Dehumidification method and apparatus
JP2006144870A (en) Fuel cartridge and fuel cell system using the same
WO2002070127A1 (en) Exhaust gas purifying catalyst
JP3752456B2 (en) Separator and container using the same
JP2006507113A (en) Method for coating catalyst carrier having two different partial structures with catalytically active coating and catalyst obtained by said method
JP3885357B2 (en) Gas sensor
JP3713819B2 (en) Gas sensor
JP2006513545A (en) Diffusion layer and fuel cell
JP6858535B2 (en) Catalytic conversion sensor and gas detector
JP3777749B2 (en) Gas sensor
JPWO2005020361A1 (en) Fuel cell system
JP4512141B2 (en) Sheet type catalyst heater
JP3987359B2 (en) Gas sensor
JP3435836B2 (en) Gas sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060331

A521 Written amendment

Effective date: 20060403

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090107

A131 Notification of reasons for refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090403

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100510

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees