JP2004296586A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2004296586A
JP2004296586A JP2003084392A JP2003084392A JP2004296586A JP 2004296586 A JP2004296586 A JP 2004296586A JP 2003084392 A JP2003084392 A JP 2003084392A JP 2003084392 A JP2003084392 A JP 2003084392A JP 2004296586 A JP2004296586 A JP 2004296586A
Authority
JP
Japan
Prior art keywords
dicing saw
semiconductor device
cutting
manufacturing
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084392A
Other languages
Japanese (ja)
Inventor
Motoaki Wakui
元明 和久井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Sanyo Semiconductors Co Ltd, Sanyo Electric Co Ltd filed Critical Kanto Sanyo Semiconductors Co Ltd
Priority to JP2003084392A priority Critical patent/JP2004296586A/en
Publication of JP2004296586A publication Critical patent/JP2004296586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dicing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device by which the corrosion or peeling of the external wiring would hardly occur when the external wiring is formed in cut parts of the surface. <P>SOLUTION: The method of manufacturing a semiconductor device comprises a laminate formation process S12 of forming a laminate by fastening a support substrate for covering a region wherein a plurality of integrated circuits are formed on a semiconductor substrate formed with the plurality of integrated circuits via an insulating resin, a notch cutting process S14-2 of cutting the semiconductor substrate together with the insulating resin with at least part of the support substrate being left over, and a dicing process S22 of dividing the laminate into individual pieces by cutting the support substrate. In the notch cutting process S14-2, a dress board 50 is cut by a dicing saw whose teeth have been set before cutting the semiconductor substrate including the laminate by a dicing saw. After checking the cut shape of the dress board 50, the teeth of the dicing saw are set again and then the semiconductor substrate including the laminate is cut by the dicing saw. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の層を積層してなる積層体を含む半導体装置の製造方法に関し、特にダイシングソーにて前記積層体を切削する工程を有する半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、半導体装置のチップサイズを小型化するために、チップサイズパッケージ(CSP)が広く用いられるようになっている。
【0003】
近年、このようなチップサイズパッケージは、CCDイメージセンサの分野に取り入れられ、小型カメラに用いられるセンサチップのパッケージングに採用されている。
【0004】
図6は、チップサイズパッケージを採用した半導体装置の一例であり、図6(a),(b)は、それぞれ半導体装置の表面側、裏面側から見た斜視図である。
【0005】
第1及び第2の支持基体2,3の間に半導体チップ4が絶縁樹脂5を介して封止されている。下部支持基体3の主面、すなわち、装置の裏面側には、ボール状端子8が複数配置され、これらの複数のボール状端子8が外部配線7を介して半導体チップ4に接続される。複数の外部配線7には、半導体チップ4から配線が引き出されて接続されており、各ボール状端子8と半導体チップ4とのコンタクトがとられている。
【0006】
図7に、図6の製造方法のフローを示す。複数の半導体素子が形成された半導体基板10の表面に隣接する各半導体素子の境界をまたがるように、酸化膜を介して内部配線24を形成する。この内部配線24は、酸化膜に形成されるコンタクトホールを介して半導体素子と電気的に接続される(S10)。半導体基体10を樹脂層5を介して上部支持基体2及び下部支持基体3によって挟み込んで積層体100を形成する(S12)。このとき、半導体基板10を下部支持基体3側からスクライブラインに沿ってエッチングして内部配線24を一旦露出させた後に、半導体基板10へ下部支持基体3を貼り合わせる。下部支持基体3には、さらに緩衝部材30を形成する。この緩衝部材30は、ボール状端子8に掛かる応力を和らげるクッションの役割を果たす。
【0007】
次に、図8のように、積層体100をスクライブラインに沿って下部支持基体3側からダイシングソー34を用いて逆V字型のノッチ(切り欠き溝)22を形成し、素子の内部配線24の端部26をノッチ22の側面に露出させる(S14)。
【0008】
その後、下部支持基体3の表面及びノッチ22の内面に金属膜28を形成し(S16)、金属膜28を内部配線24とコンタクトさせる。金属膜28を所定の配線パターンに沿って内部配線24から緩衝部材30まで至るようにパターンニングして外部配線7を形成する(S18)。さらに、保護膜30及びボール状端子20を形成し(S20)、スクライブラインに沿って分断することによってチップサイズパッケージの各半導体装置が完成する(S22)。
【0009】
例えば、チップサイズパッケージのCCDイメージセンサでは受光面を有するため、少なくとも上部支持基体2に光学的に透明なガラス板が用いられると共に、半導体基板10との接着のため樹脂層12にも透明性を有するエポキシ樹脂が用いられる。
【0010】
【非特許文献1】
“PRODUCTS”、[online]、SHELLCASE社、[平成14年10月1日検索]、インターネット<URL http://www.shellcase.com/pages/products−shellOP−process.asp>
【0011】
【発明が解決しようとする課題】
上述のような構成を有する半導体装置の場合、半導体基板10の表面に対して所定の傾きを持った面に金属膜を堆積させるため、下部支持基体3の表面上に蒸着させる場合に比して、金属膜を高密度に堆積させるのが困難である。さらに、ダイシングソーを用いて積層体100を切削してノッチ22を形成するため、樹脂層12の樹脂が摩擦熱によって溶けて、溶けた樹脂がノッチ22の内面あるいはダイシングソーに付着する。このため、ノッチ22の内面に大きな凹凸が生じ、そこに金属膜28をうまく蒸着させることができず、成膜後の金属膜28の密度を更に低下させるという問題があった。また、ノッチ工程において、ダイシングソーの表面がきれいな状態でないと所望の切削形状が得られないという問題もあった。
【0012】
このように、金属膜28の密度が低くなると、金属膜28をパターンニングする際に用いたレジストを剥離するための薬液などが金属膜28中に染み込み、金属膜28中に薬液がそのまま残存し、外部配線18の腐食や剥がれを生じさせる深刻な問題を引き起こしていた。
【0013】
本発明は、上記従来技術の問題を鑑み、半導体基板に絶縁樹脂を介して支持基体が固着される積層体構造の半導体装置に適した製造方法を提供することを可能としたものである。
【0014】
【課題を解決するための手段】
上記課題を解決するため、本発明の半導体装置の製造方法は、複数の集積回路が形成された半導体基板上に、絶縁樹脂を介して、前記複数の集積回路の形成領域を被う支持基体を固着し、積層体を形成する第1の工程と、少なくとも前記支持基体の一部を残して前記積層体を含む前記半導体基板を前記絶縁樹脂と共に切削する第2の工程と、前記支持基体を切削して前記積層体を分割する第3の工程とを含み、前記第2の工程は、ダイシングソーにて前記積層体を含む前記半導体基板を切削する際に、ダイシングソーを目立てした後に、前記積層体を含む前記半導体基板を切削することを特徴とする。
【0015】
また、前記第2の工程は、目立てした前記ダイシングソーにより試料基板を切削し、その切削形状を確認した後に、前記ダイシングソーを目立てし直し前記積層体を含む前記半導体基板を切削することを特徴とする。
【0016】
ここで、上記半導体装置の製造方法において、前記第2の工程は、砥石で研いだダイシングソーを用いることが好適である。
【0017】
さらには、前記第2の工程は、前記ダイシングソーに冷却媒体を吹き付けて冷却を行うことが好適である。
【0018】
また、上記半導体装置の製造方法において、前記第2の工程で形成された前記積層体の切削面上に金属配線を形成する工程を、さらに含むことを特徴とする。
【0019】
【発明の実施の形態】
本発明の実施の形態における半導体装置の製造方法は、図1に示すフローチャートのように、内部配線形成工程(S10)、積層体形成工程(S12)、ノッチ切削工程(S14−2)、金属膜成膜工程(S16)、パターンニング工程(S18)、端子形成工程(S20)及びダイシング工程(S22)から基本的に構成される。
【0020】
本実施の形態における半導体装置の製造方法において、ノッチ切削工程S14−2以外の各工程は、従来の半導体装置の製造工程と同様であるので説明を省略する。
【0021】
ここで、積層体100の構成について説明する。以下の説明において、半導体基板10は、シリコン基板、砒化ガリウム等の一般的な半導体材料であれば良い。半導体基板10には、トランジスタ素子、光電変換素子、電荷結合素子(CCD)等の半導体素素子、抵抗素子、容量素子を含む半導体装置を形成しておくことができる。
【0022】
また、樹脂層5は、半導体基板10と上部支持基体2及び下部支持基体3とを接着するものであって、エポキシ等の硬化樹脂材料とすることができる。固体撮像素子を構成する場合には、透明の樹脂層5を用いることが好適である。
【0023】
また、上部支持基体2及び下部支持基体3は素子の構造強度を高めるものであって、ガラス、金属、プラスチック等を用いることができる。固体撮像素子を構成する場合には、少なくとも上部支持基体2に透明なガラスやプラスチックを用いることが好ましい。
【0024】
以下、本実施の形態の特徴である改良されたノッチ切削工程について詳細に説明する。
【0025】
ステップS14−2のノッチ切削工程では、テーパのつけられたダイシングソーを用いて積層体100を下部支持基体3側から切削して逆V字型のノッチ22を形成する。ダイシングソーによって下部支持基体3、樹脂層5、半導体基板10及び上部支持基体2の一部が切削され、ノッチ22の内面に内部配線24の端部26が露出する。
【0026】
ノッチ切削工程は、円盤状のダイシングソー円周上にダイヤモンド微粒子を貼り付けたダイシングソー34を用いて行われる。
【0027】
以下、図2のノッチ切削工程を示すフローチャートに従ってノッチ切削工程を説明する。
【0028】
まず、前記積層体100を切削するに先立って、前記ダイシングソーの目立てを行う(ステップS14−21:ドレッシング工程1)。ここで、目立てとは、ダイシングソーの表面を砥石で研いで所望の形状となるように処理することである。
【0029】
続いて、図3に示すように試料基板としてのドレスボード50をプリカットする。本実施形態では試料基板としてガラスとシリコンから成る半導体基板との積層基板を用い、所望の回転数で当該積層基板を所望の深さまで切削する(ステップS14−22)。
【0030】
次に、ドレスボード50に形成されたノッチ形状を顕微鏡等を用いて、その角度、深さを観察する(ステップS14−23)。
【0031】
さらに、形成したノッチの形状(角度、深さ等)が所望のものである場合には、再び前記ダイシングソーの目立てを行う。即ち、前記ステップS14−23における切削工程によりダイシングソーの表面が目つまりを起している場合があるため、再度、ダイシングソーを砥石で研いで所望の形状となる(目つまりを解消する)ように処理する(ステップS14−24:ドレッシング工程2)。
【0032】
そして、実際に前記積層体100を切削して所望のノッチ形状を形成する(ステップS14−25)。
【0033】
また、続いて半導体基板上の別の位置をノッチ処理する場合には、ノッチ工程前に、同様にダイシングソーの目立てを行った後に、前記積層体100にノッチ処理を施す。即ち、ドレスボード50をプリカットし(ステップS14−26)、ドレスボード50に形成されたノッチ形状を顕微鏡等を用いて、その角度、深さを観察する(ステップS14−27)。そして、形成したノッチの形状(角度、深さ等)が所望のものである場合には、再び前記ダイシングソーの目立てを行い(ステップS14−28:ドレッシング工程3)、実際に前記積層体100を切削して所望のノッチ形状を形成する(ステップS14−29)。以下、同様にノッチ処理を繰り返す。
【0034】
前記ダイシングソー34によるノッチ切削工程では、ダイシングソー34を冷却することにより、積層体100の切削面の温度が積層体100に含まれる層のうち最も低い軟化温度を有する層の軟化温度より低い温度となる条件で切削を行うことが好適である。
【0035】
具体的には、図4のように、第1及び第2の冷却媒体噴射装置38,39が設けられた冷却装置を用い、ダイシングソー34へ冷却媒体36を噴射して冷却しながら、切削を行う。
【0036】
ダイシングソー34の前方には、第1の冷却媒体噴射装置38が位置し、図4(a)に示すように、第1の冷却媒体噴射装置38からダイシングソー34及び切削部分40に冷却媒体36を直接吹き付けることによって、冷却を行う。このように、冷却媒体36を直接吹き付けて冷却することで、ダイシングソー34及び切削部分40を局部的に冷却することができ、冷却効率が向上して温度上昇を好適に抑えることができる。尚、冷却媒体36としては、純水、アセトン、エチルアルコール、イソプロピルアルコール等を適宜選択して用いることができる。
【0037】
また、冷却媒体36の噴射方向として、ダイシングソー34の回転方向に沿うように行うのが好適である。これにより、切削部分40に当たった冷却媒体36がダイシングソー34の回転に沿って切削部分40からノッチ22側に向かって流れ込み、切削部分40をより効率的に冷却すると共に、切削部分40についたゴミを除去することができる。
【0038】
また、このとき、切削方向に対して5°以上45°以下の仰角をもって、切削点40に向けて冷却媒体36を吹き付けることが好適である。さらに、切削方向に対して30°以上40°以下の仰角をもって冷却媒体36を吹き付けることがより好適である。
【0039】
また、冷却媒体36の幅として、ダイシングソー34のダイシングソーを完全に覆うように、ダイシングソーの幅よりも広く吹き付けることが好適である、これにより、図5(a)のように、ダイシングソー34のダイシングソーの両面に均等に冷却媒体36が供給され、切削時にダイシングソー34の冷却を効率良く行うことができる。
【0040】
一方、上記条件を外れると、図5(b)のように、ダイシングソーに沿った冷却媒体36の流れが不均一となったり、ノッチ22の内面への冷却媒体36の供給が不十分となり、冷却効率が低下する。
【0041】
ダイシングソー34の両側には、ダイシングソー34を挟むように第2の冷却媒体噴射装置39が位置し、図4(b)に示すように、第2の冷却媒体噴射装置39からもダイシングソー34及び切削部分40に冷却媒体36を直接吹き付けることによって、さらに冷却効率を向上させることができる。なお、この第2の冷却媒体噴射装置39からの冷却媒体36の吹き付けについても、積層体100に対して5°以上45°以下の仰角をもって行うのが好適である。
【0042】
ダイシングソー34の後方には、洗浄媒体噴射装置41が位置し、この洗浄媒体噴射装置41から、切削後の積層体100へ洗浄媒体42を吹き付けることによって、ノッチ22や積層体100表面に付いたゴミを除去する。洗浄媒体42としては、冷却媒体36を流用することができる。
【0043】
このような構成において、例えば、積層体100がシリコン半導体層をエポキシ樹脂層を介してガラス基体で挟み込んだ構造に対して冷却を行った結果、直径20cm及びダイシングソー幅0.62mmのダイシングソー34を40000回転/分で用いた場合に、20l/分の純水を仰角30°以上40°以下で切削部分40に向けて吹き付けることによって、切削部分40の温度を最も軟化温度の低いエポキシ樹脂層の軟化温度150℃以下に保って切削を行うことができた。
【0044】
以上のように、本実施の形態における半導体装置の製造方法を用いることで、切削時のノッチ22の内面の温度上昇を抑えることが可能となり、ノッチ22の内面への不要物の付着を防止することができる。その結果、そこに成膜される金属膜の密度が高くなり、外部配線の腐食や剥がれを防止することができる。
【0045】
さらに、ノッチ処理を行う前にダイシングソーの目立てを行っているため、ノッチ22を安定的に形成することができ、同じく外部配線の腐食や剥がれを防止することができる。
【0046】
【発明の効果】
本発明によれば、半導体基板に絶縁樹脂を介して支持基体が固着される積層体構造を有する半導体装置において、切削工程を原因とする配線の腐食及び剥がれを防ぐことができる。従って、半導体装置の信頼性を向上することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における半導体装置の製造方法を示す図である。
【図2】本実施の形態におけるダイシングソーによる切削処理工程のフローを示すである。
【図3】本実施の形態におけるドレスボードを用いたプリカット処理を示す図である。
【図4】本実施の形態におけるダイシングソーによる切削処理を示す図である。
【図5】本発明の実施の形態における切削処理の作用を説明する図である。
【図6】チップサイズパッケージの半導体装置の外観を示す図である。
【図7】チップサイズパッケージの半導体装置の製造方法のフローを示す図である。
【図8】従来の半導体装置の製造方法におけるダイシングソーによる切削処理を示す図である。
【符号の説明】
2 上部支持基体、3 下部支持基体、4 半導体チップ、5 樹脂層、7 外部配線、8 ボール状端子(ハンダバンプ)、10 半導体基板、22 ノッチ(切り欠き溝)、24 内部配線、26 内部配線の端部、28 金属膜、30 コンタクト部、32 絶縁膜、34 ダイシングソー、36 冷却媒体、38 第1の冷却媒体噴射装置、39 第2の冷却媒体噴射装置、40 切削部分、41 洗浄媒体噴射装置、42 洗浄媒体、50 ドレスボード、100 積層体。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device including a stacked body formed by stacking a plurality of layers, and more particularly to a method of manufacturing a semiconductor device including a step of cutting the stacked body with a dicing saw.
[0002]
[Prior art]
In recent years, a chip size package (CSP) has been widely used to reduce the chip size of a semiconductor device.
[0003]
In recent years, such a chip size package has been adopted in the field of CCD image sensors, and has been adopted for packaging sensor chips used in small cameras.
[0004]
FIG. 6 is an example of a semiconductor device employing a chip size package, and FIGS. 6A and 6B are perspective views of the semiconductor device as viewed from the front side and the back side, respectively.
[0005]
A semiconductor chip 4 is sealed between the first and second support bases 2 and 3 via an insulating resin 5. A plurality of ball-shaped terminals 8 are arranged on the main surface of the lower support base 3, that is, on the back side of the device, and these ball-shaped terminals 8 are connected to the semiconductor chip 4 via external wirings 7. Wirings are drawn out of the semiconductor chip 4 and connected to the plurality of external wirings 7, and each ball-shaped terminal 8 is in contact with the semiconductor chip 4.
[0006]
FIG. 7 shows a flow of the manufacturing method of FIG. The internal wiring 24 is formed via an oxide film so as to straddle the boundary of each semiconductor element adjacent to the surface of the semiconductor substrate 10 on which the plurality of semiconductor elements are formed. The internal wiring 24 is electrically connected to the semiconductor element via a contact hole formed in the oxide film (S10). The semiconductor body 10 is sandwiched between the upper support base 2 and the lower support base 3 with the resin layer 5 interposed therebetween to form the laminate 100 (S12). At this time, after the semiconductor substrate 10 is etched along the scribe line from the lower support base 3 side to expose the internal wiring 24 once, the lower support base 3 is bonded to the semiconductor substrate 10. The buffer member 30 is further formed on the lower support base 3. The cushioning member 30 plays a role of a cushion that relieves stress applied to the ball-shaped terminal 8.
[0007]
Next, as shown in FIG. 8, an inverted V-shaped notch (notch groove) 22 is formed on the laminate 100 along the scribe line from the lower support base 3 side using a dicing saw 34, and the internal wiring of the element is formed. The end 26 of the notch 24 is exposed on the side surface of the notch 22 (S14).
[0008]
Thereafter, a metal film 28 is formed on the surface of the lower support base 3 and the inner surface of the notch 22 (S16), and the metal film 28 is brought into contact with the internal wiring 24. The external wiring 7 is formed by patterning the metal film 28 from the internal wiring 24 to the buffer member 30 along a predetermined wiring pattern (S18). Further, the protection film 30 and the ball-shaped terminals 20 are formed (S20), and the semiconductor devices of the chip size package are completed by dividing the semiconductor device along the scribe lines (S22).
[0009]
For example, since a CCD image sensor of a chip size package has a light receiving surface, an optically transparent glass plate is used for at least the upper support base 2, and the resin layer 12 also has transparency for bonding to the semiconductor substrate 10. Epoxy resin is used.
[0010]
[Non-patent document 1]
"PRODUCTS", [online], SHELLCASE, [searched October 1, 2002], Internet <URL http: // www. shellcase. com / pages / products-shellOP-process. asp>
[0011]
[Problems to be solved by the invention]
In the case of the semiconductor device having the above-described configuration, the metal film is deposited on a surface having a predetermined inclination with respect to the surface of the semiconductor substrate 10, so that the metal film is deposited on the surface of the lower support base 3. It is difficult to deposit a metal film at a high density. Further, since the notch 22 is formed by cutting the laminate 100 using a dicing saw, the resin of the resin layer 12 is melted by frictional heat, and the melted resin adheres to the inner surface of the notch 22 or the dicing saw. For this reason, large irregularities are generated on the inner surface of the notch 22, and the metal film 28 cannot be vapor-deposited on the inner surface, and there is a problem that the density of the formed metal film 28 is further reduced. Further, in the notch step, there is a problem that a desired cutting shape cannot be obtained unless the surface of the dicing saw is in a clean state.
[0012]
As described above, when the density of the metal film 28 decreases, a chemical solution for removing the resist used when patterning the metal film 28 soaks into the metal film 28, and the chemical solution remains in the metal film 28 as it is. This causes a serious problem that the external wiring 18 is corroded or peeled off.
[0013]
The present invention has been made in view of the above-mentioned problems of the prior art, and has made it possible to provide a manufacturing method suitable for a semiconductor device having a laminated structure in which a supporting base is fixed to a semiconductor substrate via an insulating resin.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, a method of manufacturing a semiconductor device according to the present invention includes, on a semiconductor substrate on which a plurality of integrated circuits are formed, a supporting base covering an area where the plurality of integrated circuits are formed via an insulating resin. A first step of fixing and forming a laminate, a second step of cutting the semiconductor substrate including the laminate together with the insulating resin while leaving at least a part of the support base, and cutting the support base And a third step of dividing the laminated body, and wherein the second step comprises, when cutting the semiconductor substrate including the laminated body with a dicing saw, after sharpening the dicing saw, Cutting the semiconductor substrate including the body.
[0015]
In the second step, the sample substrate is cut by the sharpened dicing saw, and after confirming the cut shape, the dicing saw is sharpened again to cut the semiconductor substrate including the stacked body. And
[0016]
Here, in the method of manufacturing a semiconductor device, it is preferable that the second step uses a dicing saw polished with a grindstone.
[0017]
Further, in the second step, cooling is preferably performed by spraying a cooling medium onto the dicing saw.
[0018]
Further, the method for manufacturing a semiconductor device further includes a step of forming a metal wiring on a cut surface of the laminate formed in the second step.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for manufacturing a semiconductor device according to the embodiment of the present invention includes an internal wiring forming step (S10), a stacked body forming step (S12), a notch cutting step (S14-2), and a metal film as shown in the flowchart of FIG. It basically comprises a film forming step (S16), a patterning step (S18), a terminal forming step (S20), and a dicing step (S22).
[0020]
In the method of manufacturing a semiconductor device according to the present embodiment, each step other than the notch cutting step S14-2 is the same as the conventional semiconductor device manufacturing step, and thus the description is omitted.
[0021]
Here, the configuration of the laminate 100 will be described. In the following description, the semiconductor substrate 10 may be a general semiconductor material such as a silicon substrate or gallium arsenide. On the semiconductor substrate 10, a semiconductor device including a semiconductor element such as a transistor element, a photoelectric conversion element, a charge-coupled element (CCD), a resistor, and a capacitor can be formed.
[0022]
The resin layer 5 bonds the semiconductor substrate 10 to the upper support base 2 and the lower support base 3, and may be a cured resin material such as epoxy. When forming a solid-state imaging device, it is preferable to use a transparent resin layer 5.
[0023]
The upper support base 2 and the lower support base 3 serve to increase the structural strength of the element, and may be made of glass, metal, plastic, or the like. When forming a solid-state imaging device, it is preferable to use transparent glass or plastic for at least the upper support base 2.
[0024]
Hereinafter, the improved notch cutting process, which is a feature of the present embodiment, will be described in detail.
[0025]
In the notch cutting step of step S14-2, the stacked body 100 is cut from the lower support base 3 side using a tapered dicing saw to form an inverted V-shaped notch 22. The lower support base 3, the resin layer 5, the semiconductor substrate 10, and a part of the upper support base 2 are cut by the dicing saw, and the end 26 of the internal wiring 24 is exposed on the inner surface of the notch 22.
[0026]
The notch cutting step is performed using a dicing saw 34 in which fine diamond particles are adhered on the circumference of a disc-shaped dicing saw.
[0027]
Hereinafter, the notch cutting step will be described with reference to the flowchart showing the notch cutting step in FIG.
[0028]
First, prior to cutting the laminate 100, the dicing saw is dressed (step S14-21: dressing step 1). Here, dressing refers to grinding the surface of a dicing saw with a grindstone to treat it to a desired shape.
[0029]
Subsequently, as shown in FIG. 3, a dress board 50 as a sample substrate is precut. In the present embodiment, a laminated substrate of glass and a semiconductor substrate made of silicon is used as a sample substrate, and the laminated substrate is cut to a desired depth at a desired rotation speed (step S14-22).
[0030]
Next, the angle and depth of the notch formed on the dress board 50 are observed using a microscope or the like (step S14-23).
[0031]
Further, when the shape (angle, depth, etc.) of the formed notch is desired, the dicing saw is dressed again. That is, since the surface of the dicing saw may be clogged by the cutting process in step S14-23, the dicing saw may be ground again with a grindstone to obtain a desired shape (to eliminate the clogged eyes). (Step S14-24: dressing step 2).
[0032]
Then, the laminate 100 is actually cut to form a desired notch shape (step S14-25).
[0033]
When notching is performed on another position on the semiconductor substrate, the dicing saw is similarly dressed before the notching step, and then the laminate 100 is subjected to notching. That is, the dress board 50 is pre-cut (step S14-26), and the angle and depth of the notch formed on the dress board 50 are observed using a microscope or the like (step S14-27). If the shape (angle, depth, etc.) of the formed notch is desired, the dicing saw is dressed again (step S14-28: dressing step 3), and the laminate 100 is actually removed. The desired notch shape is formed by cutting (step S14-29). Hereinafter, the notch processing is similarly repeated.
[0034]
In the notch cutting step using the dicing saw 34, by cooling the dicing saw 34, the temperature of the cutting surface of the laminate 100 is lower than the softening temperature of the layer having the lowest softening temperature among the layers included in the laminate 100. It is preferable to perform cutting under the following conditions.
[0035]
Specifically, as shown in FIG. 4, cutting is performed while injecting the cooling medium 36 to the dicing saw 34 and cooling using the cooling apparatus provided with the first and second cooling medium injection apparatuses 38 and 39. Do.
[0036]
In front of the dicing saw 34, a first cooling medium injection device 38 is located, and as shown in FIG. 4A, the cooling medium 36 is supplied from the first cooling medium injection device 38 to the dicing saw 34 and the cutting portion 40. To perform cooling. As described above, by directly spraying the cooling medium 36 to cool, the dicing saw 34 and the cutting portion 40 can be locally cooled, the cooling efficiency can be improved, and the temperature rise can be suitably suppressed. As the cooling medium 36, pure water, acetone, ethyl alcohol, isopropyl alcohol, or the like can be appropriately selected and used.
[0037]
Further, it is preferable that the cooling medium 36 be sprayed in a direction along the rotation direction of the dicing saw 34. As a result, the cooling medium 36 that has hit the cutting portion 40 flows from the cutting portion 40 toward the notch 22 along the rotation of the dicing saw 34, thereby cooling the cutting portion 40 more efficiently and attaching to the cutting portion 40. Garbage can be removed.
[0038]
At this time, it is preferable to spray the cooling medium 36 toward the cutting point 40 at an elevation angle of 5 ° to 45 ° with respect to the cutting direction. Further, it is more preferable to spray the cooling medium 36 at an elevation angle of 30 ° or more and 40 ° or less with respect to the cutting direction.
[0039]
It is preferable that the width of the cooling medium 36 is wider than the width of the dicing saw so as to completely cover the dicing saw of the dicing saw 34. As a result, as shown in FIG. The cooling medium 36 is evenly supplied to both surfaces of the dicing saw 34, so that the dicing saw 34 can be cooled efficiently during cutting.
[0040]
On the other hand, if the above conditions are not satisfied, as shown in FIG. 5B, the flow of the cooling medium 36 along the dicing saw becomes uneven, or the supply of the cooling medium 36 to the inner surface of the notch 22 becomes insufficient. Cooling efficiency decreases.
[0041]
On both sides of the dicing saw 34, a second cooling medium ejecting device 39 is positioned so as to sandwich the dicing saw 34, and as shown in FIG. And, by directly spraying the cooling medium 36 on the cutting portion 40, the cooling efficiency can be further improved. It is preferable that the spray of the cooling medium 36 from the second cooling medium injection device 39 is also performed at an elevation angle of 5 ° to 45 ° with respect to the stacked body 100.
[0042]
The cleaning medium ejecting device 41 is located behind the dicing saw 34, and the cleaning medium 42 is sprayed from the cleaning medium ejecting device 41 onto the laminated body 100 after cutting, so that the notch 22 and the surface of the laminated body 100 are attached. Remove garbage. As the cleaning medium 42, the cooling medium 36 can be used.
[0043]
In such a configuration, for example, as a result of cooling the structure in which the stacked body 100 sandwiches the silicon semiconductor layer between the glass substrates via the epoxy resin layer, the dicing saw 34 having a diameter of 20 cm and a dicing saw width of 0.62 mm is obtained. Is used at 40,000 revolutions / minute, by spraying 20 l / min of pure water toward the cutting portion 40 at an elevation angle of 30 ° or more and 40 ° or less, thereby lowering the temperature of the cutting portion 40 to the epoxy resin layer having the lowest softening temperature. The cutting was able to be performed while keeping the softening temperature of 150 ° C. or lower.
[0044]
As described above, by using the method of manufacturing a semiconductor device according to the present embodiment, it is possible to suppress an increase in the temperature of the inner surface of the notch 22 during cutting, and to prevent unnecessary substances from adhering to the inner surface of the notch 22. be able to. As a result, the density of the metal film formed thereon increases, and corrosion and peeling of the external wiring can be prevented.
[0045]
Furthermore, since the dicing saw is dressed before performing the notch processing, the notch 22 can be formed stably, and similarly, corrosion and peeling of the external wiring can be prevented.
[0046]
【The invention's effect】
According to the present invention, in a semiconductor device having a laminated structure in which a supporting base is fixed to a semiconductor substrate via an insulating resin, corrosion and peeling of wiring due to a cutting step can be prevented. Therefore, the reliability of the semiconductor device can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 2 shows a flow of a cutting process using a dicing saw in the present embodiment.
FIG. 3 is a diagram showing a precut process using a dress board in the present embodiment.
FIG. 4 is a diagram showing a cutting process using a dicing saw in the present embodiment.
FIG. 5 is a diagram illustrating an operation of a cutting process according to the embodiment of the present invention.
FIG. 6 is a diagram showing an appearance of a semiconductor device of a chip size package.
FIG. 7 is a diagram showing a flow of a method of manufacturing a semiconductor device of a chip size package.
FIG. 8 is a diagram showing a cutting process using a dicing saw in a conventional method for manufacturing a semiconductor device.
[Explanation of symbols]
2 upper support base, 3 lower support base, 4 semiconductor chip, 5 resin layer, 7 external wiring, 8 ball-shaped terminal (solder bump), 10 semiconductor substrate, 22 notch (notch groove), 24 internal wiring, 26 internal wiring End, 28 metal film, 30 contact portion, 32 insulating film, 34 dicing saw, 36 cooling medium, 38 first cooling medium injection device, 39 second cooling medium injection device, 40 cutting portion, 41 cleaning medium injection device , 42 cleaning media, 50 dress boards, 100 laminates.

Claims (5)

複数の集積回路が形成された半導体基板上に、絶縁樹脂を介して、前記複数の集積回路の形成領域を被う支持基体を固着し、積層体を形成する第1の工程と、
少なくとも前記支持基体の一部を残して前記積層体を含む前記半導体基板を前記絶縁樹脂と共に切削する第2の工程と、
前記支持基体を切削して前記積層体を分割する第3の工程とを含み、
前記第2の工程は、ダイシングソーにて前記積層体を含む前記半導体基板を切削する際に、ダイシングソーを目立てした後に、前記積層体を含む前記半導体基板を切削することを特徴とする半導体装置の製造方法。
A first step of fixing a support base covering an area where the plurality of integrated circuits are formed on the semiconductor substrate on which the plurality of integrated circuits are formed via an insulating resin to form a laminate;
A second step of cutting the semiconductor substrate including the laminate together with the insulating resin while leaving at least a part of the support base;
A third step of cutting the support base and dividing the laminate.
The semiconductor device according to claim 2, wherein the second step is to cut the semiconductor substrate including the stacked body after sharpening the dicing saw when the semiconductor substrate including the stacked body is cut by the dicing saw. Manufacturing method.
請求項1に記載の半導体装置の製造方法において、
前記第2の工程は、目立てした前記ダイシングソーにより試料基板を切削し、その切削形状を確認した後に、前記ダイシングソーを目立てし直し前記積層体を含む前記半導体基板を切削することを特徴とする半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 1,
The second step is characterized in that the sample substrate is cut by the sharpened dicing saw, and after confirming the cut shape, the dicing saw is sharpened again to cut the semiconductor substrate including the stacked body. A method for manufacturing a semiconductor device.
請求項1又は請求項2に記載の半導体装置の製造方法において、
前記第2の工程は、砥石で研いだ前記ダイシングソーを用いることを特徴とする半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 1 or 2,
The method of manufacturing a semiconductor device, wherein the second step uses the dicing saw polished with a grindstone.
請求項1乃至請求項3に記載の半導体装置の製造方法において、
前記第2の工程は、前記ダイシングソーに冷却媒体を吹き付けて冷却を行うことを特徴とする半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein
The method of manufacturing a semiconductor device according to claim 2, wherein in the second step, cooling is performed by spraying a cooling medium onto the dicing saw.
請求項1乃至請求項4に記載の半導体装置の製造方法において、
前記第2の工程で形成された前記積層体の切削面上に金属配線を形成する工程を、さらに含むことを特徴とする半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 1, wherein
A method for manufacturing a semiconductor device, further comprising a step of forming a metal wiring on a cut surface of the stacked body formed in the second step.
JP2003084392A 2003-03-26 2003-03-26 Method of manufacturing semiconductor device Pending JP2004296586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084392A JP2004296586A (en) 2003-03-26 2003-03-26 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084392A JP2004296586A (en) 2003-03-26 2003-03-26 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2004296586A true JP2004296586A (en) 2004-10-21

Family

ID=33399572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084392A Pending JP2004296586A (en) 2003-03-26 2003-03-26 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2004296586A (en)

Similar Documents

Publication Publication Date Title
US6582983B1 (en) Method and wafer for maintaining ultra clean bonding pads on a wafer
TWI446420B (en) Releasing carrier method for semiconductor process
JP2004214588A (en) Method for manufacturing semiconductor device
JP2004363478A (en) Manufacturing method of semiconductor device
JP2006253402A (en) Manufacturing method of semiconductor device
JPH03204954A (en) Semiconductor device and manufacture thereof
JP6956788B2 (en) Board processing method and board processing system
JP2007123362A (en) Method of manufacturing device
JP2005005380A (en) Method of manufacturing semiconductor device
CN101752273B (en) Method of manufacturing semiconductor device
JP6837709B2 (en) Laser machining method for device wafers
CN1645597A (en) Semiconductor device and method of manufacturing same
JP3539934B2 (en) Wafer dividing method and wafer dividing apparatus
JP2005026311A (en) Dicing film, flip chip mounting method, and semiconductor device
US6465344B1 (en) Crystal thinning method for improved yield and reliability
TW200832532A (en) Method for cutting a wafer and method for manufacturing semiconductor package by using multiple tape
JP2004296586A (en) Method of manufacturing semiconductor device
JP2004119468A (en) Wafer-level package dividing method
JP2006100587A (en) Method of manufacturing solid-state imaging device
JP7171138B2 (en) Device chip manufacturing method
TWI782189B (en) stripping method
JP5863264B2 (en) Wafer processing method
JP2006287271A (en) Method of manufacturing semiconductor device
JP2005136226A (en) Method for manufacturing semiconductor device
TWI845749B (en) Method for removing the carrier

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20051227

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

A621 Written request for application examination

Effective date: 20060303

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929