JP2004293367A - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve Download PDF

Info

Publication number
JP2004293367A
JP2004293367A JP2003084858A JP2003084858A JP2004293367A JP 2004293367 A JP2004293367 A JP 2004293367A JP 2003084858 A JP2003084858 A JP 2003084858A JP 2003084858 A JP2003084858 A JP 2003084858A JP 2004293367 A JP2004293367 A JP 2004293367A
Authority
JP
Japan
Prior art keywords
movable core
magnetic cylinder
valve
fuel injection
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084858A
Other languages
Japanese (ja)
Other versions
JP3901656B2 (en
Inventor
Kenichi Sato
健一 佐藤
Akira Akabane
明 赤羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2003084858A priority Critical patent/JP3901656B2/en
Publication of JP2004293367A publication Critical patent/JP2004293367A/en
Application granted granted Critical
Publication of JP3901656B2 publication Critical patent/JP3901656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive electromagnetic fuel injection valve capable of providing high abrasion resistance without forming a special hard layer on slide faces of a movable core and a magnetic cylinder element. <P>SOLUTION: This electromagnetic fuel injection valve comprises a valve housing 2 sequentially coupling a valve seat member 3, a magnetic cylinder element 4 and a non-magnetic cylinder element 6; a stationary core 5 communicated with the magnetic cylinder element 4; a valve element 18 accommodated in the valve seat member 3; and a movable core 12 connected with the valve element 18 and accommodated in the magnetic cylinder element 4 and the non-magnetic cylinder element 6. The movable core 12 is slidably journaled by the magnetic cylinder element 4, and a vertical hole 19 is formed to the movable core 12 as a fuel passage. The magnetic cylinder element 4 and the movable core 12 are made of a ferrite base high hardness magnetic material, and a plurality of horizontal holes 20b opened to slide faces of the magnetic cylinder element 4 and the movable core 12 are provided to the movable core 12 perpendicular to the vertical hole 19. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,主として内燃機関の燃料供給系に使用される電磁式燃料噴射弁に関し,特に,弁座部材,磁性筒体及び非磁性筒体を順次結合してなる弁ハウジングと,前記磁性筒体に連設される固定コアと,前記弁座部材に収容されて開閉動作する弁体と,この弁体に連結され,前記固定コアと対置されるように前記磁性筒体及び非磁性筒体内に収容される可動コアと,前記弁体を閉弁方向に付勢する弁ばねと,前記固定コアを囲繞して配置され,励磁により前記可動コアを固定コアに吸引させて前記弁体を開弁させるコイルとを備えてなり,前記可動コアを前記磁性筒体に摺動自在に支承させ,この可動コアに縦孔を燃料通路として形成した電磁式燃料噴射弁の改良に関する。
【0002】
【従来の技術】
かゝる電磁式燃料噴射弁は,例えば特許文献1に開示されるように,既に知られている。
【0003】
【特許文献1】
特開2002−81356号公報
【0004】
【発明が解決しようとする課題】
ところで,可動コアを磁性筒体に摺動自在に支承させることは,弁体の姿勢を安定させる上に有効であるが,一般に可動コア及び磁性筒体を構成する磁性材料は硬度が低く,しかも可動コア及び磁性筒体の摺動面には,コイルの励磁時,磁力によるサイドスラストが発生するので,耐摩耗性に問題がある。
【0005】
そこで,特許文献1に開示されたものでは,可動コア及び磁性筒体の摺動面に,ショットピーニングやクロムメッキ処理による硬化層を形成して,それらの耐摩耗性を確保している。
【0006】
しかしながら,上記のように摺動面に硬化層を形成することは,それによる製造工程の増加を招き,その上,硬化層の精度管理を必要とするため,電磁式燃料噴射弁の製造コストの低減を困難にしている。
【0007】
本発明は,かゝる事情に鑑みてなされたもので,可動コア及び磁性筒体の摺動面に特別な硬化層を形成せずとも,それらに高い耐摩耗性を付与することができる安価な電磁式燃料噴射弁を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために,本発明は,弁座部材,磁性筒体及び非磁性筒体を順次結合してなる弁ハウジングと,前記磁性筒体に連設される固定コアと,前記弁座部材に収容されて開閉動作する弁体と,この弁体に連結され,前記固定コアと対置されるように前記磁性筒体及び非磁性筒体内に収容される可動コアと,前記弁体を閉弁方向に付勢する弁ばねと,前記固定コアを囲繞して配置され,励磁により前記可動コアを固定コアに吸引させて前記弁体を開弁させるコイルとを備えてなり,前記可動コアを前記磁性筒体に摺動自在に支承させ,この可動コアに縦孔を燃料通路として形成した,電磁式燃料噴射弁において,前記磁性筒体及び可動コアをフェライト系の高硬度磁性材製とすると共に,該可動コアに,前記縦孔と直交して該磁性筒体及び可動コアの摺動面に開口する複数の横孔を設けたことを第1の特徴とする。
【0009】
この第1の特徴によれば,縦孔に流入した燃料を,複数本の第2横孔を通して可動コア及び磁性筒体の摺動面に供給して,それらの潤滑及び冷却を行うことができ,可動コア及び磁性筒体がフェライト系の高硬度磁性材製であることゝ相まって,可動コア及び磁性筒体の耐摩耗性と,弁体の応答性の両方を向上させることができる。
【0010】
しかもフェライト系の高硬度磁性材製の可動コア及び磁性筒体には,特別な耐摩耗処理を施す必要がないから,製造工数が削減され,コストの低減を図ることができる。
【0011】
また可動コアを横切る前記横孔は,コイルの励,消磁時,可動コアに渦電流が生ずることを抑え,渦電流に起因する可動コアの加熱を防ぐことができる。
【0012】
さらに前記縦孔及び横孔は,燃料通路の役目の他に,可動コアの贅肉を除去する役目をも果たし,可動コアの軽量化,延いては弁体の応答性の向上に寄与する。
【0013】
また本発明は,第1の特徴に加えて,前記可動コア及び磁性筒体の互いに対向する外周面及び内周面の一方に,それらの他方に摺動自在に嵌合する環状のガイド凸部を形成して,前記外周面及び内周面間に間隙を設け,前記横孔を前記ガイド凸部の摺動面に開口させたことを第2の特徴とする。
【0014】
この第2の特徴によれば,前記横孔を通過した燃料を,ガイド凸部の摺動面,並びにその前後の可動コア及び磁性筒体間の間隙に供給して,ガイド凸部の摺動面の潤滑は勿論,可動コア及び磁性筒体の冷却を効果的に行うことができ,可動コア及び磁性筒体の耐摩耗性,並びに弁体の応答性の向上を一層図ることができる。
【0015】
さらに本発明は,第2の特徴に加えて,前記横孔の直径を前記ガイド凸部の軸方向幅より大きく設定したことを第3の特徴とする。
【0016】
この第3の特徴によれば,前記横孔を通過した燃料を,ガイド凸部の摺動面,並びにその前後の可動コア及び磁性筒体間の間隙に同時に供給し得て,ガイド凸部の摺動面の潤滑,並びに可動コア及び磁性筒体の冷却を,より効果的に行うことができる。
【0017】
さらにまた本発明は,第1の特徴に加えて,前記高硬度磁性材が,Crを10〜20wt%,Siを0.1wt%,Al及びNiの少なくとも一方を1wt%以上,残部としてフェライト系Fe,Mn,C,P,Sを含み,且つAl及びNiの合計を1.15〜6wt%とした合金であることを第4の特徴とする。
【0018】
この第4の特徴によれば,上記合金を加工するのみで,磁気特性が良好で,しかも硬度が200〜400Hmvと高く,耐摩耗性に優れた可動コア及び磁性筒体を得ることができる。
【0019】
【発明の実施の形態】
本発明の実施の形態を,添付図面に示す本発明の実施例に基づいて以下に説明する。
【0020】
図1は本発明の第1実施例に係る内燃機関用電磁式燃料噴射弁の縦断面図,図2は図1の2部拡大図,図3は本発明の第2実施例を示す,図2に対応した断面図,図4は可動コア及び磁性筒体用合金におけるAl及びNiの合計含有率と硬度との関係を示す線図,図5は上記合金におけるAl及びNiの合計含有率と磁束密度及び体積抵抗との関係を示す線図である。
【0021】
先ず,図1及び図2に示す本発明の第1実施例の説明より始める。
【0022】
図1において,内燃機関用電磁式燃料噴射弁Iの弁ハウジング2は,前端に弁座8を有する円筒状の弁座部材3と,この弁座部材3の後端部に同軸に結合される磁性筒体4と,この磁性筒体4の後端に同軸に結合される非磁性筒体6とで構成される。
【0023】
弁座部材3は,その外周面から環状肩部3bを存して磁性筒体4側に突出する連結筒部3aを後端部に有し,その連結筒部3aの外周面に環状の連結溝38が形成されている。この連結筒部3aを磁性筒体4の前端部内周面に嵌合すると共に,磁性筒体4の前端面を環状肩部3bに当接させ,その後,磁性筒体4の周壁をカシメて前記連結溝38に全周に亙り食い込ませことにより,弁座部材3及び磁性筒体4は互いに同軸且つ液密に結合される。
【0024】
磁性筒体4及び非磁性筒体6は,対向端面を突き合わせて全周に亙りレーザビーム溶接により互いに同軸且つ液密に結合される。
【0025】
弁座部材3は,その前端面に開口する弁孔7と,この弁孔7の内端に連なる円錐状の弁座8と,この弁座8の大径部に連なる円筒状のガイド孔9とを備えている。弁座部材3の前端面には,上記弁孔7と連通する複数の燃料噴孔11を有する鋼板製のインジェクタプレート10が液密に全周溶接される。
【0026】
非磁性筒体6の内周面には,その後端側から固定コア5が液密に圧入固定される。その際,非磁性筒体6の前端部には,固定コア5と嵌合しない部分が残され,その部分から弁座部材3に至る弁ハウジング2内に弁組立体Vが収容される。
【0027】
弁組立体Vは,前記弁座8と協働して弁孔7を開閉する半球状の弁部16及びそれを支持する弁杆部17からなる弁体18と,弁杆部17に連結され,磁性筒体4から非磁性筒体6に跨がって,それらに挿入されて固定コア5に同軸で対置される可動コア12とからなっている。弁杆部17及び可動コア12は,弁杆部17に同軸に一体に形成されたストッパ要素14を可動コア12の中心部の連結孔36に嵌合され,その嵌合深さは,弁杆部17に一体にされたフランジ35を可動コア12の前端面に当接させることにより規制される。そして可動コア12及び弁体18間を強固に結合するために,可動コア12に,フランジ部35側の周縁部を覆うカシメ部12bが形成される。
【0028】
上記ストッパ要素14は,その先端部を可動コア12の吸引面12aから突出していて,通常,弁体18の開弁ストロークに相当する間隙sを存して固定コア5の吸引面5aと対置される。またストッパ要素14の,可動コア12の吸引面12aからの突出量gは,ストッパ要素14が固定コア5に当接したとき,固定コア5及び可動コア12の両吸引面5a,12a間に画成すべき所定のエアギャップに相当し,そのエアギャップgは,コイル30を励磁状態から消磁したとき,両コア5,12間の残留磁束が速やかに消失するように設定される。上記ストッパ要素14の端面及び可動コア12の吸引面12aは,ストッパ要素14の可動コア12への嵌入後に,研削により同時に仕上げられる。こうすることにより,互いに関連する前記間隙s及びエアギャップgを精密に得ることができる。
【0029】
弁杆部17は,前記ガイド孔9より充分小径に形成されており,その外周面には,半径方向外方に突出して,前記ガイド孔9の内周面に摺動自在に支承される環状の第1ガイド凸部25aが弁部16に近接して一体に形成される。
【0030】
また可動コア12の外周面には,磁性筒体4の内周面に摺動自在に支承される環状の第2ガイド凸部25bが一体に形成される。こうして第2ガイド凸部25bの前後の可動コア12及び磁性筒体4間に間隙37が設けられる。
【0031】
弁組立体Vには,ストッパ要素14の端面から始まり半球状弁部16の中心Oを超えて行き止まりとなる縦孔19と,この縦孔19を,第1ガイド凸部25aより弁部16寄りの弁杆部17外周面に連通する第1横孔20aと,同縦孔19を,第2ガイド凸部25bの外周面に連通する第2横孔20bと,同縦孔19を,可動コア12及び第1ガイド凸部25a間の中央部の弁杆部17外周面に連通する第3横孔20cとが設けられる。その際,第1横孔20aは弁杆部17に穿設され,その本数は,縦孔19と直交する少なくとも2本とされる。また第2横孔20bは,可動コア12からストッパ要素14にかけて穿設され,その本数も,縦孔19と直交する少なくとも2本とされる。その第2横孔20bの直径dは前記第2ガイド凸部25bの軸方向幅wより大きく設定される。
【0032】
縦孔19の途中には,固定コア5側を向いた環状のばね座24が形成される。
【0033】
固定コア5は,可動コア12の縦孔19と連通する縦孔21を有し,この縦孔21に内部が連通する燃料入口筒26が固定コア5の後端に一体に連設される。燃料入口筒26は,固定コア5の後端に連なる縮径部26aと,それに続く拡径部26bとからなっており,その縮径部26aから縦孔21に挿入又は軽圧入されるパイプ状のリテーナ23と前記ばね座24との間に可動コア12を弁体18の閉弁側に付勢する弁ばね22が縮設される。その際,リテーナ23の縦孔21への嵌合深さにより弁ばね22のセット荷重が調整され,その調整後は縮径部26aの外周壁を部分的に内方へカシメることでリテーナ23は縮径部26aに固定される。拡径部26bには燃料フィルタ27が装着される。
【0034】
前記固定コア5,可動コア12及び磁性筒体4は,何れもフェライト系の高硬度磁性材製とされ,具体的には,次の組成の合金を切削することにより構成される。
【0035】
Cr・・・10〜20wt%
Si・・・0.1wt%
Al及びNi・・・両方を含むと共に,それらの少なくとも一方が1wt%以上,且つ両方の合計が1.15〜6wt%
残部・・・フェライト系Fe,不純物のMn,C,P,S
而して,上記合金中,特にAl及びNiの合計が1.15〜6wt%であることが固定コア5,可動コア12及び磁性筒体4の耐摩耗性,磁力及び応答性の向上に大きく関与する。即ち,Al及びNiは,それらの合計含有率の略95%が析出物となり,それが固定コア5,可動コア12及び磁性筒体4の硬度,磁束密度及び体積抵抗に大きな影響を与えるのであり,硬度は耐摩耗性を得る上で大きいことが望ましく,磁束密度は磁力を強化する上で大きいことが望ましく,体積抵抗は応答性を高める上で小さいことが望ましい。
【0036】
前記合金におけるAl及びNiの合計含有率と硬度との関係を実験により調べたところ,図4の線図に示す結果を得た。また前記合金におけるAl及びNiの合計含有率と磁束密度及び体積抵抗との関係を実験により調べたところ,図5の線図に示す結果を得た。
【0037】
図4から明らかなように,Al及びNiの合計含有率が1.15〜6wt%である限り,合金の硬度は200〜400Hmvである。この範囲の硬度は,合金の切削加工後,メッキ等の特別な耐摩耗処理を施さずとも,固定コア5,可動コア12及び磁性筒体4に充分な耐摩耗性を付与するに足るものである。
【0038】
また図5から明らかなように,Al及びNiの合計含有率が6wt%を超えると,固定コア5,可動コア12及び磁性筒体4の磁束密度が低下して,充分な磁力が得られなくのみならず,体積抵抗の低下により磁束の流れに遅れが生じ,固定コア5の応答性が低下してしまう。
【0039】
したがって,Al及びNiの合計含有率を1.15〜6wt%としたことにより,固定コア5,可動コア12及び磁性筒体4の耐摩耗性,磁力及び応答性を実用上,満足させることができる。
【0040】
尚,前記合金中のCr 10〜20wt%,Si 0.1wt%,残部 フェライト系Fe,不純物のMn,C,P,Sは,従来の磁性材に一般的に含有されるものである。
【0041】
一方,ストッパ要素14を一体に連ねた弁体18は,非磁性もしくは可動コア12より弱磁性の材料,例えばJIS SUS304材又はSUS440Cで構成される。
【0042】
再び図1において,弁ハウジング2の外周には,固定コア5及び可動コア12に対応してコイル組立体28が嵌装される。このコイル組立体28は,磁性筒体4の後端部から非磁性筒体6全体にかけてそれらの外周面に嵌合するボビン29と,これに巻装されるコイル30とからなっており,このコイル組立体28を囲繞するコイルハウジング31の前端が磁性筒体4の外周面に溶接され,その後端には,固定コア5の後端部外周からフランジ状に突出するヨーク5bの外周面に溶接される。コイルハウジング31は円筒状をなし,且つ一側に軸方向に延びるスリット31aが形成されている。
【0043】
上記コイルハウジング31,コイル組立体28,固定コア5及び燃料入口筒26の前半部は,射出成形による合成樹脂製の被覆体32に埋封される。その際,,コイルハウジング31内への被覆体32の充填はスリット31aを通して行われる。また被覆体32の中間部には,前記コイル30に連なる接続端子33を収容する備えたカプラ34が一体に連設される。
【0044】
次に,この第1実施例の作用について説明する。
【0045】
コイル30を消磁した状態では,弁ばね22の付勢力で弁組立体Vは前方に押圧され,弁体18の半球状の弁部16を弁座部材3の円錐状に弁座8に着座させているので,それらの緊密な着座状態を得て,弁孔7を確実に遮断している。したがって,図示しない燃料ポンプから燃料入口筒26に圧送された燃料は,パイプ状のリテーナ23内部,弁組立体Vの縦孔19及び第1〜第3横孔20a〜20cを通して弁ハウジング2内に待機させられ,第1及び第2ガイド凸部25a,25b周りの潤滑及び冷却に供される。
【0046】
コイル30を通電により励磁すると,それにより生ずる磁束が固定コア5,コイルハウジング31,磁性筒体4及び可動コア12を順次走り,その磁力により弁組立体Vの可動コア12が弁ばね22のセット荷重に抗して固定コア5に吸引され,弁体18が弁座8から離座するので,弁孔7が開放され,弁座部材3内の高圧燃料が弁孔7を出て,燃料噴孔11からエンジンの吸気弁に向かって噴射される。
【0047】
このとき,弁組立体Vの可動コア12に嵌合固定されたストッパ要素14が固定コア5の吸引面5aに当接することにより,弁体18の開弁限界が規定され,可動コア12の吸引面12aは,エアギャップgを存して固定コア5の吸引面5aと対向し,固定コア5との直接接触が回避される。特にストッパ要素14の,可動コア12の吸引面12aからの突出量の寸法管理により,上記エアギャップgを精密且つ容易に得ることができ,ストッパ要素14が非磁性もしくは弱磁性であることゝ相俟って,コイル30の消磁時の両コア5,12間の残留磁気は速やかに消失して,弁体18の閉弁応答性を高めることができる。
【0048】
弁組立体Vは,その開閉動作中,第1及び第2ガイド凸部25a,25bが弁ハウジング2の内周面に摺動することにより,常に倒れのない適正な姿勢に保持されるので,燃料噴射特性の安定化を図ることができる。
【0049】
また可動コア12に形成された第2ガイド凸部25bの外周面には,第2ガイド凸部25bの軸方向幅wより大なる直径dの第2横孔20bが開口しているから,縦孔19に流入した燃料は,複数本の第2横孔20bを通して,第2ガイド凸部25bの摺動面,並びにその前後の可動コア12及び磁性筒体4間の間隙37に同時に効率良く供給され,第2ガイド凸部25bの摺動面の潤滑は勿論,可動コア12及び磁性筒体4の冷却を効果的に行うことができ,弁組立体Vの応答性及び耐摩耗性の向上を図ることができる。しかも可動コア12及び磁性筒体4は,前述のようなフェライト系の高硬度磁性材製であり,それ自体で良好な磁気特性と高い耐摩耗性を発揮し得るので,これにより弁組立体Vの応答性及び耐摩耗性の向上を一層図ることができて,燃料噴射特性を長期に亙り安定させることが可能となる。そしてフェライト系の高硬度磁性材製の可動コア12及び磁性筒体4には,特別な耐摩耗処理を施す必要がない分,製造工数が削減され,コストの低減を図ることができる。
【0050】
また可動コア12を横切る第2横孔20bは,コイル30の励,消磁時,可動コア12に渦電流が生ずることを抑え,渦電流に起因する可動コア12の加熱を防ぐことができる。
【0051】
さらに半球状の弁部16の中心を超えて,その先端面に近づくように形成された縦孔19は,第1〜第3横孔20a〜20cと共に,燃料通路の役目の他に,弁組立体Vの贅肉を除去する役目をも大いに果たし,弁組立体Vの軽量化,延いては応答性の向上に寄与する。
【0052】
次に,図3に示す本発明の第2実施例について説明する。
【0053】
この第2実施例は,磁性筒体4の内周面に,可動コア12の外周面を摺動自在に支承する環状の第2ガイド凸部25bが形成したもので,その他の構成は前実施例と同様であるので,図3中,前実施例と対応する部分には同一の参照符号を付して,その説明を省略する。
【0054】
本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。
【0055】
【発明の効果】
以上のように本発明の第1の特徴によれば,弁座部材,磁性筒体及び非磁性筒体を順次結合してなる弁ハウジングと,前記磁性筒体に連設される固定コアと,前記弁座部材に収容されて開閉動作する弁体と,この弁体に連結され,前記固定コアと対置されるように前記磁性筒体及び非磁性筒体内に収容される可動コアと,前記弁体を閉弁方向に付勢する弁ばねと,前記固定コアを囲繞して配置され,励磁により前記可動コアを固定コアに吸引させて前記弁体を開弁させるコイルとを備えてなり,前記可動コアを前記磁性筒体に摺動自在に支承させ,この可動コアに縦孔を燃料通路として形成した,電磁式燃料噴射弁において,前記磁性筒体及び可動コアをフェライト系の高硬度磁性材製とすると共に,該可動コアに,前記縦孔と直交して該磁性筒体及び可動コアの摺動面に開口する複数の横孔を設けたので,縦孔に流入した燃料を,複数本の第2横孔を通して可動コア及び磁性筒体の摺動面に供給して,それらの潤滑及び冷却を行うことができ,可動コア及び磁性筒体がフェライト系の高硬度磁性材製であることゝ相まって,可動コア及び磁性筒体の耐摩耗性と,弁体の応答性の両方を向上させることができる。しかもフェライト系の高硬度磁性材製の可動コア及び磁性筒体には,特別な耐摩耗処理を施す必要がないから,製造工数が削減され,コストの低減を図ることができる。また可動コアを横切る前記横孔は,コイルの励,消磁時,可動コアに渦電流が生ずることを抑え,渦電流に起因する可動コアの加熱を防ぐことができる。さらに前記縦孔及び横孔は,燃料通路の役目の他に,弁組立体の贅肉を除去する役目をも果たし,可動コアの軽量化,延いては弁体の応答性の向上に寄与する。
【0056】
また本発明の第2の特徴によれば,第1の特徴に加えて,前記可動コア及び磁性筒体の互いに対向する外周面及び内周面の一方に,それらの他方に摺動自在に嵌合する環状のガイド凸部を形成して,前記外周面及び内周面間に間隙を設け,前記横孔を前記ガイド凸部の摺動面に開口させたので,前記横孔を通過した燃料を,ガイド凸部の摺動面,並びにその前後の可動コア及び磁性筒体間の間隙に供給して,ガイド凸部の摺動面の潤滑は勿論,可動コア及び磁性筒体の冷却を効果的に行うことができ,可動コア及び磁性筒体の耐摩耗性,並びに弁体の応答性の向上を一層図ることができる。
【0057】
さらに本発明の第3の特徴によれば,第2の特徴に加えて,前記横孔の直径を前記ガイド凸部の軸方向幅より大きく設定したので,前記横孔を通過した燃料を,ガイド凸部の摺動面,並びにその前後の可動コア及び磁性筒体間の間隙に同時に供給し得て,ガイド凸部の摺動面の潤滑,並びに可動コア及び磁性筒体の冷却を,より効果的に行うことができる。
【0058】
さらにまた本発明の第4の特徴によれば,第1の特徴に加えて,前記高硬度磁性材が,Crを10〜20wt%,Siを0.1wt%,Al及びNiの少なくとも一方を1wt%以上,残部としてフェライト系Fe,Mn,C,P,Sを含み,且つAl及びNiの合計を1.15〜6wt%とした合金であるので,上記合金を加工するのみで,磁気特性が良好で,しかも硬度が200〜400Hmvと高く,耐摩耗性に優れた可動コア及び磁性筒体を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る内燃機関用電磁式燃料噴射弁の縦断面図
【図2】図1の2部拡大図
【図3】本発明の第2実施例を示す,図2に対応した断面図
【図4】可動コア及び磁性筒体用合金におけるAl及びNiの合計含有率と硬度との関係を示す線図
【図5】上記合金におけるAl及びNiの合計含有率と磁束密度及び体積抵抗との関係を示す線図
【符号の説明】
I・・・・・電磁式燃料噴射弁
V・・・・・弁組立体
d・・・・・横孔(第2横孔)の直径
w・・・・・ガイド凸部(第2ガイド凸部)の軸方向幅
2・・・・・弁ハウジング
3・・・・・弁座部材
4・・・・・磁性筒体
5・・・・・固定コア
6・・・・・非磁性筒体
12・・・・可動コア
18・・・・弁体
22・・・・弁ばね
25b・・・ガイド凸部(第2ガイド凸部)
30・・・・コイル
37・・・・間隙
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic fuel injection valve mainly used for a fuel supply system of an internal combustion engine, and more particularly to a valve housing formed by sequentially connecting a valve seat member, a magnetic cylinder and a non-magnetic cylinder, and the magnetic cylinder. And a valve body housed in the valve seat member, the valve body being opened / closed, and connected to the valve body and provided in the magnetic cylinder and the non-magnetic cylinder so as to face the fixed core. A movable core to be accommodated, a valve spring for urging the valve body in a valve closing direction, and a valve spring are arranged so as to surround the fixed core, and the movable core is attracted to the fixed core by excitation to open the valve body. The present invention relates to an improvement in an electromagnetic fuel injection valve having a movable core slidably supported by the magnetic cylinder and a vertical hole formed as a fuel passage in the movable core.
[0002]
[Prior art]
Such an electromagnetic fuel injection valve is already known, for example, as disclosed in Patent Document 1.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-81356
[Problems to be solved by the invention]
By the way, it is effective to make the movable core slidably supported by the magnetic cylinder to stabilize the posture of the valve body. However, in general, the magnetic material constituting the movable core and the magnetic cylinder has low hardness, and When the coil is excited, side thrusts are generated on the sliding surfaces of the movable core and the magnetic cylinder when the coil is excited, so that there is a problem in wear resistance.
[0005]
Therefore, in the structure disclosed in Patent Document 1, a hardened layer is formed on the sliding surfaces of the movable core and the magnetic cylinder by shot peening or chrome plating to ensure their wear resistance.
[0006]
However, the formation of a hardened layer on the sliding surface as described above causes an increase in the number of manufacturing steps, and also requires precision control of the hardened layer. It is difficult to reduce.
[0007]
The present invention has been made in view of the above circumstances, and is an inexpensive method capable of imparting high wear resistance to a movable core and a sliding surface of a magnetic cylinder without forming a special hardened layer on the sliding surface. It is an object of the present invention to provide a simple electromagnetic fuel injection valve.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a valve housing in which a valve seat member, a magnetic cylinder and a non-magnetic cylinder are sequentially connected, a fixed core connected to the magnetic cylinder, and the valve seat. A valve body that is housed in a member and that opens and closes, a movable core that is connected to the valve body and that is housed in the magnetic cylinder and the non-magnetic cylinder so as to be opposed to the fixed core, and that closes the valve body. A valve spring for biasing in the valve direction, and a coil arranged to surround the fixed core and to attract the movable core to the fixed core by excitation to open the valve body. The magnetic cylinder and the movable core are made of a ferrite-based high-hardness magnetic material in an electromagnetic fuel injection valve in which the magnetic cylinder is slidably supported on the magnetic cylinder and a vertical hole is formed in the movable core as a fuel passage. At the same time, the magnetic cylinder is inserted into the movable core at right angles to the And the first feature in that a plurality of lateral holes opening to the sliding surface of the movable core.
[0009]
According to the first feature, the fuel that has flowed into the vertical holes can be supplied to the sliding surfaces of the movable core and the magnetic cylinder through the plurality of second horizontal holes to lubricate and cool them. In addition, the movable core and the magnetic cylinder are made of a ferrite-based high hardness magnetic material. Accordingly, both the wear resistance of the movable core and the magnetic cylinder and the response of the valve body can be improved.
[0010]
Moreover, since it is not necessary to perform a special abrasion treatment on the movable core and the magnetic cylinder made of a ferrite-based high-hardness magnetic material, the number of manufacturing steps can be reduced, and the cost can be reduced.
[0011]
Further, the lateral hole crossing the movable core can suppress generation of an eddy current in the movable core during excitation and demagnetization of the coil, and can prevent heating of the movable core due to the eddy current.
[0012]
Further, in addition to the role of the fuel passage, the vertical hole and the horizontal hole also serve to eliminate the thickness of the movable core, thereby contributing to the reduction of the weight of the movable core and the improvement of the responsiveness of the valve body.
[0013]
According to the present invention, in addition to the first feature, an annular guide convex portion is slidably fitted to one of an outer peripheral surface and an inner peripheral surface of the movable core and the magnetic cylinder opposed to each other. The second feature is that a gap is provided between the outer peripheral surface and the inner peripheral surface, and the lateral hole is opened in the sliding surface of the guide projection.
[0014]
According to the second feature, the fuel that has passed through the lateral hole is supplied to the sliding surface of the guide convex portion and the gap between the movable core and the magnetic cylinder before and after the guide convex portion, and the sliding of the guide convex portion is performed. The movable core and the magnetic cylinder can be effectively cooled as well as the surface lubrication, and the wear resistance of the movable core and the magnetic cylinder and the response of the valve can be further improved.
[0015]
Further, in the present invention, in addition to the second feature, a third feature is that the diameter of the lateral hole is set to be larger than the axial width of the guide projection.
[0016]
According to the third feature, the fuel that has passed through the lateral hole can be simultaneously supplied to the sliding surface of the guide projection and the gap between the movable core and the magnetic cylinder before and after the guide projection. Lubrication of the sliding surface and cooling of the movable core and the magnetic cylinder can be performed more effectively.
[0017]
Still further, according to the present invention, in addition to the first feature, the high-hardness magnetic material comprises 10 to 20% by weight of Cr, 0.1% by weight of Si, 1% by weight or more of at least one of Al and Ni, and a balance of ferrite. A fourth feature is that the alloy contains Fe, Mn, C, P, and S, and the total of Al and Ni is 1.15 to 6 wt%.
[0018]
According to the fourth feature, it is possible to obtain a movable core and a magnetic cylinder having excellent magnetic properties, high hardness of 200 to 400 Hmv, and excellent wear resistance by merely processing the alloy.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below based on embodiments of the present invention shown in the accompanying drawings.
[0020]
1 is a longitudinal sectional view of an electromagnetic fuel injection valve for an internal combustion engine according to a first embodiment of the present invention, FIG. 2 is an enlarged view of a part of FIG. 1, and FIG. 3 shows a second embodiment of the present invention. FIG. 4 is a diagram showing the relationship between the total content of Al and Ni and the hardness in the movable core and the alloy for the magnetic cylinder, and FIG. 5 is a diagram showing the total content of Al and Ni in the alloy. It is a diagram which shows the relationship between magnetic flux density and volume resistance.
[0021]
First, a description will be given of the first embodiment of the present invention shown in FIGS.
[0022]
In FIG. 1, a valve housing 2 of an electromagnetic fuel injection valve I for an internal combustion engine has a cylindrical valve seat member 3 having a valve seat 8 at a front end, and is coaxially connected to a rear end of the valve seat member 3. It comprises a magnetic cylinder 4 and a non-magnetic cylinder 6 coaxially coupled to the rear end of the magnetic cylinder 4.
[0023]
The valve seat member 3 has, at its rear end, a connecting cylinder 3a protruding toward the magnetic cylinder 4 with an annular shoulder 3b from the outer peripheral surface thereof, and an annular coupling to the outer peripheral surface of the coupling cylinder 3a. A groove 38 is formed. The connecting cylinder 3a is fitted to the inner peripheral surface of the front end of the magnetic cylinder 4, and the front end of the magnetic cylinder 4 is brought into contact with the annular shoulder 3b. Then, the peripheral wall of the magnetic cylinder 4 is caulked. The valve seat member 3 and the magnetic cylinder 4 are coaxially and liquid-tightly connected to each other by making the connection groove 38 cut into the entire circumference.
[0024]
The magnetic cylinder 4 and the non-magnetic cylinder 6 are coaxially and liquid-tightly joined to each other by laser beam welding over the entire circumference with their facing end faces abutting.
[0025]
The valve seat member 3 has a valve hole 7 opened at the front end surface thereof, a conical valve seat 8 connected to the inner end of the valve hole 7, and a cylindrical guide hole 9 connected to a large diameter portion of the valve seat 8. And An injector plate 10 made of a steel plate having a plurality of fuel injection holes 11 communicating with the valve hole 7 is liquid-tightly welded to the front end surface of the valve seat member 3 in a liquid-tight manner.
[0026]
The fixed core 5 is press-fitted and fixed to the inner peripheral surface of the non-magnetic cylinder 6 from the rear end side in a liquid-tight manner. At this time, a portion that does not fit with the fixed core 5 is left at the front end of the non-magnetic cylinder 6, and the valve assembly V is accommodated in the valve housing 2 extending from the portion to the valve seat member 3.
[0027]
The valve assembly V is connected to a valve body 18 comprising a hemispherical valve part 16 for opening and closing the valve hole 7 in cooperation with the valve seat 8 and a valve rod part 17 for supporting the same, and a valve rod part 17. And a movable core 12 which extends from the magnetic cylinder 4 to the non-magnetic cylinder 6, is inserted therein, and is coaxially opposed to the fixed core 5. The valve rod 17 and the movable core 12 are fitted with a stopper element 14 formed coaxially and integrally with the valve rod 17 in a connection hole 36 at the center of the movable core 12, and the fitting depth is determined by the valve rod. It is regulated by bringing the flange 35 integrated with the part 17 into contact with the front end face of the movable core 12. Then, in order to firmly connect the movable core 12 and the valve body 18, a swaged portion 12 b is formed on the movable core 12 so as to cover a peripheral portion on the flange portion 35 side.
[0028]
The tip end of the stopper element 14 protrudes from the suction surface 12a of the movable core 12, and is usually opposed to the suction surface 5a of the fixed core 5 with a gap s corresponding to the valve opening stroke of the valve element 18. You. The amount g of protrusion of the stopper element 14 from the suction surface 12a of the movable core 12 is determined by the distance between the suction surfaces 5a and 12a of the fixed core 5 and the movable core 12 when the stopper element 14 contacts the fixed core 5. The air gap g is set so that when the coil 30 is demagnetized from the excited state, the residual magnetic flux between the cores 5 and 12 is quickly eliminated. The end surface of the stopper element 14 and the suction surface 12a of the movable core 12 are simultaneously finished by grinding after the stopper element 14 is fitted into the movable core 12. In this manner, the gap s and the air gap g related to each other can be precisely obtained.
[0029]
The valve rod portion 17 is formed to have a diameter sufficiently smaller than the guide hole 9, and its outer peripheral surface protrudes radially outward and is slidably supported on the inner peripheral surface of the guide hole 9. The first guide projection 25a is integrally formed in the vicinity of the valve portion 16.
[0030]
On the outer peripheral surface of the movable core 12, an annular second guide convex portion 25b slidably supported on the inner peripheral surface of the magnetic cylinder 4 is integrally formed. Thus, a gap 37 is provided between the movable core 12 and the magnetic cylinder 4 before and after the second guide projection 25b.
[0031]
The valve assembly V is provided with a vertical hole 19 starting from the end face of the stopper element 14 and reaching a dead end beyond the center O of the hemispherical valve portion 16, and the vertical hole 19 is located closer to the valve portion 16 than the first guide convex portion 25a. The first horizontal hole 20a communicating with the outer peripheral surface of the valve rod portion 17 and the vertical hole 19 are connected to the second horizontal hole 20b and the vertical hole 19 communicating with the outer peripheral surface of the second guide projection 25b. A third lateral hole 20c communicating with the outer peripheral surface of the valve rod portion 17 in the central portion between the second guide 12 and the first guide convex portion 25a is provided. At this time, the first horizontal hole 20 a is formed in the valve rod portion 17, and the number thereof is at least two orthogonal to the vertical hole 19. The second horizontal hole 20b is formed from the movable core 12 to the stopper element 14, and the number of the second horizontal hole 20b is at least two orthogonal to the vertical hole 19. The diameter d of the second lateral hole 20b is set to be larger than the axial width w of the second guide projection 25b.
[0032]
In the middle of the vertical hole 19, an annular spring seat 24 facing the fixed core 5 side is formed.
[0033]
The fixed core 5 has a vertical hole 21 communicating with the vertical hole 19 of the movable core 12, and a fuel inlet tube 26 internally communicating with the vertical hole 21 is integrally connected to the rear end of the fixed core 5. The fuel inlet tube 26 is composed of a reduced diameter portion 26a connected to the rear end of the fixed core 5 and a subsequent enlarged diameter portion 26b. The pipe shape is inserted or lightly pressed into the vertical hole 21 from the reduced diameter portion 26a. A valve spring 22 for urging the movable core 12 toward the valve closing side of the valve body 18 is contracted between the retainer 23 and the spring seat 24. At this time, the set load of the valve spring 22 is adjusted by the fitting depth of the retainer 23 into the vertical hole 21, and after the adjustment, the outer peripheral wall of the reduced diameter portion 26 a is partially caulked inward to thereby retain the retainer 23. Is fixed to the reduced diameter portion 26a. A fuel filter 27 is mounted on the enlarged diameter portion 26b.
[0034]
The fixed core 5, the movable core 12, and the magnetic cylinder 4 are all made of a ferrite-based high-hardness magnetic material, and are specifically formed by cutting an alloy having the following composition.
[0035]
Cr: 10-20 wt%
Si ・ ・ ・ 0.1wt%
Al and Ni: both of them are contained, at least one of them is 1 wt% or more, and the total of both is 1.15 to 6 wt%
Remaining part: ferritic Fe, impurities Mn, C, P, S
The fact that the total of Al and Ni in the above alloys is 1.15 to 6% by weight, in particular, greatly improves the wear resistance, magnetic force and response of the fixed core 5, the movable core 12 and the magnetic cylinder 4. Involved. That is, about 95% of the total content of Al and Ni becomes precipitates, which greatly affects the hardness, magnetic flux density and volume resistance of the fixed core 5, the movable core 12 and the magnetic cylinder 4. The hardness is desirably large for obtaining abrasion resistance, the magnetic flux density is desirably large for enhancing magnetic force, and the volume resistance is desirably small for enhancing responsiveness.
[0036]
When the relationship between the total content of Al and Ni in the alloy and the hardness were examined by experiments, the results shown in the diagram of FIG. 4 were obtained. The relationship between the total content of Al and Ni in the alloy and the magnetic flux density and the volume resistance was examined by experiments, and the results shown in the diagram of FIG. 5 were obtained.
[0037]
As is clear from FIG. 4, as long as the total content of Al and Ni is 1.15 to 6 wt%, the hardness of the alloy is 200 to 400 Hmv. The hardness in this range is sufficient to impart sufficient wear resistance to the fixed core 5, the movable core 12, and the magnetic cylinder 4 without performing any special wear treatment such as plating after cutting the alloy. is there.
[0038]
As is apparent from FIG. 5, when the total content of Al and Ni exceeds 6 wt%, the magnetic flux densities of the fixed core 5, the movable core 12, and the magnetic cylinder 4 decrease, and a sufficient magnetic force cannot be obtained. In addition, the flow of the magnetic flux is delayed due to the decrease in the volume resistance, and the responsiveness of the fixed core 5 is reduced.
[0039]
Therefore, by setting the total content of Al and Ni to 1.15 to 6 wt%, the wear resistance, magnetic force, and responsiveness of the fixed core 5, the movable core 12, and the magnetic cylinder 4 can be practically satisfied. it can.
[0040]
Incidentally, 10 to 20 wt% of Cr, 0.1 wt% of Si, and the balance of ferrite-based Fe and impurities Mn, C, P and S in the alloy are generally contained in conventional magnetic materials.
[0041]
On the other hand, the valve element 18 integrally formed with the stopper element 14 is made of a material that is nonmagnetic or less magnetic than the movable core 12, for example, JIS SUS304 or SUS440C.
[0042]
Referring again to FIG. 1, a coil assembly 28 is fitted around the outer periphery of the valve housing 2 in correspondence with the fixed core 5 and the movable core 12. The coil assembly 28 includes a bobbin 29 fitted on the outer peripheral surface of the magnetic cylinder 4 from the rear end to the entire non-magnetic cylinder 6, and a coil 30 wound around the bobbin 29. The front end of the coil housing 31 surrounding the coil assembly 28 is welded to the outer peripheral surface of the magnetic cylinder 4, and the rear end is welded to the outer peripheral surface of the yoke 5 b projecting in a flange shape from the outer periphery of the rear end of the fixed core 5. Is done. The coil housing 31 has a cylindrical shape, and has a slit 31a formed on one side and extending in the axial direction.
[0043]
The coil housing 31, the coil assembly 28, the fixed core 5, and the first half of the fuel inlet tube 26 are embedded in a synthetic resin covering 32 formed by injection molding. At this time, the covering 32 is filled into the coil housing 31 through the slit 31a. A coupler 34 for accommodating a connection terminal 33 connected to the coil 30 is integrally connected to an intermediate portion of the cover 32.
[0044]
Next, the operation of the first embodiment will be described.
[0045]
In a state where the coil 30 is demagnetized, the valve assembly V is pressed forward by the urging force of the valve spring 22, and the hemispherical valve portion 16 of the valve body 18 is seated on the valve seat 8 in a conical shape of the valve seat member 3. Therefore, the tight seating state is obtained, and the valve hole 7 is reliably shut off. Therefore, fuel pumped from a fuel pump (not shown) to the fuel inlet cylinder 26 enters the valve housing 2 through the inside of the pipe-shaped retainer 23, the vertical hole 19 of the valve assembly V, and the first to third horizontal holes 20a to 20c. It is made to stand by and provided for lubrication and cooling around the first and second guide projections 25a and 25b.
[0046]
When the coil 30 is energized by energization, the magnetic flux generated by it runs through the fixed core 5, the coil housing 31, the magnetic cylinder 4 and the movable core 12 sequentially, and the movable core 12 of the valve assembly V sets the valve spring 22 by the magnetic force. The valve core 18 is separated from the valve seat 8 by being sucked by the fixed core 5 against the load, so that the valve hole 7 is opened, and the high-pressure fuel in the valve seat member 3 exits the valve hole 7 and the fuel is injected. The fuel is injected from the hole 11 toward the intake valve of the engine.
[0047]
At this time, the stopper element 14 fitted and fixed to the movable core 12 of the valve assembly V comes into contact with the suction surface 5a of the fixed core 5, so that the valve opening limit of the valve body 18 is defined, and the suction of the movable core 12 is performed. The surface 12a faces the suction surface 5a of the fixed core 5 with an air gap g therebetween, and direct contact with the fixed core 5 is avoided. In particular, by controlling the dimension of the amount of protrusion of the stopper element 14 from the suction surface 12a of the movable core 12, the air gap g can be obtained accurately and easily, and the stopper element 14 is non-magnetic or weakly magnetic. In addition, the residual magnetism between the cores 5 and 12 when the coil 30 is demagnetized disappears quickly, and the valve closing response of the valve element 18 can be improved.
[0048]
During opening and closing operations of the valve assembly V, the first and second guide projections 25a and 25b slide on the inner peripheral surface of the valve housing 2 so that the valve assembly V is always held in a proper posture without falling down. The fuel injection characteristics can be stabilized.
[0049]
In addition, a second horizontal hole 20b having a diameter d larger than the axial width w of the second guide projection 25b is opened on the outer peripheral surface of the second guide projection 25b formed on the movable core 12, so that the vertical side is vertical. The fuel that has flowed into the hole 19 is efficiently and simultaneously supplied to the sliding surface of the second guide protrusion 25b and the gap 37 between the movable core 12 and the magnetic cylinder 4 before and after the second through hole 20b. As a result, the movable core 12 and the magnetic cylinder 4 can be effectively cooled, as well as the sliding surface of the second guide projection 25b, and the responsiveness and wear resistance of the valve assembly V can be improved. Can be planned. Moreover, the movable core 12 and the magnetic cylinder 4 are made of a ferrite-based high hardness magnetic material as described above, and can exhibit good magnetic properties and high wear resistance by themselves. The responsiveness and wear resistance of the fuel cell can be further improved, and the fuel injection characteristics can be stabilized for a long period of time. Further, since it is not necessary to perform a special wear-resistant treatment on the movable core 12 and the magnetic cylinder 4 made of a ferrite-based high-hardness magnetic material, the number of manufacturing steps can be reduced, and the cost can be reduced.
[0050]
Further, the second horizontal hole 20b crossing the movable core 12 can suppress generation of an eddy current in the movable core 12 when exciting and demagnetizing the coil 30, and can prevent heating of the movable core 12 due to the eddy current.
[0051]
Further, the vertical hole 19 formed so as to go beyond the center of the hemispherical valve portion 16 and approach the distal end face thereof is provided together with the first to third horizontal holes 20a to 20c, in addition to the role of the fuel passage, as well as a valve assembly. It also plays a significant role in removing the extravagance of the three-dimensional V, and contributes to the reduction in the weight of the valve assembly V and, consequently, the improvement in responsiveness.
[0052]
Next, a second embodiment of the present invention shown in FIG. 3 will be described.
[0053]
In the second embodiment, an annular second guide convex portion 25b for slidably supporting the outer peripheral surface of the movable core 12 is formed on the inner peripheral surface of the magnetic cylinder 4, and other configurations are the same as those of the previous embodiment. Since the configuration is the same as that of the example, in FIG. 3, portions corresponding to those of the previous embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0054]
The present invention is not limited to the above embodiment, and various design changes can be made without departing from the gist of the present invention.
[0055]
【The invention's effect】
As described above, according to the first aspect of the present invention, a valve housing formed by sequentially coupling a valve seat member, a magnetic cylinder, and a non-magnetic cylinder, a fixed core connected to the magnetic cylinder, A valve body that is housed in the valve seat member and that opens and closes, a movable core connected to the valve body and housed in the magnetic cylinder and the non-magnetic cylinder so as to face the fixed core, A valve spring for urging the body in a valve closing direction, and a coil disposed to surround the fixed core and to open the valve body by attracting the movable core to the fixed core by excitation. A movable core is slidably supported by the magnetic cylinder, and a vertical hole is formed in the movable core as a fuel passage. In the electromagnetic fuel injection valve, the magnetic cylinder and the movable core are made of a ferrite-based high-hardness magnetic material. And the magnetic core is inserted into the movable core at right angles to the vertical hole. Since a plurality of horizontal holes are provided on the sliding surfaces of the cylinder and the movable core, the fuel flowing into the vertical holes is supplied to the sliding surfaces of the movable core and the magnetic cylinder through the plurality of second horizontal holes. That the movable core and the magnetic cylinder are made of ferrite-based high-hardness magnetic material. In addition, the wear resistance of the movable core and the magnetic cylinder and the response of the valve Sex can be improved. Moreover, since it is not necessary to perform a special abrasion treatment on the movable core and the magnetic cylinder made of a ferrite-based high-hardness magnetic material, the number of manufacturing steps can be reduced, and the cost can be reduced. Further, the lateral hole crossing the movable core can suppress generation of an eddy current in the movable core during excitation and demagnetization of the coil, and can prevent heating of the movable core due to the eddy current. Further, in addition to the role of the fuel passage, the vertical hole and the horizontal hole also serve to remove the extravagance of the valve assembly, and contribute to the reduction of the weight of the movable core and the improvement of the responsiveness of the valve body.
[0056]
According to the second aspect of the present invention, in addition to the first aspect, one of the outer peripheral surface and the inner peripheral surface of the movable core and the magnetic cylinder opposed to each other is slidably fitted to the other. An annular guide projection that fits is formed, a gap is provided between the outer peripheral surface and the inner peripheral surface, and the lateral hole is opened in the sliding surface of the guide convex portion. Is supplied to the sliding surface of the guide convex portion and the gap between the movable core and the magnetic cylinder before and after the guide convex portion, which not only lubricates the sliding surface of the guide convex portion but also cools the movable core and the magnetic cylinder. It is possible to further improve the wear resistance of the movable core and the magnetic cylinder, and the responsiveness of the valve body.
[0057]
According to the third aspect of the present invention, in addition to the second aspect, the diameter of the lateral hole is set to be larger than the axial width of the guide projection, so that the fuel passing through the lateral hole can be guided. It can be supplied simultaneously to the sliding surface of the convex part and the gap between the movable core and the magnetic cylinder before and after it, and more effectively lubricate the sliding surface of the guide convex part and cool the movable core and the magnetic cylinder. Can be done
[0058]
According to a fourth aspect of the present invention, in addition to the first aspect, the high-hardness magnetic material comprises 10-20 wt% of Cr, 0.1 wt% of Si, and 1 wt% of at least one of Al and Ni. % Or more, with the balance being ferrite-based Fe, Mn, C, P, and S, and the total of Al and Ni being 1.15 to 6 wt%. It is possible to obtain a movable core and a magnetic cylinder which are excellent, have a high hardness of 200 to 400 Hmv, and have excellent wear resistance.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an electromagnetic fuel injection valve for an internal combustion engine according to a first embodiment of the present invention; FIG. 2 is an enlarged view of a part of FIG. 1 FIG. 3 shows a second embodiment of the present invention; FIG. 4 is a cross-sectional view corresponding to FIG. 2; FIG. 4 is a diagram showing the relationship between the total content of Al and Ni and hardness in the movable core and the alloy for the magnetic cylinder. FIG. 5 is the total content of Al and Ni in the alloy. Diagram showing the relationship between magnetic flux density and volume resistance [Explanation of symbols]
I: Electromagnetic fuel injection valve V: Valve assembly d: Diameter w of horizontal hole (second horizontal hole): Guide protrusion (second guide protrusion) ) Axial width 2 ... Valve housing 3 Valve seat member 4 Magnetic cylinder 5 Fixed core 6 Non-magnetic cylinder 12, movable core 18, valve body 22, valve spring 25b, guide projection (second guide projection)
30 ... coil 37 ... gap

Claims (4)

弁座部材(3),磁性筒体(4)及び非磁性筒体(6)を順次結合してなる弁ハウジング(2)と,前記磁性筒体(4)に連設される固定コア(5)と,前記弁座部材(3)に収容されて開閉動作する弁体(18)と,この弁体(18)に連結され,前記固定コア(5)と対置されるように前記磁性筒体(4)及び非磁性筒体(6)内に収容される可動コア(12)と,前記弁体(18)を閉弁方向に付勢する弁ばね(22)と,前記固定コア(5)を囲繞して配置され,励磁により前記可動コア(12)を固定コア(5)に吸引させて前記弁体(18)を開弁させるコイル(30)とを備えてなり,前記可動コア(12)を前記磁性筒体(4)に摺動自在に支承させ,この可動コア(12)に縦孔(19)を燃料通路として形成した,電磁式燃料噴射弁において,
前記磁性筒体(4)及び可動コア(12)をフェライト系の高硬度磁性材製とすると共に,該可動コア(12)に,前記縦孔(19)と直交して該磁性筒体(4)及び可動コア(12)の摺動面に開口する複数の横孔(20b)を設けたことを特徴とする,電磁式燃料噴射弁。
A valve housing (2) formed by sequentially connecting a valve seat member (3), a magnetic cylinder (4) and a non-magnetic cylinder (6); and a fixed core (5) connected to the magnetic cylinder (4). ), A valve body (18) housed in the valve seat member (3) and opening and closing, and the magnetic cylinder body connected to the valve body (18) so as to face the fixed core (5). (4) a movable core (12) housed in the non-magnetic cylinder (6), a valve spring (22) for urging the valve body (18) in a valve closing direction, and the fixed core (5). And a coil (30) for energizing the movable core (12) to attract the movable core (12) to the fixed core (5) to open the valve element (18). ) Is slidably supported on the magnetic cylinder (4), and a vertical hole (19) is formed as a fuel passage in the movable core (12). In the fuel injection valve,
The magnetic cylinder (4) and the movable core (12) are made of a ferrite-based high-hardness magnetic material, and the movable core (12) is perpendicular to the vertical hole (19). ) And a plurality of lateral holes (20b) opening in the sliding surface of the movable core (12).
請求項1記載の電磁式燃料噴射弁において,
前記可動コア(12)及び磁性筒体(4)の互いに対向する外周面及び内周面の一方に,それらの他方に摺動自在に嵌合する環状のガイド凸部(25b)を形成して,前記外周面及び内周面間に間隙(37)を設け,前記横孔(20b)を前記ガイド凸部(25b)の摺動面に開口させたことを特徴とする,電磁式燃料噴射弁。
The electromagnetic fuel injection valve according to claim 1,
An annular guide convex portion (25b) is formed on one of the outer peripheral surface and the inner peripheral surface of the movable core (12) and the magnetic cylinder (4) facing each other so as to be slidably fitted to the other. An electromagnetic fuel injection valve characterized in that a gap (37) is provided between the outer peripheral surface and the inner peripheral surface, and the lateral hole (20b) is opened in a sliding surface of the guide projection (25b). .
請求項2記載の電磁式燃料噴射弁において,
前記横孔(20b)の直径(d)を前記ガイド凸部(25b)の軸方向幅(w)より大きく設定したことを特徴とする,電磁式燃料噴射弁。
The electromagnetic fuel injection valve according to claim 2,
An electromagnetic fuel injection valve, wherein a diameter (d) of the lateral hole (20b) is set to be larger than an axial width (w) of the guide projection (25b).
請求項1記載の電磁式燃料噴射弁において,
前記高硬度磁性材が,Crを10〜20wt%,Siを0.1wt%,Al及びNiの少なくとも一方を1wt%以上,残部としてフェライト系Fe,Mn,C,P,Sを含み,且つAl及びNiの合計を1.15〜6wt%とした合金であることを特徴とする,電磁式燃料噴射弁。
The electromagnetic fuel injection valve according to claim 1,
The high-hardness magnetic material contains 10 to 20% by weight of Cr, 0.1% by weight of Si, 1% by weight or more of at least one of Al and Ni, and the balance includes ferrite-based Fe, Mn, C, P, S, and Al. An electromagnetic fuel injection valve characterized in that it is an alloy in which the total of Ni and Ni is 1.15 to 6 wt%.
JP2003084858A 2003-03-26 2003-03-26 Electromagnetic fuel injection valve Expired - Fee Related JP3901656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084858A JP3901656B2 (en) 2003-03-26 2003-03-26 Electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084858A JP3901656B2 (en) 2003-03-26 2003-03-26 Electromagnetic fuel injection valve

Publications (2)

Publication Number Publication Date
JP2004293367A true JP2004293367A (en) 2004-10-21
JP3901656B2 JP3901656B2 (en) 2007-04-04

Family

ID=33399926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084858A Expired - Fee Related JP3901656B2 (en) 2003-03-26 2003-03-26 Electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JP3901656B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040470A (en) * 2015-12-22 2016-03-24 株式会社デンソー Fuel injection valve
JP2017141840A (en) * 2017-04-25 2017-08-17 株式会社デンソー Fuel injection valve
KR20230094194A (en) * 2020-11-23 2023-06-27 스자좡 하이프로 바이오테크놀러지 컴퍼니, 리미티드 Liquid ejection device for reagent kits
KR20230096119A (en) * 2020-11-23 2023-06-29 스자좡 하이프로 바이오테크놀러지 컴퍼니, 리미티드 Liquid discharge structure including sealing valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040470A (en) * 2015-12-22 2016-03-24 株式会社デンソー Fuel injection valve
JP2017141840A (en) * 2017-04-25 2017-08-17 株式会社デンソー Fuel injection valve
KR20230094194A (en) * 2020-11-23 2023-06-27 스자좡 하이프로 바이오테크놀러지 컴퍼니, 리미티드 Liquid ejection device for reagent kits
KR20230096119A (en) * 2020-11-23 2023-06-29 스자좡 하이프로 바이오테크놀러지 컴퍼니, 리미티드 Liquid discharge structure including sealing valve
KR102634478B1 (en) * 2020-11-23 2024-02-06 스자좡 하이프로 바이오테크놀러지 컴퍼니, 리미티드 Liquid outlet structure with sealing valve
KR102644341B1 (en) * 2020-11-23 2024-03-06 스자좡 하이프로 바이오테크놀러지 컴퍼니, 리미티드 Liquid drain device in reagent kit

Also Published As

Publication number Publication date
JP3901656B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US7097151B2 (en) Electromagnetic fuel injection valve
EP2570648B1 (en) Electromagnetic fuel-injection valve
JPH11132127A (en) Fuel injection valve and assembling method thereof
US7581711B2 (en) Electromagnetic fuel injection valve
JP2007218205A (en) Solenoid fuel injection valve and its assembling method
JP2011241701A5 (en)
US6851630B2 (en) Electromagnetic fuel injection valve
EP2461013B1 (en) Electromagnetic fuel injection valve
JP3887336B2 (en) Electromagnetic fuel injection valve
JP6339389B2 (en) Fuel injection valve
JP3901659B2 (en) Electromagnetic fuel injection valve
JP3901656B2 (en) Electromagnetic fuel injection valve
JP2017048764A (en) Fuel injection valve
JP2002004013A (en) Core for solenoid valve
JP3811461B2 (en) Electromagnetic fuel injection valve
JP4104508B2 (en) solenoid valve
JP2006002780A (en) Solenoid-operated fuel injection valve
JPH11247739A (en) Electromagnetic fuel injection valve
JP2004293366A (en) Electromagnetic fuel injection valve
JP2004300540A (en) Partial plastic working method for component made of high-hardness magnetic material
JP4285701B2 (en) Fuel injection valve
US10718302B2 (en) Fuel injection device
JP4767795B2 (en) Electromagnetic fuel injection valve
JP2002081356A (en) Electromagnetic fuel injection valve
JP2003301757A (en) Solenoid-operated fuel injection valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060524

A521 Written amendment

Effective date: 20060724

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061220

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees