JP2561306Y2 - Pressure proportional control valve with constant flow valve - Google Patents

Pressure proportional control valve with constant flow valve

Info

Publication number
JP2561306Y2
JP2561306Y2 JP8299691U JP8299691U JP2561306Y2 JP 2561306 Y2 JP2561306 Y2 JP 2561306Y2 JP 8299691 U JP8299691 U JP 8299691U JP 8299691 U JP8299691 U JP 8299691U JP 2561306 Y2 JP2561306 Y2 JP 2561306Y2
Authority
JP
Japan
Prior art keywords
valve
diaphragm
seat
valve seat
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8299691U
Other languages
Japanese (ja)
Other versions
JPH0532888U (en
Inventor
芳文 富井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITO KOKI CO., LTD.
Original Assignee
ITO KOKI CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITO KOKI CO., LTD. filed Critical ITO KOKI CO., LTD.
Priority to JP8299691U priority Critical patent/JP2561306Y2/en
Publication of JPH0532888U publication Critical patent/JPH0532888U/en
Application granted granted Critical
Publication of JP2561306Y2 publication Critical patent/JP2561306Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】この考案は、微少流量を制御でき
る定流量弁付圧力比例制御弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure proportional control valve with a constant flow valve capable of controlling a minute flow rate.

【0002】[0002]

【従来の技術】従来、例えばガス燃焼器具、特にガスコ
ンロなどでは、小さな燃焼熱量から大きな燃焼熱量まで
その熱量に大きな幅が要求されている。その熱量に大き
な幅をもたせる方法としては、ガス供給量を変化させる
ことで燃焼熱量に幅をもたせることができる。
2. Description of the Related Art Conventionally, for example, in a gas burning appliance, particularly a gas stove, a large range of calorific value is required from a small calorific value to a large calorific value . As a method of giving the heat amount a large range, the combustion heat amount can be given a range by changing the gas supply amount.

【0003】しかしながら、ガス供給量を多くする場合
には、大きな弁口径の制御弁を使用すればよいが、大き
な弁口径の制御弁では、制御できる最少流量も大きくな
ってしまう問題があった。
However, when increasing the gas supply amount, a control valve having a large valve diameter may be used. However, a control valve having a large valve diameter has a problem that the minimum flow rate that can be controlled is also increased.

【0004】そこで、図13及び図14に示すように、
バーナー1に向う流路2に上流側から下流側に電磁弁
3、ガバナー4、小孔5付電磁流量制御弁6を配置した
制御装置が考案されている。この制御装置は、電磁弁3
によって流路2が開放され、カバナー4によってガス圧
を一定にし、制御弁6の開閉度合によって流量を制御
し、最小流量は、小孔5の流通量で担保する。
Therefore, as shown in FIGS. 13 and 14,
A control device has been devised in which an electromagnetic valve 3, a governor 4, and an electromagnetic flow control valve 6 with small holes 5 are arranged from the upstream side to the downstream side in the flow path 2 facing the burner 1 . This control device includes a solenoid valve 3
The flow path 2 is opened by the
And the flow rate is controlled by the degree of opening and closing of the control valve 6.
The minimum flow rate is ensured by the flow rate of the small holes 5.

【0005】また、図15に示すように、バーナー1に
向う流路2の上流側に電磁弁3、下流側に圧力比例制御
弁7を配置するとともに、流路2に電磁弁3の上流側と
圧力比例制御弁7の下流側とを連通するバイパス通路8
を設けこのバイパス通路8上流側に電磁弁9を、下
流側にオリフィス10を配置した制御装置も考案されて
いる。この制御装置は、電磁弁3、9によって流路2及
びバイパス流路8を開放し、制御弁7の開閉度合によっ
て流量を制御し、最小流量はオリフィス10の流通量で
担保する。
As shown in FIG. 15, an electromagnetic valve 3 is disposed upstream of the flow path 2 toward the burner 1 and a pressure proportional control valve 7 is disposed downstream of the flow path 2. Passage 8 that communicates with the downstream side of the pressure proportional control valve 7
The provided electromagnetic valve 9 to the upstream side of the bypass passage 8, is devised also control device placing the orifice 10 to the downstream side
I have. This control device is controlled by solenoid valves 3 and 9 to control the flow path 2 and
And the bypass passage 8 is opened.
And the minimum flow rate is determined by the flow rate of the orifice 10.
secure.

【0006】[0006]

【考案が解決しようとする課題】上記の両制御装置は、
各電磁弁3、6、7及びガバー4、オリフィス10がそ
れぞれ別部品であって、装置全体が大型化し、コスト的
にも高いものであった。
[Problems to be Solved by the Invention] The above two control devices are:
The solenoid valves 3, 6, 7 and the governor 4, and the orifice 10
These are separate components, making the entire device larger and cost-effective.
Was also expensive.

【0007】そこで、この考案の課題は、小流量から大
流量まで1台で制御できるようした定流量弁付圧力比例
制御弁を提供することある。
It is therefore an object of this invention is to provide a constant flow valve with a pressure proportional control valve which is to be controlled by one from the small flow rate to a large flow rate.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項(1) 記載の考案は、流路11中に直列で
軸上に設けた2つの弁座12、13と、この両弁座1
2、13の中心に貫通させた弁棒24と、上記両弁座1
2、13にそれぞれ対向させてバネ16、16により閉
弁方向に押圧力を付与すると共に、上流側14は上記弁
棒24と一体にスライドし、下流側15は上記弁棒24
に対しフリーにスライドするよう設けた弁体14、15
と、上記弁棒24に上流側の弁体14の開弁後遅れて下
流側の弁体15に係合して開弁するよう設けた係合部2
5と、上記下流側弁座13の下流流路11に設けたその
圧力が印加されるダイヤフラム17と、通電により開弁
方向に上記ダイヤフラム17を介し弁棒24を所要量可
変にスライドさせるよう設けた電磁駆動部21と、上記
上流側の弁座12を通過後下流側の弁座13を迂回して
上記流路11の出口側に微少流量を流すよう設けたバイ
パス通路26と、このバイパス通路26に設けた弁座2
7とそれに対向するダイヤフラム弁28との間で形成し
たダイヤフラム弁室29と、このダイヤフラム弁28を
開弁方向に押圧するバネ30と、バイパス通路26に設
けて上流側の弁座12を通った流体を前記ダイヤフラム
弁室29に流入させる連通路31と、から成る構成とし
たのである。
In order to solve the above problems, the invention according to claim (1) is arranged in series in the flow path (11).
Two valve seats 12 and 13 provided on a shaft, and both valve seats 1
The valve stem 24 penetrated into the center of each of the valve seats 2 and 13 and the both valve seats 1
Closed by springs 16, 16 so as to face 2 and 13, respectively
A pressure is applied in the valve direction, and the upstream side 14 is
The valve rod 24 slides integrally with the rod 24, and the downstream side 15
14 and 15 provided to slide freely with respect to
And the valve stem 24 moves downward after the valve element 14 on the upstream side is opened.
Engaging part 2 provided so as to be engaged with the upstream side valve element 15 to open the valve
5 and the downstream valve 11 provided in the downstream flow path 11 of the downstream valve seat 13.
The diaphragm 17 to which pressure is applied, and the valve is opened by energization
The required amount of valve stem 24 can be adjusted in the direction through diaphragm 17
An electromagnetic drive unit 21 provided so as to slide strangely;
After passing through the upstream valve seat 12, bypass the downstream valve seat 13
A via provided at the outlet side of the flow path 11 so as to flow a minute flow rate
A path passage 26 and a valve seat 2 provided in the bypass passage 26
7 and a diaphragm valve 28 opposed thereto.
The diaphragm valve chamber 29 and the diaphragm valve 28
A spring 30 pressing in the valve opening direction and a bypass passage 26 are provided.
The fluid that has passed through the valve seat 12 on the upstream side
And a communication passage 31 that flows into the valve chamber 29.
It was.

【0009】この構成の定流量弁付圧力比例制御弁は、
電磁駆動部21に通電しないときは、バネ16により流
量側の弁座12に上流側の弁体14を、下流側の弁座
に下流側の弁体15をそれぞれ圧接して、流路11
閉じている。
The pressure proportional control valve with a constant flow valve of this configuration is
When the electromagnetic drive unit 21 is not energized, the spring 16 connects the upstream valve body 14 to the flow rate side valve seat 12 and the downstream valve seat 1.
The downstream side valve body 15 is pressed against the respective 3 , and the flow path 11 is closed.

【0010】この状態から、電磁駆動部21に通電して
励磁電流を増やしていくと、ダイヤフラム17とともに
弁棒24が後退し、まず、上流側の弁座12から上流側
の弁体14が離る。のとき、係合部25は下流側の
弁体15に係合していないため、弁棒24に対しフリー
の下流側の弁体15は、バネ16により下流側の弁座
に圧接され、流路11は閉じられている。
In this state, when the electromagnetic drive unit 21 is energized to increase the exciting current, the valve stem 24 moves back together with the diaphragm 17 , and first, from the valve seat 12 on the upstream side. the valve body 14 on the upstream side is Ru is away. At this time, the engaging portion 25 of the downstream
Since the valve element 15 is not engaged with the valve element 15 , the valve element 15 on the downstream side that is free with respect to the valve rod 24 is moved by the spring 16 to the valve seat 1 on the downstream side.
3 , and the flow path 11 is closed.

【0011】流側の弁座12と弁体14が離れたこと
により、その開口部(間隙)を通過した流体は、バイパ
ス通路26をへて出口に向うが、連通路31で減圧され
てダイヤフラム弁室29に入り、さらに、弁座27とダ
イヤフラム弁28との間隙を 通るときにまた減圧されて
出口側に流出する。このとき、ダイヤフラム弁室29へ
の流体の流入量よりも、弁座27とダイヤフラム弁28
の間隙を通り流出する量が減ると、ダイヤフラム弁室2
9の流体圧が上昇して、ダイヤフラム弁28を開弁方向
に移動させる。その結果、弁座27とダイヤフラム弁2
8との間隙が広くなり、ダイヤフラム弁室29への流入
量と同じ流出量になる。逆に、流出量が多くなれば、ダ
イヤフラム弁室29の流体圧が下降して、ダイヤフラム
弁28は閉弁方向に移動し、流出量は減少する。このよ
うにして、バイパス通路26による微小流量供給が定流
量で行われる。
[0011] the valve seat 12 and the valve body 14 of the upper stream side is separated
Accordingly, the fluid that has passed through the opening (gap) goes to the outlet through the bypass passage 26 , but is decompressed in the communication passage 31.
Into the diaphragm valve chamber 29, and further into the valve seat 27.
When passing through the gap with the diaphragm valve 28, the pressure is reduced again.
Outflow to the exit side. At this time, to the diaphragm valve chamber 29
The valve seat 27 and the diaphragm valve 28
When the amount flowing out through the gap of the diaphragm decreases, the diaphragm valve chamber 2
9, the fluid pressure rises, and the diaphragm valve 28 is opened in the valve opening direction.
Move to As a result, the valve seat 27 and the diaphragm valve 2
8 and the flow into the diaphragm valve chamber 29
It will be the same amount of spill. Conversely, if the amount of spill increases,
The fluid pressure in the diaphragm valve chamber 29 drops, and the diaphragm
The valve 28 moves in the valve closing direction, and the outflow decreases. This
Thus, the minute flow rate supply by the bypass passage 26 is constant.
Done in quantity.

【0012】つぎに、電磁駆動部21の励磁電流を増や
してさらに弁棒24を後退させると、係合部25が下流
側弁体15に係合し、弁棒24と共に下流側の弁体25
同方向にスライドし、下流側の弁座13から下流側の
弁体15が離れ、流路11の主流路が開放されて大流量
が流れる。その結果、電流量に比例して弁棒24のスラ
イド量が決定されて弁座13と弁体15の間隙が調整さ
れ、それに対応する流量が流れる。このとき、ダイヤフ
ラム17には流体圧が印加し、その印加圧に対応して弁
棒24を介し下流側弁体15を動かし、弁座13との間
隙を調整して下流側の流体圧が一定になるように制御す
る。このようにして、流量調整される圧力比例制御弁の
働きがなされる。
Next, when the exciting current of the electromagnetic drive section 21 is increased and the valve stem 24 is further retracted, the engaging section 25 is moved downstream.
The downstream valve element 25 engages with the side valve element 15 and the valve rod 24.
High flow but slides in the same direction, away valve body 15 on the downstream side from the downstream side of the valve seat 13, the main channel of the flow channel 11 is opened
Flows. As a result, the valve stem 24 slides in proportion to the amount of current.
The gap between the valve seat 13 and the valve body 15 is adjusted by determining the amount of id.
And the corresponding flow rate flows. At this time, the diaphragm
Fluid pressure is applied to the ram 17 and a valve is provided in accordance with the applied pressure.
By moving the downstream valve body 15 through the rod 24, and between the valve seat 13
Adjust the gap so that the downstream fluid pressure is constant.
You. In this way, the pressure proportional control valve whose flow rate is adjusted
Work is done.

【0013】また、請求項(2) 記載の考案は、流路11
中に設けた主弁座41と、この主弁座41に対向させて
バネ43により閉弁方向に押圧力を付与して設けた主弁
体42と、上記主弁座41下流の流体圧力を受けて応動
するよう設けたダイヤフラム17と、このダイヤフラム
の動きに連動する上記主弁座41及び主弁体42を移動
自在に貫通する弁棒24と、通電により開弁方向に上記
ダイヤフラム17を介し弁棒24を所要量可変にスライ
ドさせるよう設けた電磁駆動部21と、上記主弁体42
内にその主弁体42の上記主弁座41内に位置する部分
に連通させて設けた副弁座44と、その副弁座44とバ
ネ45の押圧力により上記副弁座44に押し付けられる
ダイヤフラム弁28との間の上記主弁体42内に形成し
たダイヤフラム弁室29と、入口側流体を上記ダイヤフ
ラム弁室29に流入させるよう上 記主弁体42又はダイ
ヤフラム弁28に設けた連通路31と、上記副弁座44
内に遊嵌させて上記ダイヤフラム弁28に端を当接させ
てある上記弁棒24に前記ダイヤフラム弁28の開弁後
遅れて上記主弁体42に係合して開弁するよう設けた係
合部25と、から成る構成としたのである。
Further , the invention according to claim (2) is characterized in that:
The main valve seat 41 provided therein and the main valve seat 41
A main valve provided by applying a pressing force in the valve closing direction by a spring 43
Responsive to the body 42 and the fluid pressure downstream of the main valve seat 41
And a diaphragm 17 provided to
Moves the main valve seat 41 and main valve body 42 in conjunction with the movement of
The valve stem 24 that freely penetrates,
The valve stem 24 is slid through the diaphragm 17 so that the required amount can be varied.
The main valve body 42 and the electromagnetic drive unit 21
Of the main valve body 42 located in the main valve seat 41
A sub-valve seat 44 provided in communication with the
It is pressed against the auxiliary valve seat 44 by the pressing force of the screw 45.
Formed in the main valve body 42 between the diaphragm valve 28 and
Diaphragm valve chamber 29 and the inlet side fluid
Upper Symbol main valve body 42 or die so as to flow into the ram valve chamber 29
A communication passage 31 provided in the diaphragm valve 28;
And loosely fit inside the diaphragm valve 28 so that the end abuts on the diaphragm valve 28.
After opening the diaphragm valve 28 to the valve stem 24
A mechanism provided so as to engage with the main valve body 42 and open the valve with a delay
And a joining portion 25.

【0014】この構成の定流量弁付圧力比例制御弁は、
電磁駆動部21に通電しないときは、バネ43により主
弁座41に主弁体42を、副弁座44にダイヤフラム弁
28をそれぞれ圧接して流路11が閉じている。
The pressure proportional control valve with a constant flow rate valve of this configuration is
When the electromagnetic drive unit 21 is not energized, the main valve body 42 is attached to the main valve seat 41 by the spring 43 , and the diaphragm valve is attached to the sub-valve seat 44.
28 are pressed against each other , and the flow path 11 is closed.

【0015】この状態から、電磁駆動部21に通電して
励磁電流を増やしていくと、ダイヤフラム17ととも
弁棒24が後退し、まず、副弁座44からダイヤフラム
28が離れる。このとき、係合部25は主弁体42に
係合していないため、弁棒24に対しフリーの主弁体
は、主弁座41に圧接して、流路11は閉じられてい
る。
[0015] From this state, when gradually increasing the <br/> exciting current by energizing the solenoid actuator 21, the valve rod 24 is retracted together with the diaphragm 17, first, the diaphragm valve 28 from the sub-valve seat 44 Leave. At this time, the engaging portion 25 is
Because it does not engage, free of the main valve body 4 with respect to the valve stem 24
2 is pressed against the main valve seat 41 , and the flow path 11 is closed.

【0016】一方、連通路31をへてダイヤフラム弁室
29に流入している流体は、副弁座44からダイヤフラ
ム弁28が離れたことにより、副弁座44から主弁体4
2内を通って出口に向うが、連通路31で減圧されてダ
イヤフラム弁室29に入り、さらに、副弁座44とダイ
ヤフラム弁28との間隙を通るときにまた減圧されて出
口側に流出する。このとき、ダイヤフラム弁室29への
流体の流入量よりも、副弁座44とダイヤフラム弁28
の間隙を通り流出する量が減ると、ダイヤフラム室29
の流体圧が上昇してダイヤフラム弁28を開弁方向に移
動させる。その結果、副弁座44とダイヤフラム弁28
との間隙が広くなり、ダイヤフラム弁室29への流入量
と同じ流出量になる。逆に、流出量が多くなれば、ダイ
ヤフラム弁室29の流体圧が下降して、ダイヤフラム弁
室29は、閉弁方向に移動し、流出量は減少する。この
ようにして、連通路31、主弁体42内の通路による微
小流量供給が定流量で行われる。
On the other hand, through the communication passage 31 , the diaphragm valve chamber
Fluid that flows into 29, Daiyafura from sub valve seat 44
By arm valve 28 is separated, the main valve body 4 from the secondary valve seat 44
2 through to the outlet, but the pressure is reduced
After entering the diaphragm valve chamber 29, the auxiliary valve seat 44 and the die
When passing through the gap with the diaphragm valve 28,
Spills to the mouth. At this time, the diaphragm valve chamber 29
The auxiliary valve seat 44 and the diaphragm valve 28
When the amount flowing out through the gap decreases, the diaphragm chamber 29
Fluid pressure rises and moves the diaphragm valve 28 in the valve opening direction.
Move. As a result, the auxiliary valve seat 44 and the diaphragm valve 28
The gap between the diaphragm valve chamber 29 and the
It will be the same amount of outflow. Conversely, if the amount of spill increases, the die
The fluid pressure in the diaphragm valve chamber 29 drops, and the diaphragm valve
The chamber 29 moves in the valve closing direction, and the outflow decreases. this
In this way, the fineness of the communication passage 31 and the passage in the main valve body 42 is reduced.
The small flow rate supply is performed at a constant flow rate.

【0017】つぎに、電磁駆動部21の励磁電流を増や
してさらに弁棒24を後退させると、係合部25が主弁
体42に係合し、弁棒24と共に主弁体42が同方向に
スライドし、主弁座41から主弁体42が離れ、流路1
1の主流路が開放されて大流量が流れる。その結果、電
流量に比例して弁棒24のスライド量が決定されて主弁
座41と主弁体42の間隙が調整され、それに対応する
流量が流れる。このとき、ダイヤフラム17には流体圧
が印加し、その印加圧に対応して弁棒24を介し主弁体
42を動かし、主弁座41との間隙を調整して下流側の
流体圧が一定になるように制御する。このようにして、
流量調整される圧力比例制御弁の働きがなされる。
Next, when the exciting current of the electromagnetic drive section 21 is increased and the valve rod 24 is further moved backward, the engaging section 25
The main valve body 42 slides in the same direction together with the valve rod 24 , the main valve body 42 is separated from the main valve seat 41 , and the flow path 1
One main flow path is opened, and a large flow rate flows. As a result, the sliding amount of the valve stem 24 is determined in proportion to the amount of current, and the main valve
The gap between the seat 41 and the main valve body 42 is adjusted,
Flow rate flows. At this time, the fluid pressure is applied to the diaphragm 17.
Is applied, and the main valve element is passed through the valve rod 24 in accordance with the applied pressure.
42 to adjust the gap with the main valve seat 41 and
Control the fluid pressure to be constant. In this way,
The function of a pressure proportional control valve that regulates the flow rate is performed.

【0018】さらに、請求項(3) 記載の考案は、流路1
1中に設けた主弁座41と、この主弁座41に対向させ
てバネ52により閉弁方向に押圧力を付与して設けた主
弁体42と、上記主弁座41下流の流体圧力を受けて応
動するよう設けたダイヤフラム17と、このダイヤフラ
ム17の動きに連動する上記主弁座41及び主弁体42
を移動自在に貫通する弁棒24と、通電により開弁方向
に上記ダイヤフラム17を介し弁棒24を所要量可変に
スライドさせるよう設けた電磁駆動部21と、上記主弁
体42内の上部にその主弁体42の上記主弁座41内に
位置する部分に連通させて設けた第1弁座51と、バネ
52により上記第1弁座51に押し付けられるよう設け
た上記弁棒24と一体にスライドする副弁体53と、上
記主弁体42内の下部に設けた上記第1弁座51に連通
する第2弁座54と、その第2弁座54とバネ55によ
り上記第2弁座54から離れる方向の押圧力を付与した
ダイヤフラム弁28との間の主弁体42内に形成したダ
イヤフラム弁室29と、入口側流体を上記ダイヤフラム
弁室29に流入させるよう上記主弁体42又はダイヤフ
ラム弁28に設けた連通路31と、前記副弁体53の開
弁後遅れて副弁体53と一体となって主弁体42がスラ
イドして開弁するよう副弁体53と主弁体42の間に設
けた両者53、42の係合手段56と、から成る構成と
したのである。
Further, according to the invention of claim (3), the flow path 1
1 and a main valve seat 41 provided therein.
The spring 52 provides a pressing force in the valve closing direction.
The valve 42 and the fluid pressure downstream of the main valve seat 41 receive a response.
And a diaphragm 17 provided to move the diaphragm.
The main valve seat 41 and the main valve body 42 interlocked with the movement of the
The valve stem 24 movably penetrates through
The required amount of the valve stem 24 can be changed via the diaphragm 17
An electromagnetic drive unit 21 provided to slide, and the main valve
In the upper part of the body 42, the main valve seat 42 of the main valve body 42
A first valve seat 51 provided in communication with the portion to be located, and a spring
52 so as to be pressed against the first valve seat 51.
A sub-valve 53 that slides integrally with the valve stem 24,
Communicates with the first valve seat 51 provided at a lower portion in the main valve body 42
Of the second valve seat 54, the second valve seat 54 and the spring 55
Pressing force in the direction away from the second valve seat 54
A diaphragm formed in the main valve body 42 between the diaphragm valve 28 and
The diaphragm valve chamber 29 and the inlet-side fluid are transferred to the diaphragm
The main valve body 42 or the diaphragm is set so as to flow into the valve chamber 29.
Opening of the communication passage 31 provided in the ram valve 28 and opening of the sub-valve 53
The main valve body 42 is integrated with the sub-valve 53
Between the sub-valve element 53 and the main valve element 42 to open the valve.
An engagement means 56 of the two beams 53, 42;
It was done.

【0019】この構成の定流量弁付圧力比例制御弁は、
電磁駆動部21に通電しないときは、バネ43により主
弁座41に主弁体42を、バネ53により第1弁座51
に副弁座53をそれぞれ圧接して流路11が閉じてい
る。
The pressure proportional control valve with a constant flow valve of this configuration is
When not energized electromagnetic driving unit 21, the main valve body 42 to the main valve seat 41 by a spring 43, first valve seat 51 Ri by the spring 53
The sub-valve seats 53 are pressed against each other to close the flow path 11 .

【0020】この状態から、電磁駆動部21に通電して
励磁電流を増やしていくと、ダイヤフラム17とともに
弁棒24が後退し、まず、副弁座51から副弁体53
離れ。このとき、係合手段56は係合していないた
め、弁棒24に対しフリーの主弁体42は、主弁座41
に圧接して、流路11は閉じられている。
In this state , when the electromagnetic drive unit 21 is energized to increase the exciting current, the valve stem 24 moves back together with the diaphragm 17 , and first, the sub valve seat 51 is moved from the sub valve seat 51 to the sub valve seat 51. body 53 is Ru away <br/>. At this time, the engaging means 56 was not engaged.
Because, the main valve body 42 of the free to the valve stem 24, the main valve seat 41
, And the flow path 11 is closed.

【0021】一方、連通路31をへてダイヤフラム弁室
29に流入している流体は、第2弁座54からバネ55
によりダイヤフラム弁28が離れていることにより、第
2弁座54とダイヤフラム弁28との間隙から第1弁座
55と副弁体53の間隙を介し主弁体42内を通って出
口に向うが、連通路31で減圧されてダイヤフラム弁室
29に入り、さらに、第2弁座54とダイヤフラム弁2
8との間隙を通るときにまた減圧されて出口側に流出す
る。このとき、ダイヤフラム弁室29への流体の流入量
よりも、副弁座44とダイヤフラム弁28の間隙を通り
流出する量が減ると、ダイヤフラム室29の流体圧が上
昇してダイヤフラム弁28を開弁方向に移動させる。そ
の結果、第2弁座54とダイヤフラム弁28との間隙が
広くなり、ダイヤフラム弁室29への流入量と同じ流出
量になる。逆に、流出量が多くなれば、ダイヤフラム弁
室29の流体圧が下降して、ダイヤフラム弁室29は、
バネ55に抗して閉弁方向に移動し、流出量は減少す
る。このようにして、連通路31、主弁体42内の通路
による微小流量供給が定流量で行われる。
On the other hand, through the communication passage 31 , the diaphragm valve chamber
Fluid that flows into 29, the spring 55 from the second valve seat 54
The diaphragm valve 28 is separated by
From the gap between the second valve seat 54 and the diaphragm valve 28, the first valve seat
55 passes through the main valve body 42 through the gap between the
To the mouth, the pressure is reduced in the communication passage 31 and the diaphragm valve chamber
29, the second valve seat 54 and the diaphragm valve 2
When passing through the gap with 8, it is decompressed again and flows out to the outlet side
You. At this time, the amount of fluid flowing into the diaphragm valve chamber 29
Rather than passing through the gap between the sub-valve seat 44 and the diaphragm valve 28.
When the amount flowing out decreases, the fluid pressure in the diaphragm chamber 29 increases.
The diaphragm valve 28 is moved upward in the valve opening direction. So
As a result, the gap between the second valve seat 54 and the diaphragm valve 28
Wider, outflow equal to the amount of inflow into diaphragm valve chamber 29
Amount. Conversely, if the outflow increases, the diaphragm valve
The fluid pressure in the chamber 29 decreases, and the diaphragm valve chamber 29
It moves in the valve closing direction against the spring 55, and the outflow decreases.
You. Thus, the communication passage 31, the passage in the main valve body 42
Is supplied at a constant flow rate.

【0022】つぎに、電磁駆動部21の励磁電流を増や
してさらに弁棒24を後退させると、係合手段56が係
合し、弁棒24と共に主弁体42が同方向にスライド
し、主弁座41から主弁体42が離れ、流路11の主流
路が開放されて大流量が流れる。その結果、電流量に比
例して弁棒24のスライド量が決定されて主弁座41と
主弁体42の間隙が調整され、それに対応する流量が流
れる。このとき、ダイヤフラム17には流体圧が印加
し、その印加圧に対応して弁棒24を介し主弁体42を
動かし、主弁座41との間隙を調整して下流側の流体圧
が一定になるように制御する。このようにして、流量調
整される圧力比例制御弁の働きがなされる。
Next , when the exciting current of the electromagnetic drive section 21 is increased and the valve stem 24 is further retracted, the engaging means 56 is engaged, and the main valve body 42 slides together with the valve stem 24 in the same direction.
Then, the main valve body 42 is separated from the main valve seat 41, and the main flow
The road is opened and a large flow flows. As a result, the sliding amount of the valve stem 24 is determined in proportion to the amount of current, and the main valve seat 41 is
The gap of the main valve body 42 is adjusted, and the flow rate corresponding to the gap is adjusted.
It is. At this time, fluid pressure is applied to the diaphragm 17.
Then, the main valve body 42 is moved through the valve rod 24 in accordance with the applied pressure.
To adjust the gap with the main valve seat 41 to adjust the fluid pressure on the downstream side.
Is controlled to be constant. In this way, the flow control
The function of the pressure proportional control valve to be adjusted is performed.

【0023】[0023]

【実施例】以下、この考案に係る実施例を添付図面に基
づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to the accompanying drawings.

【0024】(第1実施例) 図1に示すように流路11中に直列で同軸上に2つの弁
座12、13を設けると共に、この両弁座12、13に
対向するよう流路11中に組み込んだ弁体14、15に
は、バネ16、16により閉弁方向の押圧力が付与され
ている。
(First Embodiment) As shown in FIG. 1, two valve seats 12 and 13 are provided in series and coaxially in a flow passage 11, and the flow passage 11 is opposed to the two valve seats 12 and 13. The valve bodies 14 and 15 incorporated therein are provided with a pressing force in the valve closing direction by springs 16 and 16 .

【0025】17は中空室18内を二分するダイヤフラ
ムで、上記中空室18のダイヤフラム17の片面側は、
通路19を介し流路11の下流側弁座13の下流部分に
連通させてあり、もう片面側は、通孔20を介し大気に
連通させてある。
Reference numeral 17 denotes a diaphragm that divides the inside of the hollow chamber 18 into two parts.
The downstream side of the downstream side valve seat 13 of the flow path 11 is communicated with the downstream side of the flow path 11 through the passage 19, and the other side is communicated with the atmosphere through the through hole 20.

【0026】21は通電により下流側弁座13の方向に
ダイヤフラム17を動かす電磁駆動部である。この電磁
駆動部21は、コイル22への通電により上記コイル2
2の回りに磁路を形成して、ダイヤフラム17の中心に
気密状に先端を接続したプランジヤ23をスライドさせ
るように構成してあり、通電電流量によってプランジャ
23のスライド量を所要量に可変し得る。
[0026] 21 Ru electromagnetic drive unit der to move the diaphragm 17 in the direction of the downstream side valve seat 13 by energization. Electromagnetic drive unit 21 of this is the coil 2 by energizing the coil 22
2 around to form a magnetic path, Yes constitutes a plunger 23 connected to the tip in an airtight manner in the center of the diaphragm 17 so as to slide the plunger by energizing current amount
23 slide amounts can be changed to required amounts.

【0027】24は通電によりスライドするプランジヤ
23の動きを弁体14、15に伝える弁棒である。
Reference numeral 24 denotes a valve stem for transmitting the movement of the plunger 23 slid by energization to the valve elements 14 and 15.

【0028】上流側の弁体14は、弁棒24と一体にス
ライドするよう接続され、下流側の弁体15は、弁棒2
4に対しフリーになるよう軸芯の透孔に上記弁棒24を
遊嵌状に貫通させてある。
The upstream valve element 14 is connected so as to slide integrally with the valve stem 24, and the downstream valve element 15 is connected to the valve stem 2.
The valve stem 24 is loosely inserted through the through hole of the shaft so that the valve stem 4 is free.

【0029】また、上記下流側の弁体15は、上流側の
弁体14の開弁後遅れて開弁するよう弁棒24に係合部
25が設けてある。この係合部25は、図示の場合、弁
棒24の外周にピンを突出させて、このピンが下流側弁
体15の先端面中央部に当接すると弁棒24と共に下流
側弁体15をスライドさせるようになっている。
Further, the valve body 15 of the downstream, Oh Ru engaging portion 25 to the valve stem 24 so that a delay after opening of the upstream side of the valve body 14 is opened is provided. The engaging portion of this 25, in the illustrated case, is protruded pins on the outer periphery of the valve stem 24, the downstream-side valve body 15 with the valve rod 24 when the pin abuts against the distal end face central portion of the downstream-side valve body 15 To slide.

【0030】26は流路11の弁座12、13間と下流
側の弁座13を迂回して出口に通ずるバイパス通路で、
このバイパス通路26内には、弁座27とそれに対向す
るダイヤフラム弁28とでダイヤフラム弁室29が形成
されている。そのダイヤフラム弁28は、バネ30によ
り開弁方向の押圧力が付勢されている。
Reference numeral 26 denotes a bypass passage which bypasses between the valve seats 12 and 13 of the flow path 11 and the valve seat 13 on the downstream side and leads to the outlet.
This bypass passage 26, that is formed diaphragm valve chamber 29 between the diaphragm valve 28 facing thereto with a valve seat 27. As a diaphragm valve 28, the pressing force in the valve opening direction is urged by a spring 30.

【0031】ダイヤフラム弁室29には、バイパス通路
26の流体が連通路31を経て流入させるようになって
る。その連通路31は、図1に示すように弁座27の
外周外側に位置するようダイヤフラム弁28に設ける場
合と、図2に示すようにバイパス通路26とダイヤフラ
ム弁室29を連通する通路32に設ける場合とがあり
連通路31の断面積は、所要の微小流量となるように
宜設定する。
[0031] the diaphragm valve chamber 29, the fluid in the bypass passage 26 is Ru have <br/> adapted to flow into through the communication passage 31. Communication passage 31 of that is, the passage 32 communicating with the case, the bypass passage 26 and the diaphragm valve chamber 29 as shown in FIG. 2 provided in the diaphragm valve 28 so as to be positioned on the outer periphery outside the valve seat 27 as shown in FIG. 1 In some cases ,
The cross-sectional area of the communication passage 31 is appropriately set so as to have a required minute flow rate .

【0032】この実施例は以上の構成であり、電磁駆動
部21に通電しないときは、バネ16により、上流側の
弁座12に上流側の弁体14を、下流側の弁座13に下
流側の弁体15をそれぞれ圧接して、流路11が閉じて
いる。
In this embodiment, when the electromagnetic drive unit 21 is not energized, the spring 16 causes the upstream valve body 14 to be connected to the upstream valve seat 12 and the downstream valve body 13 to be connected to the downstream valve seat 13 by the spring 16. The side valve bodies 15 are pressed against each other, and the flow path 11 is closed.

【0033】この状態から、電動部21に通電して
励磁電流を増やしていくと、プランジヤ23が図1の下
方にスライドし、そのスライドをダイヤフラム17を
弁棒24に伝えて上記弁棒24を後退させ、まず、
流側の弁座12から上流側の弁体14が離れる。このと
き、係合部25は下流側の弁体15に係合していないた
め、弁棒24に対しフリーの下流側の弁体15は、バネ
16により下流側の弁座13に圧接され流路11は閉じ
られている。
[0033] From this state, when gradually increasing the <br/> exciting current by energizing the electric magnetic drive kinematic unit 21, the lower plunger 23 of FIG. 1
And slide it through the diaphragm 17
The valve stem 24 is retracted by transmitting the same to the valve stem 24, and first, the upstream valve element 14 is separated from the upstream valve seat 12 . This and
At this time, the engaging portion 25 is not engaged with the valve body 15 on the downstream side.
Therefore, the valve element 15 on the downstream side that is free with respect to the valve stem 24 is provided with a spring.
The pressure passage 16 is pressed against the valve seat 13 on the downstream side, and the flow path 11 is closed.
Have been.

【0034】上流側の弁座12と弁体14が離れたこと
により、その間隙を通過した流体は、バイパス通路26
をへて出口に向うが、連通路31で減圧されてダイヤフ
ラム弁室29に入り、さらに、弁座27とダイヤフラム
弁28との間隙を通るときにまた減圧されて出口側に流
出する。このとき、ダイヤフラム弁室29への流体の流
入量よりも、弁座27とダイヤフラム弁28の間隙を通
り流出する量が減ると 、ダイヤフラム弁室29の流体圧
が上昇して、ダイヤフラム弁28を開弁方向に移動させ
る。その結果、弁座27とダイヤフラム弁28との間隙
が広くなり、ダイヤフラム弁室29への流入量と同じ流
出量になる。逆に、流出量が多くなれば、ダイヤフラム
弁室29の流体圧が下降して、ダイヤフラム弁28はバ
ネ30に抗して閉弁方向に移動し、流出量は減少する。
このようにして、バイパス通路26による微小流量供給
が定流量で行われる。
The separation of the valve seat 12 and the valve body 14 on the upstream side
As a result, the fluid that has passed through the gap is
To the exit, but the pressure is reduced in the communication passage 31 and the diaphragm
After entering the ram valve chamber 29, the valve seat 27 and the diaphragm
When passing through the gap with the valve 28, the pressure is reduced again and flows to the outlet side.
Put out. At this time, the flow of the fluid to the diaphragm valve chamber 29
Rather than through the gap between the valve seat 27 and the diaphragm valve 28
When the amount flowing out decreases , the fluid pressure in the diaphragm valve chamber 29
Rises, and moves the diaphragm valve 28 in the valve opening direction.
You. As a result, the gap between the valve seat 27 and the diaphragm valve 28
And the same flow as the inflow into the diaphragm valve chamber 29
It comes out. Conversely, if the amount of spill increases, the diaphragm
The fluid pressure in the valve chamber 29 drops, and the diaphragm valve 28
It moves in the valve closing direction against the spring 30, and the outflow decreases.
Thus, the minute flow rate supply by the bypass passage 26
Is performed at a constant flow rate.

【0035】つぎに、電磁駆動部21の励磁電流を増や
してさらに弁棒24を後退させると係合部25が下流
側弁体15に係合し、弁棒24と共に下流側の弁体25
が同方向にスライドし、下流側の弁座13から下流側の
弁体15が離れ、流路11の主流路が開放されて大流量
が流れる。その結果、電流量に比例して弁棒24のスラ
イド量が決定されて弁座13と弁体15の間隙が調整さ
れ、それに対応する流量が流れる。このとき、ダイヤフ
ラム17には流体圧が印加し、その印加圧に対応して弁
棒24を介し弁体15を動かし、弁座13との間隙を調
整して下流側の流体圧が一定になるように制御する。こ
のようにして、流量調整される圧力比例制御弁の働きが
なされる。
Next, when the exciting current of the electromagnetic drive section 21 is increased and the valve stem 24 is further retracted , the engaging section 25 is moved downstream.
The downstream valve element 25 engages with the side valve element 15 and the valve rod 24.
Slides in the same direction, from the downstream valve seat 13 to the downstream side.
The valve element 15 is separated, the main flow path of the flow path 11 is opened, and a large flow rate is obtained.
Flows. As a result , the valve stem 24 slides in proportion to the amount of current.
The gap between the valve seat 13 and the valve body 15 is adjusted by determining the amount of id.
And the corresponding flow rate flows. At this time, the diaphragm
Fluid pressure is applied to the ram 17 and a valve is provided in accordance with the applied pressure.
The valve body 15 is moved via the rod 24 to adjust the gap with the valve seat 13.
And control so that the fluid pressure on the downstream side becomes constant. This
The function of the pressure proportional control valve that regulates the flow rate is
Done.

【0036】(第2実施例)この実施例は、 図5に示すように、上記のバイパス通路
26を主弁体42内に形成したものであり、上述と同一
符号は同一物を示して作用も同じのため、その説明を省
略し、まず、流路11中に主弁座41を設けると共に、
この主弁座41に対向するよう流路11中に組み込んだ
主弁体42には、バネ43により閉弁方向の押圧力が付
与されている。
[0036] (Second Embodiment) This embodiment, as shown in FIG. 5, the above bypass passage
26 is formed in the main valve body 42, and is the same as that described above.
Since the symbols indicate the same things and have the same function, the description thereof is omitted.
First, while providing the main valve seat 41 in the flow path 11,
A pressing force in a valve closing direction is applied by a spring 43 to a main valve body 42 incorporated in the flow path 11 so as to face the main valve seat 41.

【0037】その主弁体42内には、主弁体42の主弁
座41内に位置する部分に連通させた副弁座44と、バ
ネ45の押圧力により副弁座44に押し付けられるダイ
ヤフラム弁28とでダイヤフラム弁室29が設けられて
いる。
[0037] Its main valve body 42, a sub valve seat 44 which communicates with the portion located within the main valve seat 41 of the main valve body 42, that is pressed against the sub valve seat 44 by the pressing force of the spring 45 A diaphragm valve chamber 29 is provided with the diaphragm valve 28.

【0038】ダイヤフラム弁室29には入口側流体を流
入させる連通路31が形成されてい る。この連通路31
は、図5に示すように主弁体42の外周からダイヤフラ
ム弁室29に連通するよう設ける場合と、図6に示すよ
うに副弁座44の外周外側に位置するようダイヤフラム
弁28に設ける場合とがあり、連通路31の断面積は、
所要の微小流量となるように適宜設定する。
The inlet fluid flows through the diaphragm valve chamber 29.
Communication passage 31 for input is that formed. This communication passage 31
Are provided so as to communicate from the outer periphery of the main valve body 42 to the diaphragm valve chamber 29 as shown in FIG. 5 and to the diaphragm valve 28 which is located outside the outer periphery of the sub-valve seat 44 as shown in FIG. And the cross-sectional area of the communication passage 31 is
It is set appropriately so as to have a required minute flow rate .

【0039】なお、主弁体42と弁棒24との間は、
弁座44の中心に弁棒24を貫通させて、ダイヤフラム
弁28に上記弁棒24の端面を当接し、ダイヤフラム弁
28の開弁後遅れて主弁体42が開弁するよう弁棒24
に係合部25が設けてある。
In addition, between the main valve element 42 and the valve stem 24 , the valve stem 24 is made to penetrate through the center of the sub-valve seat 44, and the end face of the valve stem 24 is brought into contact with the diaphragm valve 28. The valve stem 24 is opened so that the main valve body 42 opens after a short time.
Is provided with an engaging portion 25.

【0040】この実施例は以上の構成であり、電磁駆動
部21に通電しないときは、バネ43により主弁座41
に主弁体42を、バネ45により副弁座44にダイヤフ
ラム弁28をそれぞれ圧接して、流路11が閉じてい
る。
This embodiment has the above configuration. When the electromagnetic drive unit 21 is not energized, the main valve seat 41 is
The main valve body 42 is pressed against the sub-valve seat 44 by a spring 45, and the diaphragm valve 28 is pressed against the sub-valve seat 44, whereby the flow path 11 is closed.

【0041】この状態から、電磁駆動部21に通電して
励磁電流を増やしていくと、プランジャ23が図5の下
方にスライドし、そのスライドをダイヤフラム17を
弁棒24に伝えて上記弁棒24を後退させ、副弁座4
4からダイヤフラム弁28が離れる。このとき、係合部
25は主弁体42に係合していないため、弁棒24に対
しフリーの主弁体42は、主弁座41に圧接して、流路
11は閉じられている。
In this state, when the electromagnetic drive unit 21 is energized to increase the exciting current, the plunger 23 moves downward as shown in FIG.
And slide it, through the diaphragm 17 the slide of its
To convey to the valve stem 24 is retracted the valve rod 24, the auxiliary valve seat 4
4 diaphragm valve 28 is Ru away from. At this time,
25 is not engaged with the main valve body 42,
The free main valve body 42 is pressed against the main valve seat 41 to
11 is closed.

【0042】一方、連通路31をへてダイヤフラム弁室
29に流入している流体は、副弁座44からダイヤフラ
ム弁28が離れたことにより、副弁座44と弁棒24と
の間隙から主弁体42内を通って出口に向うが、連通路
31で減圧されてダイヤフラム弁室29に入り、さら
に、副弁座44とダイヤフラム弁28との間隙を通ると
きにまた減圧されて出口側に流出する。このとき、ダイ
ヤフラム弁室29への流体の流入量よりも、副弁座44
とダイヤフラム弁28の間隙を通り流出する量が減る
と、ダイヤフラム室29の流体圧が上昇してダイヤフラ
ム弁28を開弁方向に移動させる。その結果、副弁座4
4とダイヤフラム弁28との間隙が広くなり、ダイヤフ
ラム弁室29への流入量と同じ流出量になる。逆に、流
出量が多くな れば、ダイヤフラム弁室29の流体圧が下
降して、ダイヤフラム弁室29は、閉弁方向に移動し、
流出量は減少する。このようにして、連通路31、主弁
体42内の通路による微小流量供給が定流量で行われ
る。
On the other hand, through the communication passage 31, the diaphragm valve chamber
Fluid flowing into the fuel tank 29 flows from the sub-valve seat 44 to the diaphragm.
When the valve 28 is released, the auxiliary valve seat 44 and the valve stem 24
From the gap through the main valve body 42 to the outlet.
The pressure is reduced at 31 and enters the diaphragm valve chamber 29.
Then, when passing through the gap between the sub-valve seat 44 and the diaphragm valve 28,
Then, the pressure is reduced again and flows out to the outlet side. At this time, die
The auxiliary valve seat 44 is smaller than the amount of fluid flowing into the diaphragm valve chamber 29.
And the amount flowing out through the gap between the diaphragm valve 28 is reduced.
When the fluid pressure in the diaphragm chamber 29 rises, the diaphragm
The valve 28 is moved in the valve opening direction. As a result, sub valve seat 4
4, the gap between the diaphragm valve 28 and the diaphragm valve 28 is increased.
The outflow amount is the same as the inflow amount into the ram valve chamber 29. Conversely, flow
Volume number of lever, the fluid pressure of the diaphragm valve chamber 29 is below
Descends, the diaphragm valve chamber 29 moves in the valve closing direction,
Runoff is reduced. Thus, the communication passage 31, the main valve
The minute flow rate is supplied at a constant flow rate by the passage in the body 42.
You.

【0043】つぎに、電磁駆動部21の励磁電流を増や
してさらに弁棒24を後退させると係合部25が主弁
体42に係合し、弁棒24と共に主弁体42が同方向に
スライドし、主弁座41から主弁体42が離れ、流路1
1の主流路が開放されて大流量が流れる。この状態で
は、第1の実施例と同様に、電流量に比例して弁棒24
のスライド量が決定されて主弁座41と主弁体42の間
隙が調整され、それに対応する流量が流れ、また、ダイ
ヤフラム17が印加圧に対応して主弁体42と主弁座4
1との間隙を調整して下流側の流体圧が一定になるよう
に制御して、流量調整される圧力比例制御弁の働きがな
される。
Next, when retracting the further valve rod 24 by increasing the excitation current of the electromagnetic drive portion 21, the engaging portion 25 is the main valve
The main valve body 42 is engaged with the body 42 in the same direction as the valve rod 24.
The main valve element 42 slides away from the main valve seat 41,
One main flow path is opened, and a large flow rate flows. In this state
Is the valve stem 24 in proportion to the amount of current, as in the first embodiment.
Between the main valve seat 41 and the main valve body 42 is determined.
The gap is adjusted, the corresponding flow rate flows, and the die
The main valve body 42 and the main valve seat 4 correspond to the applied pressure.
1 so that the downstream fluid pressure is constant
And the pressure proportional control valve that regulates the flow rate does not work.
Is done.

【0044】(第3実施例)この実施例も、 図9に示すように、上記バイパス通路2
6を主弁体42内に形成したものであり、上述と同一符
号は同一物を示して作用も同じのため、その説明を省略
し、流路11に組み込んだ主弁体42内の上部に主弁
座41内に位置する部分に連通させた第1弁座51と、
バネ52により第1弁座51に押し付けられる副弁体5
とが設けられ、主弁体42内の下部には、第2弁座5
と、その第2弁座54とバネ55により開弁方向に押
圧力を付与したダイヤフラム弁28との間の主弁体42
内に形成したダイヤフラム弁室29とが設けられてい
る。
[0044] (Third Embodiment) This embodiment is also as shown in FIG. 9, the bypass passage 2
6 is formed in the main valve body 42,
The symbols indicate the same thing and have the same function, so the explanation is omitted.
A first valve seat 51 communicated with a portion located in the main valve seat 41 at an upper portion inside the main valve body 42 incorporated in the flow path 11 ;
Sub-valve element 5 pressed against first valve seat 51 by spring 52
3 is provided in the lower portion inside the main valve body 42.
4 and the main valve element 42 between the diaphragm valve 28 to which a pressing force is applied in the valve opening direction by the second valve seat 54 and the spring 55.
A diaphragm valve chamber 29 formed therein is provided.

【0045】ダイヤフラム室29には同じく連通路31
から流体が流入するようになっている。その連通路31
は、図9に示すように主弁体42の外周からダイヤフラ
ム弁室29に連通するよう設ける場合と、図10に示す
ように第2弁座54の外周外側に位置するようダイヤフ
ラム弁28に設ける場合とがあり、連通路31の断面積
は、所要の微小流量となるように適宜設定する。
The diaphragm chamber 29 has a communication passage 31 in the same manner.
The fluid flows in from. The communication passage 31
Is provided so as to communicate from the outer periphery of the main valve body 42 to the diaphragm valve chamber 29 as shown in FIG. 9 and to the diaphragm valve 28 so as to be located outside the outer periphery of the second valve seat 54 as shown in FIG. In some cases, the cross-sectional area of the communication passage 31 is appropriately set so as to have a required minute flow rate .

【0046】また、主弁体42は、係合手段56により
副弁体53の開弁後遅れて開弁するようになっている。
の係合手段56は、第1弁座51の中心に貫通させた
弁棒24の端に副弁体53を固定し、弁棒24と共に後
退する副弁体53が第2弁座54の出口端に当接して主
弁体42を押し戻すようになっている。
[0046] Further, the main valve body 42 is delayed after the opening of the auxiliary valve body 53 that have adapted to open by the engagement means 56.
Engaging means 56 of that is, the sub-valve body 53 to the end of the valve stem 24 to penetrate the center of the first valve seat 51 to secure the sub-valve body 53 moves backward together with the valve rod 24 is in the second valve seat 54 The main valve body 42 is pushed back by contacting the outlet end.

【0047】図中、57は第2弁座54の出口用通路で
ある。
In the drawing, reference numeral 57 denotes an outlet passage of the second valve seat 54.

【0048】この実施例は、以上の構成であり、電磁駆
動部21に通電しないときは、バネ43により主弁座4
1に主弁体42を、バネ52により副弁座51に副弁体
53をそれぞれ圧接して、流路11が閉じている。
This embodiment has the above configuration. When the electromagnetic drive unit 21 is not energized, the main valve seat 4 is
1, the main valve body 42 is pressed against the sub-valve seat 51 by the spring 52, and the flow path 11 is closed.

【0049】この状態から、電磁駆動部21に通電して
励磁電流を増やしていくと、ダイヤフラム17とともに
弁棒24が後退し、まず、第1弁座51から副弁体53
が離れる。このとき、係合部25は係合していないた
め、弁棒24に対しフリーの主弁体42は、主弁座41
に圧接して、流路11は閉じられている。
[0049] From this state, when gradually increasing the <br/> exciting current by energizing the electromagnetic drive unit 21, with the diaphragm 17
The valve stem 24 retreats, and first, the first valve seat 51 moves the sub-valve 53
Leaves. At this time, the engaging portion 25 was not engaged.
Therefore, the main valve element 42 that is free with respect to the valve stem 24 is
, And the flow path 11 is closed.

【0050】一方、連通路31をへてダイヤフラム弁室
29に流入している流体は、第2弁座54からバネ55
によりダイヤフラム弁28が離れたことにより、第2弁
座54とダイヤフラム弁28との間隙から第1弁座55
と副弁体53の間隙を介し主弁体42内を通って出口に
向うが、連通路31で減圧されてダイヤフラム弁室29
に入り、さらに、第2弁座54とダイヤフラム弁28と
の間隙を通るときにまた減圧されて出口側に流出する。
このとき、ダイヤフラム弁室29への流体の流入量より
も、副弁座44とダイヤフラム弁28の間隙を通り流出
する量が減ると、ダイヤフラム室29の流体圧が上昇し
てダイヤフラム弁28を開弁方向に移動させる。その結
果、第2弁座54とダイヤフラム弁28との間隙が広く
なり、ダイヤフラム弁室29への流入量と同じ流出量に
なる。逆に、流出量が多くなれば、ダイヤフラム弁室2
9の流体圧が下降して、ダイヤフラム弁28は、バネ5
5に抗して閉弁方向に移動し、流出量は減少する。この
ようにして、連通路31、主弁体42内の通路による微
小流量供給が定流量で行われる。
On the other hand, through the communication passage 31, the diaphragm valve chamber
The fluid flowing into the valve 29 is supplied from the second valve seat 54 to the spring 55
Release of the diaphragm valve 28, the second valve
From the gap between the seat 54 and the diaphragm valve 28, the first valve seat 55
To the outlet through the main valve body 42 through the gap between the
On the other hand, the pressure is reduced in the communication passage 31 and the diaphragm valve chamber 29
And the second valve seat 54 and the diaphragm valve 28
When passing through the gap, the pressure is reduced again and flows out to the outlet side.
At this time, based on the amount of fluid flowing into the diaphragm valve chamber 29,
Also flows out through the gap between the sub-valve seat 44 and the diaphragm valve 28
When the amount of the fluid decreases, the fluid pressure in the diaphragm chamber 29 increases.
To move the diaphragm valve 28 in the valve opening direction. The result
As a result, the gap between the second valve seat 54 and the diaphragm valve 28 is wide.
And the outflow amount is the same as the inflow amount into the diaphragm valve chamber 29.
Become. Conversely, if the outflow increases, the diaphragm valve chamber 2
9, the diaphragm valve 28 is turned on by the spring 5
5 moves in the valve closing direction, and the outflow decreases. this
In this way, the fineness of the communication passage 31 and the passage in the main valve body 42 is reduced.
The small flow rate supply is performed at a constant flow rate.

【0051】つぎに、電磁駆動部21の励磁電流を増や
してさらに弁棒24を後退させると係合手段56が係
合し、弁棒24と共に主弁体42が同方向にスライド
し、主弁座41から主弁体42が離れ、流路11の主流
路が開放されて大流量が流れる。この状態では、第1、
第2実施例と同様に、電流量に比例して弁棒24のスラ
イド量が決定されて主弁座41と主弁体42の間隙が調
整され、それに対応する流量が流れ、また、ダイヤフラ
ム17が印加圧に対応して主弁体42と主弁座41との
間隙を調整して下流側の流体圧が一定になるように制御
して、流量調整される圧力比例制御弁の働きがなされ
る。
Next, when the exciting current of the electromagnetic drive section 21 is increased and the valve stem 24 is further retracted , the engaging means 56 is engaged.
And the main valve body 42 slides in the same direction with the valve rod 24.
Then, the main valve body 42 is separated from the main valve seat 41, and the main flow
The road is opened and a large flow flows. In this state, the first,
As in the second embodiment, the valve stem 24 slides in proportion to the amount of current.
The id amount is determined and the gap between the main valve seat 41 and the main valve body 42 is adjusted.
And the corresponding flow rate flows, and the diaphragm
Of the main valve body 42 and the main valve seat 41 corresponding to the applied pressure.
Adjust the gap to control the downstream fluid pressure to be constant
The function of the pressure proportional control valve is
You.

【0052】なお、各実施例において、上述のように、
バイパス通路26(連通路31から主弁体42の通路)
を通る流体は、連通路31及びダイヤフラム弁28と弁
座27、44、54の間隙によって減圧され、その減圧
量を一定とすると、連通路31と前記間隙によってその
減圧量を担うこととなり、その度合は、弁座27…側の
通路に対する連通路31の大きさ(断面積の大きさ)に
よって決定される。断面積が小さい方が減圧効果は大き
く、弁座に対する弁の接離による減圧効果は、弁座内径
に対応するからである。因みに、その接離による減圧効
果は弁座内径が大きい方が小さい。
In each embodiment, as described above,
Bypass passage 26 (passage from communication passage 31 to main valve element 42)
Through the communication passage 31 and the diaphragm valve 28
The pressure is reduced by the gap between the seats 27, 44 and 54, and the pressure is reduced.
When the amount is constant, the communication passage 31 and the gap
It will be responsible for the amount of pressure reduction, and the degree of
The size of the communication passage 31 with respect to the passage (the size of the cross-sectional area)
Is determined. The smaller the cross-sectional area, the greater the decompression effect
In addition, the decompression effect due to the contact and separation of the valve with the valve seat
It is because it corresponds. Incidentally, the decompression effect due to the contact and separation
The result is smaller when the inner diameter of the valve seat is larger.

【0053】したがって、連通路31の内径を、図1
図2に示すように弁座27の内径より図5図6に示
すように副弁座44の内径より図9図10に示すよ
うに第2弁座54の内径よりも小さくすると、連通路3
1に対する前記間隙での圧力減少量小さくできるこ
となり、ダイヤフラム弁28の作動に基づくバイパス通
路26全体の圧力減少量も小さくなる。このため、バイ
パス通路26の減圧量を適宜に設定して制御できる必要
最低入口圧力を低くしても、ダイヤフラム弁28の作動
によって大きな減圧が生じない定流量制御を行うことが
でき、これにより、流体が都市ガスで入口圧力が50m
m水柱の低い圧力でも微小流量制御をすることができ
る。
[0053] Thus, the inner diameter of the communication passage 31, Figure 1,
Than the inner diameter of the valve seat 27 as shown in FIG. 2, FIG. 5, than the inner diameter of the auxiliary valve seat 44 as shown in FIG. 6, FIG. 9, when smaller than the inner diameter of the second valve seat 54 as shown in FIG. 10 , Communication passage 3
That it can reduce the pressure reduction amount in the gap for one
And the bypass passage based on the operation of the diaphragm valve 28
Pressure reduction amount of the entire road 26 that a small. For this reason,
Even if the required minimum inlet pressure that can be controlled by appropriately setting the pressure reduction amount of the path passage 26 is lowered , the operation of the diaphragm valve 28
Constant flow control that does not cause large pressure reduction
It is possible that the fluid is city gas and the inlet pressure is 50m
Micro flow rate control can be performed even at a low pressure of m water column.

【0054】また、都市ガスで入口圧力が50mm水柱
の場合、バイパス通路26全体の圧力減少量を50mm
水柱以下にする必要があるが、前記間隙での圧力減少量
が小さいものであると、その間隙と連通路31の両圧力
減少量の和が50mm水柱以下になればよいため、連通
31で圧力減少量を比較的大きくでき、その圧力減少
量が大きくなれば、ダイヤフラム弁28前後の差圧が大
きくなり、ダイヤフラム弁28の動きが機敏となって、
安定かつ精度の高い制御ができる。
In the case of city gas having an inlet pressure of 50 mm water column, the pressure reduction amount of the entire bypass passage 26 is reduced by 50 mm.
Water column has to be below, the pressure reduction in the gap
Is small, the pressure in both the gap and the communication passage 31
Since it is sufficient that the sum of the reduction amounts is not more than 50 mm water column , the pressure reduction amount can be relatively large in the communication passage 31 and the pressure reduction
The greater the amount, the differential pressure before and after the diaphragm valve 28 is increased, and the movement of the diaphragm valve 28 is a quick,
Stable and highly accurate control is possible.

【0055】一方、連通路31の内径を、図3図4に
示すように弁座27の内径より図7図8に示すよう
に副弁座44の内径より図11図12に示すように
第2弁座54の内径よりも大きくすると、連通路31に
対する前記間隙での圧力減少量が大きくなるが、流体
例えば水道水で入口圧が2〜4kg/cm2の比較的高い
圧力の場合は、微小流量においては、入口圧に対する圧
力減少量も小さく、圧力減少があまり問題にならない。
したがって、弁座27…内径を小さくすると、ダイヤフ
ラム弁28の動きによる前記間隙の流量変化が小さくな
ため、ダイヤフラム弁28の変化に応じて流量が大き
く変化せず、微小流量の安定した制御ができる。
On the other hand, the inner diameter of the communication passage 31, Figure 3, than the inner diameter of the valve seat 27 as shown in FIG. 4, FIG. 7, than the inner diameter of the auxiliary valve seat 44 as shown in FIG. 8, 11, 12 If greater than the inner diameter of the second valve seat 54 as shown in, the communication passage 31
On the other hand, when the pressure of the fluid is relatively high , for example, tap water and the inlet pressure is 2 to 4 kg / cm 2 , the pressure decreases with respect to the inlet pressure at a small flow rate.
Force reduction amount is small, pressure reduction is not as much of a problem.
Therefore, reducing the valve seat 27 ... inner diameter, the flow rate change in the gap due to the movement of the diaphragm valve 28 is reduced, the flow rate is large in accordance with a change of the diaphragm valve 28
Stable control of minute flow rate without change .

【0056】[0056]

【効果】の考案は、以上のように構成し、一台の定流
量弁付圧力比例制御弁によって小流量から大流量を制御
できるようにしたので、電磁弁、ガバナー、電磁弁やオ
リフィス付のバイパス通路を設ける必要もなく、流量制
御装置の小型化を図ることができ、かつコストを低減す
ることもできる。
[Effect] conceived of this is, configured as described above, control the large flow rate from a single constant flow valve with pressure proportional control valve therefore small flow rate
Since the possible way, solenoid valve, governor, there is no need to Ru a bypass passage with an electromagnetic valve or an orifice, flow system
It is possible to reduce the size of the control device, and can also reduce costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この考案に係る第1実施例の縦断正面図FIG. 1 is a vertical front view of a first embodiment according to the present invention.

【図2】同実施例における連通路の他の実施例の縦断正
面図
FIG. 2 is a longitudinal sectional front view of another embodiment of the communication passage in the embodiment.

【図3】同実施例の連通路の内径を弁座の内径よりも大
きくした縦断正面図
FIG. 3 is a longitudinal sectional front view of the embodiment in which the inner diameter of the communication passage is larger than the inner diameter of the valve seat;

【図4】連通孔の他の実施例の縦断正面図Figure 4 is a longitudinal front view of another embodiment of the communication holes

【図5】第2実施例の縦断正面図FIG. 5 is a longitudinal sectional front view of the second embodiment.

【図6】同実施例における連通路の他の実施例の縦断正
面図
FIG. 6 is a longitudinal sectional front view of another embodiment of the communication passage in the embodiment.

【図7】実施例の連通路の内径を副弁座の内径よりも
大きくした縦断正面図
FIG. 7 is a longitudinal sectional front view of the embodiment in which the inner diameter of the communication passage is larger than the inner diameter of the sub-valve seat;

【図8】同連通孔の他の実施例の縦断正面図FIG. 8 is a longitudinal sectional front view of another embodiment of the communication hole.

【図9】第3実施例の縦断正面図FIG. 9 is a longitudinal sectional front view of the third embodiment.

【図10】同実施例における連通路の他の実施例の縦断
正面図
FIG. 10 is a longitudinal sectional front view of another embodiment of the communication passage in the embodiment.

【図11】実施例の連通路の内径を第2弁座の内径よ
りも大きくした縦断正面図
FIG. 11 is a longitudinal sectional front view of the embodiment in which the inner diameter of the communication passage is larger than the inner diameter of the second valve seat.

【図12】同連通孔の他の実施例の縦断正面図FIG. 12 is a longitudinal sectional front view of another embodiment of the communication hole.

【図13】従来の制御装置の回路図FIG. 13 is a circuit diagram of a conventional control device.

【図14】小孔付電磁流量制御弁の縦断拡大正面図FIG. 14 is a longitudinal enlarged front view of the electromagnetic flow control valve with small holes.

【図15】従来の制御装置の回路図FIG. 15 is a circuit diagram of a conventional control device.

【符号の説明】[Explanation of symbols]

11 流路 12、13 弁座 14、15 弁体 16、30、43、45、52、55 バネ 17 ダイヤフラム 18 中空室 19 通路 20 通孔 21 電磁駆動部 22 コイル 23 プランジャ 24 弁棒 25 係合部 26 バイパス通路 27 弁座 28 ダイヤフラム弁 29 ダイヤフラム弁室 31 連通路 41 主弁座 42 主弁体 44 副弁座 51 第1弁座 53 副弁体 54 第2弁座 56 係合手段 DESCRIPTION OF SYMBOLS 11 Flow path 12, 13 Valve seat 14, 15 Valve body 16, 30, 43, 45, 52, 55 Spring 17 Diaphragm 18 Hollow chamber 19 Passage 20 Through hole 21 Electromagnetic drive part 22 Coil 23 Plunger 24 Valve rod 25 Engagement part 26 bypass passage 27 valve seat 28 diaphragm valve 29 diaphragm valve chamber 31 communication passage 41 main valve seat 42 main valve body 44 sub-valve seat 51 first valve seat 53 sub-valve 54 second valve seat 56 engaging means

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 流路11中に直列で同軸上に設けた2つ
の弁座12、13と、この弁座12、13の中心に貫
通させた弁棒24と、上記弁座12、13にそれぞれ
対向させてバネ16、16により閉弁方向に押圧力を付
与すると共に、上流側14は上記弁棒24と一体にスラ
イドし、下流側15は上記弁棒24に対しフリーにスラ
イドするよう設けた弁体14、15と、上記弁棒24
上流側の弁体14の開弁後遅れて下流側の弁体15に係
合して開弁するよう設けた係合部25と、上記下流側弁
座13の下流流路11に設けたその圧力が印加されるダ
イヤフラム17と、通電により開弁方向に上記ダイヤフ
ラム17を介し弁棒24所要量可変にスライドさせる
よう設けた電磁駆動部21と、上記上流側の弁座12
通過後下流側の弁座13を迂回して上記流路11の出口
側に微少流量を流すよう設けたバイパス通路26と、こ
のバイパス通路26設けた弁座27とそれに対向する
ダイヤフラム弁28の間で形成したダイヤフラム弁室
29と、このダイヤフラム弁28を開弁方向に押圧する
バネ30と、バイパス通路26に設けて上流側の弁座1
2を通った流体を前記ダイヤフラム弁室29に流入させ
る連通路31と、から成る定流量弁付圧力比例制御弁。
1. A two valve seats 12 and 13 provided coaxially in series in the flow path 11, a valve rod 24 which is passed through the center of both valve seats 12 and 13, the both valve seats 12, 13 and a spring 16, 16 to apply a pressing force in the valve closing direction by springs 16 , while the upstream side 14 slides integrally with the valve rod 24, and the downstream side 15 moves against the valve rod 24. Valve elements 14 and 15 provided so as to slide freely, and engagement provided with the valve rod 24 so as to engage with the valve element 15 on the downstream side with a delay after opening of the valve element 14 on the upstream side and open the valve. Part 25 and the downstream valve
A pressure sensor provided in the downstream flow path 11 of the seat 13
And Iyafuramu 17, an electromagnetic driving portion 21 provided so as to slide in the required amount varying the Daiyafu <br/> ram 17 through valve stem 24 in the valve opening direction when energized, downstream after passing through the valve seat 12 of the upstream-side between the bypass passage 26 provided so as to bypass the side of the valve seat 13 passes a small amount of flow to the outlet side of the flow path 11, the diaphragm valve 28 facing the valve seat 27 provided in the bypass passage 26 therewith Diaphragm valve chamber formed
29, a spring 30 for pressing the diaphragm valve 28 in the opening direction, is provided in the bypass passage 26 upstream of the valve seat 1
A pressure proportional control valve with a constant flow rate valve, comprising: a communication passage 31 for allowing the fluid that has passed through 2 to flow into the diaphragm valve chamber 29 .
【請求項2】 流路11中に設けた主弁座41と、この
主弁座41に対向させてバネ43により閉弁方向に押圧
力を付与して設けた主弁体42と、上記主弁座41下流
の流体圧力を受けて応動するよう設けたダイヤフラム
と、このダイヤフラムの動きに連動する上記主弁座4
1及び主弁体42を移動自在に貫通する弁棒24と、通
電により開弁方向に上記ダイヤフラム17を介し弁棒
所要量可変にスライドさせるよう設けた電磁駆動部
21と、上記主弁体42内にその主弁体42の上記主弁
41内に位置する部分に連通させて設けた副弁座44
と、その副弁座44とバネ45の押圧力により上記副弁
44に押し付けられるダイヤフラム弁28との間の
記主弁体42内に形成したダイヤフラム弁室29と、入
口側流体を上記ダイヤフラム弁室29に流入させるよう
上記主弁体42又はダイヤフラム弁28に設けた連通路
31と、上記副弁座44内に遊嵌させて上記ダイヤフラ
ム弁28に端を当接させてある上記弁棒24に前記ダイ
ヤフラム弁28の開弁後遅れて上記主弁体42に係合し
て開弁するよう設けた係合部25と、から成る定流量弁
付圧力比例制御弁。
2. A main valve seat 41 provided in the flow passage 11 , a main valve body 42 provided opposite to the main valve seat 41 by applying a pressing force in a valve closing direction by a spring 43, and Diaphragm 1 provided to respond in response to fluid pressure downstream of valve seat 41
7 and the main valve seat 4 interlocked with the movement of the diaphragm.
1 and the valve stem 24 movably penetrating the main valve body 42, and the valve stem 2 through the diaphragm 17 in the valve opening direction by energization.
Electromagnetic drive unit provided so that 4 can be slid in a required amount
21, the sub-valve seat 44 provided by communication with the portion positioned on the main valve seat 41 of the main valve body 42 to the main valve body 42
When a diaphragm valve chamber 29 formed on <br/> SL main valve body 42 between the diaphragm valve 28 is pressed against the said sub valve seat 44 by the pressing force of the sub-valve seat 44 and the spring 45, the inlet So that the side fluid flows into the diaphragm valve chamber 29.
A communication passage provided in the main valve body 42 or the diaphragm valve 28
31, engaged with the main valve body 42 with a delay after opening of the valve stem 24 to the diaphragm valve 28 which is loosely fitted in the sub-valve seat 44 are abutted against an end to the diaphragm valve 28 A pressure proportional control valve with a constant flow rate valve, comprising an engaging portion 25 provided to open the valve.
【請求項3】 流路11中に設けた主弁座41と、この
主弁座41に対向させてバネ52により閉弁方向に押圧
力を付与して設けた主弁体42と、上記主弁座41下流
流体圧力を受けて応動するよう設けたダイヤフラム
と、このダイヤフラム17の動きに連動する上記主弁
座41及び主弁体42を移動自在に貫通する弁棒24
と、通電により開弁方向に上記ダイヤフラム17を介し
弁棒24所要量可変にスライドさせるよう設けた電磁
駆動部21と、上記主弁体42内の上部にその主弁体
の上記主弁座41内に位置する部分に連通させて設け
た第1弁座51と、バネ52により上記第1弁座51
押し付けられるよう設けた上記弁棒24と一体にスライ
ドする副弁体53と、上記主弁体42内の下部に設けた
上記第1弁座51に連通する第2弁座54と、その第2
弁座54とバネ55により上記第2弁座54から離れる
方向の押圧力を付与したダイヤフラム弁28との間の主
弁体42内に形成したダイヤフラム弁室29と、入口側
流体を上記ダイヤフラム29に流入させるよう上記
主弁体42又はダイヤフラム弁28に設けた連通路31
と、前記副弁体53の開弁後遅れて副弁体53と一体と
なって主弁体42がスライドして開弁するよう副弁体5
3と主弁体42の間に設けた両弁体53、42の係合手
56から成る定流量弁付圧力比例制御弁。
3. The flow path11Main valve seat installed inside41And this
Main valve seat41Spring facing52To close the valve
Main valve body provided with force42When,Downstream of the main valve seat 41
ofDiaphragm provided to respond to fluid pressure1
7And this diaphragm17In the movementMain valve linked to above
Passes through the seat 41 and the main valve body 42 movably.Valve stem24
And the above diaphragm in the valve opening direction17Through
Valve stem24ToVariable requirementElectromagnetic provided to slide
Drive part21And the main valve body42At the top insideThatMain valve4
2Main valve seat above41Provided to communicate with the part located inside
The first valve seat51And the spring52The first valve seat51To
Provided to be pressedSlid together with the valve stem 24
DoSub-valve53And the main valve body42At the bottom insideEstablished
Communicates with the first valve seat 512nd valve seat54 and its second
With valve seat 54Spring55ByMove away from the second valve seat 54
DirectionalDiaphragm valve with pressing forceLord between 28
Formed in valve body 42Diaphragm valve chamber29When,Entrance side
Fluid through the diaphragmvalveRoom29Let it flow intothe above
Main valve body 42 or diaphragm valve 28Communication passage provided in31
And the sub-valve53Later with the secondary valve 53
Become the main valve42Slides and opens the valveSub-valve 5
3 and the main valve body 42Engagement hand of both valve bodies 53 and 42
Step56When,Pressure proportional control valve with a constant flow valve.
JP8299691U 1991-08-20 1991-10-14 Pressure proportional control valve with constant flow valve Expired - Fee Related JP2561306Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8299691U JP2561306Y2 (en) 1991-08-20 1991-10-14 Pressure proportional control valve with constant flow valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6569991 1991-08-20
JP3-65699 1991-08-20
JP8299691U JP2561306Y2 (en) 1991-08-20 1991-10-14 Pressure proportional control valve with constant flow valve

Publications (2)

Publication Number Publication Date
JPH0532888U JPH0532888U (en) 1993-04-30
JP2561306Y2 true JP2561306Y2 (en) 1998-01-28

Family

ID=26406837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8299691U Expired - Fee Related JP2561306Y2 (en) 1991-08-20 1991-10-14 Pressure proportional control valve with constant flow valve

Country Status (1)

Country Link
JP (1) JP2561306Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456493B2 (en) * 2010-01-13 2014-03-26 愛三工業株式会社 Solenoid valve and evaporative fuel processing apparatus equipped with the solenoid valve
JP6902923B2 (en) * 2017-05-11 2021-07-14 リンナイ株式会社 Gas combustion device

Also Published As

Publication number Publication date
JPH0532888U (en) 1993-04-30

Similar Documents

Publication Publication Date Title
US5735503A (en) Servo pressure regulator for a gas valve
JP3044563B2 (en) Proportional flow valve
JP3875959B2 (en) Flow control valve
KR940010028B1 (en) Method and apparatus for metering fuel
JP2561306Y2 (en) Pressure proportional control valve with constant flow valve
JP2004500522A (en) Proportional flow valve
US3601148A (en) Fluid-pressure-regulating valve device
JPH0473036B2 (en)
US3502101A (en) Thermostatic control device with a pressure regulated stepped opened diaphragm valve
JP2871568B2 (en) Solenoid valve with manual override
JPS59117970A (en) Gas valve
JPH0124951B2 (en)
EP0769645A1 (en) Proportional valve
JPS6055736B2 (en) Automatic gas amount adjustment device for gas water heaters
JP2003065633A (en) Solenoid valve integrated expansion valve
JPH0728529A (en) Flow rate control valve device
JPH06346981A (en) Pilot type solenoid valve
JPH0514757U (en) Pressure proportional control valve
JP2566435Y2 (en) Temperature compensation structure of pressure control valve
US20020027213A1 (en) Extended range proportional valve method
JPS5939249Y2 (en) double acting solenoid valve
JPH0740784Y2 (en) Valve for pressure control
JP3258700B2 (en) Hot water supply temperature adjustment device of hot water supply device
JPS626150B2 (en)
JPS5837383A (en) Flow rate contorol device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees