JP2004293879A - Steam producing device - Google Patents

Steam producing device Download PDF

Info

Publication number
JP2004293879A
JP2004293879A JP2003085363A JP2003085363A JP2004293879A JP 2004293879 A JP2004293879 A JP 2004293879A JP 2003085363 A JP2003085363 A JP 2003085363A JP 2003085363 A JP2003085363 A JP 2003085363A JP 2004293879 A JP2004293879 A JP 2004293879A
Authority
JP
Japan
Prior art keywords
steam
heat transfer
heating
transfer tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085363A
Other languages
Japanese (ja)
Other versions
JP4104065B2 (en
Inventor
Seiichi Tan
誠一 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003085363A priority Critical patent/JP4104065B2/en
Publication of JP2004293879A publication Critical patent/JP2004293879A/en
Application granted granted Critical
Publication of JP4104065B2 publication Critical patent/JP4104065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam generating device which is compact in comparison with a conventional one, and has the sufficient strength even when high pressure is applied to the inside. <P>SOLUTION: This steam generating device includes a heating can part 10 having a function of a heater, and a steam can part 20 having a function for generating the steam and a steam-liquid separating function, and the heating can part 20 is constituted to heat the supplied water taken from a supplied water inlet 1 through heating tubes 2, 3 to generate a steam and liquid droplets mixture state by the pressure of the generated steam, and to pressure feed the same to an upper receiving port 4 of the steam can part 20. A coiled part is formed on at least a part of the steam heating tubes 2, 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、医療機関、製薬及び食品製造等の分野で使用される高純度の蒸気製造装置に関するものである。
【0002】
【従来の技術】
この種の装置では、加熱器の機能を備えた加熱缶部と、蒸気を発生させる機能と気液分離機能とを備えた蒸発缶部とを備え、高純度蒸留水を加熱して蒸気を発生させ気液分離器により蒸気を取り出す仕組みを採用するものが一般的である。
【0003】
従来、蒸気を発生させる部分は、まっすぐな長細いチューブ(ストレート管)の内部に高純度蒸留水を通過させ、チューブの周囲に配置した熱源により加熱して蒸気を発生させている(例えば、特許文献1、特許文献2参照。)。
【0004】
【特許文献1】
特開2000−161602号公報(第5、第12乃至15段落、第1図)
【特許文献2】
特開2002ー162001号公報(第18段落、第1図乃至第3図)
【0005】
【発明が解決しようとする課題】
しかし、従来の装置は蒸気発生効率が低いため、十分な発生量を得るためには加熱缶部を非常に長くしなければならなかった。
【0006】
また、従来の装置では、蒸気を発生させる伝熱管(蒸発管)がストレート管であったため、伸縮が殆ど不可能であるために強度的に弱く、破損しやすかった。
【0007】
なお、特許文献2の第18段落には、螺旋管からなる蒸発缶でもよい旨記載されているが、具体的な構造は図示されておらず、かつ、本発明者の実験によると、全てが螺旋管(スパイラル管)では効率よい流下液膜が形成されず、蒸気発生効率が低いことが明らかとなった。
【0008】
さらに、この装置は内部で蒸気圧を発生させるために蒸気発生部である伝熱管内に高圧力がかかるため、法令で定められた規格を遵守するためには、高圧力容器の指定を受けなければならず、そのために多くのコストと検査等の労力が必要であった。
【0009】
上記に鑑みてなされたものであり、その目的とするところは、従来よりもコンパクトで、内部に高圧力がかかっても十分な強度を備えている蒸気発生装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の課題を解決するために、本発明に係る蒸気製造装置は、高純度蒸留水または高純度蒸気を製造する装置であって、加熱器の機能を備えた加熱缶部10と、蒸気を発生させる機能と気液分離機能とを備えた蒸発缶部20とを含んでおり、前記加熱缶部10は供給水取入口1から取入れた供給水を伝熱管2、3を通して加熱し発生蒸気の圧力で蒸気と液滴の混合状態にして蒸発缶部20の上部受入口4に圧送する構成とされ、蒸気伝熱管2、3の一部にコイル状の部分(スパイラル管)を含んでいることを特徴とする。
【0011】
このように従来ストレート管で構成されていたために破損しやすかった伝熱管の少なくとも一部にコイル状の部分(スパイラル管)を含むことにより、伸縮に対する強度が増大し、法令(例えば、労働安全衛生法施行令など)で定められた高圧力容器の指定対象外となり、基準に合格するための検査を受ける必要がなくなる。これは装置を製造するメーカのみならず、装置を購入して保守管理するユーザーにとっても大きな利点である。
【0012】
特に、この装置では、上部受入口4側に接続された伝熱管3は、該伝熱管3の中間部よりも上方にスパイラル部31が設けられていると共に、その他はストレート管32、33で構成されることが好ましい。
【0013】
伝熱管3をこのような形状にすると装置が従来よりもコンパクトになると共に、蒸気発生効率が飛躍的に増大する。
【0014】
また、伝熱管3の外側に位置する伝熱管2を、夫々の両端部がストレート管で構成されると共に、加熱蒸気入口10bと同出口10cの少なくとも一部がストレート管部に臨むように構成されていることが好ましい。
【0015】
このように伝熱管2のうちストレート管で公正された部分に加熱蒸気の出入口10b、10cが臨むように構成されていると、加熱蒸気が効率よく伝熱管内に熱を伝えるため、蒸気発生効率が高められる。
【0016】
【発明の実施の形態】
以下、本発明の実施例を図1乃至図5に基づいて説明する。蒸気製造装置とは、高純度蒸留水を供給水として、これを加熱手段により加熱し、高純度蒸気を発生させる装置である。
【0017】
はじめに、本発明に係る蒸気製造装置のシステム図について説明する。図5は、その一例を示したものである。
【0018】
図5に示すように、蒸気製造装置50の加熱缶部10に加熱蒸気供給ライン51が接続され、ここから高温に加熱された蒸気が導入される。また、蒸気製造装置50の蒸発缶部20に供給水供給ライン52が接続され、ここから高純度蒸留水が供給される。
【0019】
なお、供給水(高純度蒸留水)はあらかじめプレヒーター53や脱気缶54などを経て導入されるようにするのが一般的である。各配管の接続については設計に応じて種々の形態が考えられる。
【0020】
図1は、本発明に係る蒸気製造装置50の一実施例を示す全体構造の縦断側面図を示したものである。図1に示すように、この装置は加熱缶部10と蒸発缶部20とから構成される。加熱缶部10は、本体ケース10aの外面に熱源を取入れる加熱蒸気入口10bと同出口10cが上下に開設され、本体ケースの中空内部にコイル状のスパイラル管を一部に含んでなる一次、二次の伝熱管2、3が設けたものからなる。
【0021】
この一次、二次伝熱管2、3の各上端口は、隔板10dで仕切られた圧力室10eに開口している。中心部にある二次伝熱管3bの下端口は、蒸発缶20の上部受入口4に開口し、他方、一次伝熱管2aの下端口は加熱缶部10の下部室14に開口しここから供給水が流入される。
【0022】
蒸発缶部20は、図1に示すように円筒状の缶胴ケース20aをアウターケースにして、その内部に同心に円筒部5と、環状の隔壁12及びその外周サイクロン外筒13とを一体に設けたものからなる。円筒部5は上部端壁15に吊持状に支持されてその上部受入口4に伝熱管3の下端口が開口するように臨ませている。円筒部5の下端口5aは缶胴ケース20aの底部との間に下部膨張室6となる空間を形成している。
【0023】
図2(a)は、図1の加熱缶部20の上部のA−A面で切断した断面図を示している。供給水を圧力室10eに圧送するための伝熱管2は最外周に8本(2a)とそのすぐ内側に4本(2b)設けられている。また、圧力室10eに圧送された供給水を流下するための伝熱管3は、加熱缶の最内周に4本設けられている。
【0024】
サイクロン8は図2(b)に示すようにサイクロン外筒13の上部の外周面に中心方向に向かって旋回流が生じるように接線方向に切設した複数の窓孔8aと奥に向かう程細巾の通路8bを形成するように区切られたガイド小片8cとで形成され、円周等間隔に3乃至4箇所設けるものとする。
【0025】
図3(a)は、最内周に設けられた二次伝熱管3の側面図を示している。この図のように、上方の一部がスパイラル管31を含み、その他はストレート管32、33で構成される。なお、既述のように、図1では1本しか示されていないが、この実施例では4本を組み合わせて設けられている。
【0026】
図3(b)は、最外周の伝熱管よりも内側に設けられた一次伝熱管2bを側面図を示している。この図のように、上部及び下部がストレート管22b、23bで構成され、中央部は同一径のスパイラル管21bで構成されている。
【0027】
図3(c)は、最外周に設けられた一次伝熱管2aの側面図を示している。この図のように、一次伝熱管2aは、上部及び下部がストレート管22a、23aで構成され、中央部は一次伝熱管2bの外周とほぼ同径の内周を有する同一径のスパイラル管21aで構成される。
【0028】
なお、図1及び図2に例示するように、全ての伝熱管(2a、2b、3)は、同形同大のそれぞれが互いの隙間に入り込むように配置し、コイルの中心軸に対し対称となるように均一に設けられることが好ましい。図4はそれぞれの伝熱管(2a、2b、3)の1本を端部からみた正面図を示したものである。これを円周方向に互いにずらしながら配置していくと1本分の伝熱管が占める容積内に同形同大の複数のコイルを収納することができるため、コンパクトに構成できると共に温度分布が均一となる。
【0029】
【作用】
熱源としての加熱蒸気を加熱蒸気入口10bより加熱缶部10内に送り込むと、蒸気は缶内に充満して同出口10cより流出するからこの加熱蒸気の送入及び流出の加減により缶内を所定の温度に保ち、伝熱管2、3を加熱する。
【0030】
この状態で供給水を供給水入口1より供給すると、この供給水は一次伝熱管2を通って圧力室(上部室)10eに至り、さらにこの圧力室10eから中心部にある二次伝熱管2を通って蒸発缶部20の円筒部5の上部受入口4に送入される。この為供給水は伝熱管2、3を通過する間に所定の高温度に加熱されて蒸気となり、さらにその圧力で蒸気と飽和水の気液2相流体で円筒部5へ圧送され下端口より膨張室6を経て環状室7を上昇し圧力を高めながらサイクロン8により中心内方へ向かう旋回流となってサイクロン室11、及び隔壁12の内側の圧力路15を上昇し分離室14より取出口9へ送出されるものであって、このような流れの間に最終的に液滴が分離除去されて高純度の蒸気が得られるものである。
【0031】
上述のように、圧力室10eに圧送された供給水は最内周にある二次伝熱管3を通って流下するが、供給水が伝熱管3の上方に設けられたスパイラル管31を通過する際、流速が制限されて遅くなるため、管内壁を均一に薄い水膜が覆い、流下液膜(いわゆる「ぬれ壁」)を形成する。そのまま、水膜は重力によって内壁面を流下するが、この時、周囲の加熱蒸気により熱せられて高純度の蒸気が発生する。
【0032】
なお、厳密に言うと、スパイラル管31を通過した直後は表面状態は荒れているため、均一な水膜が管内を一様に覆っていないが、その後ストレート管内を重力によって流下するにつれて整流され、より一層蒸発しやすい状態となる。この意味において、スパイラル管は少なくとも真ん中辺りよりも上方の一部にあればよく、その他の部分32、33はむしろストレート管であることが好ましい。
【0033】
なお、実施例では、最外周の一次伝熱管2aは8本、その内側の一次伝熱管2bは4本設けられているが、複数設けている点が重要でありその本数については当業者の設計事項である。このようにスパイラル管を複数本用いると多くの供給水を低い流速で圧力室10eまで圧送することができるため、蒸気発生効率が高められると共に安定して蒸気を発生させることができる。
【0034】
さらに、この実施例のようにスパイラル管とストレート缶とを組み合わせた伝熱管3は、伸縮に対する自由度が大きいため、従来の蒸気製造装置よりも機械的強度が大きい。通常、伝熱管3の内部では大量の蒸気が発生して高圧力がかかるため、労働安全衛生法施行令などで定められた高圧力容器の指定対象となるが、本装置の場合、装置の大きさなど一定の条件をクリアすることにより指定対象外となり、基準に合格するための検査を受ける必要がなくなる。これは装置を製造するメーカのみならず、装置を購入して保守管理するユーザーにとっても大きな利点となる。
【0035】
本実施形態では、蒸発缶と加熱缶が一体化した構成を例示したが、本発明の最大の特徴部分は蒸気発生部分を担う伝熱管の形状にあり、その他の部分については従来の技術を適用することができる。例えば、蒸発缶部と加熱缶部とが別々の筐体で両者が配管で接続された構成であってもよい。
【0036】
【発明の効果】
本発明に係る蒸気製造装置は従来装置よりも蒸気発生効率が高く、コンパクトでしかも機械的強度が大きくなる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す蒸気製造装置の全体構造の縦断側面図である。
【図2】図1におけるA−A線、B−B線矢視図の拡大した横断平面図である。
【図3】図1におけるそれぞれの伝熱管1本を表わす側面図である。
【図4】図1におけるそれぞれの伝熱管の端部を表わす正面図である。
【図5】本発明の一実施例を示す蒸気製造装置のシステム図である。
【符号の説明】
1 供給水取入口
2、3 伝熱管
4 上部受入口
5 円筒部
6 膨張室
7 環状室
8 サイクロン
9 取出口
10 加熱缶部
11 サイクロン室
12 隔壁
13 サイクロン外筒
14 下部室
20 蒸発缶部
50 蒸気製造装置
51 加熱蒸気供給ライン
52 供給水供給ライン
53 プレヒーター
54 脱気缶
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-purity steam production apparatus used in fields such as medical institutions, pharmaceuticals, and food production.
[0002]
[Prior art]
This type of device includes a heating can unit having the function of a heater, and an evaporating can unit having a function of generating steam and a gas-liquid separation function, and generates steam by heating high-purity distilled water. It is common to employ a mechanism for extracting steam by a gas-liquid separator.
[0003]
Conventionally, high-purity distilled water is passed through a straight and long narrow tube (straight tube) to generate steam by heating with a heat source placed around the tube (for example, see Patent Literature 1 and Patent Literature 2).
[0004]
[Patent Document 1]
JP-A-2000-161602 (5th, 12th to 15th paragraphs, FIG. 1)
[Patent Document 2]
JP-A-2002-162001 (Paragraph 18, FIG. 1 to FIG. 3)
[0005]
[Problems to be solved by the invention]
However, since the conventional apparatus has low steam generation efficiency, the heating can part had to be very long in order to obtain a sufficient amount of generated steam.
[0006]
Further, in the conventional apparatus, since the heat transfer tube (evaporation tube) for generating steam is a straight tube, expansion and contraction is almost impossible, so that it is weak in strength and easily broken.
[0007]
In addition, in the 18th paragraph of Patent Document 2, it is described that an evaporator composed of a spiral tube may be used, but a specific structure is not shown. It became clear that an efficient falling liquid film was not formed in the spiral tube (spiral tube), and the steam generation efficiency was low.
[0008]
In addition, since this device generates high steam pressure inside the heat transfer tube, which is the steam generation section, high pressure is applied.In order to comply with the standards stipulated by laws and regulations, a high pressure vessel must be specified. This requires a lot of cost and labor such as inspection.
[0009]
In view of the above, it is an object of the present invention to provide a steam generator which is more compact than before and has sufficient strength even when high pressure is applied to the inside.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a steam production device according to the present invention is a device for producing high-purity distilled water or high-purity steam, and includes a heating can unit 10 having a function of a heater, and a steam generation unit. The heating can section 10 includes a vaporizing can section 20 having a function of causing water to flow and a gas-liquid separating function. And the pressure is fed to the upper receiving port 4 of the evaporator unit 20 by a pressure, so that a part of the steam heat transfer tubes 2 and 3 includes a coil-shaped portion (spiral tube). Features.
[0011]
By including a coil-shaped portion (spiral tube) in at least a part of the heat transfer tube, which has conventionally been formed of a straight tube and thus easily broken, the strength against expansion and contraction is increased, and laws and regulations (eg, occupational health and safety) Exemption from high-pressure vessels specified by the law, etc.), eliminating the need to undergo inspections to pass the standards. This is a great advantage not only for the manufacturer of the device, but also for the user who purchases and maintains the device.
[0012]
In particular, in this device, the heat transfer tube 3 connected to the upper receiving port 4 side is provided with a spiral portion 31 above an intermediate portion of the heat transfer tube 3, and the other portions are constituted by straight tubes 32, 33. Preferably.
[0013]
When the heat transfer tube 3 is formed in such a shape, the device becomes more compact than before, and the steam generation efficiency is dramatically increased.
[0014]
Further, the heat transfer tube 2 located outside the heat transfer tube 3 is configured such that both ends are formed of straight tubes, and at least a part of the heated steam inlet 10b and the outlet 10c face the straight tube portion. Is preferred.
[0015]
If the entrance and exit 10b and 10c of the heating steam face the portion of the heat transfer tube 2 justified by the straight tube as described above, the heating steam efficiently transfers heat into the heat transfer tube. Is enhanced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS. The steam producing apparatus is an apparatus that generates high-purity steam by using high-purity distilled water as supply water and heating the same by a heating unit.
[0017]
First, a system diagram of a steam production device according to the present invention will be described. FIG. 5 shows an example.
[0018]
As shown in FIG. 5, a heating steam supply line 51 is connected to the heating can section 10 of the steam producing apparatus 50, and steam heated to a high temperature is introduced therefrom. Further, a supply water supply line 52 is connected to the evaporator section 20 of the steam production device 50, and high-purity distilled water is supplied therefrom.
[0019]
It is general that the supply water (high-purity distilled water) is introduced in advance through a preheater 53, a degassing can 54 and the like. Various forms of connection of each pipe can be considered depending on the design.
[0020]
FIG. 1 is a longitudinal sectional side view of an entire structure showing an embodiment of a steam producing apparatus 50 according to the present invention. As shown in FIG. 1, the apparatus includes a heating can section 10 and an evaporating can section 20. The heating can portion 10 has a heating steam inlet 10b and an outlet 10c for opening and closing a heat source on an outer surface of the main body case 10a, and a primary part including a coil-shaped spiral tube in a hollow interior of the main body case. The secondary heat transfer tubes 2 and 3 are provided.
[0021]
The upper end of each of the primary and secondary heat transfer tubes 2 and 3 opens to a pressure chamber 10e partitioned by a partition 10d. The lower end of the secondary heat transfer tube 3b at the center is open to the upper receiving port 4 of the evaporator 20 while the lower end of the primary heat transfer tube 2a is opened to the lower chamber 14 of the heating can 10 and supplied from there. Water flows in.
[0022]
As shown in FIG. 1, the evaporating can section 20 has a cylindrical can body case 20a as an outer case, and the cylindrical section 5, the annular partition wall 12, and the outer cyclone outer cylinder 13 are integrally formed concentrically therein. It is composed of those provided. The cylindrical portion 5 is supported by the upper end wall 15 in a suspended manner, and faces the upper receiving port 4 so that the lower end of the heat transfer tube 3 opens. The lower end 5a of the cylindrical portion 5 forms a space serving as the lower expansion chamber 6 between the lower end 5a and the bottom of the can body case 20a.
[0023]
FIG. 2A is a cross-sectional view taken along the AA plane of the upper portion of the heating can unit 20 of FIG. The heat transfer tubes 2 for feeding the supply water to the pressure chamber 10e by pressure are provided at eight (2a) at the outermost periphery and at four (2b) immediately inside thereof. In addition, four heat transfer tubes 3 for flowing down the supply water pumped to the pressure chamber 10e are provided on the innermost circumference of the heating can.
[0024]
As shown in FIG. 2B, the cyclone 8 has a plurality of window holes 8a cut in a tangential direction so that a swirling flow is generated toward the center on the outer peripheral surface of the upper part of the cyclone outer cylinder 13, and the cyclone 8 becomes thinner toward the back. It is formed by guide pieces 8c divided so as to form a passage 8b having a width, and is provided at three or four places at equal circumferential intervals.
[0025]
FIG. 3A shows a side view of the secondary heat transfer tube 3 provided on the innermost circumference. As shown in this figure, the upper part includes a spiral tube 31 and the other is constituted by straight tubes 32 and 33. Note that, as described above, only one is shown in FIG. 1, but in this embodiment, four are provided in combination.
[0026]
FIG. 3B is a side view of the primary heat transfer tube 2b provided inside the outermost heat transfer tube. As shown in this figure, the upper and lower portions are constituted by straight tubes 22b and 23b, and the central portion is constituted by a spiral tube 21b having the same diameter.
[0027]
FIG. 3C shows a side view of the primary heat transfer tube 2a provided on the outermost periphery. As shown in the figure, the primary heat transfer tube 2a has upper and lower straight tubes 22a and 23a, and a central portion is a spiral tube 21a having the same diameter as the outer periphery of the primary heat transfer tube 2b and having the same inner diameter. Be composed.
[0028]
As illustrated in FIGS. 1 and 2, all the heat transfer tubes (2 a, 2 b, 3) are arranged so that each of the same shape and the same size enters into the gap between them, and are symmetric with respect to the center axis of the coil. It is preferable that they are provided uniformly so that FIG. 4 shows a front view of one of the heat transfer tubes (2a, 2b, 3) viewed from the end. If these coils are arranged while being shifted from each other in the circumferential direction, a plurality of coils of the same shape and the same size can be accommodated in the volume occupied by one heat transfer tube. It becomes.
[0029]
[Action]
When heating steam as a heat source is sent into the heating can portion 10 from the heating steam inlet 10b, the steam is filled in the can and flows out from the outlet 10c. And the heat transfer tubes 2 and 3 are heated.
[0030]
When supply water is supplied from the supply water inlet 1 in this state, the supply water passes through the primary heat transfer tube 2 to reach the pressure chamber (upper chamber) 10e, and further from the pressure chamber 10e, the secondary heat transfer tube 2 at the center portion. Through the upper portion of the cylindrical portion 5 of the evaporator 20. For this reason, the feed water is heated to a predetermined high temperature while passing through the heat transfer tubes 2 and 3 to become steam, and furthermore, is sent under pressure to the cylindrical portion 5 with steam and saturated water in a gas-liquid two-phase fluid, and is sent from the lower end port. While rising the annular chamber 7 through the expansion chamber 6 and increasing the pressure, the cyclone 8 forms a swirling flow inward toward the center by the cyclone 8 to raise the pressure path 15 inside the cyclone chamber 11 and the partition wall 12 and take out from the separation chamber 14. The droplets are finally separated and removed during such a stream to obtain high-purity steam.
[0031]
As described above, the supply water pumped to the pressure chamber 10e flows down through the innermost secondary heat transfer tube 3, but the supply water passes through the spiral tube 31 provided above the heat transfer tube 3. At this time, since the flow velocity is restricted and becomes slow, a thin water film uniformly covers the inner wall of the pipe, and a falling liquid film (so-called “wet wall”) is formed. As it is, the water film flows down the inner wall surface due to gravity. At this time, high-purity steam is generated by being heated by surrounding heating steam.
[0032]
Strictly speaking, immediately after passing through the spiral tube 31, the surface state is rough, so a uniform water film does not uniformly cover the inside of the tube, but is then rectified as it flows down the straight tube by gravity, It will be in a state of being more easily evaporated. In this sense, the spiral tube only needs to be located at least in a portion above the middle, and the other portions 32 and 33 are preferably straight tubes.
[0033]
In the embodiment, eight outermost primary heat transfer tubes 2a and four inner primary heat transfer tubes 2b are provided. However, it is important to provide a plurality of primary heat transfer tubes 2a. Matters. When a plurality of spiral tubes are used in this manner, a large amount of supply water can be pumped to the pressure chamber 10e at a low flow rate, so that steam generation efficiency can be increased and steam can be stably generated.
[0034]
Further, since the heat transfer tube 3 in which the spiral tube and the straight can are combined as in this embodiment has a large degree of freedom for expansion and contraction, it has higher mechanical strength than a conventional steam production device. Usually, a large amount of steam is generated inside the heat transfer tube 3 and high pressure is applied. Therefore, the high pressure vessel specified by the Ordinance for Enforcement of the Industrial Safety and Health Act is specified, but in the case of this device, the size of the device is large. By clearing certain conditions, such as the criterion, it is not specified, and there is no need to undergo an inspection to pass the standard. This is a great advantage not only for the manufacturer of the device, but also for the user who purchases and maintains the device.
[0035]
In the present embodiment, the configuration in which the evaporator and the heating can are integrated has been exemplified, but the most characteristic feature of the present invention is the shape of the heat transfer tube that serves as the steam generating portion, and the other portions apply the conventional technology. can do. For example, a configuration may be adopted in which the evaporating can section and the heating can section are separate casings and both are connected by piping.
[0036]
【The invention's effect】
The steam production apparatus according to the present invention has higher steam generation efficiency than the conventional apparatus, is compact, and has high mechanical strength.
[Brief description of the drawings]
FIG. 1 is a vertical sectional side view of the entire structure of a steam producing apparatus according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional plan view taken along line AA and line BB in FIG.
FIG. 3 is a side view showing one heat transfer tube in FIG. 1;
FIG. 4 is a front view showing an end of each heat transfer tube in FIG. 1;
FIG. 5 is a system diagram of a steam production apparatus showing one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Supply water inlet 2, 3 Heat transfer tube 4 Upper receiving port 5 Cylindrical part 6 Expansion chamber 7 Annular chamber 8 Cyclone 9 Outlet 10 Heating can part 11 Cyclone chamber 12 Partition wall 13 Cyclone outer cylinder 14 Lower chamber 20 Evaporation can part 50 Steam Production equipment 51 Heated steam supply line 52 Supply water supply line 53 Preheater 54 Degassing can

Claims (3)

高純度蒸留水または高純度蒸気を製造する装置であって、加熱器の機能を備えた加熱缶部(10)と、蒸気を発生させる機能と気液分離機能とを備えた蒸発缶部(20)とを含んでおり、前記加熱缶部(10)は供給水取入口(1)から取入れた供給水を伝熱管(2、3)を通して加熱し発生蒸気の圧力で蒸気と液滴の混合状態にして蒸発缶部(20)の上部受入口(4)に圧送する構成とされ、上記伝熱管(2、3)の一部にコイル状の部分を含んでいることを特徴とする蒸気製造装置。An apparatus for producing high-purity distilled water or high-purity steam, comprising: a heating can section (10) having a function of a heater; and an evaporating section (20) having a function of generating steam and a gas-liquid separation function. The heating can section (10) heats the supply water taken in from the supply water inlet (1) through the heat transfer tubes (2, 3) and mixes the steam and the droplets with the pressure of the generated steam. Wherein the heat transfer tubes (2, 3) include a coil-shaped portion in a part thereof. . 上部受入口(4)側に接続された伝熱管(3)が、該伝熱管(3)の中間部よりも上方にスパイラル部(31)が設けられていると共に、その他はストレート管(32、33)で構成されることを特徴とする請求項1記載の蒸気製造装置。The heat transfer tube (3) connected to the upper receiving port (4) has a spiral portion (31) provided above an intermediate portion of the heat transfer tube (3), and the other portions have straight tubes (32, 33. The steam producing apparatus according to claim 1, comprising: 伝熱管(3)の外側に位置する伝熱管(2)を、夫々の両端部がストレート管で構成されると共に、加熱蒸気入口(10b)と同出口(10c)がストレート管部に臨むように構成されていることを特徴とする請求項1記載の蒸気製造装置。The heat transfer tube (2) located outside the heat transfer tube (3) is configured such that both ends are formed of straight tubes, and the heated steam inlet (10b) and the outlet (10c) face the straight tube portion. The steam production apparatus according to claim 1, wherein the apparatus is configured.
JP2003085363A 2003-03-26 2003-03-26 Steam production equipment Expired - Lifetime JP4104065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085363A JP4104065B2 (en) 2003-03-26 2003-03-26 Steam production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085363A JP4104065B2 (en) 2003-03-26 2003-03-26 Steam production equipment

Publications (2)

Publication Number Publication Date
JP2004293879A true JP2004293879A (en) 2004-10-21
JP4104065B2 JP4104065B2 (en) 2008-06-18

Family

ID=33400302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085363A Expired - Lifetime JP4104065B2 (en) 2003-03-26 2003-03-26 Steam production equipment

Country Status (1)

Country Link
JP (1) JP4104065B2 (en)

Also Published As

Publication number Publication date
JP4104065B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
WO1983002241A1 (en) Water treatment device
US5983842A (en) Vertical evaporator
JP2007178089A (en) Induction heating type steam generating device
US3139070A (en) Vapor generating unit
US10436516B2 (en) Thermal cycling device
US2845906A (en) Vapor generating unit
JP2004293879A (en) Steam producing device
JPH11159977A (en) Gas cooling device
WO1987007185A1 (en) Gas-liquid separator
JPS6323966Y2 (en)
JP2005147482A (en) Gas-liquid separator
JP2002115802A (en) Waste heat recovery system
CN86100296A (en) The pulp digester of boiling mash or wort
US589553A (en) Half to francis j
US3123053A (en) Horizontal steam generator with a riser manifold
JP2940489B2 (en) Double tube coil type steam generator
US760475A (en) Tube for boilers.
SU994890A2 (en) Surface condenser
JP3658702B2 (en) Pure steam production equipment
SU785591A1 (en) Steam generating apparatus
JP2008100125A (en) Air/water separator and boiler using it
JP3388553B2 (en) Evaporator
JP2014137054A (en) Fuel gas heater
SU1025957A1 (en) Evaporator
SU975044A1 (en) Apparatus for forming liquid film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4104065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term