JP2004294709A - Optical waveguide element - Google Patents

Optical waveguide element Download PDF

Info

Publication number
JP2004294709A
JP2004294709A JP2003086250A JP2003086250A JP2004294709A JP 2004294709 A JP2004294709 A JP 2004294709A JP 2003086250 A JP2003086250 A JP 2003086250A JP 2003086250 A JP2003086250 A JP 2003086250A JP 2004294709 A JP2004294709 A JP 2004294709A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
polarization
axis
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086250A
Other languages
Japanese (ja)
Inventor
Satoru Oikawa
哲 及川
Junichiro Ichikawa
潤一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2003086250A priority Critical patent/JP2004294709A/en
Publication of JP2004294709A publication Critical patent/JP2004294709A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide element having a polarization inversion structure and being capable of reducing its manufacturing cost and time by suppressing the occurrence of defects on a crystal surface due to stress distortion caused by a polarization domain wall when polarization inversion is formed on a substrate. <P>SOLUTION: The optical waveguide element which has a substrate consisting of a material having an electrooptic effect and an optical waveguide formed on the substrate and wherein a part of the substrate concerning the optical waveguide part has a polarization inversion region 10, 11, or 12 has the polarization domain wall in the polarization inversion region inclined in the direction toward which structural strength of the substrate is made weak. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路素子に関わり、特に、光導波路が形成された基板の一部に分極反転領域を有する光導波路素子に関する。
【0002】
【従来の技術】
光学機器、計測器、光エレクトロニクス、光通信、光集積回路などにおいては、電気光学効果を有する基板上に、光導波路を形成した光導波路素子が、広く利用されている。
近年、光導波路素子の高機能化、電気配線・制御の簡略化などの需要を反映し、特開平7−191352号公報などに示すような、分極反転構造を用いた光導波路素子が実用化されている。
【0003】
分極反転構造とは、LiNbO(以下、LNという)、LiTaO、KTPなどの強誘電体結晶を用いた基板を利用し、単一分極の方位を部分的に任意のパターンで反転させたものである。
分極反転領域の形成方法としては、図1に示すように、LN基板1表面に、分極反転領域のパターンに対応した電極2を形成し、他方LN基板裏面には一面に電極3を形成する。そして、電極2,3の間に、電源4により所定の電圧を印加し、該パターンに対応した基板材料の分極方向を反転させる方法が用いられている。
また、LN基板を1000℃以上のキュリー温度近くでTiを拡散する方法や、キュリー温度付近で結晶内のLiOを外拡散する方法など、不純物の拡散や外拡散など基板内部に発生する電界を利用する方法などもある。
【0004】
分極反転を用いた光導波路素子の例として、図2は、強誘電体結晶の基板に、分極反転領域を一定周期で配置し、その上に光導波路を形成した波長変換素子である。
また、図3は、強誘電体結晶の基板に、分極反転領域を形成し、その上にマッハツェンダー型の光導波路を形成した光変調器である。
図2、図3の右側に示した座標系は、強誘電体結晶の結晶方向を示したものであり、Z方向である表面に垂直な方向は、電気光学効果により最も効率的に屈折率を変更できる結晶軸の方向が配置されている。また、X方向も結晶軸と一致している。
【0005】
上記のような波長変換素子や光変調器において、分極反転を行なった結果、分極反転しない領域と分極反転した領域との境界(以下、「分極ドメイン壁」という)において、歪が発生する。
この歪により、分極ドメイン壁と基板の構造的に強度の弱い結晶方位とが組み合わされると、結晶の表面に欠けやクラックなどの欠陥を生じるという問題があった。
【0006】
図2,3の場合では、Y軸に垂直な面において欠陥が生じやすいため、図2,3に点線で示された領域における、分極ドメイン壁がY軸に垂直となる部分においては、特に基板上に欠陥が生じ易くなっている。
しかも、基板表面に欠陥が存在する状態で、その後の薄膜を成膜する工程などを経ると、該欠陥が起因して基板自体が破損する可能性も高くなる。
これを回避するためには、基板を研磨し、欠陥を除去することが必要となり、光導波路素子の製造コストや製造時間の増加の原因となっていた。
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、上述した問題を解消し、基板上に分極反転を形成した際に、分極ドメイン壁が及ぼす応力歪により結晶表面に欠陥が生じることを抑え、製造コストや製造時間を削減することが可能な、分極反転構造を有する光導波路素子を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路部に係る基板の一部が分極反転領域を有する光導波路素子において、該基板の構造的強度の弱い方位に対して傾斜している該分極反転領域の分極ドメイン壁を有することを特徴とする。
【0009】
請求項1に記載の発明により、分極ドメイン壁が構造的強度の弱い方位に対して傾斜しているため、分極ドメイン壁が該結晶面に与える応力歪が分散され、結果として、結晶表面に欠陥が生じるのを抑制することが可能となる。
【0010】
また、請求項2に係る発明では、請求項1に記載の光導波路素子において、該基板はLiNbOにより形成され、該構造的強度の弱い方位が、Y軸に垂直な面、並びに該面をZ軸に対し略±60°又は略±120°回転させた面であることを特徴とする。
【0011】
請求項2に係る発明により、LiNbO結晶は、欠陥を生じやすい構造的強度の弱い方位が、Y軸に垂直な面、並びに該面をZ軸に対し略±60°又は略±120°に存在するため、これらの面に対して傾斜した分極ドメイン壁を形成するのが好ましく、特に、傾斜角を30°に設定することにより、基板表面に欠陥が発生するのを、最も効果的に抑制することが可能となる。
【0012】
また、請求項3に係る発明では、請求項1又は2に記載の光導波路素子において、該基板は、該基板表面に垂直な方向が電気光学効果により最も効率的に屈折率を変更できる結晶軸の方向であることを特徴とする。
【0013】
基板表面に垂直な方向が電気光学効果により最も効率的に屈折率を変更できる結晶軸の方向である基板においては、分極反転方法として、図1に示すようなパターン電極が利用されているため、分極ドメイン壁が最も明確に形成される。
このため、請求項3に係る発明により、Zカット基板において、請求項1に係る発明を適用することは、分極ドメイン壁による基板表面の欠陥の発生を効果的に防止し、生産性を向上させることが可能となる。
【0014】
【発明の実施の形態】
以下、本発明を好適例を用いて詳細に説明する。
光導波路素子を構成する基板としては、電気光学効果を有する材料、例えば、ニオブ酸リチウム(LiNbO;以下、LNという)、タンタル酸リチウム(LiTaO)、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料から構成され、特に、光導波路素子として構成しやすく、かつ異方性が大きいという理由から、LiNbO結晶、LiTaO結晶、又はLiNbO及びLiTaOからなる強誘電体の固溶体結晶を用いることが好ましい。本実施例では、ニオブ酸リチウム(LN)を用いた例を中心に説明する。
また、本実施例では、基板表面に垂直な方向が電気光学効果により最も効率的に屈折率を変更できる結晶軸の方向である基板(以下、Zカット基板という)を中心に説明するが、本発明は、Zカット基板に限定されるものではない。
【0015】
光導波路素子の製造方法としては、まず、LN基板に分極反転領域を形成し、その後、基板表面に光導波路を形成する。光導波路形成後は、光導波路素子の種類に応じて、SiOなどのバッファ層や、変調信号を印加するための信号電極・接地電極などが形成される。バッファ層や信号電極などの構造及び製造方法に関しては、当該技術分野における公知の技術が適用できることは言うまでもない。
分極反転領域の形成方法は、本実施例では、図1のようなパターン電極を用いた方法を利用している。
【0016】
次に、分極ドメイン壁の方向について説明する。
本発明に関する基板の構造的強度の弱い方位と分極ドメイン壁との関係は、少なくとも導波路の近傍においては、傾斜もしくは点接触にすることが好ましく、さらに全ての分極ドメイン壁が、該弱い方位に対して傾斜もしくは点接触であれば、より好適である。
分極ドメイン壁が、構造的強度の弱い方位に対して、どの程度連続して平行であると欠陥が生じるかを調べたところ、50μm以下の場合は、殆ど欠陥を生じることはないが、50μmを超えると、分極ドメイン壁による歪の蓄積によりクラックなどが発生しやすくなり、特に、100μmを超えると、殆どの光導波路素子に欠陥が生じている。したがって、基板の構造的強度の弱い方位と分極ドメイン壁が、仮に平行となる場合があっても、連続して平行となる範囲を、50μm以下に収めることにより、欠陥の発生を、十分抑制することが可能となる。
LN基板においては、例えば、Z軸方向に分極反転を生じさせる場合、結晶軸方向であるX軸方向に対して垂直な面では結晶の欠陥が生じにくく、Y軸に垂直な面で欠陥が生じ易い。このため、分極ドメイン壁はY軸に垂直とならないよう配置する必要がある。
また、LN基板では、図4に示すように、結晶軸が60°間隔で存在するため、分極ドメイン壁をY軸に垂直な面(欠陥が生じやすい面)から30°傾ける時が、最も欠陥が生じにくい。
【0017】
本発明に係る光導波路素子の分極反転領域の形成パターンを図5に示す。
Y軸に垂直な面と平行に分極ドメイン壁が形成されないように、図5(a)では、分極ドメイン壁を波形に形成したものである。また、図5(b)は、分極ドメイン壁に曲線を多用して、分極ドメイン壁がY軸に垂直な面と平行となる箇所を、少なくしたものである。さらに、図5(c)では、Y軸に垂直な面に対して、分極ドメイン壁を一定角度に傾斜させたものである。
図5(a)〜(c)は、Y軸に垂直な面となる分極ドメイン壁を有していないため、基板表面に欠陥が生じることが少なく、欠陥を除去するための研磨作業を省略することが可能となる。
【0018】
図6は、他の応用例であり、基板の結晶軸であるX軸を傾けることにより、分極ドメイン壁が、実質的にY軸に垂直な面と平行となることが無いように、分極反転領域を配置したものである。
本発明に係る光導波路素子においては、分極反転領域を形成する際には、図5(a)〜(c)、又は図6のような分極反転領域に対応した電極パターンをフォトリソグラフィーなどにより基板上に形成すると共に、基板裏面には一面に電極を蒸着又は塗布する。そして、常温状態で、20kV/mm程度のパルス電圧33を、両者の電極に印加する。印加時間は、基板表面側から見た分極反転部の面積にもよるが、1〜30cmで、約100μs〜300ms程度である。また、LN基板の裏面電極に代えて、液体電極を利用した治具等で代用してもよい。
なお、本発明においては、不純物の拡散や基板外への外拡散などを用いた分極反転方法も利用可能であり、その際には、不純物の拡散領域の境界線が、基板の構造的強度の弱い方位に一致しないように構成する。
【0019】
【発明の効果】
以上説明したように、本発明によれば、基板上に分極反転を形成した際に、分極ドメイン壁が及ぼす応力歪により結晶表面に欠陥が生じることを抑え、製造コストや製造時間を削減することが可能な、分極反転構造を有する光導波路素子を提供することが可能となる。
【図面の簡単な説明】
【図1】分極反転方法の一例を示す図
【図2】分極反転を利用した波長変換素子を示す図
【図3】分極反転を利用した光変調器を示す図
【図4】LN基板の結晶軸と座標系との関係を示す図
【図5】本発明に係る分極反転領域のパターンを示す図
【図6】本発明に係る他の実施例を示す図
【符号の説明】
1 強誘電体結晶基板
2 パターン電極
3 裏面電極
4 電源
10,11,12,21 分極反転領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical waveguide device, and more particularly, to an optical waveguide device having a domain-inverted region in a part of a substrate on which an optical waveguide is formed.
[0002]
[Prior art]
2. Description of the Related Art In optical devices, measuring instruments, optical electronics, optical communication, optical integrated circuits, and the like, an optical waveguide element having an optical waveguide formed on a substrate having an electro-optical effect is widely used.
In recent years, an optical waveguide device using a domain-inverted structure, such as that disclosed in Japanese Patent Application Laid-Open No. 7-191352, has been put to practical use, reflecting demands for higher functionality of the optical waveguide device and simplification of electrical wiring and control. ing.
[0003]
The domain-inverted structure is obtained by using a substrate using a ferroelectric crystal such as LiNbO 3 (hereinafter, referred to as LN), LiTaO 3 , or KTP, and partially inverting the direction of single polarization in an arbitrary pattern. It is.
As a method of forming the domain-inverted region, as shown in FIG. 1, an electrode 2 corresponding to the pattern of the domain-inverted region is formed on the surface of the LN substrate 1, and an electrode 3 is formed on the entire surface of the back surface of the LN substrate. Then, a method is used in which a predetermined voltage is applied between the electrodes 2 and 3 by the power supply 4 to invert the polarization direction of the substrate material corresponding to the pattern.
In addition, electric fields generated inside the substrate such as impurity diffusion and external diffusion such as a method of diffusing Ti in the LN substrate near the Curie temperature of 1000 ° C. or higher and a method of externally diffusing Li 2 O in the crystal near the Curie temperature. There is also a method of using.
[0004]
As an example of an optical waveguide device using domain inversion, FIG. 2 shows a wavelength conversion device in which domain-inverted regions are arranged at regular intervals on a ferroelectric crystal substrate and an optical waveguide is formed thereon.
FIG. 3 shows an optical modulator in which a domain-inverted region is formed on a ferroelectric crystal substrate, and a Mach-Zehnder optical waveguide is formed thereon.
The coordinate system shown on the right side of FIGS. 2 and 3 shows the crystal direction of the ferroelectric crystal, and the direction perpendicular to the surface, which is the Z direction, most efficiently changes the refractive index by the electro-optic effect. The direction of the crystal axis that can be changed is arranged. Further, the X direction also coincides with the crystal axis.
[0005]
As a result of performing polarization reversal in the wavelength conversion element or the optical modulator as described above, distortion occurs at a boundary between a region where polarization is not reversed and a region where polarization is reversed (hereinafter, referred to as a “polarization domain wall”).
Due to this distortion, when the polarization domain wall is combined with a crystal orientation having a structurally weak strength of the substrate, there is a problem that defects such as chipping and cracks are generated on the crystal surface.
[0006]
In the case of FIGS. 2 and 3, since defects are likely to occur on a plane perpendicular to the Y axis, the portion where the polarization domain wall is perpendicular to the Y axis in the region shown by the dotted line in FIGS. Defects are likely to occur on the top.
In addition, when a defect is present on the substrate surface and a subsequent process of forming a thin film is performed, there is a high possibility that the substrate itself is damaged due to the defect.
In order to avoid this, it is necessary to polish the substrate to remove defects, which has caused an increase in the manufacturing cost and manufacturing time of the optical waveguide device.
[0007]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to solve the above-mentioned problems, and to suppress the occurrence of defects on the crystal surface due to stress strain exerted by the polarization domain wall when the domain inversion is formed on the substrate. An object of the present invention is to provide an optical waveguide device having a domain-inverted structure that can reduce time.
[0008]
[Means for Solving the Problems]
In order to solve the above problem, the invention according to claim 1 includes a substrate made of a material having an electro-optical effect, an optical waveguide formed on the substrate, and a part of the substrate related to the optical waveguide portion being polarized. An optical waveguide device having an inversion region, wherein the polarization domain wall of the polarization inversion region is inclined with respect to the direction in which the structural strength of the substrate is weak.
[0009]
According to the first aspect of the present invention, since the polarization domain wall is inclined with respect to the azimuth where the structural strength is weak, the stress strain applied to the crystal plane by the polarization domain wall is dispersed, and as a result, the crystal surface has defects. Can be suppressed.
[0010]
Further, in the invention according to claim 2, in the optical waveguide device according to claim 1, the substrate is formed of LiNbO 3 , and the direction having the weak structural strength is a plane perpendicular to the Y axis and a plane perpendicular to the Y axis. It is characterized in that the surface is rotated by approximately ± 60 ° or approximately ± 120 ° with respect to the Z axis.
[0011]
According to the invention of claim 2, in the LiNbO 3 crystal, the orientation in which the structural strength that tends to cause a defect is weak is set to a plane perpendicular to the Y axis and the plane to about ± 60 ° or about ± 120 ° with respect to the Z axis. Therefore, it is preferable to form a polarization domain wall inclined with respect to these planes. In particular, by setting the inclination angle to 30 °, generation of defects on the substrate surface is most effectively suppressed. It is possible to do.
[0012]
Further, in the invention according to claim 3, in the optical waveguide device according to claim 1 or 2, the substrate has a crystal axis whose direction perpendicular to the substrate surface can change the refractive index most efficiently by an electro-optic effect. Direction.
[0013]
In a substrate in which the direction perpendicular to the substrate surface is the direction of the crystal axis where the refractive index can be changed most efficiently by the electro-optic effect, a pattern electrode as shown in FIG. 1 is used as a polarization inversion method. Polarized domain walls are most clearly formed.
Therefore, according to the third aspect of the present invention, applying the invention according to the first aspect to the Z-cut substrate effectively prevents the occurrence of defects on the substrate surface due to the polarization domain wall and improves the productivity. It becomes possible.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail using preferred examples.
As a substrate constituting the optical waveguide element, a material having an electro-optic effect, for example, lithium niobate (LiNbO 3 ; hereinafter, referred to as LN), lithium tantalate (LiTaO 3 ), PLZT (lead lanthanum zirconate titanate), And a ferroelectric solid solution composed of LiNbO 3 crystal, LiTaO 3 crystal, or LiNbO 3 and LiTaO 3 , in particular, because of being easy to configure as an optical waveguide element and having large anisotropy. It is preferable to use crystals. In this embodiment, an example using lithium niobate (LN) will be mainly described.
In the present embodiment, a description will be given mainly of a substrate (hereinafter, referred to as a Z-cut substrate) in which the direction perpendicular to the substrate surface is the direction of the crystal axis where the refractive index can be changed most efficiently by the electro-optic effect. The invention is not limited to Z-cut substrates.
[0015]
As a method of manufacturing an optical waveguide device, first, a domain-inverted region is formed on an LN substrate, and then an optical waveguide is formed on the substrate surface. After forming an optical waveguide, depending on the type of the optical waveguide device, the buffer layer and the like SiO 2, such as a signal electrode, the ground electrode for applying a modulation signal is formed. It goes without saying that a known technique in the technical field can be applied to the structure and the manufacturing method of the buffer layer, the signal electrode, and the like.
In this embodiment, a method using a pattern electrode as shown in FIG. 1 is used for forming the domain-inverted regions.
[0016]
Next, the direction of the polarization domain wall will be described.
The relationship between the orientation of the substrate having a weak structural strength and the polarization domain wall according to the present invention is preferably inclined or in point contact at least in the vicinity of the waveguide. On the other hand, it is more preferable to use an inclined or point contact.
When it was examined how much the polarization domain wall was continuously parallel to the orientation having a weak structural strength, a defect was generated. When the polarization domain wall was 50 μm or less, almost no defect was generated. If it exceeds, cracks and the like are likely to occur due to accumulation of strain due to the polarization domain wall. In particular, if it exceeds 100 μm, most optical waveguide elements have defects. Therefore, even if the orientation where the structural strength of the substrate is weak and the polarization domain wall may be parallel, the generation of defects is sufficiently suppressed by limiting the range of continuous parallel to 50 μm or less. It becomes possible.
In the LN substrate, for example, when polarization inversion occurs in the Z-axis direction, crystal defects are less likely to occur on a plane perpendicular to the X-axis direction, which is the crystal axis direction, and defects are likely to occur on a plane perpendicular to the Y-axis. easy. For this reason, it is necessary to arrange the polarization domain walls so as not to be perpendicular to the Y axis.
Further, in the LN substrate, as shown in FIG. 4, since the crystal axes are present at intervals of 60 °, when the polarization domain wall is inclined by 30 ° from a plane perpendicular to the Y axis (a plane where defects are likely to occur), the defect is most likely to occur. Is unlikely to occur.
[0017]
FIG. 5 shows a pattern of forming the domain-inverted regions of the optical waveguide device according to the present invention.
In FIG. 5A, the polarization domain wall is formed in a waveform so that the polarization domain wall is not formed parallel to the plane perpendicular to the Y axis. FIG. 5B shows a case in which the polarization domain wall is parallel to a plane perpendicular to the Y axis by using many curves for the polarization domain wall. Further, in FIG. 5C, the polarization domain wall is inclined at a certain angle with respect to a plane perpendicular to the Y axis.
FIGS. 5A to 5C do not have a polarization domain wall which is a plane perpendicular to the Y axis, so that defects are rarely generated on the substrate surface, and a polishing operation for removing the defects is omitted. It becomes possible.
[0018]
FIG. 6 shows another application example in which the domain inversion is performed by tilting the X axis, which is the crystal axis of the substrate, so that the polarization domain wall does not become substantially parallel to a plane perpendicular to the Y axis. An area is arranged.
In the optical waveguide device according to the present invention, when forming the domain-inverted region, an electrode pattern corresponding to the domain-inverted region as shown in FIGS. 5A to 5C or FIG. An electrode is formed on the back surface of the substrate, and an electrode is deposited or applied on the entire surface. Then, at room temperature, a pulse voltage 33 of about 20 kV / mm is applied to both electrodes. Although the application time depends on the area of the domain-inverted portion viewed from the substrate surface side, it is about 1 to 30 cm 2 and about 100 μs to 300 ms. Further, a jig or the like using a liquid electrode may be used instead of the back electrode of the LN substrate.
In the present invention, a polarization inversion method using diffusion of impurities or out-diffusion to the outside of the substrate can also be used. In this case, the boundary of the diffusion region of the impurities is reduced in the structural strength of the substrate. Configure so that it does not match the weak direction.
[0019]
【The invention's effect】
As described above, according to the present invention, when domain inversion is formed on a substrate, it is possible to suppress the occurrence of defects on the crystal surface due to the stress strain exerted by the polarization domain wall, and to reduce manufacturing cost and manufacturing time. It is possible to provide an optical waveguide device having a domain-inverted structure, which can perform the above.
[Brief description of the drawings]
FIG. 1 shows an example of a polarization inversion method. FIG. 2 shows a wavelength conversion element using polarization inversion. FIG. 3 shows an optical modulator using polarization inversion. FIG. 4 shows a crystal of an LN substrate. FIG. 5 is a diagram showing a relationship between an axis and a coordinate system. FIG. 5 is a diagram showing a pattern of a domain-inverted region according to the present invention. FIG. 6 is a diagram showing another embodiment according to the present invention.
REFERENCE SIGNS LIST 1 ferroelectric crystal substrate 2 pattern electrode 3 back electrode 4 power supply 10, 11, 12, 21 domain-inverted region

Claims (3)

電気光学効果を有する材料からなる基板と、該基板上に形成された光導波路と、該光導波路部に係る基板の一部が分極反転領域を有する光導波路素子において、
該基板の構造的強度の弱い方位に対して傾斜している該分極反転領域の分極ドメイン壁を有することを特徴とする光導波路素子。
In a substrate made of a material having an electro-optic effect, an optical waveguide formed on the substrate, and an optical waveguide element in which a part of the substrate related to the optical waveguide portion has a domain-inverted region,
An optical waveguide device comprising: a polarization domain wall of the domain-inverted region that is inclined with respect to an azimuth where the structural strength of the substrate is weak.
請求項1に記載の光導波路素子において、該基板はLiNbOにより形成され、該構造的強度の弱い方位が、Y軸に垂直な面、並びに該面をZ軸に対し略±60°又は略±120°回転させた面であることを特徴とする光導波路素子。2. The optical waveguide device according to claim 1, wherein the substrate is formed of LiNbO 3 , and the azimuth of weak structural strength is a plane perpendicular to the Y axis, and the plane is approximately ± 60 ° or approximately ± Z with respect to the Z axis. An optical waveguide device having a surface rotated by ± 120 °. 請求項1又は2に記載の光導波路素子において、該基板は、該基板表面に垂直な方向が電気光学効果により最も効率的に屈折率を変更できる結晶軸の方向であることを特徴とする光導波路素子。3. The optical waveguide device according to claim 1, wherein a direction perpendicular to the surface of the substrate is a direction of a crystal axis at which a refractive index can be changed most efficiently by an electro-optic effect. Wave element.
JP2003086250A 2003-03-26 2003-03-26 Optical waveguide element Pending JP2004294709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086250A JP2004294709A (en) 2003-03-26 2003-03-26 Optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086250A JP2004294709A (en) 2003-03-26 2003-03-26 Optical waveguide element

Publications (1)

Publication Number Publication Date
JP2004294709A true JP2004294709A (en) 2004-10-21

Family

ID=33400961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086250A Pending JP2004294709A (en) 2003-03-26 2003-03-26 Optical waveguide element

Country Status (1)

Country Link
JP (1) JP2004294709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078914A (en) * 2008-09-26 2010-04-08 Fujitsu Ltd Optical functional device
JP2013061564A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Optical deflection element and optical deflector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078914A (en) * 2008-09-26 2010-04-08 Fujitsu Ltd Optical functional device
JP2013061564A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Optical deflection element and optical deflector

Similar Documents

Publication Publication Date Title
JP4667932B2 (en) Light modulator
JP4187771B2 (en) Light control element
EP0532969B1 (en) Process for fabricating an optical device for generating a second harmonic optical beam
JPH07199134A (en) Structure and method for photoelecton device for reducing temperature effect in lightguide modulator
JP4803546B2 (en) Wavelength conversion waveguide device and manufacturing method thereof
JP2001066561A (en) Traveling-wave optical modulator
WO2005091066A1 (en) Optical device and method for forming polarization-reversed region
US8101099B2 (en) Optical waveguide substrate manufacturing method
JP2008225279A (en) Manufacturing method of periodic polarization inverting structure
JP2002040502A (en) Optical waveguide element
JP2004294709A (en) Optical waveguide element
JP3277515B2 (en) Polarization reversal control method
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
JP2963989B1 (en) Light modulator
JP4909433B2 (en) Light modulator
JPH10246900A (en) Production of microstructure of ferroelectric single crystal substrate
US12007666B2 (en) Wavelength conversion element and method for producing same
JP2003066393A (en) Integrated optical waveguide device
WO2014157458A1 (en) Optical waveguide element
JP3969756B2 (en) Optical functional device
US8817363B2 (en) Wavelength conversion device and method of fabricating the same
JPS59139017A (en) Optical gate element
JP2004245991A (en) Optical waveguide device and structure combining the same and optical transmission member
JP2007079465A (en) Optical control element and its manufacturing method
GB2368402A (en) Stabilising polar and ferroelectric devices