JP2004296306A - Connector for surface mounting - Google Patents

Connector for surface mounting Download PDF

Info

Publication number
JP2004296306A
JP2004296306A JP2003088148A JP2003088148A JP2004296306A JP 2004296306 A JP2004296306 A JP 2004296306A JP 2003088148 A JP2003088148 A JP 2003088148A JP 2003088148 A JP2003088148 A JP 2003088148A JP 2004296306 A JP2004296306 A JP 2004296306A
Authority
JP
Japan
Prior art keywords
terminal
connector
reflow
surface mounting
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003088148A
Other languages
Japanese (ja)
Inventor
Koichi Hirao
康一 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003088148A priority Critical patent/JP2004296306A/en
Publication of JP2004296306A publication Critical patent/JP2004296306A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Multi-Conductor Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connector for surface mounting which will not fall off from the substrate in a reflow soldering process, even when the connector is on an underface side of a printed circuit board in a second reflow. <P>SOLUTION: In a connector 6 for the surface mounting provided with a plurality of surface mounting terminals 7, a terminal 8 penetrating through the substrate, and a base 9 composed of insulating resin for housing and holding one end of both terminals 7, 8, and mounted on the printed circuit board 4 by means of the reflow soldering, both terminals 7, 8 are constituted of a shape memory alloy to memorize a normal shape at the temperature in the reflow soldering, and the base 9 is inhibited from being thermally deformed as both terminals 7, 8 keep the normal shape in the reflow soldering. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、表面実装用コネクタに関し、特に、リフローはんだ付け処理によりプリント基板の表面に実装される表面実装用コネクタに関するものである。
【0002】
【従来の技術】
表面実装用コネクタは、通常、銅合金等からなる端子部とそれを保持する樹脂製の絶縁物からなるベースとで構成されている。この表面実装用コネクタをリフローはんだ付け(以下リフローと略す)によってプリント基板(以下基板と略す)の表面に実装する際に、リフロー過程において高温にさらされるため、ベースが変形する場合がある。この対策を施した従来の表面実装用コネクタは、例えば、電子部品保持用の部品保持部を備えたインシュレータ(ベース)と、一方の端部をインシュレータの部品保持部に保持した電子部品の複数のコンタクトと対応接続し、他方の端部を実装用基板の複数のパッドと対応してはんだ付け接続する複数のコンタクト(端子)と、実装用基板へのリフロー工程におけるインシュレータの変形を防止するためインシュレータの予め定められた部位に保持固定されたインシュレータ変形防止部材とで構成されている。また、変形防止部材として、リフロー処理工程におけるはんだ溶融温度からはんだが固化する温度までの温度範囲で真直ぐに延びた形状を保つ形状記憶合金が使用されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−173683号公報(第2頁、図1)
【0004】
【発明が解決しようとする課題】
従来の表面実装用コネクタは上記のように構成されていたので、リフロー時のベースの変形を防止するために変形防止部材が必要であった。また、例えば携帯電話機等の小形電気機器では、小型化のために基板の両面に部品を高密度で実装する必要があるが、基板の一面をリフロー(1stリフロー)した後、基板を裏返して他面をリフロー(2ndリフロー)するような場合、実装の便宜上、2ndリフロー工程において表面実装用コネクタが基板下面にくる場合が少なくない。図7は2ndリフロー工程を有する従来の表面実装用コネクタを基板に実装する場合の側面断面図である。(a)は1stリフロー時、(b)は2ndリフロー時を示す。(a)に示すように、端子1,2とベース3からなる表面実装用コネクタを基板4の所定の位置に搭載し、端子1をはんだ面に合わせ端子2をスルーホール5に貫通させて1stリフローを実施する。次に基板4を裏返して2ndリフローを実施するが、リフローの熱ではんだが溶けるので、重力により基板4から表面実装用コネクタが落下しないように設計する必要がある。すなわち、(表面実装用コネクタの重量)<(端子のはんだ接触部で発生するはんだ表面張力)となるように、端子のはんだ接触面積を設計する必要がある。
【0005】
リフローの熱により、ベース3が図7(a)に示すように熱変形した場合、端子1のコプラナリティ(平坦度)が変化し、端子1のはんだ接触面積が減少する。変形が大きくなりはんだ接触面積が不十分な場合、2ndリフロー工程において、図7(b)に示すように表面実装用コネクタがその重量で脱落する場合があった。
【0006】
このような、2ndリフロー工程での表面実装用コネクタ脱落対策として、接着剤の塗布や、1stリフロー時は高温はんだを使用し2ndリフロー時は低温はんだを使用する等の対策が考えられるが、いずれも設備や材料や管理の面でコストアップとなる。例えば、携帯電話機のように、大型で重量の大きい、I/Oコネクタ、SIMコネクタ等の実装作業においては、2ndリフロー工程での脱落防止は大きな課題であった。
【0007】
この発明は、上記のような問題点を解消するためになされたもので、リフロー工程においてベースの熱変形によって端子とはんだ部の接触面積が減少するのを抑制する表面実装用コネクタを提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明による表面実装用コネクタは、複数の導電性の端子と、上記端子の一端を収納し保持すための絶縁性の樹脂からなるベースとを備え、リフローはんだ付けによってプリント基板上に実装される表面実装用コネクタにおいて、端子をリフローはんだ付け時の温度で正規の形状を記憶する形状記憶合金で構成し、リフローはんだ付け時に端子が正規の形状を保持しようとする力により、ベースが熱変形するのを阻止するようにしたものである。
【0009】
【発明の実施の形態】
実施の形態1.
図1および図2は、本発明の実施の形態1による表面実装用コネクタを基板に実装する過程を示す図である。図1は1stリフロー時、図2は2ndリフロー時を示し、それぞれ(a)は平面図、(b)は一部断面を示す側面図である。図において、表面実装用コネクタ6は、表面実装端子7と基板貫通端子8とからなる複数の導電性の端子と、これらの端子の一端を収納し保持すための絶縁性の樹脂からなるベース9とで構成されており、基板4に搭載されリフローによって実装される。ベース9の材料としては、ベース9に要求される強度などの特性に合わせて、PPS、LCP等の樹脂が用いられる。また、表面実装端子7と基板貫通端子8はリフロー時の温度で正規の形状を記憶する形状記憶合金が用いられている。ここで、正規の形状とは、変形やゆがみのない、当初の設計通りの形状のことである。
【0010】
図3は表面実装用コネクタの内部の一例を示す断面図である。図のように表面実装端子7および基板貫通端子8は、ベース9の内部にも入り組んでおり、あたかも骨格のように構成されている。
【0011】
まず、1stリフロー工程について説明する。基板4の表面実装端子7に対応する部分と基板貫通端子8が貫通するスルーホール5の周縁部分には、はんだペースト10が印刷されており、リフロー時の熱によりはんだペーストが溶融し表面実装端子7および基板端通端子8が基板4にはんだ付けされて表面実装用コネクタ6が基板4に実装される。このとき、はんだは基板貫通端子8が挿入されるスルーホール5にも溶けて進入する。
【0012】
リフロー時には、高温の熱が表面実装用コネクタ6全体に加わるので、この熱によりベース9は変形しようとする。一方、表面実装端子7および基板貫通端子8はリフロー時の温度において正規の形状を記憶する形状記憶合金が使用されているので、熱が加わることにより正規の形状を保持しようとする。前述のように、各端子はベースの内部に骨格のように入り組んでいるので、表面実装端子7と基板貫通端子8が正規の形状を保持しようとする力により、ベース9が熱変形するのを阻止する。また、表面実装端子7が正規の形状を保つことにより、はんだ付け面のコプラナリティが保たれている。
【0013】
次に、2ndリフロー工程においては、図2のように、基板4が裏返されて表面実装用コネクタ6が基板4の下面側となる。ベース9に変形がなく端子部のコプラナリティが保たれているので、表面実装端子7および基板貫通端子8のはんだ接触面積は確保され、表面実装用コネクタ6は、(表面実装用コネクタの重量)<(表面実装端子および基板貫通端子と基板との接触部で発生するはんだ表面張力)の関係を維持することができる。
【0014】
以上のように本実施の形態による発明によれば、表面実装用コネクタの端子である表面実装端子と基板貫通端子を形状記憶合金で構成し、リフロー時のベースの熱変形を阻止するようにしたので、端子とはんだとの所定の接触面積を確保でき、従って、2ndリフロー時に表面実装用コネクタが基板から脱落するのを防止できる。
【0015】
実施の形態2.
図4は、本発明の実施の形態2による表面実装用コネクタを基板に実装する過程を示す側面断面図である。(a)は1stリフロー時を示し、(b)は2ndリフロー時を示す。図において、4,5,7,9は実施の形態1で説明した図1と同様なので符号の説明は省略する。本実施の形態における表面実装用コネクタ11の基板貫通端子12は形状記憶合金からなり、常温においてはベース9から外の部分は基板4のスルーホール5を貫通する形状、例えば図4(a)の点線で示すような直線形状を記憶し、リフロー時の温度においてはスルーホール5を貫通しない形状、例えば図に示すようなL字形状を記憶している。なお、この基板貫通端子12のベース9の内部に埋設される部分および表面実装端子7は、リフロー時の温度において正規の形状を記憶するようになっている。
【0016】
次に作用について説明する。図4(a)に示すように、1stリフロー時には表面実装用コネクタ11の基板貫通端子12は、リフローの熱が加わると、その温度でL字形状になり、先端部が基板4に係止される。2ndリフロー時には、(b)に示すように基板4が裏返されて表面実装用コネクタ11が基板の裏面側となるが、基板貫通端子12が基板4に係止されているので、表面実装用コネクタ11が基板から脱落することがない。
【0017】
以上のように本実施の形態による発明によれば、基板貫通端子をリフロー時の温度でスルーホールを貫通しない、例えばL字形状を記憶する形状記憶合金で構成したので、実施の形態1の効果に加え、2ndリフロー時に表面実装用コネクタが基板から脱落するのを確実に防止でき、実装の信頼性が向上する。
【0018】
なお、上記では、ベース9に埋設される端子部はリフロー時の温度で正規の形状を保つ場合について説明したが、少なくとも基板貫通端子12のベース9から外の部分を、常温においてスルーホール5を貫通しリフロー時の温度においてスルーホール5を貫通しない形状を記憶するようにすれば、2ndリフロー時において表面実装用コネクタの脱落を防止する効果を得ることができる。
【0019】
また、基板貫通端子12のリフロー温度での記憶形状を90度のL字形ではなく、例えば図5に示すように鋭角なL字形状としても良い。このようにすれば、基板4にベース9を押しつける力が働くため、表面実装用コネクタ11を基板4に密着して実装することができる。
【0020】
実施の形態3.
図6は実施の形態3による表面実装用コネクタを基板に実装する場合を示す側面断面である。図において4,7〜9は実施の形態1で説明した図1と同様なので符号の説明は省略する。表面実装用コネクタ13のベース9には基板4に設けた貫通孔14を貫通して基板4と係合するコネクタ固定部材15が設けられており、このコネクタ固定部材15は常温では貫通孔14を貫通しリフロー時の温度では貫通孔14を貫通しない形状、例えば図に示すようなL字形状を記憶する形状記憶合金で構成されている。
【0021】
このため、2ndリフロー時に基板4が裏返されて表面装用コネクタ13が基板の下面側になっても、コネクタ固定部材15が基板4に引っ掛かるので、表面実装用コネクタ13が基板4から脱落することがない。なお、コネクタ固定部材15の個数は1個または3個以上でも良い。また、基板貫通端子8は実施の形態2の図4で説明したような形状でも良い。
【0022】
実施の形態3の発明によれば、表面実装用コネクタにリフロー時に基板に係止するコネクタ固定部材を設けたので、基板貫通端子の位置に関係なく、リフロー時の温度でベースが変形するのを効果的に抑制できる位置にコネクタ固定部材を配置できるため、実施の形態1および2の効果に加え、ベースの変形を効率よく阻止できる。
【0023】
【発明の効果】
以上のように、この発明によれば、表面実装用コネクタの端子を、リフロー時の温度で正規の形状を記憶する形状記憶合金で構成したので、リフロー時に端子が正規の形状を保持しようとする力によりベースの熱変形を阻止でき、端子とはんだとの所定の接触面積を確保することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1による表面実装用コネクタを基板に実装する場合の1stリフロー時の状態を示す図である。
【図2】この発明の実施の形態1による表面実装用コネクタを基板に実装する場合の2stリフロー時の状態を示す図である。
【図3】この発明の実施の形態1による表面実装用コネクタの断面図である。
【図4】この発明の実施の形態2による表面実装用コネクタを基板に実装する場合を示す側面断面図である。
【図5】この発明の実施の形態2による表面実装用コネクタを基板に実装する場合の他の例を示す側面断面図である。
【図6】この発明の実施の形態3による表面実装用コネクタを基板に実装する場合を示す側面断面図である。
【図7】従来の表面実装用コネクタを基板に実装する場合を示す側面断面図である。
【符号の説明】
4 基板
5 スルーホール
6,11,13 表面実装用コネクタ
7 表面実装端子
8,12 基板貫通端子
9 ベース
15 コネクタ固定部材。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface mount connector, and more particularly, to a surface mount connector mounted on a surface of a printed circuit board by reflow soldering.
[0002]
[Prior art]
The surface mounting connector usually includes a terminal portion made of a copper alloy or the like and a base made of a resin insulator for holding the terminal portion. When mounting this surface mounting connector on the surface of a printed circuit board (hereinafter abbreviated as a substrate) by reflow soldering (hereinafter abbreviated as a reflow), the base may be deformed because it is exposed to a high temperature in a reflow process. Conventional surface mount connectors that take this measure include, for example, an insulator (base) having a component holding portion for holding an electronic component and a plurality of electronic components having one end held by the component holding portion of the insulator. A plurality of contacts (terminals) correspondingly connected to the contacts and the other end corresponding to a plurality of pads of the mounting board by soldering, and an insulator for preventing deformation of the insulator in a reflow process on the mounting board. And an insulator deformation preventing member which is held and fixed at a predetermined portion. Further, as a deformation preventing member, a shape memory alloy that maintains a straightly extended shape in a temperature range from a solder melting temperature to a temperature at which solder is solidified in a reflow process is used (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2000-173683 (page 2, FIG. 1)
[0004]
[Problems to be solved by the invention]
Since the conventional surface mount connector is configured as described above, a deformation preventing member is required to prevent deformation of the base during reflow. Also, in a small electric device such as a cellular phone, it is necessary to mount components on both sides of the board at a high density in order to reduce the size. However, after reflowing one side of the board (1st reflow), the board is turned upside down. In the case where the surface is reflowed (2nd reflow), the surface mounting connector often comes to the lower surface of the substrate in the 2nd reflow process for convenience of mounting. FIG. 7 is a side sectional view when a conventional surface mount connector having a second reflow process is mounted on a substrate. (A) shows the time of the first reflow, and (b) shows the time of the second reflow. As shown in FIG. 1A, a surface mounting connector including terminals 1 and 2 and a base 3 is mounted at a predetermined position on a substrate 4, and the terminal 1 is aligned with the solder surface, and the terminal 2 is passed through the through hole 5 to make a first connection. Perform reflow. Next, the substrate 4 is turned upside down and 2nd reflow is performed. However, since the solder is melted by the heat of the reflow, it is necessary to design so that the surface mounting connector does not drop from the substrate 4 due to gravity. That is, it is necessary to design the solder contact area of the terminal such that (weight of the surface mount connector) <(solder surface tension generated at the solder contact portion of the terminal).
[0005]
When the base 3 is thermally deformed as shown in FIG. 7A by the heat of the reflow, the coplanarity (flatness) of the terminal 1 changes, and the solder contact area of the terminal 1 decreases. When the deformation is large and the solder contact area is insufficient, the surface mounting connector may fall off due to its weight in the second reflow step as shown in FIG. 7B.
[0006]
As such a countermeasure against falling off of the surface mounting connector in the second reflow process, measures such as application of an adhesive or use of a high-temperature solder at the time of the first reflow and use of a low-temperature solder at the time of the second reflow can be considered. This also increases costs in terms of equipment, materials and management. For example, in the mounting work of a large and heavy I / O connector, SIM connector, or the like, such as a mobile phone, prevention of falling off in the second reflow process has been a major issue.
[0007]
The present invention has been made in order to solve the above-described problems, and to provide a surface mounting connector that suppresses a reduction in a contact area between a terminal and a solder portion due to thermal deformation of a base in a reflow process. With the goal.
[0008]
[Means for Solving the Problems]
A surface mounting connector according to the present invention includes a plurality of conductive terminals and a base made of an insulating resin for housing and holding one end of the terminal, and is mounted on a printed circuit board by reflow soldering. In a surface mount connector, the terminals are made of a shape memory alloy that stores the correct shape at the temperature at the time of reflow soldering, and the base is thermally deformed by the force that the terminals try to maintain the correct shape at the time of reflow soldering It is intended to prevent this.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
1 and 2 are views showing a process of mounting the surface mounting connector according to the first embodiment of the present invention on a substrate. FIG. 1 shows the first reflow and FIG. 2 shows the second reflow. FIG. 1 (a) is a plan view and FIG. 1 (b) is a side view showing a partial cross section. In the drawing, a surface mounting connector 6 includes a plurality of conductive terminals including a surface mounting terminal 7 and a through-substrate terminal 8 and a base 9 made of an insulating resin for storing and holding one end of these terminals. And is mounted on the substrate 4 and mounted by reflow. As a material of the base 9, a resin such as PPS or LCP is used according to characteristics such as strength required for the base 9. The surface-mounting terminals 7 and the through-substrate terminals 8 are made of a shape memory alloy that stores a proper shape at a temperature during reflow. Here, the regular shape is a shape as originally designed without deformation or distortion.
[0010]
FIG. 3 is a sectional view showing an example of the inside of the surface mounting connector. As shown in the figure, the surface mount terminals 7 and the through-substrate terminals 8 are also intricate inside the base 9 and are configured as if they were skeletons.
[0011]
First, the first reflow process will be described. A solder paste 10 is printed on a portion of the substrate 4 corresponding to the surface mounting terminal 7 and a peripheral portion of the through hole 5 through which the substrate through terminal 8 penetrates. The terminal 7 and the board end terminal 8 are soldered to the board 4, and the surface mount connector 6 is mounted on the board 4. At this time, the solder also melts and enters the through hole 5 into which the board through terminal 8 is inserted.
[0012]
At the time of reflow, high-temperature heat is applied to the entire surface mounting connector 6, and the base 9 tends to be deformed by this heat. On the other hand, since the surface-mounting terminals 7 and the through-substrate terminals 8 use a shape memory alloy that stores a normal shape at the temperature at the time of reflow, the shape is tried to be maintained by applying heat. As described above, since each terminal is entangled inside the base like a skeleton, it is necessary to prevent the base 9 from being thermally deformed by the force of the surface mount terminal 7 and the substrate penetrating terminal 8 to maintain a regular shape. Block. Further, the coplanarity of the soldering surface is maintained by maintaining the regular shape of the surface mounting terminal 7.
[0013]
Next, in the second reflow process, as shown in FIG. 2, the substrate 4 is turned over, and the surface mounting connector 6 is on the lower surface side of the substrate 4. Since the base 9 is not deformed and the coplanarity of the terminal portion is maintained, the solder contact area of the surface mount terminal 7 and the through-substrate terminal 8 is ensured, and the surface mount connector 6 has a (weight of the surface mount connector) < (Solder surface tension generated at the contact portion between the surface mounting terminal and the substrate penetrating terminal and the substrate) can be maintained.
[0014]
As described above, according to the invention according to the present embodiment, the surface-mounting terminals and the through-substrate terminals, which are the terminals of the surface-mounting connector, are formed of a shape memory alloy, so as to prevent thermal deformation of the base during reflow. Therefore, a predetermined contact area between the terminal and the solder can be ensured, so that the surface mounting connector can be prevented from dropping off the substrate during the second reflow.
[0015]
Embodiment 2 FIG.
FIG. 4 is a side sectional view showing a process of mounting the surface mounting connector according to the second embodiment of the present invention on a substrate. (A) shows the time of the first reflow, and (b) shows the time of the second reflow. In the figure, reference numerals 4, 5, 7, and 9 are the same as those in FIG. The through-substrate terminal 12 of the surface-mount connector 11 in the present embodiment is made of a shape memory alloy, and the portion outside the base 9 at normal temperature penetrates the through-hole 5 of the substrate 4, for example, as shown in FIG. A straight line shape as shown by a dotted line is stored, and a shape that does not penetrate through hole 5 at the temperature at the time of reflow, for example, an L shape as shown in the figure is stored. The portion of the through-substrate terminal 12 buried inside the base 9 and the surface-mounting terminal 7 store a regular shape at the temperature during reflow.
[0016]
Next, the operation will be described. As shown in FIG. 4A, at the time of the first reflow, the substrate through terminal 12 of the surface mount connector 11 becomes L-shaped at that temperature when the heat of the reflow is applied, and the front end is locked to the substrate 4. You. At the time of the second reflow, the board 4 is turned upside down and the surface mounting connector 11 is on the back side of the board as shown in (b), but since the board through terminal 12 is locked to the board 4, the surface mounting connector 11 is locked. 11 does not fall off the substrate.
[0017]
As described above, according to the invention according to the present embodiment, the through-substrate terminal is made of a shape memory alloy that does not penetrate through-holes at the temperature at the time of reflow, for example, stores an L-shape. In addition, it is possible to reliably prevent the surface mounting connector from dropping off the substrate at the time of the second reflow, and to improve the mounting reliability.
[0018]
In the above description, the case where the terminal portion buried in the base 9 keeps a regular shape at the temperature at the time of reflow has been described. If the shape that penetrates and does not penetrate through hole 5 at the temperature at the time of reflow is stored, an effect of preventing the surface mount connector from falling off at the time of the second reflow can be obtained.
[0019]
Also, the memory shape of the through-substrate terminal 12 at the reflow temperature may be an acute L-shape as shown in FIG. 5 instead of the 90-degree L-shape. In this case, since a force for pressing the base 9 against the substrate 4 acts, the surface mounting connector 11 can be mounted in close contact with the substrate 4.
[0020]
Embodiment 3 FIG.
FIG. 6 is a side sectional view showing a case where the surface mounting connector according to the third embodiment is mounted on a substrate. In the figure, reference numerals 4, 7 to 9 are the same as those of FIG. The base 9 of the surface mounting connector 13 is provided with a connector fixing member 15 that penetrates through the through hole 14 provided in the substrate 4 and engages with the substrate 4. It is formed of a shape memory alloy that stores a shape that does not penetrate through hole 14 at the temperature at the time of reflow, for example, an L-shape as shown in the figure.
[0021]
Therefore, even if the board 4 is turned upside down at the time of the second reflow and the surface mounting connector 13 is on the lower surface side of the board, the connector fixing member 15 is hooked on the board 4, so that the surface mounting connector 13 may fall off the board 4. Absent. The number of the connector fixing members 15 may be one or three or more. Further, the through-substrate terminal 8 may have a shape as described in FIG. 4 of the second embodiment.
[0022]
According to the third embodiment of the present invention, the surface mounting connector is provided with the connector fixing member that locks to the board at the time of reflow. Since the connector fixing member can be arranged at a position where it can be effectively suppressed, the deformation of the base can be efficiently prevented in addition to the effects of the first and second embodiments.
[0023]
【The invention's effect】
As described above, according to the present invention, since the terminals of the surface mount connector are made of the shape memory alloy that stores the proper shape at the temperature at the time of reflow, the terminals try to hold the proper shape at the time of reflow. Thermal deformation of the base can be prevented by the force, and a predetermined contact area between the terminal and the solder can be secured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state at the time of a first reflow when a surface mounting connector according to a first embodiment of the present invention is mounted on a substrate.
FIG. 2 is a diagram showing a state at the time of 2st reflow when the surface mounting connector according to Embodiment 1 of the present invention is mounted on a board.
FIG. 3 is a sectional view of the surface mount connector according to the first embodiment of the present invention;
FIG. 4 is a side sectional view showing a case where a surface mounting connector according to Embodiment 2 of the present invention is mounted on a board.
FIG. 5 is a side sectional view showing another example of mounting the surface mounting connector according to the second embodiment of the present invention on a substrate.
FIG. 6 is a side sectional view showing a case where a connector for surface mounting according to a third embodiment of the present invention is mounted on a substrate.
FIG. 7 is a side sectional view showing a case where a conventional surface mounting connector is mounted on a substrate.
[Explanation of symbols]
4 Board 5 Through Holes 6, 11, 13 Surface Mount Connector 7 Surface Mount Terminal 8, 12 Board Through Terminal 9 Base 15 Connector Fixing Member.

Claims (4)

複数の導電性の端子と、上記端子の一端を収納し保持すための絶縁性の樹脂からなるベースとを備え、リフローはんだ付けによってプリント基板上に実装される表面実装用コネクタにおいて、
上記端子を上記リフローはんだ付け時の温度で正規の形状を記憶する形状記憶合金で構成し、上記リフローはんだ付け時に上記端子が上記形状を保持しようとする力により、上記ベースが熱変形するのを阻止することを特徴とする表面実装用コネクタ。
A plurality of conductive terminals, and a base made of an insulating resin for housing and holding one end of the terminal, a surface mounting connector mounted on a printed circuit board by reflow soldering,
The terminal is made of a shape memory alloy that stores a proper shape at the temperature at the time of the reflow soldering, and the base is thermally deformed by a force of the terminal to hold the shape at the time of the reflow soldering. A surface mount connector characterized by blocking.
複数の導電性の端子と、上記端子の一端を収納し保持すための絶縁性の樹脂からなるベースとを備え、リフローはんだ付けによってプリント基板上に実装される表面実装用コネクタにおいて、
上記端子は上記プリント基板の表面の配線と接続される表面実装端子と上記プリント基板のスルーホールを通じて裏面の配線と接続される基板貫通端子とからなり、上記基板貫通端子を常温では上記スルーホールを貫通し上記リフローはんだ付け時の温度では上記スルーホールを貫通しない形状を記憶する形状記憶合金で構成したことを特徴とする表面実装用コネクタ。
A plurality of conductive terminals, and a base made of an insulating resin for housing and holding one end of the terminal, a surface mounting connector mounted on a printed circuit board by reflow soldering,
The terminal comprises a surface mount terminal connected to the wiring on the front surface of the printed circuit board, and a through-board terminal connected to the wiring on the back surface through the through-hole of the printed circuit board. A surface mounting connector comprising a shape memory alloy that stores a shape that penetrates and does not penetrate the through hole at the temperature at the time of the reflow soldering.
請求項2記載の表面実装用コネクタにおいて、上記基板貫通端子は常温では直線形状を保ち上記リフローはんだ付け時の温度ではL字形状を記憶することを特徴とする表面実装用コネクタ。3. The surface mounting connector according to claim 2, wherein the through-substrate terminal has a linear shape at normal temperature and stores an L-shape at the temperature during the reflow soldering. 請求項1から請求項3のいずれかに記載の表面実装用コネクタにおいて、常温では上記プリント基板に設けた貫通孔を貫通し上記リフローはんだ付け時の温度では上記貫通孔を貫通しない形状を記憶する形状記憶合金からなるコネクタ固定部材を上記ベースに設けたことを特徴とする表面実装用コネクタ。4. The surface mounting connector according to claim 1, wherein a shape that penetrates a through hole provided in the printed board at normal temperature and does not penetrate the through hole at a temperature at the time of reflow soldering is stored. A connector for surface mounting, wherein a connector fixing member made of a shape memory alloy is provided on the base.
JP2003088148A 2003-03-27 2003-03-27 Connector for surface mounting Pending JP2004296306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088148A JP2004296306A (en) 2003-03-27 2003-03-27 Connector for surface mounting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088148A JP2004296306A (en) 2003-03-27 2003-03-27 Connector for surface mounting

Publications (1)

Publication Number Publication Date
JP2004296306A true JP2004296306A (en) 2004-10-21

Family

ID=33402352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088148A Pending JP2004296306A (en) 2003-03-27 2003-03-27 Connector for surface mounting

Country Status (1)

Country Link
JP (1) JP2004296306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221817A (en) * 2016-03-22 2017-09-29 东芝存储器株式会社 USB device and its manufacture method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221817A (en) * 2016-03-22 2017-09-29 东芝存储器株式会社 USB device and its manufacture method
CN107221817B (en) * 2016-03-22 2019-08-06 东芝存储器株式会社 USB device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3894031B2 (en) Card type portable device
JP5589409B2 (en) Mounting component, electronic device and mounting method
JP2991155B2 (en) Electronic components and their mounting structures
KR20110089067A (en) Mounting component, electronic apparatus and mounting method
JP6024428B2 (en) Holding member and connector
JP2005302854A (en) Double-sided board with built-in components, double-sided wiring board with built-in components, and its manufacturing method
JP2004296306A (en) Connector for surface mounting
US20190066960A1 (en) Electrical Fuse Element
US20110155450A1 (en) Printed circuit board and electronic apparatus
US6146156A (en) Electrical connector
JPH0338014A (en) Electronic component
JP2007235044A (en) Soldering structure of through hole
US6423906B2 (en) Surface mount package for long lead devices
KR101935285B1 (en) Electronic element having lead terminal with positive temporary fixing on PCB plate
JP2002134956A (en) Connection structure of electrical component
JP2687798B2 (en) connector
JP2908325B2 (en) Surface mount connector
JP2018032779A (en) Substrate set and method of manufacturing substrate set
JP2636332B2 (en) Printed board
JPH05327161A (en) Electronic circuit module
JP2003187890A (en) Electrical connection terminal
JP2005135765A (en) Electronic component assembly and assembly method for electronic component assembly
JP3424329B2 (en) Electronic components
JP2004031540A (en) Wiring board mounting component having lead, method for manufacturing the wiring board, and electric junction box accommodating the wiring board
JP2006324936A (en) Surface mount high stable piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715