JP4104065B2 - Steam production equipment - Google Patents

Steam production equipment Download PDF

Info

Publication number
JP4104065B2
JP4104065B2 JP2003085363A JP2003085363A JP4104065B2 JP 4104065 B2 JP4104065 B2 JP 4104065B2 JP 2003085363 A JP2003085363 A JP 2003085363A JP 2003085363 A JP2003085363 A JP 2003085363A JP 4104065 B2 JP4104065 B2 JP 4104065B2
Authority
JP
Japan
Prior art keywords
heat transfer
steam
tube
transfer tube
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003085363A
Other languages
Japanese (ja)
Other versions
JP2004293879A (en
Inventor
誠一 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003085363A priority Critical patent/JP4104065B2/en
Publication of JP2004293879A publication Critical patent/JP2004293879A/en
Application granted granted Critical
Publication of JP4104065B2 publication Critical patent/JP4104065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医療機関、製薬及び食品製造等の分野で使用される高純度の蒸気製造装置に関するものである。
【0002】
【従来の技術】
この種の装置では、加熱器の機能を備えた加熱缶部と、蒸気を発生させる機能と気液分離機能とを備えた蒸発缶部とを備え、高純度蒸留水を加熱して蒸気を発生させ気液分離器により蒸気を取り出す仕組みを採用するものが一般的である。
【0003】
従来、蒸気を発生させる部分は、まっすぐな長細いチューブ(ストレート管)の内部に高純度蒸留水を通過させ、チューブの周囲に配置した熱源により加熱して蒸気を発生させている(例えば、特許文献1、特許文献2参照。)。
【0004】
【特許文献1】
特開2000−161602号公報(第5、第12乃至15段落、第1図)
【特許文献2】
特開2002ー162001号公報(第18段落、第1図乃至第3図)
【0005】
【発明が解決しようとする課題】
しかし、従来の装置は蒸気発生効率が低いため、十分な発生量を得るためには加熱缶部を非常に長くしなければならなかった。
【0006】
また、従来の装置では、蒸気を発生させる伝熱管(蒸発管)がストレート管であったため、伸縮が殆ど不可能であるために強度的に弱く、破損しやすかった。
【0007】
なお、特許文献2の第18段落には、螺旋管からなる蒸発缶でもよい旨記載されているが、具体的な構造は図示されておらず、かつ、本発明者の実験によると、全てが螺旋管(スパイラル管)では効率よい流下液膜が形成されず、蒸気発生効率が低いことが明らかとなった。
【0008】
さらに、この装置は内部で蒸気圧を発生させるために蒸気発生部である伝熱管内に高圧力がかかるため、法令で定められた規格を遵守するためには、高圧力容器の指定を受けなければならず、そのために多くのコストと検査等の労力が必要であった。
【0009】
上記に鑑みてなされたものであり、その目的とするところは、従来よりもコンパクトで、内部に高圧力がかかっても十分な強度を備えている蒸気発生装置を提供することを目的とする。
【0010】
上記の課題を解決するために、本発明に係る蒸気製造装置は、高純度蒸気を製造する装置であって、最上部に隔板10dで仕切られた圧力室10eを有し加熱器の機能を備え加熱缶部10と、蒸気を発生させる機能と気液分離機能とを備えた蒸発缶部20とを含んでおり、前記加熱缶部10は供給水取入口1から取入れた供給水を複数の伝熱管2、3を通して加熱し発生蒸気の圧力で蒸気と液滴の混合状態にして前記圧力室を介して蒸発缶部20の上部受入口4に圧送する構成とされ、上記伝熱管2、3は、前記供給水を前記圧力室へ圧送するための同形同大の複数の第1の伝熱管2と、前記圧力室に圧送された供給水を重力によって流下させるための同形同大の複数の第2の伝熱管3とから構成され、前記第1の伝熱管2は少なくとも中央部が同一径のスパイラル管で構成される一方、前記第2の伝熱管3は該伝熱管の中間部よりも上方の一部にのみスパイラル管を含み、前記第1及び第2の伝熱管2,3は、いずれもが前記隔板10dを介して前記圧力室10eに接続されていると共に同形同大のそれぞれの伝熱管2、3が互いの隙間に入り込むようにかつその中心軸に対し対称となるように均一に設けられていることを特徴とする。
【0011】
このように従来ストレート管で構成されていたために破損しやすかった伝熱管の少なくとも一部にコイル状の部分(スパイラル管)を含むことにより、伸縮に対する強度が増大し、法令(例えば、労働安全衛生法施行令など)で定められた高圧力容器の指定対象外となり、基準に合格するための検査を受ける必要がなくなる。これは装置を製造するメーカのみならず、装置を購入して保守管理するユーザーにとっても大きな利点である。
【0013】
伝熱管3をこのような形状にすると装置が従来よりもコンパクトになると共に、蒸気発生効率が飛躍的に増大する。
【0014】
また、前記第2の伝熱管の外側に前記第1の伝熱管が配置され、前記第1及び第2の伝熱管はいずれもその両端部がストレート管で構成されると共に、加熱蒸気入口と同出口とが前記ストレート管部に臨むように構成されていることが好ましい。
【0015】
このように伝熱管2のうちストレート管で構成された部分に加熱蒸気の出入口10b、10cが臨むように構成されていると、加熱蒸気が効率よく伝熱管内に熱を伝えるため、蒸気発生効率が高められる。
【0016】
【発明の実施の形態】
以下、本発明の実施例を図1乃至図5に基づいて説明する。蒸気製造装置とは、高純度蒸留水を供給水として、これを加熱手段により加熱し、高純度蒸気を発生させる装置である。
【0017】
はじめに、本発明に係る蒸気製造装置のシステム図について説明する。図5は、その一例を示したものである。
【0018】
図5に示すように、蒸気製造装置50の加熱缶部10に加熱蒸気供給ライン51が接続され、ここから高温に加熱された蒸気が導入される。また、蒸気製造装置50の蒸発缶部20に供給水供給ライン52が接続され、ここから高純度蒸留水が供給される。
【0019】
なお、供給水(高純度蒸留水)はあらかじめプレヒーター53や脱気缶54などを経て導入されるようにするのが一般的である。各配管の接続については設計に応じて種々の形態が考えられる。
【0020】
図1は、本発明に係る蒸気製造装置50の一実施例を示す全体構造の縦断側面図を示したものである。図1に示すように、この装置は加熱缶部10と蒸発缶部20とから構成される。加熱缶部10は、本体ケース10aの外面に熱源を取入れる加熱蒸気入口10bと同出口10cが上下に開設され、本体ケースの中空内部にコイル状のスパイラル管を一部に含んでなる一次、二次の伝熱管2、3が設けたものからなる。
【0021】
この一次、二次伝熱管2、3の各上端口は、隔板10dで仕切られた圧力室10eに開口している。中心部にある二次伝熱管3bの下端口は、蒸発缶20の上部受入口4に開口し、他方、一次伝熱管2aの下端口は加熱缶部10の下部室14に開口しここから供給水が流入される。
【0022】
蒸発缶部20は、図1に示すように円筒状の缶胴ケース20aをアウターケースにして、その内部に同心に円筒部5と、環状の隔壁12及びその外周サイクロン外筒13とを一体に設けたものからなる。円筒部5は上部端壁15に吊持状に支持されてその上部受入口4に伝熱管3の下端口が開口するように臨ませている。円筒部5の下端口5aは缶胴ケース20aの底部との間に下部膨張室6となる空間を形成している。
【0023】
図2(a)は、図1の加熱缶部20の上部のA−A面で切断した断面図を示している。供給水を圧力室10eに圧送するための伝熱管2は最外周に8本(2a)とそのすぐ内側に4本(2b)設けられている。また、圧力室10eに圧送された供給水を流下するための伝熱管3は、加熱缶の最内周に4本設けられている。
【0024】
サイクロン8は図2(b)に示すようにサイクロン外筒13の上部の外周面に中心方向に向かって旋回流が生じるように接線方向に切設した複数の窓孔8aと奥に向かう程細巾の通路8bを形成するように区切られたガイド小片8cとで形成され、円周等間隔に3乃至4箇所設けるものとする。
【0025】
図3(a)は、最内周に設けられた二次伝熱管3の側面図を示している。この図のように、上方の一部スパイラル管31を含み、その他はストレート管32、33で構成される。なお、既述のように、図1では1本しか示されていないが、この実施例では実際には4本を組み合わせて設けられている。
【0026】
図3(b)は、最外周の伝熱管よりも内側に設けられた一次伝熱管2b側面図を示している。この図のように、上部及び下部がストレート管22b、23bで構成され、中央部は同一径のスパイラル管21bで構成されている。
【0027】
図3(c)は、最外周に設けられた一次伝熱管2aの側面図を示している。この図のように、一次伝熱管2aは、上部及び下部がストレート管22a、23aで構成され、中央部は一次伝熱管2bの外周とほぼ同径の内周を有する同一径のスパイラル管21aで構成される。
【0028】
なお、図1及び図2に例示するように、全ての伝熱管(2a、2b、3)は、同形同大のそれぞれが互いの隙間に入り込むように配置し、コイルの中心軸に対し対称となるように均一に設けられることが好ましい。図4はそれぞれの伝熱管(2a、2b、3)の1本を端部からみた正面図を示したものである。これを円周方向に互いにずらしながら配置していくと1本分の伝熱管が占める容積内に同形同大の複数のコイルを収納することができるため、コンパクトに構成できると共に温度分布が均一となる。
【0029】
【作用】
熱源としての加熱蒸気を加熱蒸気入口10bより加熱缶部10内に送り込むと、蒸気は缶内に充満して同出口10cより流出するからこの加熱蒸気の送入及び流出の加減により缶内を所定の温度に保ち、伝熱管2、3を加熱する。
【0030】
この状態で供給水を供給水入口1より供給すると、この供給水は一次伝熱管2を通って圧力室(上部室)10eに至り、さらにこの圧力室10eから中心部にある二次伝熱管2を通って蒸発缶部20の円筒部5の上部受入口4に送入される。この為供給水は伝熱管2、3を通過する間に所定の高温度に加熱されて蒸気となり、さらにその圧力で蒸気と飽和水の気液2相流体で円筒部5へ圧送され下端口より膨張室6を経て環状室7を上昇し圧力を高めながらサイクロン8により中心内方へ向かう旋回流となってサイクロン室11、及び隔壁12の内側の圧力路15を上昇し分離室14より取出口9へ送出されるものであって、このような流れの間に最終的に液滴が分離除去されて高純度の蒸気が得られるものである。
【0031】
上述のように、圧力室10eに圧送された供給水は最内周にある二次伝熱管3を通って流下するが、供給水が伝熱管3の上方に設けられたスパイラル管31を通過する際、流速が制限されて遅くなるため、管内壁を均一に薄い水膜が覆い、流下液膜(いわゆる「ぬれ壁」)を形成する。そのまま、水膜は重力によって内壁面を流下するが、この時、周囲の加熱蒸気により熱せられて高純度の蒸気が発生する。
【0032】
なお、厳密に言うと、スパイラル管31を通過した直後は表面状態は荒れているため、均一な水膜が管内を一様に覆っていないが、その後ストレート管内を重力によって流下するにつれて整流され、より一層蒸発しやすい状態となる。この意味において、スパイラル管は少なくとも真ん中辺りよりも上方の一部にあればよく、その他の部分32、33はむしろストレート管であることが好ましい。
【0033】
なお、実施例では、最外周の一次伝熱管2aは8本、その内側の一次伝熱管2bは4本設けられているが、複数設けている点が重要でありその本数については当業者の設計事項である。このようにスパイラル管を複数本用いると多くの供給水を低い流速で圧力室10eまで圧送することができるため、蒸気発生効率が高められると共に安定して蒸気を発生させることができる。
【0034】
さらに、この実施例のようにスパイラル管とストレート缶とを組み合わせた伝熱管3は、伸縮に対する自由度が大きいため、従来の蒸気製造装置よりも機械的強度が大きい。通常、伝熱管3の内部では大量の蒸気が発生して高圧力がかかるため、労働安全衛生法施行令などで定められた高圧力容器の指定対象となるが、本装置の場合、装置の大きさなど一定の条件をクリアすることにより指定対象外となり、基準に合格するための検査を受ける必要がなくなる。これは装置を製造するメーカのみならず、装置を購入して保守管理するユーザーにとっても大きな利点となる。
【0035】
本実施形態では、蒸発缶と加熱缶が一体化した構成を例示したが、本発明の最大の特徴部分は蒸気発生部分を担う伝熱管の形状にあり、その他の部分については従来の技術を適用することができる。例えば、蒸発缶部と加熱缶部とが別々の筐体で両者が配管で接続された構成であってもよい。
【0036】
【発明の効果】
本発明に係る蒸気製造装置は従来装置よりも蒸気発生効率が高く、コンパクトでしかも機械的強度が大きくなる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す蒸気製造装置の全体構造の縦断側面図である。
【図2】図1におけるA−A線、B−B線矢視図の拡大した横断平面図である。
【図3】図1におけるそれぞれの伝熱管1本を表わす側面図である。
【図4】図1におけるそれぞれの伝熱管の端部を表わす正面図である。
【図5】本発明の一実施例を示す蒸気製造装置のシステム図である。
【符号の説明】
1 供給水取入口
2、3 伝熱管
4 上部受入口
5 円筒部
6 膨張室
7 環状室
8 サイクロン
9 取出口
10 加熱缶部
11 サイクロン室
12 隔壁
13 サイクロン外筒
14 下部室
20 蒸発缶部
50 蒸気製造装置
51 加熱蒸気供給ライン
52 供給水供給ライン
53 プレヒーター
54 脱気缶
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-purity steam production apparatus used in fields such as medical institutions, pharmaceuticals, and food production.
[0002]
[Prior art]
This type of equipment has a heating can part that has the function of a heater, and an evaporator part that has a function for generating steam and a gas-liquid separation function, and generates steam by heating high-purity distilled water. In general, a system that uses a gas-liquid separator to extract steam is used.
[0003]
Conventionally, steam is generated in a portion where steam is generated by passing high-purity distilled water through a straight long thin tube (straight tube) and heated by a heat source arranged around the tube (for example, patents). Reference 1 and Patent Reference 2).
[0004]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-161602 (5th, 12th to 15th paragraphs, FIG. 1)
[Patent Document 2]
JP 2002-162001 A (18th paragraph, FIGS. 1 to 3)
[0005]
[Problems to be solved by the invention]
However, since the conventional apparatus has low steam generation efficiency, in order to obtain a sufficient generation amount, the heating can part has to be very long.
[0006]
In the conventional apparatus, since the heat transfer tube (evaporation tube) for generating steam is a straight tube, the expansion and contraction is almost impossible, so that it is weak in strength and easily damaged.
[0007]
In addition, in the 18th paragraph of Patent Document 2, it is described that an evaporator made of a spiral tube may be used. However, a specific structure is not illustrated, and according to the experiment of the present inventor, It was revealed that an efficient falling liquid film was not formed in the spiral tube (spiral tube), and the steam generation efficiency was low.
[0008]
In addition, since this device generates a high pressure inside the heat transfer tube, which is the steam generator, it must be designated as a high pressure vessel in order to comply with the standards stipulated by laws and regulations. For this reason, a lot of cost and labor such as inspection are required.
[0009]
The present invention has been made in view of the above, and an object thereof is to provide a steam generator that is more compact than conventional ones and has sufficient strength even when high pressure is applied to the inside.
[0010]
In order to solve the above-mentioned problems, a steam production apparatus according to the present invention is an apparatus for producing high-purity steam, and has a pressure chamber 10e partitioned by a partition plate 10d at the top to function as a heater. multiple heating cans 10, includes a evaporator unit 20 having a function of generating steam and gas-liquid separation function, the feed water the heating cans portion 10 incorporating a supply water intake 1 comprises Ru The heat transfer tubes 2 and 3 are heated and mixed with steam and droplets with the pressure of the generated steam, and are sent to the upper receiving port 4 of the evaporator 20 through the pressure chamber . 3 is a plurality of first heat transfer tubes 2 of the same shape and size for pumping the supply water to the pressure chamber, and the same shape and size for causing the feed water pumped to the pressure chamber to flow down by gravity. A plurality of second heat transfer tubes 3, wherein the first heat transfer tubes 2 are at least medium The second heat transfer tube 3 includes a spiral tube only in a part above the intermediate portion of the heat transfer tube, and the first and second heat transfer tubes 2 are formed of a spiral tube having the same diameter. , 3 are connected to the pressure chamber 10e via the partition plate 10d, and the heat transfer tubes 2 and 3 of the same shape and size enter the gap between each other and with respect to the central axis thereof. It is provided uniformly so as to be symmetrical.
[0011]
By including a coiled portion (spiral tube) in at least a part of the heat transfer tube that has been conventionally configured with a straight tube, the strength against expansion and contraction is increased. The high pressure vessel designated by the law enforcement order etc.) will be excluded from designation, and it will no longer be necessary to undergo an inspection to pass the standard. This is a great advantage not only for manufacturers who manufacture devices but also for users who purchase and maintain the devices.
[0013]
When the heat transfer tube 3 has such a shape, the apparatus becomes more compact than the conventional one, and the steam generation efficiency increases dramatically.
[0014]
Furthermore, said outside the second heat transfer tube first heat transfer tubes are disposed, together with the formed first and second heat transfer pipe are both straight pipes both ends, the heating steam inlet It is preferable that the outlet is configured to face the straight pipe portion.
[0015]
As described above, when the heating steam outlets 10b and 10c face the portion of the heat transfer tube 2 that is formed of a straight tube, the heating steam efficiently transfers heat into the heat transfer tube. Is increased.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. The steam production apparatus is an apparatus that generates high-purity steam by using high-purity distilled water as supply water and heating it with heating means.
[0017]
First, a system diagram of a steam production apparatus according to the present invention will be described. FIG. 5 shows an example thereof.
[0018]
As shown in FIG. 5, a heating steam supply line 51 is connected to the heating can 10 of the steam producing apparatus 50, and steam heated to a high temperature is introduced from here. Moreover, the supply water supply line 52 is connected to the evaporator part 20 of the steam production apparatus 50, and high purity distilled water is supplied from here.
[0019]
In general, the supply water (high-purity distilled water) is introduced in advance through a preheater 53, a degassing can 54, or the like. As for the connection of each pipe, various forms are conceivable depending on the design.
[0020]
FIG. 1 is a longitudinal side view of the entire structure showing an embodiment of a steam production apparatus 50 according to the present invention. As shown in FIG. 1, this apparatus includes a heating can unit 10 and an evaporator unit 20. The heating can 10 has a heating steam inlet 10b and an outlet 10c, which are provided with a heat source on the outer surface of the main body case 10a. The primary part of the heating can 10 includes a coiled spiral tube in a hollow portion of the main body case. The secondary heat transfer tubes 2 and 3 are provided.
[0021]
The upper end ports of the primary and secondary heat transfer tubes 2 and 3 open to a pressure chamber 10e partitioned by a partition plate 10d. The lower end port of the secondary heat transfer tube 3b in the center portion opens to the upper receiving port 4 of the evaporator 20, while the lower end port of the primary heat transfer tube 2a opens to the lower chamber 14 of the heating can unit 10 and is supplied from here. Water flows in.
[0022]
As shown in FIG. 1, the evaporator 20 has a cylindrical can barrel case 20a as an outer case, and the cylindrical portion 5, the annular partition wall 12 and the outer peripheral cyclone outer cylinder 13 are integrally formed concentrically therein. It consists of what was provided. The cylindrical portion 5 is supported in a suspended manner on the upper end wall 15 and faces the upper receiving port 4 so that the lower end of the heat transfer tube 3 opens. A space serving as the lower expansion chamber 6 is formed between the lower end 5a of the cylindrical portion 5 and the bottom of the can body case 20a.
[0023]
FIG. 2A shows a cross-sectional view taken along the AA plane at the top of the heating can 20 of FIG. The heat transfer tubes 2 for pumping the supply water to the pressure chamber 10e are provided on the outermost periphery (8a) (2a) and on the inner side thereof (4b). Moreover, the four heat exchanger tubes 3 for flowing down the supply water pressure-fed to the pressure chamber 10e are provided in the innermost periphery of a heating can.
[0024]
As shown in FIG. 2B, the cyclone 8 has a plurality of window holes 8a cut in a tangential direction so that a swirling flow is generated in the central direction on the outer peripheral surface of the upper part of the cyclone outer cylinder 13, and the cyclone 8 becomes narrower toward the back. The guide piece 8c is divided so as to form a width passage 8b, and is provided at three or four places at equal circumferential intervals.
[0025]
Fig.3 (a) has shown the side view of the secondary heat exchanger tube 3 provided in the innermost periphery. As shown in this figure , a spiral tube 31 is included in a part of the upper portion , and the other is composed of straight tubes 32 and 33. As described above, only one is shown in FIG. 1, but in this embodiment, four are actually provided in combination.
[0026]
FIG.3 (b) has shown the side view of the primary heat exchanger tube 2b provided inside the outermost peripheral heat exchanger tube. As shown in this figure, the upper and lower portions are constituted by straight tubes 22b and 23b, and the central portion is constituted by a spiral tube 21b having the same diameter.
[0027]
FIG.3 (c) has shown the side view of the primary heat exchanger tube 2a provided in the outermost periphery. As shown in this figure, the primary heat transfer tube 2a is composed of straight tubes 22a and 23a at the upper and lower portions, and the central portion is a spiral tube 21a of the same diameter having an inner periphery substantially the same diameter as the outer periphery of the primary heat transfer tube 2b. Composed.
[0028]
In addition, as illustrated in FIGS. 1 and 2, all the heat transfer tubes (2a, 2b, 3) are arranged so that the same shape and the same size enter each other and are symmetrical with respect to the central axis of the coil. It is preferable that they are uniformly provided. FIG. 4 shows a front view of one of the heat transfer tubes (2a, 2b, 3) seen from the end. If they are arranged while being shifted from each other in the circumferential direction, a plurality of coils of the same shape and size can be accommodated in the volume occupied by one heat transfer tube, so that it can be made compact and the temperature distribution is uniform. It becomes.
[0029]
[Action]
When heated steam as a heat source is fed into the heated can 10 from the heated steam inlet 10b, the steam fills the can and flows out from the outlet 10c. The heat transfer tubes 2 and 3 are heated.
[0030]
When supply water is supplied from the supply water inlet 1 in this state, the supply water passes through the primary heat transfer tube 2 to the pressure chamber (upper chamber) 10e, and further from the pressure chamber 10e to the secondary heat transfer tube 2 in the center. Through the upper receiving port 4 of the cylindrical part 5 of the evaporator 20. For this reason, the feed water is heated to a predetermined high temperature while passing through the heat transfer tubes 2 and 3 and becomes steam, and is further pumped to the cylindrical portion 5 by the gas-liquid two-phase fluid of steam and saturated water at that pressure and from the lower end port. The annular chamber 7 is lifted through the expansion chamber 6 and the pressure is increased, and the cyclone 8 turns into a swirl flow toward the center inward, and the pressure path 15 inside the cyclone chamber 11 and the partition wall 12 is raised and taken out from the separation chamber 14. In this flow, the droplets are finally separated and removed during such a flow to obtain high-purity vapor.
[0031]
As described above, the supply water pumped to the pressure chamber 10e flows down through the secondary heat transfer tube 3 at the innermost periphery, but the supply water passes through the spiral tube 31 provided above the heat transfer tube 3. At this time, since the flow rate is limited and slows down, the inner wall of the pipe is uniformly covered with a thin water film to form a falling liquid film (so-called “wetting wall”). As it is, the water film flows down the inner wall surface by gravity. At this time, the water film is heated by the surrounding heating steam to generate high-purity steam.
[0032]
Strictly speaking, since the surface state is rough immediately after passing through the spiral tube 31, the uniform water film does not cover the inside of the tube uniformly, but is then rectified as it flows down by gravity in the straight tube, It will be in the state which is still more easily evaporated. In this sense, the spiral tube only needs to be at least a part above the middle, and the other portions 32 and 33 are preferably straight tubes.
[0033]
In the embodiment, eight outermost primary heat transfer tubes 2a and four inner heat transfer tubes 2b are provided, but it is important to provide a plurality of primary heat transfer tubes 2b. It is a matter. When a plurality of spiral tubes are used in this way, a large amount of supply water can be pumped to the pressure chamber 10e at a low flow rate, so that steam generation efficiency can be improved and steam can be generated stably.
[0034]
Furthermore, since the heat transfer tube 3 in which the spiral tube and the straight can are combined as in this embodiment has a large degree of freedom for expansion and contraction, the mechanical strength is higher than that of the conventional steam production apparatus. Usually, a large amount of steam is generated inside the heat transfer tube 3 and a high pressure is applied. Therefore, it is a target for the designation of a high pressure vessel as stipulated in the Ordinance of the Industrial Safety and Health Act. By clearing certain conditions such as this, it will be excluded from designation, and it will not be necessary to undergo an inspection to pass the standard. This is a great advantage not only for manufacturers who manufacture devices but also for users who purchase and maintain the devices.
[0035]
In the present embodiment, the configuration in which the evaporator and the heating can are integrated is illustrated, but the greatest characteristic part of the present invention is the shape of the heat transfer tube that bears the steam generation part, and the conventional technology is applied to the other parts. can do. For example, a configuration in which the evaporator portion and the heating can portion are separate casings and both are connected by piping.
[0036]
【The invention's effect】
The steam production apparatus according to the present invention has higher steam generation efficiency than the conventional apparatus, is compact, and has high mechanical strength.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of an overall structure of a steam production apparatus showing an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional plan view taken along line AA and BB in FIG. 1;
FIG. 3 is a side view showing one heat transfer tube in FIG. 1;
4 is a front view showing an end portion of each heat transfer tube in FIG. 1. FIG.
FIG. 5 is a system diagram of a steam production apparatus showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Supply water inlet 2, 3 Heat exchanger tube 4 Upper inlet 5 Cylindrical part 6 Expansion chamber 7 Annular chamber 8 Cyclone 9 Outlet 10 Heating can part 11 Cyclone chamber 12 Partition 13 Cyclone outer cylinder 14 Lower chamber 20 Evaporator part 50 Steam Manufacturing equipment 51 Heated steam supply line 52 Supply water supply line 53 Pre-heater 54 Degassing can

Claims (2)

高純度蒸気を製造する装置であって、最上部に隔板で仕切られた圧力室を有し加熱器の機能を備え加熱缶部と、蒸気を発生させる機能と気液分離機能とを備えた蒸発缶部とを含んでおり、前記加熱缶部は供給水取入口から取入れた供給水を複数の伝熱管を通して加熱し発生蒸気の圧力で蒸気と液滴の混合状態にして前記圧力室を介して蒸発缶部の上部受入口に圧送する構成とされ、
上記伝熱管は、前記供給水を前記圧力室へ圧送するための同形同大の複数の第1の伝熱管と、前記圧力室に圧送された供給水を重力によって流下させるための同形同大の複数の第2の伝熱管とから構成され、
前記第1の伝熱管は少なくとも中央部が同一径のスパイラル管で構成される一方、前記第2の伝熱管は該伝熱管の中間部よりも上方の一部にのみスパイラル管を含み、
前記第1及び第2の伝熱管は、いずれもが前記隔板を介して前記圧力室に接続されていると共に同形同大のそれぞれの伝熱管が互いの隙間に入り込むようにかつその中心軸に対し対称となるように均一に設けられていることを特徴とする蒸気製造装置。
An apparatus for producing high-purity vapor, comprising a heating cans unit Ru provided with a function of the heater has a pressure chamber partitioned by the diaphragm at the top, and a function of generating steam and gas-liquid separation function The heating can portion heats the supply water taken from the supply water inlet through a plurality of heat transfer tubes to form a mixed state of the steam and droplets with the pressure of the generated steam, and the pressure chamber is And is configured to be pumped to the upper receiving port of the evaporator portion,
The heat transfer tube has a plurality of first heat transfer tubes of the same shape and size for pumping the supply water to the pressure chamber, and the same shape and shape for causing the supply water pumped to the pressure chamber to flow down by gravity. A large number of second heat transfer tubes,
The first heat transfer tube is formed of a spiral tube having the same diameter at least in the central portion, while the second heat transfer tube includes a spiral tube only at a part above the intermediate portion of the heat transfer tube,
The first and second heat transfer tubes are both connected to the pressure chamber via the partition plate, and the heat transfer tubes having the same shape and the same size enter the gap between each other and the central axis thereof The steam production apparatus is characterized by being uniformly provided so as to be symmetric with respect to each other.
前記第2の伝熱管の外側に前記第1の伝熱管が配置され、
前記第1及び第2の伝熱管はいずれもその両端部がストレート管で構成されると共に、
加熱蒸気入口と同出口とが前記ストレート管部に臨むように構成されていることを特徴とする請求項1記載の蒸気製造装置。
The first heat transfer tube is disposed outside the second heat transfer tube ,
Both the first and second heat transfer tubes are constituted by straight tubes at both ends,
The steam production apparatus according to claim 1, wherein the heating steam inlet and the outlet are configured to face the straight pipe portion.
JP2003085363A 2003-03-26 2003-03-26 Steam production equipment Expired - Lifetime JP4104065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085363A JP4104065B2 (en) 2003-03-26 2003-03-26 Steam production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085363A JP4104065B2 (en) 2003-03-26 2003-03-26 Steam production equipment

Publications (2)

Publication Number Publication Date
JP2004293879A JP2004293879A (en) 2004-10-21
JP4104065B2 true JP4104065B2 (en) 2008-06-18

Family

ID=33400302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085363A Expired - Lifetime JP4104065B2 (en) 2003-03-26 2003-03-26 Steam production equipment

Country Status (1)

Country Link
JP (1) JP4104065B2 (en)

Also Published As

Publication number Publication date
JP2004293879A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US11796256B2 (en) Spiral tube heat exchanger
US5203405A (en) Two pass shell and tube heat exchanger with return annular distributor
EP1466133B1 (en) Submerged evaporator with integrated heat exchanger
US6513583B1 (en) Heat exchanger
JP2004526934A5 (en)
US20140262162A1 (en) Liquid to liquid multi-pass countercurrent heat exchanger
US6340052B1 (en) Heat exchanger
US20150323265A1 (en) Heat exchanger having a compact design
EP2984414A1 (en) Method of manufacturing a set of heat exchange cells and set of heat exchange cells thus obtained
JP2005042957A (en) Heat exchanger and manufacturing method thereof
JPH07310998A (en) Heat exchanger
WO2002063231A1 (en) Spiral flow heat exchanger
JP4104065B2 (en) Steam production equipment
US4648355A (en) Heat exchanger array for a step down return of condensate
KR20090044185A (en) Heat exchanger
US3412777A (en) Frusto-conical film type evaporator
CN210825805U (en) Water purifying equipment
CN86100296A (en) The pulp digester of boiling mash or wort
EP3812685B1 (en) Centre body in spiral heat exchanger
RU2080536C1 (en) Heat exchanger
CN112093955A (en) Water purifying equipment
JPS59195096A (en) Multilayer annular type heat exchanger
CN206700789U (en) Separator for forced circling evaporator
JPH06199300A (en) Cold plate
CN206853147U (en) Forced circling evaporator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4104065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term