JP2004293695A - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JP2004293695A
JP2004293695A JP2003088114A JP2003088114A JP2004293695A JP 2004293695 A JP2004293695 A JP 2004293695A JP 2003088114 A JP2003088114 A JP 2003088114A JP 2003088114 A JP2003088114 A JP 2003088114A JP 2004293695 A JP2004293695 A JP 2004293695A
Authority
JP
Japan
Prior art keywords
valve
main
flow
main valve
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003088114A
Other languages
Japanese (ja)
Other versions
JP3875959B2 (en
Inventor
Yasuhiko Watanabe
泰彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003088114A priority Critical patent/JP3875959B2/en
Publication of JP2004293695A publication Critical patent/JP2004293695A/en
Application granted granted Critical
Publication of JP3875959B2 publication Critical patent/JP3875959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a large flow of tens to hundreds of liters per minute in a flow control valve for which voltage given to a solenoid and moving quantity of a valve element are continuously and linearly proportional. <P>SOLUTION: In a flow passage 4 in a body 1, a main valve 8 is provided to be energized in a closing direction. A branch passage 12a communicated with the inlet side of the flow passage is communicated with a pilot valve 25. For the valve 25, voltage and lift are proportional based on balance between electromagnetic force by the solenoid 33 and force of a plate spring 20. Fluid coming from the valve 25 is added to a diaphragm 45. The diaphragm is connected to the main valve by a connection means 46. As voltage is given to the solenoid, the valve 25 is opened by the lift proportional to the voltage. The fluid adds pressure to the diaphragm to move the main body in an opening direction against the spring by proportional force to pressure receiving area. Proportional flow control of large flow with a wide adjustable range can thus be realized by constant pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はソレノイドを利用した液体の流量制御弁に係り、特にソレノイドに与える電圧と流体の流量が直線的に比例するとともに、例えば毎分数百リットルもの流量を制御できるためにガスタービン等のような比較的大型の機関にも適用できる流量制御弁に関するものである。
【0002】
【従来の技術】
ボイラ等における温度調節を目的とした液体燃料の流量制御では、例えば作業員がボイラの温度を見ながらマニュアルでニードルバルブを操作するといった方法がとられていた。また、図6に示すように、パルス信号によって開閉制御できる複数のバルブVを燃料管の途中に並列に接続し、電気的な操作で各バルブVの開・閉を組合せることによって燃料の流量を調節する多段階切換弁方式も用いられていた。
【0003】
このような従来の方法によれば、一般に流量の調整範囲が狭く、流量の変化に伴って流体の圧力が変化してしまうという問題点があった。特に多段階切換弁方式は、電気的な切換操作ができることから、ボイラの温度に応じて燃料の流量を自動制御する構成とされていたが、各バルブVはオンオフ制御されるものであって、流量の調節は段階的なものとならざるを得ず、きめの細い制御をすることができなかった。また各バルブVの開閉部にトラブルが発生しやすいという問題もあった。
【0004】
そこで、本出願人は、上記問題点を解決するために、特許文献1及び特許文献2に示すような流量制御弁及び流量制御方法を提案した。
【0005】
【特許文献1】
特公平7−26702号公報
【特許文献2】
特公平7−26703号公報
【0006】
上記特許文献1及び特許文献2で本出願人が開示した流量制御弁はソレノイドを用いた流量制御弁であって、弁体を動かすソレノイドの作動力と、弁体に取り付けられた移動抵抗板による抵抗力を精妙に釣り合わせることにより、ソレノイドに与える電圧と弁の移動量を連続的かつ直線的に比例させて、広い調整範囲にわたって圧力をほぼ一定にして液体の流量を比例制御することができるものである。
【0007】
【発明が解決しようとする課題】
ところが、この流量制御弁によれば、制御し得る流体の流量は、せいぜい毎分数リットルから十数リットル程度であり、これ以上の大流量を比例制御することはできなかった。すなわち、この流量制御弁は、上述した比較的少ない流量の流体について、ソレノイドと抵抗板の各付勢力を直接弁体に作用させることにより、弁の開度が比較的小さい範囲で電圧と比例するように調整したものである。このため、これを大型化した場合には、大重量の弁体の変位を相対的に広い範囲で制御しなければならず、これを大型のソレノイドと大型の移動抵抗板を用いて電圧と流量が比例するように調整して行なうことは極めて困難であった。
【0008】
しかしながら、流量制御の分野においては、前述した大流量の範囲においてもソレノイドを用いて連続的できめの細かい電圧と流量が比例した制御を行ないたいという強い要望があった。
【0009】
そこで、本発明の目的は、ソレノイドに与える電圧と弁体の移動量を連続的かつ直線的に比例させることにより液体の流量を比例制御できる流量制御弁において、毎分十数リットル以上、例えば数十リットルから数百リットル程度の大流量においても比例制御ができる流量制御弁を提供することにある。
【0010】
また、本発明の他の目的は、上記流量制御弁において、予め逃がし弁を調整しておくことにより、前記パイロット弁を経て供給される流体の流量と前記主弁による前記流路の開度とを比例させて、ソレノイドに与える電圧と主弁の移動量の連続的かつ直線的な比例関係を、制御しようとする流体の流量や圧力等に応じて確実に設定することにある。
【0011】
また、本発明の他の目的は、上記流量制御弁において、前記流路の前記入口側から導かれた流体の圧力を増幅して確実に主弁に伝達することにより、ソレノイドに与える電圧と弁体の移動量の連続的かつ直線的な比例関係を確実に設定することにある。
【0012】
【課題を解決するための手段】
請求項1に記載された流量制御弁は、入口と出口を有する流体の流路と、前記流路の中途に設けられて前記流路を開閉する主弁と、前記流路を閉止する方向に前記主弁を付勢する付勢手段と、前記主弁に関して前記流路の前記入口側に連通して設けられた分岐路と、前記分岐路に設けられて前記分岐路を開閉するパイロット弁と、前記分岐路を開放する方向に移動する前記パイロット弁を反対方向に付勢する板ばねと、通電時には前記分岐路が開放される方向に前記パイロット弁を付勢するソレノイドと、前記主弁に取り付けられ、前記パイロット弁が前記分岐路を開放した際に前記分岐路から供給された前記流体が作用することにより移動して前記主弁を前記流路が開放される方向に移動させる主弁操作手段とを有している。
【0013】
係る構成によれば、ソレノイドに電圧を与えると、板ばねを変形させてパイロット弁が開く。流体は、流路の入口側から分岐路を通り、パイロット弁を経て主弁操作手段に圧力を加える。該主弁操作手段は、加えられた流体の圧力による力を主弁に伝え、主弁を付勢手段に抗して開方向に移動させるので、流体は主弁を通過して出口に流れる。
【0014】
また、請求項2に記載された流量制御弁は、請求項1記載の流量制御弁において、上部本体と下部本体が結合されてなる本体を有し、前記流路と、前記主弁と、前記付勢手段とは前記下部本体に設けられ、前記パイロット弁と、前記板ばねと、前記ソレノイドとは前記上部本体に設けられ、前記分岐路は前記上部本体と前記下部本体に設けられて連通しており、前記上部本体の前記分岐路は前記上部本体の下面に開口して設けられた第1の液室に連通しており、前記下部本体の前記主弁に関する前記流路の前記出口側は前記下部本体の上面に開口して設けられた第2の液室に連通しており、前記主弁操作手段は、結合された前記上部本体と前記下部本体の間に挟持されて前記第1の液室と前記第2の液室を隔離するダイヤフラムと、前記下部本体の前記流路内に配置されて前記ダイヤフラムと前記主弁を連結する連結手段とを有することを特徴としている。
【0015】
係る構成によれば、主弁と、パイロット弁と、圧力を増幅して伝達するダイヤフラムを一体化した複雑な構造を全体としては一体として本体内に組み込んだコンパクトな構成を実現することができる。また、パイロット弁を通過した流体の圧力をダイヤフラムで確実に主弁に伝達することができるので、ソレノイドに与える電圧と主弁の開度の連続的かつ直線的な比例関係を確実に設定できる。
【0016】
請求項3に記載された流量制御弁は、前記流量制御弁において、前記ソレノイドに与える電圧と、該電圧が与えられた前記ソレノイドにより前記パイロット弁が移動して前記分岐路から供給される流体の流量とが、比例関係にあるように前記板ばねの弾性が設定されていることを特徴としている。
【0017】
係る構成によれば、ソレノイドに電圧を与えてパイロット弁が開く際、ソレノイドによる駆動力が急激に増大する範囲で板ばねが抵抗となり、パイロット弁の移動を規制するので、該パイロット弁は電圧に比例したリフト量だけ開く。これによって流量制御弁全体としての比例制御が好適に行なわれる。
【0018】
請求項4に記載された流量制御弁は、請求項2記載の流量制御弁において、前記パイロット弁と前記ダイヤフラムとの間に、前記流体の一部を逃がす調整自在の逃がし弁を設けることにより、前記パイロット弁が移動して前記分岐路から供給される流体の流量と前記主弁による前記流路の開度とが比例するように構成したことを特徴としている。
【0019】
係る構成によれば、予め逃がし弁を調整することにより、ソレノイドに与える電圧と主弁の開度の連続的かつ直線的な比例関係を、制御しようとする流体の流量や圧力等に応じて確実に設定することができる。
【0020】
請求項5に記載された流量制御弁は、請求項2記載の流量制御弁において、前記下部本体の下面に前記流路に連通する貫通孔が形成されており、該貫通孔には進退避自在とされた調整部材が設けられ、該調整部材の内面と前記主弁との間に前記付勢手段が設けられている。
【0021】
係る構成によれば、前記調整部材の前記下部本体に対する取り付け位置を調整することにより、前記付勢手段が前記主弁に与える付勢力を適宜に調整することができるので、ソレノイドに与える電圧と主弁の開度の連続的かつ直線的な比例関係を設定する流量調整作業を一層精密にかつ効率よく行なうことができる。
【0022】
【発明の実施の形態】
本発明の実施の形態を図1〜図5を参照して説明する。
図1に示す本例の流量制御弁は、下部本体2と上部本体3からなる円柱形の本体1を有している。下部本体2の内部には流体の流路4が形成されており、該流路4は側周面に入口5と出口6を開口させている。下部本体2の中心位置である前記流路4の中途には、円環状の弁座7が円柱形である下部本体2の中心軸と同軸に形成されている。この弁座7の下方の流路4内には主弁8が設けられており、下側から該主弁8が当接して当該弁座7の開口を閉止できるように構成されている。該主弁8の下面側には案内軸9が設けられている。また、下部本体2の底部には前記流路4に連通する貫通孔2aが形成されており、該貫通孔2aにはねじ構造により略円板形の調整部材10が位置調整可能に取り付けられている。該調整部材10の内面中央には案内孔10aが形成されているが、この案内孔10aに前記主弁8の案内軸9が挿入されており、これによって前記主弁8は上下方向の所定範囲内で移動自在に案内されて弁座7の開口を開閉することができるように構成されている。また、主弁8の下面の係止段部8aと調整部材10の上面に形成された円環状の保持溝10bとの間には、付勢部材としてのばね11が設けられており、前記流路4を閉止する方向に前記主弁8を付勢している。
調整部材10がねじ構造で位置調整可能とされているのは、ばね11が主弁8に与える付勢力を調整して主弁8を開方向に移動させる際の力を任意に調整可能とするためである。
【0023】
前記流路4において、前記主弁8よりも手前である前記流路4の前記入口5側には、分岐路12が設けられている。分岐路12は、流路4の入口5から入ってきた流体の一部をバイパスする経路であり、上部本体3にも連続して形成されており、上部本体3の中心部に設けられたパイロット弁に接続されている。
【0024】
なお、分岐路12は機械工作上及びメンテナンス上の便宜から下部本体2及び上部本体3の側周面に開口している部分があるが、当該部分は通常の使用時には閉止部材としてのねじ13等によって封止されている。メンテナンス時等にはねじ13を外せば分岐路12内を清掃することができる。
【0025】
上部本体3の中心に設けられた取り付け部3aには、円柱形のパイロット弁座14が設けられている。パイロット弁座14は、取り付け部3aのめねじ孔に対して螺入・固定されるおねじ部を有している。パイロット弁座14の内部には連通孔14aが形成されており、この連通孔14aは側周面に開口して前記分岐路12の前半に接続されている。連通孔14aはパイロット弁座14の上面中央に通油孔14bにて開口しており、該通油孔14bを介して上部本体3の後半の分岐路12bに連通している。パイロット弁座14の側周面と取り付け部3aとの間にはパッキンが介装されており、連通孔14aから流体が漏れないように構成されている。
【0026】
パイロット弁座14を回転させれば、上部本体3に対するパイロット弁座14の軸方向の位置を上記ねじ機構で調整することができる。この調整機構により、後述するソレノイドに与える電圧と、このパイロット弁座14での流量とが比例するように微妙な調整を行うことができる。
【0027】
前記上部本体3の上端面には、前記パイロット弁座14の通油孔14b及び分岐路12bに連通する凹段部3bが開口して形成されている。この凹段部3b内には、固定ナット15がねじ込まれている。固定ナット15は略環状の固定部材であり、該凹段部3bに後述する移動抵抗板20を押圧して固定している。そして凹段部3bの底面と固定ナット15の間にはOリングが介装されており、上部本体3の凹段部3b内を外部に対して密封している。
【0028】
固定ナット15の中央にはパイプ21の開口下端部が固着されている。パイプ21の上端には固定コア22が固着されており、パイプ21外の上方に突出した固定コア22の上端部にはねじ部22aが形成されている。
【0029】
前記パイプ21の内部には、円柱形の移動コア23が上下摺動自在に設けられている。またパイプ21内にある移動コア23の上端面には非磁性材料よりなる薄板状の固定抵抗板24が設けられており、パイプ21内の移動コア23が前記固定コア22に対して急激かつ強力に磁着してしまうことを防止できるようになっている。なお、前記固定抵抗板24の厚さは、移動コア23に加わる磁場の影響等を勘案して定めればよい。また固定抵抗板24は後述する固定コア22下端に設けてもよい。
【0030】
この移動コア23の下端には、前述した移動抵抗板20と、パイロット弁座14の通油穴14bを開閉するパイロット弁としての弁体25とが取付けられている。図2に示すように、移動抵抗板20は、同芯に設けられた大径の環状枠部26と小径の環状取付部27とを有し、湾曲した形状の3本の放射状のアーム28によってこれら両部を連結した構造とされている。そして環状枠部26の外径は、前記凹段部3bに安定して係合し得るように設定されている。
【0031】
また弁体25は、基部29の上端に取付ねじ部30が形成され、基部29の下端に前記パイロット弁座14の通油孔14bを開閉する突起31が形成された構造になっている。そして、弁体25の取付ねじ部30は、前記移動抵抗板20の環状取付部27を挿通した状態で移動コア23の下端にねじ込まれており、移動コア23、移動抵抗板20、及び弁体25は一体に組立てられている。そして、移動コア23が最下方位置にあって突起31が通油孔14bを閉止している時、移動抵抗板20は環状枠部26が固定ナット15の押え面に下から当接した状態となっている。この時、移動抵抗板20は変形していない。従って後述するコイルの働きによって移動コア23を上昇させて通油孔14bを開いた時、移動抵抗板20は上方に向け凸形状にたわむように構成されている。
すなわち、移動抵抗板20は、前記分岐路12aを開放する方向に移動する弁体25を、これとは反対方向に付勢する板ばねとして機能する。
【0032】
次に、前記上部本体3及び固定ナット15の上面には、パイプ21を外挿してコイル32が設けられており、該コイル32が発生する磁場によってパイプ21内の移動コア23を移動させる電磁的駆動手段としてのソレノイド33が構成されている。該コイル32は下方が開放された円筒形のコイルケース34に覆われている。該コイルケース34の円形の上壁の中央部には取付穴が設けられており、この取付穴に固定コア22のねじ部22aを挿通させ、該ねじ部22aにナット35をねじ込むことによって、パイプ21及び上部本体3側にコイルケース34が取付けられている。
【0033】
すなわち、前記コイル32に通電した時には、前記パイロット弁 (弁体25)は前記分岐路12aが開放される方向に付勢されるが、同時に移動抵抗板20によって分岐路12aを閉止する方向にも付勢力を受ける。これにより両方の力は拮抗し、前記ソレノイド33に与える電圧と、該電圧が与えられた前記ソレノイド33により前記弁体25が移動して前記分岐路12aから供給される流体の流量とが、比例関係となるように前記移動抵抗板20の抵抗力が設定されている。
【0034】
前記上部本体3の下端面の中央には、分岐路12や主弁8の弁座7よりも大径の(従って円柱形の上部本体3の中心軸線に垂直な切断面における断面積が大きい)第1の液室40が開口して形成されている。上部本体3の後半の分岐路12は、この第1の液室40に接続連通している。下部本体2の上面には、第1の液室40と同内径である第2の液室41が形成されている。この第2の液室41は、下部本体2の流路4の出口6側(すなわち主弁8の下流側の流路4)に連通している。そして、結合された上部本体3と下部本体2の間には、主弁操作手段としてのダイヤフラム45が挟持・固定されて第1の液室40と第2の液室41を隔離している。このダイヤフラム45は、外形が全体として略円形の弾性材料からなる圧力伝達部材である。ダイヤフラム45は変形・移動が容易となるように断面略波型とされている。このダイヤフラム45の中央部と主弁8とは棒状の連結手段46で結合されている。従って、このダイヤフラム45によれば、パイロット弁 (弁体25)が分岐路12aを開放した際に分岐路12aから供給された流体が作用することにより、第1及び第2の液室40,41の大きな断面積に対応する広い面積で液圧を受けて変形・移動し、拡大した大きな力で主弁8を操作して主弁8を流路4が開放される方向に移動させることができる。
【0035】
上部本体3において、弁体25とダイヤフラム45との間に、流体の一部を外部の系に逃がす流量調整自在の逃がし弁47(バランスポート)が設けられている。本例では、パイロット弁座14の通油孔14bよりも下流である後半の分岐路12bに外部に連通する孔が形成され、この孔に逃がし弁47が設けられている。この位置は、加工し易く、使用時にダイヤフラム45に発生しうるハウリングから影響されにくいという点で好都合である。この逃がし弁47は、ニードル状の弁体を有しており、ねじ構造によって該弁体を進退させて外部に逃がす流体の流量を自在に調整することができる。この逃がし弁47を操作することによって、第1の液室40のダイヤフラム45に供給される流体の流量と、主弁8による流路4の開度とが比例するように調整を行なうことができる。
【0036】
次に、以上のように構成された流量制御弁の作用を説明する。
まず、パイロット弁の流量とソレノイド33の電圧の関係を調整する。この調整は、本体1を組み立てる前に上部本体3のみで行なう。
コイル32に電圧を加えない状態で流量が最低(例えば0)となるような弁体25の原点位置を検出する。この時、弁体25の突起31は、弁体25及び移動コア23の重量をもって通油孔14bを閉止しており、また移動抵抗板20は変形していない。ここで上部本体3の前半の分岐路12aから所定圧力の検査用空気を供給すると、空気は、パイロット弁ざ14の通油孔14bを経て突起31との隙間から後半の分岐路12bに入り、液室40から外に出ていく。ここで、パイロット弁座14を徐々に回していくと、パイロット弁座14は上部本体3内で上昇していき、弁体25及び移動コア23を徐々に持ち上げる。そして、移動抵抗板20の環状枠部26が固定ナット15に下から当接すると、弁体25の持ち上げには移動抵抗板20による抵抗が生じるようになり、突起31は所定の力をもって確実に通油孔14bを閉止するので、所定圧力の空気は出てこなくなる。
【0037】
このように調整したパイロット弁は、所定圧力の流体が供給された場合には、コイル32に与える電圧を加減することにより、流量と電圧が直線的に比例する制御を行なうことができる。コイル32に与える電圧を上昇させて移動コア23を固定コア22に向けて上昇させる場合、リフト量が大きくなって移動コア23が固定コア22に接近すると、電圧の上昇に対して移動コア23に動く力が急激に大きくなると考えられる。ところが本例のパイロット弁では、移動コア23と固定コア22の間に非磁性材料よりなる固定抵抗板24が設けられているので、移動コア23に働く力が急増する領域の大半は移動コア23の可動ストロークから除外され、移動コア23が固定コア22に急激に強く磁着して磁化されてしまうことがなくなる。また、固定コア22に向けた移動コア23の移動によって移動抵抗板20にはたわみを生じるが、たわみ量が大きくなるほど移動抵抗板20はたわみにくくなっている。即ち電圧が小さく、移動コア23のリフトが少い段階では移動抵抗板20は比較的簡単にたわむが、電圧が上昇し移動コア23が固定抵抗板24に近づき、移動コア23に働く力が急速に増大しはじめるところでは移動抵抗板20はたわみにくくなって移動コア23の急激な変位を規制する。
【0038】
従って第3図に示すように、コイル32に与える電圧と移動コア23のリフトの関係がほぼ直線的になり、弁体25の開度をコイル32の負荷から検出して自動制御することにより、弁体25における流量を連続的にきめ細かく制御することができる。従って流量の急変によって本流量制御弁内での流体圧力が大きく変化してしまうことがなくなり、圧力をほぼ一定とした状態で調整範囲の広い流量制御を実現することができる。また弁体25は、コイル32に与える電圧を変化させて移動コア23を微妙に昇降動させ、流量制御弁内で流量の比例制御を行なわせるためのものであるから、電圧が0の時に流量が確実に0とされていなければならないし、また原点位置において移動抵抗板20を不必要にたわませることも避けねばならない。このように弁体25における原点位置の調整はきわめて微妙なものとなるが、本例の流量制御弁は前述したようなねじ式のパイロット弁座14を用いているので、簡単かつ正確に最低流量の原点位置を検出することができる。
なお、弁体25及びパイロット弁座14によれば、通油孔14bを開放した場合の流量を0.23ccとすると、コイル32に与える電圧が0〜24Vの範囲に対し、流量は0.81cc〜4ccの範囲で正比例する。
【0039】
上述したように調整した弁体25及びパイロット弁座14を内蔵する上部本体3と、上述したような主弁8等を有する下部本体2を組み立て、前述した構成の流量制御弁を得る。
流量制御弁の入口5に所定圧力の流体を供給し、コイル32に適宜の電圧を与えて制御を行なう。出口6からは制御された所望流量の流体の流出が得られる。すなわち、入口5から流入した流体は、分岐路12aを通ってパイロット弁座14に供給される。弁体25は、コイル32に与えられた電圧に比例して昇降する。ここで、特殊形状の板ばねである移動抵抗板20と急激な磁着を防ぐ固定抵抗板24の作用により、この弁体25は急激な移動が規制されるので、移動コア23のリフトはコイル32の負荷電圧にほぼ直線的に比例し、弁体25及びパイロット弁座14では圧力一定で調整範囲の広い比例流量制御が実現できる。
【0040】
通油孔14bから出た流体は、後半の分岐路12bを経由して上部本体3の液室40に至る。液室40内の流体はダイヤフラム45に圧力を加えるので、ダイヤフラム45にはその面積に応じた力が働く。流体から受けた力に応じてダイヤフラム45は下方に向けて撓み、このダイヤフラム45と連結手段46で連結された主弁8もダイヤフラム45が流体から受けた力に応じて下方に移動する。これによって、主弁8は、ダイヤフラム45が流体から受けた力に応じた寸法だけ弁座7から離れて流路4を開放する。
【0041】
このように、この流量制御弁によれば、入口5から受け入れた流体の一部を分岐路12aを介して電圧と流量が比例するパイロット弁に導き、このパイロット弁によってダイヤフラム45に与える流体の流量を比例制御し、所定の受圧面積に設定したダイヤフラム45で流体の圧力を受けることにより大きな力を得て主弁8を操作している。このように、本例の流量制御弁によれば、パイロット弁自体の流量は小さいが、これによる力をダイヤフラム45で増幅して主弁8の移動量を大きくすることができるので、大流量の比例制御を実現することができた。
【0042】
実際には、コイル32に与える電圧と出口6で得られる流量が比例するように、予め逃がし弁47を操作して外部に逃がす流体の流量を調整しておく。なお、逃がし弁47の調整時、調整部材10を回転させて、主弁8を閉止方向に付勢しているばね11の弾性力を調整してもよい。ばね11の弾性力にばらつきがあっても、その誤差は調整部材10による調整で吸収することができる。
【0043】
図4は、本例の流量制御弁で得られたコイル32に与える電圧と流量との関係を示すグラフである。ここでは、流体は空気、室温23℃、主弁8開放時の流量が900l/min、入口5での圧力4MPa、出口6での圧力3MPaとした。このように150〜400l/minの広い範囲でコイル32電圧と略比例した流量制御が出入り口の差圧1MPaで実現できた。
【0044】
次に、前記流量制御弁を、ボイラにおける燃料噴射装置の流量制御に用いた例を説明する。図5に示すように、灯油槽100内の灯油は、電磁ポンプPによって所定圧力でバイパスノズル101に送られるようになっている。灯油は所定圧力でノズル孔101aから燃焼室内に向けて噴霧され、燃焼される。バイパスノズル101で噴霧されなかった一部の灯油は、前記所定圧力で流量制御弁を通過して前記灯油槽100に環流していく。ここでボイラの炉内の温度等をセンサによって常時監視し、この値と目標温度との偏差をフィードバックして前記流量制御弁のコイル電圧を自動調整すれば、系内に流通する灯油の流量を、圧力をほぼ一定としたままできめ細かく増減させることができる。即ち、圧力がほぼ一定の状態で調整範囲の広い比例流量制御を自動制御で実現でき、ボイラの炉内温度を設定した目標値に常に一致させることができる。さらに、この流量制御弁は、流量が毎分数百リットルと大きいので、大型のボイラにも無理なく適用でき、さらに数百キロワット規模の発電装置の天然ガスタービン等にも用いることができる。
【0045】
本発明は以上説明した実施例に限定されるものではなく、燃焼装置を有する乾燥機や温調設備等の他、大流量の流体の比例流量制御一般に広く使用することができる。
【0046】
【発明の効果】
請求項1に記載された発明によれば、電圧と弁のリフト量が比例するパイロット弁からの流体の力を主弁操作手段(ダイヤフラム)で増幅して主弁を操作する構成としたので、圧力一定で調整範囲の広い大流量の比例流量制御を実現できる。
【0047】
また、請求項2に記載された流量制御弁によれば、主弁と、パイロット弁と、圧力を増幅して伝達するダイヤフラムを一体化した複雑な構造を全体としては一体として本体1内に組み込んだコンパクトな構成を実現することができる。また、パイロット弁を通過した流体の圧力をダイヤフラムで増幅して確実に主弁に伝達することができるので、ソレノイドに与える電圧と主弁の開度の連続的かつ直線的な比例関係を確実に設定できる。
【0048】
請求項3に記載された流量制御弁によれば、ソレノイドに電圧を与えてパイロット弁が開く際、ソレノイドによる駆動力が急激に増大する範囲で板ばねが抵抗となり、パイロット弁の移動を規制するので、該パイロット弁は電圧に比例したリフト量だけ開く。これによって流量制御弁全体としての比例制御が好適に行なわれる。
【0049】
請求項4に記載された流量制御弁によれば、請求項2記載の流量制御弁において、予め逃がし弁を調整することにより、ソレノイドに与える電圧と主弁の開度の連続的かつ直線的な比例関係を、制御しようとする流体の流量や圧力等に応じて確実に設定することができる。
【0050】
請求項5に記載された流量制御弁によれば、請求項2記載の流量制御弁において、調整部材の前記下部本体に対する取り付け位置を調整することにより、前記付勢手段が前記主弁に与える付勢力を適宜に調整することができるので、ソレノイドに与える電圧と主弁の開度の連続的かつ直線的な比例関係を設定する流量調整作業を一層精密にかつ効率よく行なうことができる。
【0051】
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示す断面図である。
【図2】本発明の実施の形態の一例における移動抵抗板の平面図である。
【図3】本発明の実施の形態の一例におけるコイル電圧とパイロット弁リフト量の関係を示す図である。
【図4】本発明の実施の形態の一例におけるコイル電圧と流量の関係を示す図である。
【図5】本発明の実施の形態の一例である流量制御弁を用いた燃料噴射装置の構成図である。
【図6】多段切替方式による従来の燃料噴射装置の構成図である。
【符号の説明】
1…本体、2…下部本体、2a…貫通孔、3…上部本体、4…流路、
5…入口、6…出口、8…主弁、10…調整部材、
11…付勢手段としてのばね、12,12a,12b…分岐路、
20…板ばねとしての移動抵抗板、25…パイロット弁としての弁体、
33…ソレノイド、40…第1の液室、41…第2の液室、
45…主弁操作手段としてのダイヤフラム、46…連結手段、47…逃がし弁。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid flow control valve using a solenoid, and in particular, a voltage applied to the solenoid and a flow rate of the fluid are linearly proportional, and for example, a flow rate of several hundred liters per minute can be controlled, such as in a gas turbine. The present invention relates to a flow control valve applicable to a relatively large engine.
[0002]
[Prior art]
In the flow control of liquid fuel for the purpose of temperature control in a boiler or the like, a method has been adopted in which, for example, an operator manually operates a needle valve while watching the temperature of the boiler. As shown in FIG. 6, a plurality of valves V, which can be opened and closed by a pulse signal, are connected in parallel in the middle of the fuel pipe, and the opening and closing of each valve V are combined by an electric operation to thereby control the flow rate of the fuel. A multi-stage switching valve system for adjusting the pressure was also used.
[0003]
According to such a conventional method, there is a problem that the adjustment range of the flow rate is generally narrow, and the pressure of the fluid changes with the change of the flow rate. In particular, the multi-stage switching valve system has been configured to automatically control the flow rate of the fuel according to the temperature of the boiler because the electric switching operation can be performed, but each valve V is controlled to be on / off. The adjustment of the flow rate had to be stepwise, and fine control could not be performed. There is also a problem that a trouble is likely to occur in the opening / closing portion of each valve V.
[0004]
Therefore, the present applicant has proposed a flow control valve and a flow control method as disclosed in Patent Document 1 and Patent Document 2 in order to solve the above problems.
[0005]
[Patent Document 1]
Japanese Patent Publication No. Hei 7-26702
[Patent Document 2]
Japanese Patent Publication No. 7-26703
[0006]
The flow control valve disclosed by the present applicant in Patent Document 1 and Patent Document 2 is a flow control valve using a solenoid, and is constituted by an operating force of a solenoid for moving a valve element and a moving resistance plate attached to the valve element. By precisely balancing the resistance, the voltage applied to the solenoid and the amount of movement of the valve are continuously and linearly proportional, and the pressure is almost constant over a wide adjustment range, and the flow rate of the liquid can be proportionally controlled. Things.
[0007]
[Problems to be solved by the invention]
However, according to this flow control valve, the flow rate of the fluid that can be controlled is at most several liters per minute to about ten and several liters per minute, and it is not possible to proportionally control a larger flow rate than this. That is, this flow control valve is proportional to the voltage in a range where the opening degree of the valve is relatively small by applying each urging force of the solenoid and the resistance plate directly to the valve body for the fluid having a relatively small flow rate described above. It has been adjusted as follows. For this reason, when the size of the valve is increased, the displacement of the heavy valve must be controlled in a relatively wide range, and the voltage and flow rate are controlled by using a large solenoid and a large moving resistance plate. It was extremely difficult to adjust the ratio so as to be proportional.
[0008]
However, in the field of flow control, there has been a strong demand to perform continuous fine-grained control of the voltage and flow using a solenoid even in the large flow range described above.
[0009]
Therefore, an object of the present invention is to provide a flow control valve capable of proportionally controlling the flow rate of a liquid by continuously and linearly proportionalizing the voltage applied to a solenoid and the amount of movement of a valve body. An object of the present invention is to provide a flow control valve which can perform proportional control even at a large flow rate of about ten to several hundred liters.
[0010]
Further, another object of the present invention is to adjust the release valve in advance in the flow rate control valve, so that the flow rate of the fluid supplied through the pilot valve and the opening degree of the flow path by the main valve are adjusted. In order to reliably set the continuous and linear proportional relationship between the voltage applied to the solenoid and the amount of movement of the main valve in accordance with the flow rate and pressure of the fluid to be controlled.
[0011]
Another object of the present invention is to provide a flow control valve, comprising: amplifying a pressure of a fluid introduced from the inlet side of the flow path and transmitting the amplified pressure to a main valve to thereby increase a voltage and a valve applied to a solenoid. An object of the present invention is to surely set a continuous and linear proportional relationship of the amount of body movement.
[0012]
[Means for Solving the Problems]
The flow control valve according to claim 1, wherein a flow path of the fluid having an inlet and an outlet, a main valve provided in the middle of the flow path to open and close the flow path, and a direction in which the flow path is closed. Urging means for urging the main valve, a branch provided in communication with the inlet side of the flow path with respect to the main valve, and a pilot valve provided in the branch and opening and closing the branch. A leaf spring for urging the pilot valve moving in the direction to open the branch path in the opposite direction, a solenoid for urging the pilot valve in a direction to open the branch path when energized, and the main valve. A main valve operation that is mounted and moves when the fluid supplied from the branch path acts to move the main valve in a direction in which the flow path is opened when the pilot valve opens the branch path; Means.
[0013]
According to such a configuration, when a voltage is applied to the solenoid, the leaf spring is deformed to open the pilot valve. The fluid passes through the branch from the inlet side of the flow path and applies pressure to the main valve operating means via the pilot valve. The main valve operating means transmits the force due to the pressure of the applied fluid to the main valve and moves the main valve in the opening direction against the biasing means, so that the fluid flows through the main valve to the outlet.
[0014]
Further, the flow control valve according to claim 2 has a main body in which an upper main body and a lower main body are combined with each other in the flow control valve according to claim 1, wherein the flow path, the main valve, The biasing means is provided on the lower body, the pilot valve, the leaf spring, and the solenoid are provided on the upper body, and the branch path is provided on the upper body and the lower body for communication. And the branch passage of the upper body communicates with a first liquid chamber provided on the lower surface of the upper body, and the outlet side of the flow path for the main valve of the lower body is The main valve operating means communicates with a second liquid chamber provided on the upper surface of the lower main body, and the main valve operating means is sandwiched between the upper main body and the lower main body combined with each other. A diaphragm separating the liquid chamber and the second liquid chamber; It is characterized by having a coupling means disposed in the flow path of the body for connecting the main valve and the diaphragm.
[0015]
According to such a configuration, it is possible to realize a compact configuration in which a complicated structure in which the main valve, the pilot valve, and the diaphragm that amplifies and transmits the pressure are integrated as a whole is integrated into the main body. In addition, since the pressure of the fluid that has passed through the pilot valve can be reliably transmitted to the main valve by the diaphragm, a continuous and linear proportional relationship between the voltage applied to the solenoid and the opening of the main valve can be reliably set.
[0016]
The flow control valve according to claim 3, wherein in the flow control valve, a voltage applied to the solenoid and a fluid supplied from the branch passage by moving the pilot valve by the solenoid applied with the voltage. The elasticity of the leaf spring is set so that the flow rate is proportional to the flow rate.
[0017]
According to such a configuration, when a voltage is applied to the solenoid to open the pilot valve, the leaf spring becomes a resistance in a range where the driving force by the solenoid rapidly increases and regulates the movement of the pilot valve. Open by proportional lift. As a result, proportional control of the entire flow control valve is suitably performed.
[0018]
The flow control valve according to claim 4 is the flow control valve according to claim 2, wherein an adjustable relief valve that releases a part of the fluid is provided between the pilot valve and the diaphragm, It is characterized in that the pilot valve moves so that the flow rate of the fluid supplied from the branch passage is proportional to the opening degree of the flow passage by the main valve.
[0019]
According to this configuration, by adjusting the relief valve in advance, the continuous and linear proportional relationship between the voltage applied to the solenoid and the opening of the main valve can be reliably determined in accordance with the flow rate and pressure of the fluid to be controlled. Can be set to
[0020]
A flow control valve according to a fifth aspect of the present invention is the flow control valve according to the second aspect, wherein a through-hole communicating with the flow path is formed on a lower surface of the lower body, and the through-hole is freely retractable. The adjusting member is provided, and the urging means is provided between the inner surface of the adjusting member and the main valve.
[0021]
According to this configuration, by adjusting the mounting position of the adjusting member with respect to the lower body, the urging force applied to the main valve by the urging means can be appropriately adjusted. The flow rate adjusting operation for setting a continuous and linear proportional relationship between the valve openings can be performed more precisely and efficiently.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
The flow control valve of this embodiment shown in FIG. 1 has a cylindrical main body 1 composed of a lower main body 2 and an upper main body 3. A fluid flow path 4 is formed inside the lower main body 2, and the flow path 4 has an inlet 5 and an outlet 6 opened on a side peripheral surface. An annular valve seat 7 is formed coaxially with the central axis of the cylindrical lower body 2 in the middle of the flow path 4 which is the center position of the lower body 2. A main valve 8 is provided in the flow path 4 below the valve seat 7, and is configured such that the main valve 8 abuts from below to close the opening of the valve seat 7. A guide shaft 9 is provided on the lower surface side of the main valve 8. A through-hole 2a communicating with the flow path 4 is formed at the bottom of the lower body 2, and a substantially disc-shaped adjusting member 10 is attached to the through-hole 2a by a screw structure so as to be position-adjustable. I have. A guide hole 10a is formed in the center of the inner surface of the adjusting member 10, and the guide shaft 9 of the main valve 8 is inserted into the guide hole 10a. It is configured such that the opening of the valve seat 7 can be opened and closed by being guided movably in the inside. A spring 11 as an urging member is provided between the locking step 8a on the lower surface of the main valve 8 and the annular holding groove 10b formed on the upper surface of the adjusting member 10, and the spring 11 is provided. The main valve 8 is biased in a direction to close the path 4.
The position of the adjusting member 10 can be adjusted by the screw structure because the spring 11 adjusts the urging force applied to the main valve 8 to arbitrarily adjust the force when the main valve 8 is moved in the opening direction. That's why.
[0023]
In the flow path 4, a branch path 12 is provided on the inlet 5 side of the flow path 4 that is located before the main valve 8. The branch path 12 is a path that bypasses a part of the fluid that has entered from the inlet 5 of the flow path 4, is also formed continuously with the upper body 3, and is provided at the center of the upper body 3. Connected to valve.
[0024]
The branch path 12 has a portion that is open to the side peripheral surfaces of the lower main body 2 and the upper main body 3 for the convenience of machining and maintenance, but this portion is a screw 13 or the like as a closing member during normal use. Is sealed by. At the time of maintenance or the like, if the screw 13 is removed, the inside of the branch path 12 can be cleaned.
[0025]
A cylindrical pilot valve seat 14 is provided at a mounting portion 3 a provided at the center of the upper main body 3. The pilot valve seat 14 has a male screw portion that is screwed into and fixed to a female screw hole of the mounting portion 3a. A communication hole 14 a is formed inside the pilot valve seat 14, and the communication hole 14 a is opened on the side peripheral surface and connected to the first half of the branch passage 12. The communication hole 14a is opened at the center of the upper surface of the pilot valve seat 14 by an oil passage hole 14b, and communicates with the branch passage 12b in the latter half of the upper body 3 through the oil passage hole 14b. A packing is interposed between the side peripheral surface of the pilot valve seat 14 and the mounting portion 3a so that fluid does not leak from the communication hole 14a.
[0026]
By rotating the pilot valve seat 14, the axial position of the pilot valve seat 14 with respect to the upper body 3 can be adjusted by the screw mechanism. By this adjusting mechanism, fine adjustment can be performed so that a voltage applied to a solenoid described later and a flow rate at the pilot valve seat 14 are proportional.
[0027]
A concave step 3b communicating with the oil passage 14b of the pilot valve seat 14 and the branch passage 12b is formed in the upper end surface of the upper body 3 so as to open. A fixing nut 15 is screwed into the concave step 3b. The fixing nut 15 is a substantially annular fixing member, and presses and fixes a movement resistance plate 20, which will be described later, to the concave step portion 3b. An O-ring is interposed between the bottom surface of the concave step portion 3b and the fixing nut 15 to seal the inside of the concave step portion 3b of the upper main body 3 from the outside.
[0028]
The lower end of the opening of the pipe 21 is fixed to the center of the fixing nut 15. A fixed core 22 is fixed to an upper end of the pipe 21, and a screw portion 22 a is formed at an upper end of the fixed core 22 protruding upward outside the pipe 21.
[0029]
Inside the pipe 21, a cylindrical moving core 23 is provided so as to be vertically slidable. A fixed resistive plate 24 made of a non-magnetic material is provided on the upper end surface of the movable core 23 in the pipe 21 so that the movable core 23 in the pipe 21 is sharp and strong against the fixed core 22. To prevent magnetic adhesion. The thickness of the fixed resistance plate 24 may be determined in consideration of the influence of the magnetic field applied to the moving core 23 and the like. The fixed resistance plate 24 may be provided at the lower end of the fixed core 22 described later.
[0030]
At the lower end of the moving core 23, the above-described moving resistance plate 20 and a valve body 25 as a pilot valve for opening and closing the oil passage hole 14b of the pilot valve seat 14 are attached. As shown in FIG. 2, the moving resistance plate 20 has a large-diameter annular frame portion 26 and a small-diameter annular mounting portion 27 provided concentrically, and is formed by three curved radial arms 28. The two parts are connected to each other. The outer diameter of the annular frame 26 is set so that it can be stably engaged with the concave step 3b.
[0031]
The valve body 25 has a structure in which a mounting screw portion 30 is formed at an upper end of a base portion 29, and a projection 31 that opens and closes the oil passage hole 14 b of the pilot valve seat 14 is formed at a lower end of the base portion 29. The mounting screw portion 30 of the valve body 25 is screwed into the lower end of the moving core 23 with the annular mounting portion 27 of the moving resistance plate 20 being inserted, and the moving core 23, the moving resistance plate 20, and the valve body 25 is assembled integrally. When the movable core 23 is at the lowermost position and the projection 31 closes the oil passage hole 14b, the movable resistance plate 20 is in a state where the annular frame portion 26 is in contact with the pressing surface of the fixing nut 15 from below. Has become. At this time, the moving resistance plate 20 is not deformed. Therefore, when the moving core 23 is raised by the action of a coil described later to open the oil passage hole 14b, the moving resistance plate 20 is configured to bend in a convex shape upward.
That is, the movement resistance plate 20 functions as a leaf spring that urges the valve body 25 that moves in the direction in which the branch path 12a is opened in the opposite direction.
[0032]
Next, on the upper surfaces of the upper main body 3 and the fixing nut 15, a coil 32 is provided by extrapolating the pipe 21. The magnetic field generated by the coil 32 causes the moving core 23 in the pipe 21 to move. A solenoid 33 is configured as a driving unit. The coil 32 is covered by a cylindrical coil case 34 whose lower part is open. A mounting hole is provided at the center of the circular upper wall of the coil case 34. The screw portion 22a of the fixed core 22 is inserted through the mounting hole, and a nut 35 is screwed into the screw portion 22a, so that a pipe is formed. A coil case 34 is mounted on the side of the upper body 21 and the upper body 3.
[0033]
That is, when the coil 32 is energized, the pilot valve (valve element 25) is urged in the direction in which the branch passage 12a is opened, but at the same time, the movement resistance plate 20 closes the branch passage 12a. Receive bias. As a result, both forces are antagonized, and the voltage applied to the solenoid 33 is proportional to the flow rate of the fluid supplied from the branch passage 12a by the movement of the valve body 25 by the solenoid 33 to which the voltage is applied. The resistance of the moving resistance plate 20 is set so as to have a relationship.
[0034]
At the center of the lower end surface of the upper main body 3, the diameter of the upper main body 3 is larger than the branch passage 12 and the valve seat 7 of the main valve 8 (therefore, the cross-sectional area in the cross section perpendicular to the central axis of the cylindrical main body 3 is larger) The first liquid chamber 40 is formed to be open. The latter branch 12 of the upper body 3 is connected and connected to the first liquid chamber 40. On the upper surface of the lower body 2, a second liquid chamber 41 having the same inner diameter as the first liquid chamber 40 is formed. The second liquid chamber 41 communicates with the outlet 6 side of the flow path 4 of the lower main body 2 (that is, the flow path 4 downstream of the main valve 8). Further, a diaphragm 45 as a main valve operating means is sandwiched and fixed between the upper body 3 and the lower body 2 which are connected to isolate the first liquid chamber 40 and the second liquid chamber 41. The diaphragm 45 is a pressure transmitting member made of an elastic material having a substantially circular outer shape as a whole. The diaphragm 45 has a substantially corrugated cross section so as to be easily deformed and moved. The central portion of the diaphragm 45 and the main valve 8 are connected by a rod-shaped connecting means 46. Therefore, according to the diaphragm 45, when the pilot valve (valve element 25) opens the branch passage 12a, the fluid supplied from the branch passage 12a acts, and thus the first and second liquid chambers 40, 41 are actuated. The main valve 8 is deformed and moved by receiving a liquid pressure over a large area corresponding to a large cross-sectional area of the main valve 8, and the main valve 8 can be moved in a direction in which the flow path 4 is opened by operating the main valve 8 with an increased large force. .
[0035]
In the upper main body 3, a relief valve 47 (balance port) is provided between the valve body 25 and the diaphragm 45, which allows a part of fluid to escape to an external system and is capable of adjusting a flow rate. In the present example, a hole communicating with the outside is formed in the latter half branch passage 12b downstream of the oil passage hole 14b of the pilot valve seat 14, and a relief valve 47 is provided in this hole. This position is advantageous in that it is easy to process and is not easily affected by howling that may occur in the diaphragm 45 during use. The relief valve 47 has a needle-shaped valve body, and the screw structure allows the valve body to move forward and backward to freely adjust the flow rate of the fluid discharged to the outside. By operating the relief valve 47, adjustment can be performed so that the flow rate of the fluid supplied to the diaphragm 45 of the first liquid chamber 40 and the opening degree of the flow path 4 by the main valve 8 are proportional. .
[0036]
Next, the operation of the flow control valve configured as described above will be described.
First, the relationship between the flow rate of the pilot valve and the voltage of the solenoid 33 is adjusted. This adjustment is performed only by the upper main body 3 before assembling the main body 1.
In a state where no voltage is applied to the coil 32, the origin position of the valve body 25 at which the flow rate becomes the minimum (for example, 0) is detected. At this time, the projection 31 of the valve body 25 closes the oil passage hole 14b with the weight of the valve body 25 and the moving core 23, and the movement resistance plate 20 is not deformed. When the test air at a predetermined pressure is supplied from the first half branch 12a of the upper body 3, the air enters the second half branch 12b from the gap with the projection 31 through the oil passage hole 14b of the pilot valve stem 14, and It goes out of the liquid chamber 40. Here, as the pilot valve seat 14 is gradually turned, the pilot valve seat 14 rises in the upper main body 3 and gradually lifts the valve body 25 and the moving core 23. Then, when the annular frame portion 26 of the moving resistance plate 20 abuts against the fixed nut 15 from below, resistance of the lifting of the valve body 25 by the moving resistance plate 20 is generated, and the projection 31 is surely provided with a predetermined force. Since the oil passage hole 14b is closed, air at a predetermined pressure does not come out.
[0037]
The pilot valve adjusted in this manner can perform control in which the flow rate and the voltage are linearly proportional by increasing or decreasing the voltage applied to the coil 32 when the fluid of the predetermined pressure is supplied. When raising the voltage applied to the coil 32 to raise the moving core 23 toward the fixed core 22, when the lift amount increases and the moving core 23 approaches the fixed core 22, the moving core 23 responds to the increase in the voltage. It is thought that the moving force increases rapidly. However, in the pilot valve of this embodiment, since the fixed resistance plate 24 made of a non-magnetic material is provided between the moving core 23 and the fixed core 22, most of the region where the force acting on the moving core 23 rapidly increases is the moving core 23. , The moving core 23 does not suddenly and strongly magnetize the fixed core 22 to be magnetized. In addition, the movement of the movable core 23 toward the fixed core 22 causes the movable resistance plate 20 to bend. However, the larger the amount of deflection, the harder the movable resistance plate 20 bends. That is, when the voltage is small and the lift of the moving core 23 is small, the moving resistance plate 20 bends relatively easily, but the voltage rises and the moving core 23 approaches the fixed resistance plate 24, and the force acting on the moving core 23 increases rapidly. When the movement resistance plate 20 begins to increase, the movement resistance plate 20 becomes hard to bend and restricts a sudden displacement of the movement core 23.
[0038]
Therefore, as shown in FIG. 3, the relationship between the voltage applied to the coil 32 and the lift of the movable core 23 becomes substantially linear, and the opening of the valve body 25 is detected from the load on the coil 32 and automatically controlled, The flow rate in the valve body 25 can be continuously and finely controlled. Therefore, the fluid pressure in the present flow control valve does not greatly change due to a sudden change in the flow rate, and a flow rate control with a wide adjustment range can be realized while the pressure is kept almost constant. Further, the valve element 25 is for changing the voltage applied to the coil 32 to slightly move the moving core 23 up and down to perform proportional control of the flow rate in the flow control valve. Must be reliably set to 0, and unnecessary bending of the moving resistance plate 20 at the origin position must be avoided. As described above, the adjustment of the origin position in the valve element 25 is extremely delicate. However, since the flow control valve of this embodiment uses the above-mentioned screw type pilot valve seat 14, the minimum flow rate can be easily and accurately adjusted. Can be detected.
According to the valve element 25 and the pilot valve seat 14, if the flow rate when the oil passage hole 14b is opened is 0.23 cc, the flow rate is 0.81 cc for the voltage applied to the coil 32 in the range of 0 to 24 V. It is directly proportional in the range of 44 cc.
[0039]
The upper body 3 containing the valve element 25 and the pilot valve seat 14 adjusted as described above and the lower body 2 having the main valve 8 and the like as described above are assembled to obtain the flow control valve having the above-described configuration.
A fluid having a predetermined pressure is supplied to the inlet 5 of the flow control valve, and an appropriate voltage is applied to the coil 32 to perform control. From the outlet 6, a controlled and desired flow of fluid is obtained. That is, the fluid flowing from the inlet 5 is supplied to the pilot valve seat 14 through the branch passage 12a. The valve body 25 moves up and down in proportion to the voltage applied to the coil 32. Here, the valve body 25 is restricted from moving abruptly by the action of the moving resistance plate 20 which is a leaf spring having a special shape and the fixed resistance plate 24 which prevents rapid magnetic adhesion. The proportional flow rate is substantially linearly proportional to the load voltage of the valve 32, and the valve body 25 and the pilot valve seat 14 can realize proportional flow control with a constant pressure and a wide adjustment range.
[0040]
The fluid that has flowed out of the oil passage hole 14b reaches the liquid chamber 40 of the upper main body 3 via the latter half branch path 12b. Since the fluid in the liquid chamber 40 applies pressure to the diaphragm 45, a force corresponding to the area acts on the diaphragm 45. The diaphragm 45 bends downward in response to the force received from the fluid, and the main valve 8 connected to the diaphragm 45 by the connecting means 46 also moves downward in response to the force received by the diaphragm 45 from the fluid. As a result, the main valve 8 separates from the valve seat 7 by a size corresponding to the force received by the diaphragm 45 from the fluid, and opens the flow path 4.
[0041]
As described above, according to the flow control valve, a part of the fluid received from the inlet 5 is guided to the pilot valve whose voltage and the flow rate are proportional to each other through the branch path 12a, and the flow rate of the fluid supplied to the diaphragm 45 by the pilot valve. Is proportionally controlled, and the main valve 8 is operated by obtaining a large force by receiving the fluid pressure by the diaphragm 45 set to a predetermined pressure receiving area. As described above, according to the flow control valve of the present embodiment, although the flow rate of the pilot valve itself is small, the force caused by the pilot valve itself can be amplified by the diaphragm 45 and the movement amount of the main valve 8 can be increased. Proportional control could be realized.
[0042]
In practice, the relief valve 47 is operated in advance to adjust the flow rate of the fluid discharged to the outside so that the voltage applied to the coil 32 is proportional to the flow rate obtained at the outlet 6. When adjusting the relief valve 47, the elastic force of the spring 11, which biases the main valve 8 in the closing direction, may be adjusted by rotating the adjusting member 10. Even if the elastic force of the spring 11 varies, the error can be absorbed by adjustment by the adjusting member 10.
[0043]
FIG. 4 is a graph showing the relationship between the voltage applied to the coil 32 and the flow rate obtained by the flow control valve of the present example. Here, the fluid was air, the room temperature was 23 ° C., the flow rate when the main valve 8 was opened was 900 l / min, the pressure at the inlet 5 was 4 MPa, and the pressure at the outlet 6 was 3 MPa. As described above, the flow rate control almost in proportion to the voltage of the coil 32 in a wide range of 150 to 400 l / min was realized with the differential pressure at the entrance and exit of 1 MPa.
[0044]
Next, an example in which the flow control valve is used for controlling the flow rate of a fuel injection device in a boiler will be described. As shown in FIG. 5, the kerosene in the kerosene tank 100 is sent to the bypass nozzle 101 at a predetermined pressure by the electromagnetic pump P. Kerosene is sprayed at a predetermined pressure from the nozzle hole 101a into the combustion chamber and burned. Part of the kerosene that has not been sprayed by the bypass nozzle 101 flows through the flow control valve at the predetermined pressure and returns to the kerosene tank 100. Here, the temperature in the furnace of the boiler is constantly monitored by a sensor, and the deviation between the value and the target temperature is fed back to automatically adjust the coil voltage of the flow control valve, so that the flow rate of kerosene flowing in the system can be reduced. The pressure can be finely increased or decreased while the pressure is kept almost constant. That is, the proportional flow rate control with a wide adjustment range can be realized by the automatic control while the pressure is almost constant, and the temperature inside the furnace of the boiler can always be made to coincide with the set target value. Further, since the flow rate control valve has a flow rate as high as several hundred liters per minute, it can be applied to a large-sized boiler without difficulty, and can also be used for a natural gas turbine of a power generation apparatus of several hundred kilowatt scale.
[0045]
The present invention is not limited to the above-described embodiment, and can be widely used in general for proportional flow rate control of a large flow rate fluid in addition to a dryer having a combustion device, a temperature control facility, and the like.
[0046]
【The invention's effect】
According to the first aspect of the invention, the main valve operating means (diaphragm) amplifies the fluid force from the pilot valve, in which the voltage is proportional to the valve lift, to operate the main valve. It is possible to realize proportional flow rate control of a large flow rate with a constant pressure and a wide adjustment range.
[0047]
According to the flow control valve according to the second aspect, a complicated structure in which the main valve, the pilot valve, and the diaphragm for amplifying and transmitting the pressure are integrated as a whole is integrated into the main body 1. However, a compact configuration can be realized. Also, since the pressure of the fluid that has passed through the pilot valve can be amplified by the diaphragm and reliably transmitted to the main valve, the continuous and linear proportional relationship between the voltage applied to the solenoid and the opening of the main valve can be ensured. Can be set.
[0048]
According to the flow control valve described above, when a voltage is applied to the solenoid to open the pilot valve, the leaf spring acts as a resistor in a range where the driving force by the solenoid rapidly increases, thereby restricting the movement of the pilot valve. Therefore, the pilot valve opens by a lift amount proportional to the voltage. As a result, proportional control of the entire flow control valve is suitably performed.
[0049]
According to the flow control valve according to the fourth aspect, in the flow control valve according to the second aspect, by adjusting the relief valve in advance, a continuous and linear relationship between the voltage applied to the solenoid and the opening of the main valve is obtained. The proportional relationship can be reliably set according to the flow rate and pressure of the fluid to be controlled.
[0050]
According to the flow control valve described in claim 5, in the flow control valve according to claim 2, by adjusting the mounting position of the adjusting member with respect to the lower body, the urging means is provided to the main valve. Since the power can be appropriately adjusted, the flow rate adjusting operation for setting a continuous and linear proportional relationship between the voltage applied to the solenoid and the opening of the main valve can be performed more precisely and efficiently.
[0051]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of an embodiment of the present invention.
FIG. 2 is a plan view of a moving resistance plate according to an example of an embodiment of the present invention.
FIG. 3 is a diagram showing a relationship between a coil voltage and a pilot valve lift amount in an example of an embodiment of the present invention.
FIG. 4 is a diagram illustrating a relationship between a coil voltage and a flow rate according to an example of an embodiment of the present invention.
FIG. 5 is a configuration diagram of a fuel injection device using a flow control valve as an example of an embodiment of the present invention.
FIG. 6 is a configuration diagram of a conventional fuel injection device using a multi-stage switching method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Body, 2 ... Lower body, 2a ... Through-hole, 3 ... Upper body, 4 ... Flow path,
5 inlet, 6 outlet, 8 main valve, 10 adjusting member,
11 ... springs as biasing means, 12, 12a, 12b ... branch paths,
20: moving resistance plate as a leaf spring; 25: valve body as a pilot valve;
33: solenoid, 40: first liquid chamber, 41: second liquid chamber
45: diaphragm as main valve operating means; 46: connecting means; 47: relief valve.

Claims (5)

入口と出口を有する流体の流路と、
前記流路の中途に設けられて前記流路を開閉する主弁と、
前記流路を閉止する方向に前記主弁を付勢する付勢手段と、
前記主弁に関して前記流路の前記入口側に連通して設けられた分岐路と、
前記分岐路に設けられて前記分岐路を開閉するパイロット弁と、
前記分岐路を開放する方向に移動する前記パイロット弁を反対方向に付勢する板ばねと、
通電時には前記分岐路が開放される方向に前記パイロット弁を付勢するソレノイドと、
前記主弁に取り付けられ、前記パイロット弁が前記分岐路を開放した際に前記分岐路から供給された前記流体が作用することにより移動して前記主弁を前記流路が開放される方向に移動させる主弁操作手段と、
を有する流量制御弁。
A fluid flow path having an inlet and an outlet,
A main valve provided in the middle of the flow path to open and close the flow path,
Urging means for urging the main valve in a direction to close the flow path,
A branch path provided in communication with the inlet side of the flow path with respect to the main valve,
A pilot valve provided in the branch path to open and close the branch path;
A leaf spring for urging the pilot valve moving in a direction to open the branch path in an opposite direction,
A solenoid for energizing the pilot valve in a direction in which the branch path is opened when energized;
Attached to the main valve, when the pilot valve opens the branch passage, the fluid supplied from the branch passage acts to move and move the main valve in a direction in which the flow passage is opened. Main valve operating means for causing
Having a flow control valve.
上部本体と下部本体が結合されてなる本体を有し、
前記流路と、前記主弁と、前記付勢手段とは前記下部本体に設けられ、
前記パイロット弁と、前記板ばねと、前記ソレノイドとは前記上部本体に設けられ、
前記分岐路は前記上部本体と前記下部本体に設けられて連通しており、
前記上部本体の前記分岐路は前記上部本体の下面に開口して設けられた第1の液室に連通しており、
前記下部本体の前記主弁に関する前記流路の前記出口側は前記下部本体の上面に開口して設けられた第2の液室に連通しており、
前記主弁操作手段は、結合された前記上部本体と前記下部本体の間に挟持されて前記第1の液室と前記第2の液室を隔離するダイヤフラムと、前記下部本体の前記流路内に配置されて前記ダイヤフラムと前記主弁を連結する連結手段とを有することを特徴とする請求項1記載の流量制御弁。
Having a main body in which the upper main body and the lower main body are combined,
The flow path, the main valve, and the urging means are provided in the lower body,
The pilot valve, the leaf spring, and the solenoid are provided on the upper body,
The branch path is provided and communicated with the upper body and the lower body,
The branch path of the upper body communicates with a first liquid chamber provided to be opened on the lower surface of the upper body,
The outlet side of the flow path with respect to the main valve of the lower body communicates with a second liquid chamber provided on the upper surface of the lower body.
A diaphragm interposed between the coupled upper body and the lower body to isolate the first liquid chamber and the second liquid chamber; and a diaphragm in the flow path of the lower body. 2. The flow control valve according to claim 1, further comprising a connecting means arranged to connect the diaphragm and the main valve.
前記ソレノイドに与える電圧と、該電圧が与えられた前記ソレノイドにより前記パイロット弁が移動して前記分岐路から供給される流体の流量とが、比例関係にあるように前記板ばねの弾性が設定されている請求項1又は2記載の流量制御弁。The elasticity of the leaf spring is set so that the voltage applied to the solenoid and the flow rate of the fluid supplied from the branch passage by the pilot valve moved by the solenoid to which the voltage is applied are in a proportional relationship. The flow control valve according to claim 1 or 2, wherein 前記上部本体において、前記パイロット弁と前記ダイヤフラムとの間に、前記流体の一部を逃がす調整自在の逃がし弁を設けることにより、前記パイロット弁が移動して前記分岐路から前記ダイヤフラムに供給される流体の流量と前記主弁による前記流路の開度とが比例するように構成した請求項2記載の流量制御弁。In the upper body, by providing an adjustable relief valve for releasing a part of the fluid between the pilot valve and the diaphragm, the pilot valve moves and is supplied from the branch passage to the diaphragm. 3. The flow control valve according to claim 2, wherein the flow rate of the fluid and the degree of opening of the flow path by the main valve are proportional. 前記下部本体の下面に前記流路に連通する貫通孔が形成されており、該貫通孔には進退避自在とされた調整部材が設けられ、該調整部材の内面と前記主弁との間に前記付勢手段が設けられている請求項2記載の流量制御弁。A through-hole communicating with the flow path is formed on the lower surface of the lower main body, and an adjusting member that is capable of moving forward and backward is provided in the through-hole, and between the inner surface of the adjusting member and the main valve. The flow control valve according to claim 2, wherein the urging means is provided.
JP2003088114A 2003-03-27 2003-03-27 Flow control valve Expired - Fee Related JP3875959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088114A JP3875959B2 (en) 2003-03-27 2003-03-27 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088114A JP3875959B2 (en) 2003-03-27 2003-03-27 Flow control valve

Publications (2)

Publication Number Publication Date
JP2004293695A true JP2004293695A (en) 2004-10-21
JP3875959B2 JP3875959B2 (en) 2007-01-31

Family

ID=33402327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088114A Expired - Fee Related JP3875959B2 (en) 2003-03-27 2003-03-27 Flow control valve

Country Status (1)

Country Link
JP (1) JP3875959B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153221A (en) * 2004-11-30 2006-06-15 Keihin Corp Solenoid shut off valve for fuel cell
KR100924265B1 (en) 2009-05-28 2009-10-30 신우공업 주식회사 Electromagnetic Control Valve
US8051812B2 (en) 2007-04-16 2011-11-08 Scuderi Group, Llc Variable valve actuator with a pneumatic booster
JP2012506974A (en) * 2008-07-22 2012-03-22 イートン コーポレーション Oil control system of valve train and oil control valve
US8360019B2 (en) 2007-08-13 2013-01-29 Scuderi Group, Llc Pressure balanced engine valves
US8707916B2 (en) 2011-01-27 2014-04-29 Scuderi Group, Inc. Lost-motion variable valve actuation system with valve deactivation
US8714121B2 (en) 2010-10-01 2014-05-06 Scuderi Group, Inc. Split-cycle air hybrid V-engine
CN103867780A (en) * 2014-04-02 2014-06-18 中山市思源电器有限公司 Fuel gas electromagnetism proportional valve
US8763571B2 (en) 2009-05-07 2014-07-01 Scuderi Group, Inc. Air supply for components of a split-cycle engine
US8776740B2 (en) 2011-01-27 2014-07-15 Scuderi Group, Llc Lost-motion variable valve actuation system with cam phaser
US8813695B2 (en) 2010-06-18 2014-08-26 Scuderi Group, Llc Split-cycle engine with crossover passage combustion
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
US9109468B2 (en) 2012-01-06 2015-08-18 Scuderi Group, Llc Lost-motion variable valve actuation system
JP2016037968A (en) * 2014-08-05 2016-03-22 日本電産トーソク株式会社 Solenoid valve device and control valve device
US9297295B2 (en) 2013-03-15 2016-03-29 Scuderi Group, Inc. Split-cycle engines with direct injection
US9581058B2 (en) 2010-08-13 2017-02-28 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
WO2017073569A1 (en) * 2015-10-29 2017-05-04 株式会社デンソー Flowpath structure
WO2017073568A1 (en) * 2015-10-29 2017-05-04 株式会社デンソー Flowpath structure
US9664075B2 (en) 2011-03-18 2017-05-30 Eaton Corporation Custom VVA rocker arms for left hand and right hand orientations
US9726052B2 (en) 2010-03-19 2017-08-08 Eaton Corporation Rocker arm assembly and components therefor
US9765657B2 (en) 2010-03-19 2017-09-19 Eaton Corporation System, method and device for rocker arm position sensing
US9869211B2 (en) 2014-03-03 2018-01-16 Eaton Corporation Valve actuating device and method of making same
US9874122B2 (en) 2010-03-19 2018-01-23 Eaton Corporation Rocker assembly having improved durability
US9885258B2 (en) 2010-03-19 2018-02-06 Eaton Corporation Latch interface for a valve actuating device
US9938865B2 (en) 2008-07-22 2018-04-10 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US9964005B2 (en) 2008-07-22 2018-05-08 Eaton Corporation Method for diagnosing variable valve actuation malfunctions by monitoring fluid pressure in a control gallery
US10087790B2 (en) 2009-07-22 2018-10-02 Eaton Corporation Cylinder head arrangement for variable valve actuation rocker arm assemblies
US10119429B2 (en) 2010-03-19 2018-11-06 Eaton Corporation Systems, methods, and devices for valve stem position sensing
WO2018222971A1 (en) * 2017-06-02 2018-12-06 Group Dekko, Inc. Pressure-balancing valve
US10415439B2 (en) 2008-07-22 2019-09-17 Eaton Intelligent Power Limited Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
KR20200033641A (en) * 2018-09-20 2020-03-30 인지컨트롤스 주식회사 Solenoid valve for vehicle
US10788140B2 (en) 2018-07-16 2020-09-29 Hyundai Motor Company Solenoid valve for controlling gas supply
US11181013B2 (en) 2009-07-22 2021-11-23 Eaton Intelligent Power Limited Cylinder head arrangement for variable valve actuation rocker arm assemblies
WO2022218605A1 (en) * 2021-04-14 2022-10-20 Memjet Technology Limited Pressure-regulating valve with dual valve members
EP3957402A4 (en) * 2019-04-18 2023-01-18 SMC Corporation High-pressure fluid discharge device
US11788439B2 (en) 2010-03-19 2023-10-17 Eaton Intelligent Power Limited Development of a switching roller finger follower for cylinder deactivation in internal combustion engines

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153221A (en) * 2004-11-30 2006-06-15 Keihin Corp Solenoid shut off valve for fuel cell
JP4533114B2 (en) * 2004-11-30 2010-09-01 株式会社ケーヒン Electromagnetic shut-off valve for fuel cell
US8146547B2 (en) 2007-04-16 2012-04-03 Scuderi Group, Llc Variable valve actuator with a pneumatic booster
US8051812B2 (en) 2007-04-16 2011-11-08 Scuderi Group, Llc Variable valve actuator with a pneumatic booster
US8360019B2 (en) 2007-08-13 2013-01-29 Scuderi Group, Llc Pressure balanced engine valves
JP2012506974A (en) * 2008-07-22 2012-03-22 イートン コーポレーション Oil control system of valve train and oil control valve
KR101538198B1 (en) * 2008-07-22 2015-07-20 이턴 코포레이션 Valvetrain oil control system and oil control valve
US10415439B2 (en) 2008-07-22 2019-09-17 Eaton Intelligent Power Limited Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US9964005B2 (en) 2008-07-22 2018-05-08 Eaton Corporation Method for diagnosing variable valve actuation malfunctions by monitoring fluid pressure in a control gallery
US9938865B2 (en) 2008-07-22 2018-04-10 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US8763571B2 (en) 2009-05-07 2014-07-01 Scuderi Group, Inc. Air supply for components of a split-cycle engine
KR100924265B1 (en) 2009-05-28 2009-10-30 신우공업 주식회사 Electromagnetic Control Valve
US11181013B2 (en) 2009-07-22 2021-11-23 Eaton Intelligent Power Limited Cylinder head arrangement for variable valve actuation rocker arm assemblies
US10087790B2 (en) 2009-07-22 2018-10-02 Eaton Corporation Cylinder head arrangement for variable valve actuation rocker arm assemblies
US10570786B2 (en) 2010-03-19 2020-02-25 Eaton Intelligent Power Limited Rocker assembly having improved durability
US9915180B2 (en) 2010-03-19 2018-03-13 Eaton Corporation Latch interface for a valve actuating device
US10180087B2 (en) 2010-03-19 2019-01-15 Eaton Corporation Rocker arm assembly and components therefor
US10119429B2 (en) 2010-03-19 2018-11-06 Eaton Corporation Systems, methods, and devices for valve stem position sensing
US11788439B2 (en) 2010-03-19 2023-10-17 Eaton Intelligent Power Limited Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US9885258B2 (en) 2010-03-19 2018-02-06 Eaton Corporation Latch interface for a valve actuating device
US9874122B2 (en) 2010-03-19 2018-01-23 Eaton Corporation Rocker assembly having improved durability
US11530630B2 (en) 2010-03-19 2022-12-20 Eaton Intelligent Power Limited Systems, methods, and devices for rocker arm position sensing
US10890086B2 (en) 2010-03-19 2021-01-12 Eaton Intelligent Power Limited Latch interface for a valve actuating device
US11085338B2 (en) 2010-03-19 2021-08-10 Eaton Intelligent Power Limited Systems, methods and devices for rocker arm position sensing
US9765657B2 (en) 2010-03-19 2017-09-19 Eaton Corporation System, method and device for rocker arm position sensing
US9726052B2 (en) 2010-03-19 2017-08-08 Eaton Corporation Rocker arm assembly and components therefor
US8813695B2 (en) 2010-06-18 2014-08-26 Scuderi Group, Llc Split-cycle engine with crossover passage combustion
US9581058B2 (en) 2010-08-13 2017-02-28 Eaton Corporation Development of a switching roller finger follower for cylinder deactivation in internal combustion engines
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
US8714121B2 (en) 2010-10-01 2014-05-06 Scuderi Group, Inc. Split-cycle air hybrid V-engine
US8707916B2 (en) 2011-01-27 2014-04-29 Scuderi Group, Inc. Lost-motion variable valve actuation system with valve deactivation
US9046008B2 (en) 2011-01-27 2015-06-02 Scuderi Group, Llc Lost-motion variable valve actuation system with valve deactivation
US8776740B2 (en) 2011-01-27 2014-07-15 Scuderi Group, Llc Lost-motion variable valve actuation system with cam phaser
US9181821B2 (en) 2011-01-27 2015-11-10 Scuderi Group, Llc Lost-motion variable valve actuation system with cam phaser
US9664075B2 (en) 2011-03-18 2017-05-30 Eaton Corporation Custom VVA rocker arms for left hand and right hand orientations
US10329970B2 (en) 2011-03-18 2019-06-25 Eaton Corporation Custom VVA rocker arms for left hand and right hand orientations
US9109468B2 (en) 2012-01-06 2015-08-18 Scuderi Group, Llc Lost-motion variable valve actuation system
US9297295B2 (en) 2013-03-15 2016-03-29 Scuderi Group, Inc. Split-cycle engines with direct injection
US9995183B2 (en) 2014-03-03 2018-06-12 Eaton Corporation Valve actuating device and method of making same
US9869211B2 (en) 2014-03-03 2018-01-16 Eaton Corporation Valve actuating device and method of making same
CN103867780A (en) * 2014-04-02 2014-06-18 中山市思源电器有限公司 Fuel gas electromagnetism proportional valve
JP2016037968A (en) * 2014-08-05 2016-03-22 日本電産トーソク株式会社 Solenoid valve device and control valve device
WO2017073569A1 (en) * 2015-10-29 2017-05-04 株式会社デンソー Flowpath structure
JP2017082950A (en) * 2015-10-29 2017-05-18 株式会社デンソー Flow channel structure
WO2017073568A1 (en) * 2015-10-29 2017-05-04 株式会社デンソー Flowpath structure
WO2018222971A1 (en) * 2017-06-02 2018-12-06 Group Dekko, Inc. Pressure-balancing valve
US10788140B2 (en) 2018-07-16 2020-09-29 Hyundai Motor Company Solenoid valve for controlling gas supply
KR102105949B1 (en) 2018-09-20 2020-05-06 인지컨트롤스 주식회사 Solenoid valve for vehicle
KR20200033641A (en) * 2018-09-20 2020-03-30 인지컨트롤스 주식회사 Solenoid valve for vehicle
EP3957402A4 (en) * 2019-04-18 2023-01-18 SMC Corporation High-pressure fluid discharge device
WO2022218605A1 (en) * 2021-04-14 2022-10-20 Memjet Technology Limited Pressure-regulating valve with dual valve members
US11940820B2 (en) 2021-04-14 2024-03-26 Memjet Technology Limited Pressure-regulating valve with non-linear flow regulator

Also Published As

Publication number Publication date
JP3875959B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP3875959B2 (en) Flow control valve
EP2721328B1 (en) Pressure balanced valve
US5687759A (en) Low operating power, fast-response servovalve
JP5913444B2 (en) Pressure load supply pressure regulator with pressure balance trim
US5735503A (en) Servo pressure regulator for a gas valve
JP2004523016A (en) Plug and seat positioning system applied to control
US20070272313A1 (en) Pressure regulator with improved outlet pressure control
JP2001141091A (en) Flow rate control valve
WO2019173120A1 (en) Solenoid operated valve for reducing excessive piping pressure in a fluid distribution system
JPH0742869A (en) Valve device
US10782713B2 (en) Fluid regulator
JPH0432269B2 (en)
JP2002106745A (en) Flow regulation valve
JP2561306Y2 (en) Pressure proportional control valve with constant flow valve
JPH07227535A (en) Liquid material vaporization and supplying device
JP6049184B2 (en) Control valve
EP3874339B1 (en) Fluid regulator
EP0919897A2 (en) A pilot-operated gas pressure regulator with counterbalanced sleeve
JP2776578B2 (en) Flow control valve with closing function
JPH07253817A (en) Constant flow rate valve
JP2808790B2 (en) Flow control valve
RU2167034C1 (en) Apparatus for regulating pressure of combustible gases for gas-flame treatment of metals
JP2023043260A (en) proportional valve
JP2002106741A (en) Relief valve
JP2014114765A (en) Ejector device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees