JP2004300540A - Partial plastic working method for component made of high-hardness magnetic material - Google Patents

Partial plastic working method for component made of high-hardness magnetic material Download PDF

Info

Publication number
JP2004300540A
JP2004300540A JP2003096011A JP2003096011A JP2004300540A JP 2004300540 A JP2004300540 A JP 2004300540A JP 2003096011 A JP2003096011 A JP 2003096011A JP 2003096011 A JP2003096011 A JP 2003096011A JP 2004300540 A JP2004300540 A JP 2004300540A
Authority
JP
Japan
Prior art keywords
hardness
magnetic material
plastic working
valve
movable core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003096011A
Other languages
Japanese (ja)
Inventor
Takahiro Nagaoka
隆弘 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2003096011A priority Critical patent/JP2004300540A/en
Publication of JP2004300540A publication Critical patent/JP2004300540A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a partial plastic working method for a component made of a high-hardness magnetic material which easily enables partial plastic working of the component made of the high-hardness magnetic material without deteriorating the original high hardness and magnetic properties in the surrounding area. <P>SOLUTION: When performing the partial plastic working on the components 4 and 12 made of the high-hardness magnetic material, parts 4a and 12b to be subjected to plastic working are heated and converted into a softened area A showing a hardness of ≤HRC20 and a drawing degree of ≥60%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,電磁式燃料噴射弁等に使用される高硬度磁性材製部品の部分塑性加工方法に関する。
【0002】
【従来の技術】
電磁式燃料噴射弁の磁性部品を,Ni2.5%,Al1%,Ti0.1%を含むフェライト系高硬度磁性材で構成することが,例えば特許文献1に開示されるように,既に知られている。
【0003】
【特許文献1】
特開2002−4013号公報
【0004】
【発明が解決しようとする課題】
上記フェライト系高硬度磁性材は,析出硬化熱硬化熱処理(550°,3h)を実施することにより,極めて微細なNi,Al,Tiの化合物を結晶中に分散して析出させ,それにより素材の硬度を高めている。
【0005】
ところで,このような高硬度磁性材は,塑性加工性が極めて低く,塑性変形させるべく外力を加える,結晶中の化合物を起点として破壊が起きてしまう。したがって,従来では,高硬度磁性材製の部品を他の部品に,カシメ等の塑性加工により結合することは極めて困難であった。
【0006】
本発明は,かゝる事情に鑑みてなされたもので,高硬度磁性材製の部品の部分的な塑性加工を,その周囲の本来の高硬度磁性特性を損じることなく,容易に行うことを可能にした高硬度磁性材製部品の部分塑性加工方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために,本発明は,高硬度磁性材製部品を部分的に塑性加工するに当たり,塑性加工すべき部分を,加熱により硬度がHRC20以下となる軟化領域にすることを第1の特徴とする。
【0008】
尚,前記高硬度磁性材製部品は,後述する本発明の磁性筒体4及び可動コア12に対応する。
【0009】
この第1の特徴によれば,高硬度磁性材製部品の塑性加工を必要とする部分に略60%以上の絞り度を付与することができて,該部分の塑性加工を容易,確実に行うことができ,しかもその周囲では本来の高硬度磁性特性を維持することができる。
【0010】
また本発明は,第1の特徴に加えて,前記加熱を,高周波加熱とすることを第2の特徴とする。
【0011】
この第2の特徴によれば,高硬度磁性材製部品の本来の高硬度領域と軟化領域との境界を明確にすることができ,したがって塑性加工を行う所定箇所のみを軟化領域に形成することができ,塑性加工箇所以外の部分では本来の高硬度磁性特性を維持することができる。
【0012】
さらに本発明は,第1の特徴に加えて,前記加熱を,レーザビーム加熱とすることを第3の特徴とする。
【0013】
この第3の特徴によっても,高硬度磁性材製部品の本来の高硬度領域と軟化領域との境界を明確にすることができ,したがって塑性加工を行う所定箇所のみを軟化領域に形成することができ,塑性加工箇所以外の部分では本来の高硬度磁性特性を維持することができる。
【0014】
さらにまた本発明は,第1の特徴に加えて,前記高硬度磁性材が,Crを10〜20wt%,Siを0.1wt%,Al及びNiの少なくとも一方を1wt%以上,残部としてフェライト系Fe,Mn,C,P,Sを含み,且つAl及びNiの合計を1.15〜6wt%とした合金であることを第4の特徴とする。
【0015】
この第4の特徴によれば,磁気特性が良好で,しかも表面硬化処理を施さずとも硬度がHRC20〜40と高く,耐摩耗性に優れた安価な高硬度磁性材を提供することができる。
【0016】
さらにまた本発明は,第1〜第4の特徴の何れかに加えて,前記高硬度磁性材が電磁式燃料噴射弁における弁ハウジングの磁性筒体であり,この磁性筒体の一部に前記軟化領域を形成し,この軟化領域をカシメることにより該磁性筒体に弁座部材を固着することを第5の特徴とする。
【0017】
この第5の特徴によれば,電磁式燃料噴射弁において,高硬度磁性材製の磁性筒体の部分カシメを可能にして,これに弁座部材を容易,確実に固着することができる。
【0018】
さらにまた本発明は,第1〜第4の特徴の何れかに加えて,前記高硬度磁性材が電磁式燃料噴射弁における可動コアであり,この可動コアの端部に前記軟化領域を形成し,この軟化領域をカシメることにより該可動コアに弁体を固着することを第6の特徴とする。
【0019】
この第6の特徴によれば,電磁式燃料噴射弁において,高硬度磁性材製の可動コアの部分カシメを可能にして,これに弁体を容易,確実に固着することができる。
【0020】
【発明の実施の形態】
本発明の実施の形態を,添付図面に示す本発明の実施例に基づいて以下に説明する。
【0021】
図1は本発明の高硬度磁性材製部品を使用した内燃機関用電磁式燃料噴射弁の縦断面図,図2は図1の2部拡大図,図3は高硬度磁性材の軟化領域の硬度及び絞り度とカシメ結合の良否との関係を示す線図,図4は硬度磁性材における高硬度領域と軟化領域の境界周辺部の顕微鏡組織図である。
【0022】
先ず,図1及び図2により本発明の高硬度磁性材製部品を使用した内燃機関用電磁式燃料噴射弁について説明する。
【0023】
内燃機関用電磁式燃料噴射弁Iの弁ハウジング2は,前端に弁座8を有する円筒状の弁座部材3と,この弁座部材3の後端部に同軸に結合される磁性筒体4と,この磁性筒体4の後端に同軸に結合される非磁性筒体6とで構成される。
【0024】
弁座部材3は,その外周面から環状肩部3bを存して磁性筒体4側に突出する連結筒部3aを後端部に有し,その連結筒部3aの外周面に環状の連結溝38が形成されている。この連結筒部3aは磁性筒体4の前端部内周面に嵌合して液密に固着される。その固着方法に本発明が適用されるもので,それについては後述する。
【0025】
磁性筒体4及び非磁性筒体6は,対向端面を突き合わせて全周に亙りレーザビーム溶接により互いに同軸且つ液密に結合される。
【0026】
弁座部材3は,その前端面に開口する弁孔7と,この弁孔7の内端に連なる円錐状の弁座8と,この弁座8の大径部に連なる円筒状のガイド孔9とを備えている。弁座部材3の前端面には,上記弁孔7と連通する複数の燃料噴孔11を有する鋼板製のインジェクタプレート10が液密に全周溶接される。
【0027】
非磁性筒体6の内周面には,その後端側から固定コア5が液密に圧入固定される。その際,非磁性筒体6の前端部には,固定コア5と嵌合しない部分が残され,その部分から弁座部材3に至る弁ハウジング2内に弁組立体Vが収容される。
【0028】
弁組立体Vは,前記弁座8と協働して弁孔7を開閉する半球状の弁部16及びそれを支持する弁杆部17からなる弁体18と,弁杆部17に連結され,磁性筒体4から非磁性筒体6に跨がって,それらに挿入されて固定コア5に同軸で対置される可動コア12とからなっている。弁杆部17及び可動コア12は,弁杆部17に同軸に一体に形成されたストッパ要素14を可動コア12の中心部の連結孔36に嵌合した上で,相互に固着される。その固着方法にも本発明が適用されるので,それについても後述する。
【0029】
上記ストッパ要素14は,その先端部を可動コア12の吸引面12aから突出していて,通常,弁体18の開弁ストロークに相当する間隙sを存して固定コア5の吸引面5aと対置される。またストッパ要素14の,可動コア12の吸引面12aからの突出量gは,ストッパ要素14が固定コア5に当接したとき,固定コア5及び可動コア12の両吸引面5a,12a間に画成すべき所定のエアギャップに相当し,そのエアギャップgは,コイル30を励磁状態から消磁したとき,両コア5,12間の残留磁束が速やかに消失するように設定される。上記ストッパ要素14の端面及び可動コア12の吸引面12aは,ストッパ要素14の可動コア12への圧入後に,研削により同時に仕上げられる。こうすることにより,互いに関連する前記間隙s及びエアギャップgを精密に得ることができる。
【0030】
弁杆部17は,前記ガイド孔9より充分小径に形成されており,その外周面には,半径方向外方に突出して,前記ガイド孔9の内周面に摺動自在に支承される環状の第1ガイド凸部25aが弁部16に近接して一体に形成される。
【0031】
また可動コア12の外周面には,磁性筒体4の内周面に摺動自在に支承される環状の第2ガイド凸部25bが一体に形成される。こうして第2ガイド凸部25bの前後の可動コア12及び磁性筒体4間に間隙37が設けられる。
【0032】
弁組立体Vには,ストッパ要素14の端面から始まって半球状弁部16の球面中心Oを超えて行き止まりとなる縦孔19と,この縦孔19を,第1ガイド凸部25aより弁部16寄りの弁杆部17外周面に連通する第1横孔20aと,同縦孔19を,第2ガイド凸部25bの外周面に連通する第2横孔20bと,同縦孔19を,可動コア12及び第1ガイド凸部25a間の中央部の弁杆部17外周面に連通する第3横孔20cとが設けられる。その際,第1横孔20aは弁杆部17に穿設され,その本数は,縦孔19と直交する少なくとも2本とされる。また第2横孔20bは,可動コア12からストッパ要素14にかけて穿設され,その本数も,縦孔19と直交する少なくとも2本とされる。その第2横孔20bの直径dは前記第2ガイド凸部25bの軸方向幅wより大きく設定される。
【0033】
縦孔19の途中には,固定コア5側を向いた環状のばね座24が形成される。
【0034】
固定コア5は,可動コア12の縦孔19と連通する縦孔21を有し,この縦孔21に内部が連通する燃料入口筒26が固定コア5の後端に一体に連設される。燃料入口筒26は,固定コア5の後端に連なる縮径部26aと,それに続く拡径部26bとからなっており,その縮径部26aから縦孔21に挿入又は軽圧入されるパイプ状のリテーナ23と前記ばね座24との間に可動コア12を弁体18の閉弁側に付勢する弁ばね22が縮設される。その際,リテーナ23の縦孔21への嵌合深さにより弁ばね22のセット荷重が調整され,その調整後は縮径部26aの外周壁を部分的に内方へかしめることでリテーナ23は縮径部26aに固定される。拡径部26bには燃料フィルタ27が装着される。
【0035】
前記固定コア5,可動コア12及び磁性筒体4は,何れもフェライト系の高硬度磁性材製とされ,具体的には,次の組成の合金を切削することにより構成される。
【0036】
Cr・・・10〜20wt%
Si・・・0.1wt%
Al及びNi・・・両方を含むと共に,それらの少なくとも一方が1wt%以上,且つ両方の合計が1.15〜6wt%
残部・・・フェライト系Fe,不純物のMn,C,P,S
而して,上記合金中,特にAl及びNiの合計が1.15〜6wt%であることが固定コア5,可動コア12及び磁性筒体4の耐摩耗性,磁力及び応答性の向上に大きく関与する。即ち,Al及びNiは,それらの合計含有率の略95%が析出物となり,それが固定コア5,可動コア12及び磁性筒体4の硬度,磁束密度及び体積抵抗に大きな影響を与えるのであり,硬度は耐摩耗性を得る上で大きいことが望ましく,磁束密度は磁力を強化する上で大きいことが望ましく,体積抵抗は応答性を高める上で小さいことが望ましい。
【0037】
Al及びNiの合計含有率が1.15〜6wt%である限り,合金の硬度はHRC20〜40である。この範囲の硬度は,合金の切削加工後,メッキ等の特別な耐摩耗処理を施さずとも,固定コア5,可動コア12及び磁性筒体4に充分な耐摩耗性を付与するに足るものである。
【0038】
またAl及びNiの合計含有率が6wt%を超えると,固定コア5,可動コア12及び磁性筒体4の磁束密度が低下して,充分な磁力が得られなくのみならず,体積抵抗の低下により磁束の流れに遅れが生じ,固定コア5,可動コア12及び磁性筒体4の応答性が低下してしまう。
【0039】
したがって,Al及びNiの合計含有率を1.15〜6wt%としたことにより,固定コア5,可動コア12及び磁性筒体4の耐摩耗性,磁力及び応答性を実用上,満足させることができる。
【0040】
尚,前記合金中のCr 10〜20wt%,Si 0.1wt%,残部 フェライト系Fe,不純物のMn,C,P,Sは,従来の磁性材に一般的に含有されるものである。
【0041】
一方,ストッパ要素14を一体に連ねた弁体18は,非磁性もしくは可動コア12より弱磁性の材料,例えばJIS SUS304材又はSUS440Cで構成される。
【0042】
再び図1において,弁ハウジング2の外周には,固定コア5及び可動コア12に対応してコイル組立体28が嵌装される。このコイル組立体28は,磁性筒体4の後端部から非磁性筒体6全体にかけてそれらの外周面に嵌合するボビン29と,これに巻装されるコイル30とからなっており,このコイル組立体28を囲繞するコイルハウジング31の前端が磁性筒体4の外周面に溶接され,その後端には,固定コア5の後端部外周からフランジ状に突出するヨーク5bの外周面に溶接される。コイルハウジング31は円筒状をなし,且つ一側に軸方向に延びるスリット31aが形成されている。
【0043】
上記コイルハウジング31,コイル組立体28,固定コア5及び燃料入口筒26の前半部は,射出成形による合成樹脂製の被覆体32に埋封される。その際,,コイルハウジング31内への被覆体32の充填はスリット31aを通して行われる。また被覆体32の中間部には,前記コイル30に連なる接続端子33を収容する備えたカプラ34が一体に連設される。
【0044】
コイル30を消磁した状態では,弁ばね22の付勢力で弁組立体Vは前方に押圧され,弁体18を弁座8に着座させている。したがって,図示しない燃料ポンプから燃料入口筒26に圧送された燃料は,パイプ状のリテーナ23内部,弁組立体Vの縦孔19及び第1〜第3横孔20a〜20cを通して弁ハウジング2内に待機させられ,第1及び第2ガイド凸部25a,25b周りの潤滑及び冷却に供される。
【0045】
さて,高硬度磁性材製の磁性筒体4と弁座部材3との結合方法について説明する。
【0046】
図2に示すように,先ず,弁座部材3の連結筒部3a外周面に環状の連結溝38を形成する一方,磁性筒体4周壁の,連結溝38に対応する部分4aを加熱して環状の軟化領域Aを形成する。この軟化領域Aは,結晶中の析出化合物が加熱分解することにより,硬度が低下するものである。そして連結筒部3aを磁性筒体4の前端部内周面に嵌合すると共に,磁性筒体4の前端面を環状肩部3bに当接させ,その後,磁性筒体4の前記軟化領域Aに内方へのカシメ力を加えて,軟化領域Aの内周面を前記連結溝38に全周に亙り食い込ませる。こうして磁性筒体4及び弁座部材3はカシメ結合される。
【0047】
この場合,軟化領域Aの硬度及び絞り度と,カシメ結合の良否との関係について調べてみると,図3の結果を得た。即ち,軟化領域Aの硬度がHRC20以下であれば,絞り度50%以上を得て,カシメ結合を確実に行うことができるが,その硬度がHRC20を上回ると,カシメ力により軟化領域Aに亀裂が発生してしまい,結合不良となる。したがって,良好なカシメ結合を得るために,軟化領域Aの硬度はHRC20以下とすることを要する。
【0048】
また軟化領域Aを形成する際,高周波加熱又はレーザビーム加熱が適当である。高周波加熱又はレーザビーム加熱によれば,図4に示すように,磁性筒体4の本来の高硬度領域と軟化領域Aとの境界を明確にすることができる。したがってカシメ,即ち塑性加工を行う所定箇所のみを軟化領域Aに形成して,塑性加工箇所以外の部分の本来の高硬度磁性材の特性が損なわれるのを防ぐことができる。
【0049】
次に,高硬度磁性材製の可動コア12と弁体18との結合方法について説明する。
【0050】
先ず,可動コア12の一端に,弁杆部17のフランジ部35を受容する比較的肉薄のカシメ筒部12bを一体に形成し,このカシメ筒部12bを高周波又はレーザビームにより加熱して,硬度HRC20以下の軟化領域Aとする。次いで,このカシメ筒部12b内に弁杆部17のフランジ部35を嵌合した後,カシメ筒部12bに内向きのカシメ力を加えて,カシメ筒部12bに塑性変形を与えてフランジ部35を包み込む。かくして,可動コア12本来の高硬度磁性材の特性を殆ど損なうことなく,可動コア12及び弁体18の良好なカシメ結合部を得ることができる。
【0051】
而して,こうして構成された電磁式燃料噴射弁Iにおいて,コイル30を通電により励磁すると,それにより生ずる磁束が固定コア5,コイルハウジング31,磁性筒体4及び可動コア12を順次走り,その磁力により弁組立体Vの可動コア12が弁ばね22のセット荷重に抗して固定コア5に吸引され,弁体18が弁座8から離座するので,弁孔7が開放され,弁座部材3内の高圧燃料が弁孔7を出て,燃料噴孔11からエンジンの吸気弁に向かって噴射される。
【0052】
このとき,弁組立体Vの可動コア12に嵌合固定されたストッパ要素14が固定コア5の吸引面5aに当接することにより,弁体18の開弁限界が規定され,可動コア12の吸引面12aは,エアギャップgを存して固定コア5の吸引面5aと対向し,固定コア5との直接接触が回避される。特にストッパ要素14の,可動コア12の吸引面12aからの突出量の寸法管理により,上記エアギャップgを精密且つ容易に得ることができ,ストッパ要素14が非磁性もしくは弱磁性であることゝ相俟って,コイル30の消磁時の両コア5,12間の残留磁気は速やかに消失して,弁体18の閉弁応答性を高めることができる。
【0053】
弁組立体Vは,その開閉動作中,第1及び第2ガイド凸部25a,25bが弁ハウジング2の内周面に摺動することにより,常に倒れのない適正な姿勢に保持されるので,燃料噴射特性の安定化を図ることができる。
【0054】
また可動コア12に形成された第2ガイド凸部25bの外周面には,第2ガイド凸部25bの軸方向幅wより大なる直径dの第2横孔20bは開口しているから,縦孔19から複数本の第2横孔20bを通して,第2ガイド凸部25bの摺動面,並びにその前後の可動コア12及び磁性筒体4間の間隙37に同時に効率良く供給され,第2ガイド凸部25bの摺動面の潤滑は勿論,可動コア12及び磁性筒体4の冷却を効果的に行うことができ,弁組立体Vの応答性及び耐摩耗性の向上を図ることができる。しかも可動コア12及び磁性筒体4は,前述のようなフェライト系の高硬度磁性材製であり,それ自体で良好な磁気特性と高い耐摩耗性を発揮することができるので,これにより弁組立体Vの応答性及び耐摩耗性の向上を一層図ることができて,燃料噴射特性を長期に亙り安定させることが可能となる。そしてフェライト系の高硬度磁性材製の可動コア12及び磁性筒体4には,特別な耐摩耗処理を施す必要がない分,製造工数が削減され,コストの低減を図ることができる。
【0055】
また可動コア12を横切る第2横孔20bは,コイル30の励,消磁時,可動コア12に渦電流が生ずることを抑え,渦電流に起因する可動コア12の加熱を防ぐことができる。
【0056】
さらに縦孔19及び第1〜第3横孔20a〜20cは,燃料通路の役目の他に,弁組立体Vの贅肉を除去する役目をも果たし,弁組立体Vの軽量化,延いては応答性の向上に寄与する。
【0057】
本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。
【0058】
【発明の効果】
以上のように本発明の第1の特徴によれば,高硬度磁性材製部品を部分的に塑性加工するに当たり,塑性加工すべき部分を,加熱により硬度がHRC20以下となる軟化領域にするので,高硬度磁性材製部品の塑性加工を必要とする部分に略60%以上の絞り度を付与することができて,該部分の塑性加工を容易,確実に行うことができ,しかもその周囲では本来の高硬度磁性特性を維持することができる。
【0059】
また本発明の第2の特徴によれば,第1の特徴に加えて,前記加熱を,高周波加熱とするので,高硬度磁性材製部品の本来の高硬度領域と軟化領域との境界を明確にすることができて,塑性加工箇所以外の部分では本来の高硬度磁性特性を維持することができる。
【0060】
さらに本発明の第3の特徴によれば,第1の特徴に加えて,前記加熱を,レーザビーム加熱とするので,塑性加工箇所以外の部分では本来の高硬度磁性特性を維持することができる。
【0061】
さらにまた本発明の第4の特徴によれば,第1の特徴に加えて,前記高硬度磁性材が,Crを10〜20wt%,Siを0.1wt%,Al及びNiの少なくとも一方を1wt%以上,残部としてフェライト系Fe,Mn,C,P,Sを含み,且つAl及びNiの合計を1.15〜6wt%とした合金であるので,磁気特性が良好で,しかも表面硬化処理を施さずとも硬度がHRC20〜40と高く,耐摩耗性に優れた安価な高硬度磁性材を提供することができる。
【0062】
さらにまた本発明の第5の特徴によれば,第1〜第4の特徴の何れかに加えて,前記高硬度磁性材が電磁式燃料噴射弁における弁ハウジングの磁性筒体であり,この磁性筒体の一部に前記軟化領域を形成し,この軟化領域をカシメることにより該磁性筒体に弁座部材を固着するので,高硬度磁性材製の磁性筒体の部分カシメを可能にして,これに弁座部材を容易,確実に固着することができる。
【0063】
さらにまた本発明の第6の特徴によれば,第1〜第4の特徴の何れかに加えて,前記高硬度磁性材が電磁式燃料噴射弁における可動コアであり,この可動コアの端部に前記軟化領域を形成し,この軟化領域をカシメることにより該可動コアに弁体を固着するので,高硬度磁性材製の可動コアの部分カシメを可能にして,これに弁体を容易,確実に固着することができる。
【図面の簡単な説明】
【図1】本発明の高硬度磁性材製部品を使用した内燃機関用電磁式燃料噴射弁の縦断面図
【図2】図1の2部拡大図
【図3】高硬度磁性材の軟化領域の硬度及び絞り度とカシメ結合の良否との関係を示す線図
【図4】硬度磁性材における高硬度領域と軟化領域の境界周辺部の顕微鏡組織図
【符号の説明】
A・・・・・軟化領域
I・・・・・電磁式燃料噴射弁
2・・・・・弁ハウジング
3・・・・・弁座部材
4・・・・・磁性筒体
4a・・・・磁性筒体の塑性加工部分
12・・・・可動コア
12b・・・可動コアの塑性加工部分(カシメ筒部)
18・・・・弁体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of partially plastic working of a high-hardness magnetic material part used for an electromagnetic fuel injection valve or the like.
[0002]
[Prior art]
It is already known that a magnetic component of an electromagnetic fuel injection valve is made of a ferrite-based high-hardness magnetic material containing 2.5% of Ni, 1% of Al, and 0.1% of Ti, as disclosed in Patent Document 1, for example. ing.
[0003]
[Patent Document 1]
JP-A-2002-4013
[Problems to be solved by the invention]
The ferrite-based high hardness magnetic material is subjected to precipitation hardening heat hardening heat treatment (550 °, 3 h), thereby dispersing and precipitating extremely fine compounds of Ni, Al, and Ti in the crystal. Increases hardness.
[0005]
By the way, such a high-hardness magnetic material has extremely low plastic workability, and an external force is applied to cause plastic deformation, and fracture starts from a compound in a crystal as a starting point. Therefore, conventionally, it has been extremely difficult to join a component made of a high-hardness magnetic material to another component by plastic working such as caulking.
[0006]
The present invention has been made in view of such circumstances, and has been made to facilitate the partial plastic working of a component made of a high-hardness magnetic material without impairing the original high-hardness magnetic properties around it. An object of the present invention is to provide a method of partial plastic working of a part made of a high hardness magnetic material, which is made possible.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for partially plasticizing a part made of a high-hardness magnetic material, wherein a part to be plastically worked is made into a softened region in which the hardness becomes 20 or less by heating. The feature.
[0008]
The high hardness magnetic material part corresponds to a magnetic cylinder 4 and a movable core 12 of the present invention described later.
[0009]
According to the first feature, it is possible to impart a drawing degree of approximately 60% or more to a part of the high-hardness magnetic material part that requires plastic working, so that the plastic working of the part can be performed easily and reliably. And the surroundings can maintain the original high hardness magnetic properties.
[0010]
According to a second feature of the present invention, in addition to the first feature, the heating is high-frequency heating.
[0011]
According to the second feature, it is possible to clarify the boundary between the original high hardness region and the softened region of the high hardness magnetic material part, and therefore, only the predetermined portion where the plastic working is performed is formed in the softened region. Thus, the original high-hardness magnetic properties can be maintained in portions other than the plastic working portion.
[0012]
Further, according to the present invention, in addition to the first feature, a third feature is that the heating is laser beam heating.
[0013]
This third feature also makes it possible to clarify the boundary between the original hardened region and the softened region of the high-hardness magnetic material part, and therefore, it is possible to form only a predetermined portion where plastic working is performed in the softened region. It is possible to maintain the original high-hardness magnetic properties in portions other than the plastic working portion.
[0014]
Still further, according to the present invention, in addition to the first feature, the high-hardness magnetic material comprises 10 to 20% by weight of Cr, 0.1% by weight of Si, 1% by weight or more of at least one of Al and Ni, and a balance of ferrite. A fourth feature is that the alloy contains Fe, Mn, C, P, and S, and the total of Al and Ni is 1.15 to 6 wt%.
[0015]
According to the fourth feature, it is possible to provide an inexpensive high-hardness magnetic material having good magnetic properties, a high hardness of 20 to 40 HRC without surface hardening, and excellent wear resistance.
[0016]
Still further, according to the present invention, in addition to any one of the first to fourth features, the high-hardness magnetic material is a magnetic cylinder of a valve housing in an electromagnetic fuel injection valve, and a part of the magnetic cylinder includes the magnetic cylinder. A fifth feature is that a softened region is formed and the valve seat member is fixed to the magnetic cylinder by caulking the softened region.
[0017]
According to the fifth feature, in the electromagnetic fuel injection valve, the magnetic cylinder made of a high-hardness magnetic material can be partially caulked, and the valve seat member can be easily and reliably fixed thereto.
[0018]
Still further, according to the present invention, in addition to any one of the first to fourth features, the high-hardness magnetic material is a movable core in an electromagnetic fuel injection valve, and the softened region is formed at an end of the movable core. The sixth feature is that the valve element is fixed to the movable core by caulking the softened region.
[0019]
According to the sixth feature, in the electromagnetic fuel injection valve, the movable core made of a high-hardness magnetic material can be partially caulked, and the valve body can be easily and reliably fixed thereto.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below based on embodiments of the present invention shown in the accompanying drawings.
[0021]
1 is a longitudinal sectional view of an electromagnetic fuel injection valve for an internal combustion engine using a component made of a high hardness magnetic material of the present invention, FIG. 2 is an enlarged view of a part of FIG. 1, and FIG. FIG. 4 is a diagram showing the relationship between the hardness and the degree of drawing and the quality of the caulking connection, and FIG. 4 is a microscopic structure diagram of the periphery of the boundary between the high hardness region and the softened region in the hard magnetic material.
[0022]
First, an electromagnetic fuel injection valve for an internal combustion engine using a component made of a high hardness magnetic material of the present invention will be described with reference to FIGS.
[0023]
A valve housing 2 of an electromagnetic fuel injection valve I for an internal combustion engine includes a cylindrical valve seat member 3 having a valve seat 8 at a front end, and a magnetic cylinder 4 coaxially coupled to a rear end of the valve seat member 3. And a non-magnetic cylinder 6 coaxially coupled to the rear end of the magnetic cylinder 4.
[0024]
The valve seat member 3 has, at its rear end, a connecting cylinder 3a protruding toward the magnetic cylinder 4 with an annular shoulder 3b from the outer peripheral surface thereof, and an annular coupling to the outer peripheral surface of the coupling cylinder 3a. A groove 38 is formed. The connecting cylinder 3a is fitted to the inner peripheral surface of the front end of the magnetic cylinder 4 and is fixed in a liquid-tight manner. The present invention is applied to the fixing method, which will be described later.
[0025]
The magnetic cylinder 4 and the non-magnetic cylinder 6 are coaxially and liquid-tightly joined to each other by laser beam welding over the entire circumference with their facing end faces abutting.
[0026]
The valve seat member 3 has a valve hole 7 opened at the front end surface thereof, a conical valve seat 8 connected to the inner end of the valve hole 7, and a cylindrical guide hole 9 connected to a large diameter portion of the valve seat 8. And An injector plate 10 made of a steel plate having a plurality of fuel injection holes 11 communicating with the valve hole 7 is liquid-tightly welded to the front end surface of the valve seat member 3 in a liquid-tight manner.
[0027]
The fixed core 5 is press-fitted and fixed to the inner peripheral surface of the non-magnetic cylinder 6 from the rear end side in a liquid-tight manner. At this time, a portion that does not fit with the fixed core 5 is left at the front end of the non-magnetic cylinder 6, and the valve assembly V is accommodated in the valve housing 2 extending from the portion to the valve seat member 3.
[0028]
The valve assembly V is connected to a valve body 18 comprising a hemispherical valve part 16 for opening and closing the valve hole 7 in cooperation with the valve seat 8 and a valve rod part 17 for supporting the same, and a valve rod part 17. And a movable core 12 which extends from the magnetic cylinder 4 to the non-magnetic cylinder 6, is inserted therein, and is coaxially opposed to the fixed core 5. The valve rod portion 17 and the movable core 12 are fixed to each other after a stopper element 14 formed coaxially and integrally with the valve rod portion 17 is fitted into a connection hole 36 at the center of the movable core 12. The present invention is also applied to the fixing method, which will be described later.
[0029]
The tip end of the stopper element 14 protrudes from the suction surface 12a of the movable core 12, and is usually opposed to the suction surface 5a of the fixed core 5 with a gap s corresponding to the valve opening stroke of the valve element 18. You. The amount g of protrusion of the stopper element 14 from the suction surface 12a of the movable core 12 is determined by the distance between the suction surfaces 5a and 12a of the fixed core 5 and the movable core 12 when the stopper element 14 contacts the fixed core 5. The air gap g is set so that when the coil 30 is demagnetized from the excited state, the residual magnetic flux between the cores 5 and 12 is quickly eliminated. The end face of the stopper element 14 and the suction surface 12a of the movable core 12 are simultaneously finished by grinding after the stopper element 14 is pressed into the movable core 12. In this manner, the gap s and the air gap g related to each other can be precisely obtained.
[0030]
The valve rod portion 17 is formed to have a diameter sufficiently smaller than the guide hole 9, and its outer peripheral surface protrudes radially outward and is slidably supported on the inner peripheral surface of the guide hole 9. The first guide projection 25a is integrally formed in the vicinity of the valve portion 16.
[0031]
On the outer peripheral surface of the movable core 12, an annular second guide convex portion 25b slidably supported on the inner peripheral surface of the magnetic cylinder 4 is integrally formed. Thus, a gap 37 is provided between the movable core 12 and the magnetic cylinder 4 before and after the second guide projection 25b.
[0032]
The valve assembly V has a vertical hole 19 starting from the end face of the stopper element 14 and reaching a dead end beyond the spherical center O of the hemispherical valve portion 16, and this vertical hole 19 is connected to the valve portion by the first guide convex portion 25a. The first horizontal hole 20a and the vertical hole 19 communicating with the outer peripheral surface of the valve rod portion 17 closer to 16 are connected to the second horizontal hole 20b and the vertical hole 19 communicating with the outer peripheral surface of the second guide projection 25b. A third lateral hole 20c communicating with the outer peripheral surface of the valve rod portion 17 at the center between the movable core 12 and the first guide convex portion 25a is provided. At this time, the first horizontal hole 20 a is formed in the valve rod portion 17, and the number thereof is at least two orthogonal to the vertical hole 19. The second horizontal hole 20b is formed from the movable core 12 to the stopper element 14, and the number of the second horizontal hole 20b is at least two orthogonal to the vertical hole 19. The diameter d of the second lateral hole 20b is set to be larger than the axial width w of the second guide projection 25b.
[0033]
In the middle of the vertical hole 19, an annular spring seat 24 facing the fixed core 5 side is formed.
[0034]
The fixed core 5 has a vertical hole 21 communicating with the vertical hole 19 of the movable core 12, and a fuel inlet tube 26 internally communicating with the vertical hole 21 is integrally connected to the rear end of the fixed core 5. The fuel inlet tube 26 is composed of a reduced diameter portion 26a connected to the rear end of the fixed core 5 and a subsequent enlarged diameter portion 26b. The pipe shape is inserted or lightly pressed into the vertical hole 21 from the reduced diameter portion 26a. A valve spring 22 for urging the movable core 12 toward the valve closing side of the valve body 18 is contracted between the retainer 23 and the spring seat 24. At this time, the set load of the valve spring 22 is adjusted by the fitting depth of the retainer 23 into the vertical hole 21, and after the adjustment, the outer peripheral wall of the reduced diameter portion 26 a is partially crimped inward to thereby retain the retainer 23. Is fixed to the reduced diameter portion 26a. A fuel filter 27 is mounted on the enlarged diameter portion 26b.
[0035]
The fixed core 5, the movable core 12, and the magnetic cylinder 4 are all made of a ferrite-based high-hardness magnetic material, and are specifically formed by cutting an alloy having the following composition.
[0036]
Cr: 10-20 wt%
Si ・ ・ ・ 0.1wt%
Al and Ni: both of them are contained, at least one of them is 1 wt% or more, and the total of both is 1.15 to 6 wt%
Remaining part: ferritic Fe, impurities Mn, C, P, S
The fact that the total of Al and Ni in the above alloys is 1.15 to 6% by weight, in particular, greatly improves the wear resistance, magnetic force and response of the fixed core 5, the movable core 12 and the magnetic cylinder 4. Involved. That is, about 95% of the total content of Al and Ni becomes precipitates, which greatly affects the hardness, magnetic flux density and volume resistance of the fixed core 5, the movable core 12 and the magnetic cylinder 4. The hardness is desirably large for obtaining abrasion resistance, the magnetic flux density is desirably large for enhancing magnetic force, and the volume resistance is desirably small for enhancing responsiveness.
[0037]
As long as the total content of Al and Ni is 1.15-6 wt%, the hardness of the alloy is HRC20-40. The hardness in this range is sufficient to impart sufficient wear resistance to the fixed core 5, the movable core 12, and the magnetic cylinder 4 without performing any special wear treatment such as plating after cutting the alloy. is there.
[0038]
If the total content of Al and Ni exceeds 6 wt%, the magnetic flux densities of the fixed core 5, the movable core 12, and the magnetic cylinder 4 decrease, so that not only a sufficient magnetic force cannot be obtained but also the volume resistance decreases. As a result, the flow of the magnetic flux is delayed, and the responsiveness of the fixed core 5, the movable core 12, and the magnetic cylinder 4 is reduced.
[0039]
Therefore, by setting the total content of Al and Ni to 1.15 to 6 wt%, the wear resistance, magnetic force, and responsiveness of the fixed core 5, the movable core 12, and the magnetic cylinder 4 can be practically satisfied. it can.
[0040]
Incidentally, 10 to 20 wt% of Cr, 0.1 wt% of Si, and the balance of ferrite-based Fe and impurities Mn, C, P and S in the alloy are generally contained in conventional magnetic materials.
[0041]
On the other hand, the valve element 18 integrally formed with the stopper element 14 is made of a material that is nonmagnetic or less magnetic than the movable core 12, for example, JIS SUS304 or SUS440C.
[0042]
Referring again to FIG. 1, a coil assembly 28 is fitted around the outer periphery of the valve housing 2 in correspondence with the fixed core 5 and the movable core 12. The coil assembly 28 includes a bobbin 29 fitted on the outer peripheral surface of the magnetic cylinder 4 from the rear end to the entire non-magnetic cylinder 6, and a coil 30 wound around the bobbin 29. The front end of the coil housing 31 surrounding the coil assembly 28 is welded to the outer peripheral surface of the magnetic cylinder 4, and the rear end is welded to the outer peripheral surface of the yoke 5 b projecting in a flange shape from the outer periphery of the rear end of the fixed core 5. Is done. The coil housing 31 has a cylindrical shape, and has a slit 31a formed on one side and extending in the axial direction.
[0043]
The coil housing 31, the coil assembly 28, the fixed core 5, and the first half of the fuel inlet tube 26 are embedded in a synthetic resin covering 32 formed by injection molding. At this time, the covering 32 is filled into the coil housing 31 through the slit 31a. A coupler 34 for accommodating a connection terminal 33 connected to the coil 30 is integrally connected to an intermediate portion of the cover 32.
[0044]
In a state where the coil 30 is demagnetized, the valve assembly V is pressed forward by the urging force of the valve spring 22, and the valve body 18 is seated on the valve seat 8. Therefore, fuel pumped from a fuel pump (not shown) to the fuel inlet cylinder 26 enters the valve housing 2 through the inside of the pipe-shaped retainer 23, the vertical hole 19 of the valve assembly V, and the first to third horizontal holes 20a to 20c. It is made to stand by and provided for lubrication and cooling around the first and second guide projections 25a and 25b.
[0045]
Now, a method for connecting the magnetic cylinder 4 made of a high-hardness magnetic material and the valve seat member 3 will be described.
[0046]
As shown in FIG. 2, first, an annular connecting groove 38 is formed on the outer peripheral surface of the connecting cylindrical portion 3a of the valve seat member 3, and a portion 4a of the peripheral wall of the magnetic cylindrical body 4 corresponding to the connecting groove 38 is heated. An annular softened region A is formed. In the softened region A, the hardness is reduced due to the thermal decomposition of the precipitated compound in the crystal. The connecting cylinder 3a is fitted to the inner peripheral surface of the front end of the magnetic cylinder 4, and the front end of the magnetic cylinder 4 is brought into contact with the annular shoulder 3b. By applying an inward caulking force, the inner peripheral surface of the softened region A is made to bite into the connection groove 38 over the entire circumference. Thus, the magnetic cylinder 4 and the valve seat member 3 are caulked.
[0047]
In this case, when the relationship between the hardness and the degree of drawing of the softened region A and the quality of the caulking connection was examined, the result shown in FIG. 3 was obtained. That is, if the hardness of the softened region A is less than or equal to HRC20, it is possible to obtain the degree of drawing of 50% or more and to perform the caulking connection reliably, but if the hardness exceeds HRC20, the softened region A is cracked by the caulking force. Occurs, resulting in poor connection. Therefore, in order to obtain good crimping, the hardness of the softened region A needs to be HRC20 or less.
[0048]
When forming the softened region A, high-frequency heating or laser beam heating is appropriate. According to the high-frequency heating or the laser beam heating, as shown in FIG. 4, the boundary between the original high hardness region and the softened region A of the magnetic cylinder 4 can be clarified. Therefore, caulking, that is, only a predetermined portion where plastic working is performed is formed in the softened region A, and the characteristic of the original high-hardness magnetic material in a portion other than the plastic working portion can be prevented from being impaired.
[0049]
Next, a method of connecting the movable core 12 made of a high hardness magnetic material and the valve body 18 will be described.
[0050]
First, a relatively thin caulking tube portion 12b for receiving the flange portion 35 of the valve rod portion 17 is integrally formed at one end of the movable core 12, and the caulking tube portion 12b is heated by high frequency or laser beam to obtain a hardness. The softening region A is HRC 20 or less. Next, after the flange portion 35 of the valve rod portion 17 is fitted into the caulking tube portion 12b, an inward caulking force is applied to the caulking tube portion 12b to give a plastic deformation to the caulking tube portion 12b, and the flange portion 35 is formed. Envelop. In this way, it is possible to obtain a good crimped joint between the movable core 12 and the valve element 18 without substantially impairing the characteristics of the high hardness magnetic material inherent in the movable core 12.
[0051]
In the electromagnetic fuel injection valve I constructed as described above, when the coil 30 is energized by energization, the magnetic flux generated thereby runs sequentially through the fixed core 5, the coil housing 31, the magnetic cylinder 4, and the movable core 12, and The movable core 12 of the valve assembly V is attracted to the fixed core 5 against the set load of the valve spring 22 by the magnetic force, and the valve body 18 separates from the valve seat 8, so that the valve hole 7 is opened and the valve seat 7 is opened. The high-pressure fuel in the member 3 exits the valve hole 7 and is injected from the fuel injection hole 11 toward the intake valve of the engine.
[0052]
At this time, the stopper element 14 fitted and fixed to the movable core 12 of the valve assembly V comes into contact with the suction surface 5a of the fixed core 5, so that the valve opening limit of the valve body 18 is defined, and the suction of the movable core 12 is performed. The surface 12a faces the suction surface 5a of the fixed core 5 with an air gap g therebetween, and direct contact with the fixed core 5 is avoided. In particular, by controlling the dimension of the amount of protrusion of the stopper element 14 from the suction surface 12a of the movable core 12, the air gap g can be obtained accurately and easily, and the stopper element 14 is non-magnetic or weakly magnetic. In addition, the residual magnetism between the cores 5 and 12 when the coil 30 is demagnetized disappears quickly, and the valve closing response of the valve element 18 can be improved.
[0053]
During opening and closing operations of the valve assembly V, the first and second guide projections 25a and 25b slide on the inner peripheral surface of the valve housing 2 so that the valve assembly V is always held in a proper posture without falling down. The fuel injection characteristics can be stabilized.
[0054]
Further, since the second lateral hole 20b having a diameter d larger than the axial width w of the second guide convex portion 25b is opened on the outer peripheral surface of the second guide convex portion 25b formed on the movable core 12, the vertical direction is vertical. Through the plurality of second horizontal holes 20b from the holes 19, the sliding surface of the second guide convex portion 25b and the gap 37 between the movable core 12 and the magnetic cylinder 4 before and after the same are efficiently and simultaneously supplied to the second guide. The movable core 12 and the magnetic cylinder 4 can be effectively cooled as well as the lubrication of the sliding surface of the projection 25b, and the responsiveness and wear resistance of the valve assembly V can be improved. In addition, the movable core 12 and the magnetic cylinder 4 are made of a ferrite-based high hardness magnetic material as described above, and can exhibit good magnetic properties and high wear resistance by themselves. The response and wear resistance of the three-dimensional V can be further improved, and the fuel injection characteristics can be stabilized for a long time. Further, since it is not necessary to perform a special wear-resistant treatment on the movable core 12 and the magnetic cylinder 4 made of a ferrite-based high-hardness magnetic material, the number of manufacturing steps can be reduced, and the cost can be reduced.
[0055]
Further, the second horizontal hole 20b crossing the movable core 12 can suppress generation of an eddy current in the movable core 12 when exciting and demagnetizing the coil 30, and can prevent heating of the movable core 12 due to the eddy current.
[0056]
Further, the vertical hole 19 and the first to third horizontal holes 20a to 20c also serve to remove the extravagance of the valve assembly V in addition to the function of the fuel passage, so that the weight of the valve assembly V can be reduced and the valve assembly V can be further reduced. This contributes to improved responsiveness.
[0057]
The present invention is not limited to the above embodiment, and various design changes can be made without departing from the gist of the present invention.
[0058]
【The invention's effect】
As described above, according to the first aspect of the present invention, when a part made of a high-hardness magnetic material is partially plastically worked, the part to be plastically worked is made into a softened region where the hardness becomes 20 or less by HRC by heating. Approximately 60% or more of the degree of drawing can be imparted to a part of a high-hardness magnetic material part that requires plastic working, and the plastic working of the part can be performed easily and reliably. The original high hardness magnetic properties can be maintained.
[0059]
According to the second aspect of the present invention, in addition to the first aspect, since the heating is performed by high-frequency heating, the boundary between the original high hardness region and the softened region of the high hardness magnetic material part is clearly defined. The original high-hardness magnetic properties can be maintained in portions other than the plastic working portion.
[0060]
Further, according to the third aspect of the present invention, in addition to the first aspect, the heating is performed by laser beam heating, so that the original high-hardness magnetic properties can be maintained in portions other than the plastic working portion. .
[0061]
According to a fourth aspect of the present invention, in addition to the first aspect, the high-hardness magnetic material comprises 10-20 wt% of Cr, 0.1 wt% of Si, and 1 wt% of at least one of Al and Ni. %, The balance being ferrite-based Fe, Mn, C, P, S, and the total of Al and Ni being 1.15 to 6 wt%. Even if it is not applied, it is possible to provide an inexpensive high-hardness magnetic material having a high hardness of HRC 20 to 40 and excellent wear resistance.
[0062]
According to a fifth aspect of the present invention, in addition to any one of the first to fourth aspects, the high-hardness magnetic material is a magnetic cylinder of a valve housing in an electromagnetic fuel injection valve. Since the softened region is formed in a part of the cylinder and the valve seat member is fixed to the magnetic cylinder by caulking the softened region, it is possible to caulk the magnetic cylinder made of a high-hardness magnetic material partially. The valve seat member can be easily and reliably fixed to the valve seat member.
[0063]
According to a sixth aspect of the present invention, in addition to any one of the first to fourth aspects, the high-hardness magnetic material is a movable core in an electromagnetic fuel injection valve, and the movable core has an end portion. The softened region is formed in the movable core, and the valve body is fixed to the movable core by caulking the softened region. Therefore, the movable core made of a high-hardness magnetic material can be partially caulked, and the valve body can be easily formed. It can be securely fixed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an electromagnetic fuel injection valve for an internal combustion engine using a component made of a high-hardness magnetic material of the present invention. FIG. 2 is an enlarged view of a part of FIG. 1 FIG. FIG. 4 is a diagram showing the relationship between the hardness and the degree of drawing of the steel and the quality of the caulking connection. FIG. 4 is a microscopic structure diagram of the periphery of the boundary between the high hardness region and the softened region in the hard magnetic material.
A: Softening region I: Electromagnetic fuel injection valve 2: Valve housing 3: Valve seat member 4: Magnetic cylinder 4a Plastic working part 12 of magnetic cylinder ···· Movable core 12b ··· Plastic working part of movable core (caulking cylinder part)
18 ··· Valve

Claims (6)

高硬度磁性材製部品(4,12)を部分的に塑性加工するに当たり,
塑性加工すべき部分(4a,12b)を,加熱により硬度がHRC20以下となる軟化領域(A)にすることを特徴とする,高硬度磁性材製部品の部分塑性加工方法。
When partially plastically processing high-hardness magnetic parts (4, 12),
A method of partially plasticizing a high-hardness magnetic material part, wherein a part (4a, 12b) to be plastically worked is made into a softened region (A) in which the hardness becomes 20 or less by HRC by heating.
請求項1記載の高硬度磁性材製部品の部分塑性加工方法において,
前記加熱を,高周波加熱とすることを特徴とする,高硬度磁性材製部品の部分塑性加工方法。
The partial plastic working method for a high-hardness magnetic material part according to claim 1,
A partial plastic working method for a component made of a high-hardness magnetic material, wherein the heating is high-frequency heating.
請求項1記載の高硬度磁性材製部品の部分塑性加工方法において,
前記加熱を,レーザビーム加熱とすることを特徴とする,高硬度磁性材製部品の部分塑性加工方法。
The partial plastic working method for a high-hardness magnetic material part according to claim 1,
A partial plastic working method for a component made of a high-hardness magnetic material, wherein the heating is laser beam heating.
請求項1記載の高硬度磁性材製部品の部分塑性加工方法において,
前記高硬度磁性材が,Crを10〜20wt%,Siを0.1wt%,Al及びNiの少なくとも一方を1wt%以上,残部としてフェライト系Fe,Mn,C,P,Sを含み,且つAl及びNiの合計を1.15〜6wt%とした合金であることを特徴とする,高硬度磁性材製部品の部分塑性加工方法。
The partial plastic working method for a high-hardness magnetic material part according to claim 1,
The high-hardness magnetic material contains 10 to 20% by weight of Cr, 0.1% by weight of Si, 1% by weight or more of at least one of Al and Ni, and the balance includes ferrite-based Fe, Mn, C, P, S, and Al. And a Ni alloy having a total content of 1.15 to 6 wt%.
請求項1〜4の何れかに記載の高硬度磁性材製部品の部分塑性加工方法において,
前記高硬度磁性材が電磁式燃料噴射弁(I)における弁ハウジング(2)の磁性筒体(4)であり,この磁性筒体(4)の一部(4a)に前記軟化領域(A)を形成し,この軟化領域(A)をカシメることにより該磁性筒体(4)に弁座部材(3)を固着することを特徴とする,高硬度磁性材製部品の部分塑性加工方法。
A partial plastic working method for a part made of a high-hardness magnetic material according to any one of claims 1 to 4,
The high-hardness magnetic material is a magnetic cylinder (4) of a valve housing (2) in an electromagnetic fuel injection valve (I), and a part (4a) of the magnetic cylinder (4) includes the softened region (A). And forming a valve seat member (3) on the magnetic cylinder (4) by caulking the softened region (A).
請求項1〜4の何れかに記載の高硬度磁性材製部品の部分塑性加工方法において,
前記高硬度磁性材が電磁式燃料噴射弁(I)における可動コア(12)であり,この可動コア(12)の端部に前記軟化領域(A)を形成し,この軟化領域(A)をカシメることにより該可動コア(12)に弁体(18)を固着することを特徴とする,高硬度磁性材製部品の部分塑性加工方法。
A partial plastic working method for a part made of a high-hardness magnetic material according to any one of claims 1 to 4,
The high-hardness magnetic material is a movable core (12) in the electromagnetic fuel injection valve (I), and the softened region (A) is formed at an end of the movable core (12). A partial plastic working method for a component made of a high-hardness magnetic material, comprising fixing a valve element (18) to the movable core (12) by caulking.
JP2003096011A 2003-03-31 2003-03-31 Partial plastic working method for component made of high-hardness magnetic material Pending JP2004300540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096011A JP2004300540A (en) 2003-03-31 2003-03-31 Partial plastic working method for component made of high-hardness magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096011A JP2004300540A (en) 2003-03-31 2003-03-31 Partial plastic working method for component made of high-hardness magnetic material

Publications (1)

Publication Number Publication Date
JP2004300540A true JP2004300540A (en) 2004-10-28

Family

ID=33408201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096011A Pending JP2004300540A (en) 2003-03-31 2003-03-31 Partial plastic working method for component made of high-hardness magnetic material

Country Status (1)

Country Link
JP (1) JP2004300540A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110622A1 (en) * 2014-01-27 2015-07-30 Delphi Automotive Systems Luxembourg Sa Fuel injector
JP2017536483A (en) * 2014-09-22 2017-12-07 オートテック・エンジニアリング・アグルパシオン・デ・インテレス・エコノミコAutotech Engineering A.I.E. Method of laser beam heat treatment of press-curing component and press-curing component
WO2019097991A1 (en) * 2017-11-16 2019-05-23 日立オートモティブシステムズ株式会社 High-pressure fuel pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110622A1 (en) * 2014-01-27 2015-07-30 Delphi Automotive Systems Luxembourg Sa Fuel injector
JP2017536483A (en) * 2014-09-22 2017-12-07 オートテック・エンジニアリング・アグルパシオン・デ・インテレス・エコノミコAutotech Engineering A.I.E. Method of laser beam heat treatment of press-curing component and press-curing component
WO2019097991A1 (en) * 2017-11-16 2019-05-23 日立オートモティブシステムズ株式会社 High-pressure fuel pump
CN111373139A (en) * 2017-11-16 2020-07-03 日立汽车系统株式会社 High-pressure fuel pump
DE112018005561T5 (en) 2017-11-16 2020-07-09 Hitachi Automotive Systems, Ltd. High pressure fuel pump
CN111373139B (en) * 2017-11-16 2022-03-11 日立安斯泰莫株式会社 High-pressure fuel pump

Similar Documents

Publication Publication Date Title
US7097151B2 (en) Electromagnetic fuel injection valve
JP4691162B2 (en) Method for manufacturing a rigid housing
JPH11132127A (en) Fuel injection valve and assembling method thereof
JP5623784B2 (en) Electromagnetic fuel injection valve
WO2011121839A1 (en) Electromagnetic fuel injection valve and method for manufacturing same
EP1757801A1 (en) Solenoid operated fuel injection valve
EP2461013B1 (en) Electromagnetic fuel injection valve
JP3901659B2 (en) Electromagnetic fuel injection valve
JP3887336B2 (en) Electromagnetic fuel injection valve
JP2004300540A (en) Partial plastic working method for component made of high-hardness magnetic material
JP2002004013A (en) Core for solenoid valve
JP4104508B2 (en) solenoid valve
JP3901656B2 (en) Electromagnetic fuel injection valve
US20050023383A1 (en) Fuel injector sleeve armature
JP2002089400A (en) Electromagnetic fuel injection valve
JP3811461B2 (en) Electromagnetic fuel injection valve
JP2006009757A (en) Method of manufacturing solenoid type fuel injection valve
US11644001B2 (en) Direct injection fuel injection valve
JPH11247739A (en) Electromagnetic fuel injection valve
JP2003035236A (en) Solenoid fuel injection valve
JP2004293366A (en) Electromagnetic fuel injection valve
JP4767795B2 (en) Electromagnetic fuel injection valve
US10718302B2 (en) Fuel injection device
JP2002081356A (en) Electromagnetic fuel injection valve
JP2006242148A (en) Fuel injection valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070919