JP2004293341A - Compression ignition internal combustion engine and its exhaust circulation amount control method - Google Patents

Compression ignition internal combustion engine and its exhaust circulation amount control method Download PDF

Info

Publication number
JP2004293341A
JP2004293341A JP2003083656A JP2003083656A JP2004293341A JP 2004293341 A JP2004293341 A JP 2004293341A JP 2003083656 A JP2003083656 A JP 2003083656A JP 2003083656 A JP2003083656 A JP 2003083656A JP 2004293341 A JP2004293341 A JP 2004293341A
Authority
JP
Japan
Prior art keywords
exhaust
intake
stroke
exhaust valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003083656A
Other languages
Japanese (ja)
Inventor
Kenji Kawai
健二 河合
Fumihiro Toyoyama
文博 豊山
Yasushi Katsurayama
裕史 葛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2003083656A priority Critical patent/JP2004293341A/en
Publication of JP2004293341A publication Critical patent/JP2004293341A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compression ignition internal combustion engine and its exhaust gas circulation amount control method capable of obtaining a compression end temperature sufficient for ignition without using a heating device by circulating exhaust gas with good efficiency. <P>SOLUTION: An exhaust valve means comprising two exhaust valves is provided to a compression ignition internal combustion engine. In an exhaust stroke, a first exhaust valve is opened to exhaust the exhaust gas (D), and a second exhaust valve is opened immediately before the end of the exhaust stroke to a first half of an intake stroke for circulating the exhaust gas (E). In the intake stroke, the second exhaust valve continues to open for a predetermined time keeping a micro lift volume t constant, and the micro lift volume t remains a value less than a safe lift volume not interfered with a piston of an upper dead center. After the second exhaust valve is fully opened, the intake valve is opened so as to absorb mixture of air and fuel (F). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、圧縮着火内燃機関及びその排気還流量制御方法に関する。
【0002】
【従来の技術】
従来、天然ガス等の着火性の低い燃料を使用して圧縮着火燃焼を行う場合に、ヒータ等で吸気を加熱して着火性を向上させる方法がある。ところが、このようにヒータ等の加熱装置を使用することは圧縮着火内燃機関(エンジン)全体の燃費悪化につながるため、加熱装置を使用せずに圧縮着火燃焼を行うことが望まれる。そこで、図7に示されるように、排気行程において排気バルブを符号Aのようなタイミング・リフト量で開弁して排気を行い、その後、吸気行程において吸気バルブを符号Bのようなタイミング・リフト量で開弁すると共に排気バルブを符号Cのようなタイミング・リフト量で開弁して燃焼室内に高温の排気ガスを還流し、これにより吸気を加熱して着火に十分な圧縮端温度を得るようにしている(例えば特許文献1参照)。
【0003】
【特許文献1】
実開昭59−19904号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述のように吸気行程において排気バルブを開弁して内部EGRを実施する際には、吸気バルブを開弁してしばらく吸気を行った後に排気バルブを開弁するため、燃焼室内へ送り込める排気ガスの還流量を十分に増やすことができない場合がある。
この発明はこのような問題点を解消するためになされたもので、排気ガスを効率良く還流させることで加熱装置を用いずに着火に十分な圧縮端温度を得ることができる圧縮着火内燃機関及びその排気還流量制御方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
この発明に係る圧縮着火内燃機関は、吸気通路及び排気通路が連通されると共に内部にピストンが往復運動可能に設けられた燃焼室と、排気通路中に設けられ、排気行程で開弁して排気を行うと共に吸気行程で微小リフト量状態を所定時間維持して排気通路中の排気ガスを燃焼室内に還流させる排気バルブ手段と、吸気通路中に設けられ、吸気行程で排気バルブ手段のみが微小リフト量状態を所定時間維持した後に開弁する吸気バルブ手段とを備えるものである。
【0006】
好適には、吸気バルブ手段は、吸気行程で排気バルブ手段が閉弁した後に開弁されてもよい。
排気バルブ手段は2つの排気バルブを含み、第1排気バルブは排気行程中に開弁し、第2排気バルブは少なくとも吸気行程中に開弁状態となるようにしてもよい。
あるいは、排気バルブ手段は少なくとも一つの排気バルブを含み、各排気バルブは対応の2段カムによって排気行程及び吸気行程の両行程で開弁状態となるようにしてもよい。
また、前記排気バルブ手段は、排気行程で開弁して排気を行うと共に吸気行程では略一定の微小リフト量を所定時間維持して排気通路中の排気ガスを燃焼室内に還流させるようにしてもよい。
【0007】
この発明に係る圧縮着火内燃機関の排気還流量制御方法は、吸気行程中に排気ガスを燃焼室内へ還流させる圧縮着火内燃機関における排気還流量の制御方法であって、排気通路中に設けた排気バルブ手段を、排気行程で開弁することによって排気を行うと共に吸気行程で微小リフト量の開弁状態を所定時間維持することによって排気通路中の排気ガスを燃焼室内に還流させ、吸気行程において、前記排気バルブ手段のみが微小リフト量の開弁状態を所定時間維持した後に、吸気通路中に設けた吸気バルブ手段を開弁させる。
【0008】
【発明の実施の形態】
以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1.
図1に、実施の形態1に係る圧縮着火内燃機関として、ガスエンジンヒートポンプ(GHP)等に使用される圧縮着火エンジンの1つの燃焼室近傍を平面的にみた模式図を示す。エンジンの燃焼室1に吸気通路2及び排気通路3が接続されている。吸気通路2は、吸気合流路4とその先端で2つに分岐した吸気分岐路5a及び5bとからなり、これら2つの吸気分岐路5a及び5bが2つの吸気口6a及び6bを介してそれぞれ燃焼室1に連通されている。また、排気通路3は、排気合流路7とその先端で2つに分岐した第1排気分岐路8a及び第2排気分岐路8bとからなり、これら第1排気分岐路8a及び第2排気分岐路8bが第1排気口9a及び第2排気口9bを介して燃焼室1に連通されている。なお、本実施の形態では、第1排気口9aが第2排気口9bよりも外径が大きく設定されているが、これは後述するように排気行程において第1排気口9aのみを介して効率よく排気を行えることを企図したものである。しかしながら、本発明はこの態様に限定されるものではなく第1排気口及び第2排気口をほぼ同一の大きさにしてもよい。
【0009】
また、2つの吸気口6a及び6bには吸気バルブ手段として、図示しない吸気バルブ用のカムを介して開閉駆動される吸気バルブ10及び11がそれぞれ配置されている。一方、第1排気口9a及び第2排気口9bには排気バルブ手段として、図示しない排気バルブ用のカムを介して開閉駆動される第1排気バルブ12及び第2排気バルブ13が配置されている。なお、燃焼室1の内部には、図示しないピストンが往復運動可能に設けられている。
【0010】
このような構成の圧縮着火エンジンでは、図2に示されるように、排気行程において第1排気バルブ12を符号Dのような対称的なタイミング・リフト量で開弁して排気ガスの排出を行う。また、排気行程終了直前から吸気行程前半に第2排気バルブ13を符号Eのような対称的なタイミング・リフト量で開弁して排気ガスの還流を行う。さらに、第2排気バルブ13が閉弁した後に、2つの吸気バルブ10及び11を共に符号Fのような対称的なタイミング・リフト量で開弁して、空気と燃料との混合気を吸気として燃焼室1内に流入させる。
【0011】
また、本実施の形態では、第2排気バルブ13は吸気行程開始から所定時間だけ一定の微小リフト量tを維持して開弁する。この第2排気バルブ13の微小リフト量tは、第2排気バルブ13が燃焼室1内で往復運動をしているピストンに干渉しない最大のリフト量(すなわち安全リフト量)以下の値になっている。これによりピストンが上死点に移動してもピストンと第2排気バルブ13が干渉しないようになっている。なお、本実施の形態では、第1排気バルブ12及び2つの吸気バルブ10及び11の最大のリフト量が7〜8mm程度であるのに対して、第2排気バルブ13の微小リフト量tを1mm程度としている。
【0012】
吸気行程の前半では、上記のように第2排気バルブ13が微小リフト量tで開弁しており、2つの吸気バルブ10及び11と第1排気バルブ12とが閉弁しているので、排気行程で第1排気口9aを介して排気通路3に排出された高温の排気ガスは第2排気口9bを介して再び燃焼室1内に流入する。このとき、2つの吸気バルブ10及び11が開弁していないので、排気ガスのみが燃焼室1内に流入する期間が確保され、燃焼室1内に既に吸気が流入している状態や吸気と一緒に流入する状態よりも排気ガスの還流量が多くなる。また、このように2つの吸気バルブ10及び11が閉じた状態で第2排気バルブ13が吸気行程開始から微小リフト量tを一定に保って所定時間だけ開弁するため、還流する排気ガスの流速が高まるだけでなく、燃焼室1内が負圧に保たれ、断熱圧縮の効果でさらに温度を上昇させることができる。
このように、排気ガスの還流量を確実に増やして吸気を効率よく加熱することができ、その結果、着火するのに十分な圧縮端温度を得ることができる。すなわち、天然ガス等の着火性の低い燃料を使用してもヒータ等の加熱装置で加熱する必要なく圧縮着火燃焼を確実に行うことができる。
【0013】
また、本実施の形態において排気バルブ手段は、排気行程の他に吸気行程にも開弁するようになっているが、排気行程中の開弁と吸気行程中の開弁とをそれぞれ別のバルブ、すなわち、第1排気バルブ12と第2排気バルブ13とで行っているため、各バルブに対応する各カムの形状自体は、一箇所が突出した従来からある単純なカム形状をそのまま採用することができる。
さらに、従来のようにヒータ等の加熱装置を使用して吸気を加熱する必要がなくなるので、エンジン全体の燃費を向上させることができると共に、加熱装置を設けない分だけコストも低減することができる。
【0014】
実施の形態2.
次に、本発明の実施の形態2を説明する。図3に示されるように、実施の形態2の圧縮着火エンジンは、上記の実施の形態1のエンジンにおいて、排気バルブを二つではなく一つとしたものである。燃焼室30には排気通路33につながる1つの排気口32が形成されており、この排気口32に排気バルブ手段として、後述する2段カムを介して開閉駆動される単一の排気バルブ31が配置されている。
【0015】
図4に示されるように、排気バルブ31を駆動するための2段カム51は、真円を構成する基準面51aに対して突出する第1山部52と、その後に続く第2山部53とを有しており、排気バルブ31の開度を2段階に調節している。第2山部53は、回転方向前側に位置する領域xでは基準面51aに対して一定の突出量が所定角度続くように形成されている一方、回転方向後側に位置する領域yでは基準面51aに対する突出量が回転方向後方に向かうほど徐々に減少するように形成されている。
【0016】
このような2段カム51を使用することで、排気バルブ31を排気行程及び吸気行程の両行程で開弁させる。すなわち、図5に示されるように、排気バルブ31は排気行程中に2段カム51の第1山部52に対応して符号G1のようなタイミング・リフト量で開弁すると共に、そのまま閉弁することなく第2山部53に対応して吸気行程前半でも符号G2のようなタイミング・リフト量で開弁する。また、この符号G2で示されるように、排気バルブ31は第2山部53の領域xの部分に対応して、吸気行程開始から所定時間だけ一定の微小リフト量tを維持して開弁し、その後、第2山部53の領域yの部分に対応して徐々に閉弁する。この排気バルブ31の微小リフト量tも、排気バルブ31が燃焼室1内で往復運動をしているピストンに干渉しない最大のリフト量(すなわち安全リフト量)以下の値になっており、これによりピストンが上死点に移動してもピストンと排気バルブ31が干渉しないようになっている。なお、上述の実施の形態1と同様に、排気バルブ31が全閉すると、2つの吸気バルブ10及び11が符号Fのような対称的なタイミング・リフト量で開弁される。
【0017】
このように本実施の形態においても、吸気行程の前半では、上記のように排気バルブ31が微小リフト量tで開弁しており、2つの吸気バルブ10及び11が閉弁した状態にあるので、実施の形態1と同様に、排気ガスの還流量を確実に増やして吸気を効率よく加熱することができる。従って、着火に十分な圧縮端温度を得ることができ、天然ガス等の着火性の低い燃料を使用してもヒータ等の加熱装置で加熱する必要なく圧縮着火燃焼を行うことができる。
なお、本実施の形態2では、2段カム51により開閉駆動される1つの排気バルブ31を用いたが、その代わりに、2段カム51を2つ設け互いに同じ開閉動作で駆動される2つの排気バルブを用いても本実施の形態2と同様の効果が得られる。
【0018】
なお、上述の実施の形態1及び2では、図2の符号Eまたは図5の符号G2のように、排気バルブ手段が吸気行程開始から所定時間だけ微小リフト量tを一定に保って開弁するようになっていたが、本発明に係る排気バルブ手段はこのような開弁態様に限定されるものではない。すなわち、排気バルブ手段は吸気行程において、吸気バルブ手段の開弁よりも前に単独で且つ微小リフト量を所定時間維持して開弁するように設定されていればよい。よって、その例として、排気バルブ手段は、既に説明した図2のように排気行程の終了直前から開弁し、吸気行程で微小リフト量tを一定に保って開弁し続けてもよいし、あるいは、図2の符号Eの形態に代えて図6に符号E’で示される形態とすることもできる。すなわち、図6の符号E’の形態では、図2における一定微小リフト量tを最大のリフト量としたなだらかな凸形状をなしている。また、吸気行程開始時に微小リフト量tで開弁しそこからは徐々に閉弁していくものでもよい。さらには、吸気行程開始から開弁してその時点での安全リフト量を超えない範囲でリフト量が増加したり、あるいは、排気行程終了時に一旦閉弁し、吸気行程で再び安全リフト量以下で開弁するものでもよく、さらに、吸気行程中に複数回開閉を繰り返す態様でもよい。また、このような排気バルブ手段の様々な開弁態様は、吸気行程開始から排気バルブ手段のみが先に開弁する期間が確保されていれば、その後は吸気行程の全期間に亙って実施されるものでもよい。なお、安全リフト量は、ピストンの上昇位置に関係しているため一定ではなく、ピストンが上死点から下降を始めるとそれに伴って変化するものである。
【0019】
さらに、上述の実施の形態1及び2では、排気バルブ手段が完全に閉弁した後に吸気バルブ手段が開弁するようになっているが、本発明はこれに限定されるものではない。すなわち、吸気バルブ手段は、吸気行程において排気バルブ手段が単独で開弁した後であれば、どのように開弁していてもよい。従って、例えば排気バルブ手段が全閉する前に吸気バルブ手段が開弁動作を始めてもよく、さらに、排気バルブ手段が吸気行程で複数回開閉する態様であればその最初の開弁が始まった後に吸気バルブ手段もそれを追うように開弁を始めてもよい。このように、吸気行程中に排気バルブ手段が吸気バルブ手段よりも先に単独で開弁している期間があれば、その後の両手段の開閉関係は必要に応じて適宜改変可能である。
【0020】
また、上述の実施の形態1及び2では、吸気バルブ手段及び排気バルブ手段として、カムにより開閉駆動されるバルブを用いたが、その代わりに、油圧式及び電磁式のバルブ駆動装置等、その他各種の駆動装置により開閉されるバルブを用いてもよい。
さらに、上述の実施の形態では、燃料として天然ガスを使用していたが、その代わりに、都市ガス及びプロパンガス等のガス燃料、あるいは、ガソリンや軽油などの燃料を使用してもよい。
【0021】
【発明の効果】
以上説明したように、この発明によれば、排気行程及び吸気行程で燃焼室内のピストンと干渉しない安全リフト量以下で開弁する排気バルブ手段と、吸気通路中に設けられ吸気行程で排気バルブ手段のみが開弁した後に開弁する吸気バルブ手段とを備えたので、排気ガスを効率良く還流させることができ、その結果、加熱装置を用いずに着火に十分な圧縮端温度を得ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1に係る圧縮着火エンジンの燃焼室近傍を平面的にみた模式図である。
【図2】実施の形態1におけるバルブの開閉動作を示す図である。
【図3】実施の形態2における燃焼室近傍を平面的にみた模式図である。
【図4】実施の形態2における2段カムの形状を示す図である。
【図5】実施の形態2におけるバルブの開閉動作を示す図である。
【図6】さらに別の実施の形態におけるバルブの開閉動作を示す図である。
【図7】従来の圧縮着火エンジンにおけるバルブの開閉動作を示す図である。
【符号の説明】
1,30 燃焼室、2 吸気通路、3,33 排気通路、10,11 吸気バルブ、12 第1排気バルブ、13 第2排気バルブ、31 排気バルブ、512段カム、52 第1山部、53 第2山部、D,E,F,G1,G2 タイミング・リフト量。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compression ignition internal combustion engine and an exhaust gas recirculation control method.
[0002]
[Prior art]
BACKGROUND ART Conventionally, when performing compression ignition combustion using a fuel having low ignitability such as natural gas, there is a method for improving ignitability by heating intake air with a heater or the like. However, using a heating device such as a heater in this way leads to deterioration of fuel efficiency of the compression ignition internal combustion engine (engine) as a whole. Therefore, it is desired to perform compression ignition combustion without using a heating device. Therefore, as shown in FIG. 7, in the exhaust stroke, the exhaust valve is opened by opening a timing lift amount as shown by the symbol A to perform exhaust, and then, in the intake stroke, the intake valve is opened by the timing lift as shown by the symbol B. And the exhaust valve is opened with a timing lift amount such as C to recirculate hot exhaust gas into the combustion chamber, thereby heating the intake air and obtaining a compression end temperature sufficient for ignition. (For example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Utility Model Laid-Open No. 59-19904 [0004]
[Problems to be solved by the invention]
However, as described above, when performing the internal EGR by opening the exhaust valve in the intake stroke, the exhaust valve is opened after the intake valve is opened and the intake is performed for a while. In some cases, the amount of recirculated exhaust gas cannot be sufficiently increased.
The present invention has been made in order to solve such a problem, and a compression ignition internal combustion engine which can obtain a compression end temperature sufficient for ignition without using a heating device by efficiently recirculating exhaust gas, and An object of the present invention is to provide an exhaust gas recirculation amount control method.
[0005]
[Means for Solving the Problems]
A compression ignition internal combustion engine according to the present invention has a combustion chamber in which an intake passage and an exhaust passage are communicated with each other and in which a piston is provided so as to be able to reciprocate, and an exhaust passage which is provided in an exhaust passage to open and exhaust during an exhaust stroke. Exhaust valve means for returning the exhaust gas in the exhaust passage to the combustion chamber by maintaining the state of the minute lift amount for a predetermined time in the intake stroke, and only the minute exhaust valve means provided in the intake passage in the intake stroke. Intake valve means for opening the valve after maintaining the quantity state for a predetermined time.
[0006]
Preferably, the intake valve means may be opened after the exhaust valve means closes during the intake stroke.
The exhaust valve means may include two exhaust valves, wherein the first exhaust valve is opened during the exhaust stroke, and the second exhaust valve is opened at least during the intake stroke.
Alternatively, the exhaust valve means may include at least one exhaust valve, and each exhaust valve may be opened in both the exhaust stroke and the intake stroke by the corresponding two-stage cam.
Further, the exhaust valve means may open the valve in the exhaust stroke to perform exhaust, and may maintain the substantially constant minute lift amount for a predetermined time in the intake stroke to recirculate the exhaust gas in the exhaust passage into the combustion chamber. Good.
[0007]
An exhaust gas recirculation amount control method for a compression ignition internal combustion engine according to the present invention is a method for controlling an exhaust gas recirculation amount in a compression ignition internal combustion engine for recirculating exhaust gas into a combustion chamber during an intake stroke. The valve means performs exhaust by opening the valve in the exhaust stroke, and maintains the valve opening state of the minute lift amount in the intake stroke for a predetermined time to recirculate exhaust gas in the exhaust passage into the combustion chamber. After only the exhaust valve unit maintains the valve opening state of the minute lift amount for a predetermined time, the intake valve unit provided in the intake passage is opened.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic plan view of the vicinity of one combustion chamber of a compression ignition engine used for a gas engine heat pump (GHP) or the like as the compression ignition internal combustion engine according to the first embodiment. An intake passage 2 and an exhaust passage 3 are connected to a combustion chamber 1 of the engine. The intake passage 2 is composed of an intake merging passage 4 and intake branch passages 5a and 5b branched into two at the end thereof. These two intake branch passages 5a and 5b burn through the two intake ports 6a and 6b, respectively. It is communicated with the room 1. The exhaust passage 3 includes an exhaust junction 7 and a first exhaust branch 8a and a second exhaust branch 8b that are branched into two at the end thereof. The first exhaust branch 8a and the second exhaust branch 8b is connected to the combustion chamber 1 via the first exhaust port 9a and the second exhaust port 9b. In the present embodiment, the outer diameter of the first exhaust port 9a is set to be larger than the outer diameter of the second exhaust port 9b. However, as described later, the efficiency of the first exhaust port 9a is increased only through the first exhaust port 9a in the exhaust stroke. It is intended to be able to exhaust well. However, the present invention is not limited to this mode, and the first exhaust port and the second exhaust port may have substantially the same size.
[0009]
Further, at the two intake ports 6a and 6b, intake valves 10 and 11 that are opened and closed via intake valve cams (not shown) are arranged as intake valve means, respectively. On the other hand, the first exhaust port 9a and the second exhaust port 9b are provided with a first exhaust valve 12 and a second exhaust valve 13 that are opened and closed via an exhaust valve cam (not shown) as exhaust valve means. . A piston (not shown) is provided in the combustion chamber 1 so as to be able to reciprocate.
[0010]
In the compression ignition engine having such a configuration, as shown in FIG. 2, the exhaust gas is discharged by opening the first exhaust valve 12 with a symmetrical timing lift amount such as D in the exhaust stroke. . Further, immediately before the end of the exhaust stroke, and in the first half of the intake stroke, the second exhaust valve 13 is opened with a symmetrical timing lift amount as indicated by reference character E to recirculate the exhaust gas. Further, after the second exhaust valve 13 is closed, the two intake valves 10 and 11 are both opened with a symmetrical timing lift amount such as reference F, and the mixture of air and fuel is taken as intake air. It flows into the combustion chamber 1.
[0011]
Further, in the present embodiment, the second exhaust valve 13 is opened while maintaining a constant minute lift amount t for a predetermined time from the start of the intake stroke. The minute lift amount t of the second exhaust valve 13 is a value equal to or less than the maximum lift amount (that is, the safe lift amount) that does not interfere with the piston in which the second exhaust valve 13 reciprocates in the combustion chamber 1. I have. Thus, even if the piston moves to the top dead center, the piston and the second exhaust valve 13 do not interfere with each other. In the present embodiment, the maximum lift amount of the first exhaust valve 12 and the two intake valves 10 and 11 is about 7 to 8 mm, whereas the minute lift amount t of the second exhaust valve 13 is 1 mm. About.
[0012]
In the first half of the intake stroke, the second exhaust valve 13 is opened with the minute lift t as described above, and the two intake valves 10 and 11 and the first exhaust valve 12 are closed. The high-temperature exhaust gas discharged into the exhaust passage 3 through the first exhaust port 9a in the stroke flows into the combustion chamber 1 again through the second exhaust port 9b. At this time, since the two intake valves 10 and 11 are not opened, a period during which only the exhaust gas flows into the combustion chamber 1 is secured. The recirculation amount of the exhaust gas is larger than in the state of flowing together. Further, since the second exhaust valve 13 is opened for a predetermined time while keeping the minute lift amount t from the start of the intake stroke in a state where the two intake valves 10 and 11 are closed, the flow rate of the recirculated exhaust gas Not only increases, but the inside of the combustion chamber 1 is maintained at a negative pressure, and the temperature can be further increased by the effect of adiabatic compression.
In this way, the amount of exhaust gas recirculation can be reliably increased to efficiently heat the intake air, and as a result, a compression end temperature sufficient to ignite can be obtained. That is, even if a fuel having low ignitability such as natural gas is used, compression ignition combustion can be reliably performed without heating with a heating device such as a heater.
[0013]
Further, in this embodiment, the exhaust valve means is configured to open not only during the exhaust stroke but also during the intake stroke. However, the valve during the exhaust stroke and the valve during the intake stroke are different valves. That is, since the first exhaust valve 12 and the second exhaust valve 13 are used, the shape itself of each cam corresponding to each valve should be the same as the conventional simple cam shape in which one portion protrudes. Can be.
Further, since it is not necessary to heat the intake air by using a heating device such as a heater as in the related art, the fuel efficiency of the entire engine can be improved, and the cost can be reduced by not providing the heating device. .
[0014]
Embodiment 2 FIG.
Next, a second embodiment of the present invention will be described. As shown in FIG. 3, the compression ignition engine according to the second embodiment is different from the engine according to the first embodiment in that the number of exhaust valves is one instead of two. The combustion chamber 30 has one exhaust port 32 connected to an exhaust passage 33. The exhaust port 32 has a single exhaust valve 31 that is opened and closed via a two-stage cam described later as exhaust valve means. Are located.
[0015]
As shown in FIG. 4, the two-stage cam 51 for driving the exhaust valve 31 includes a first peak 52 protruding from a reference surface 51a forming a perfect circle, and a second peak 53 following the first peak 52. The opening degree of the exhaust valve 31 is adjusted in two stages. The second peak 53 is formed such that a predetermined amount of protrusion continues from the reference plane 51a by a predetermined angle with respect to the reference plane 51a in the region x located on the front side in the rotation direction, while the reference plane is formed in the region y located on the rotation side rear side. The projection is formed so that the amount of projection relative to 51a gradually decreases toward the rear in the rotation direction.
[0016]
By using such a two-stage cam 51, the exhaust valve 31 is opened in both the exhaust stroke and the intake stroke. That is, as shown in FIG. 5, during the exhaust stroke, the exhaust valve 31 opens with a timing lift amount such as G1 corresponding to the first peak portion 52 of the two-stage cam 51, and closes the valve as it is. Without opening, the valve is opened with the timing lift amount G2 in the first half of the intake stroke corresponding to the second peak 53. Further, as indicated by reference numeral G2, the exhaust valve 31 opens while maintaining a constant minute lift amount t for a predetermined time from the start of the intake stroke, corresponding to the region x of the second peak 53. Thereafter, the valve is gradually closed corresponding to the area y of the second peak 53. The minute lift amount t of the exhaust valve 31 is also equal to or less than the maximum lift amount (ie, the safe lift amount) at which the exhaust valve 31 does not interfere with the piston reciprocating in the combustion chamber 1. Even when the piston moves to the top dead center, the piston and the exhaust valve 31 do not interfere with each other. As in the first embodiment, when the exhaust valve 31 is fully closed, the two intake valves 10 and 11 are opened with a symmetrical timing lift amount as indicated by F.
[0017]
Thus, also in the present embodiment, in the first half of the intake stroke, the exhaust valve 31 is opened with the minute lift amount t as described above, and the two intake valves 10 and 11 are in the closed state. As in the first embodiment, the amount of exhaust gas recirculated can be reliably increased to efficiently heat the intake air. Therefore, a compression end temperature sufficient for ignition can be obtained, and compression ignition combustion can be performed without using a heating device such as a heater even when using a low ignitable fuel such as natural gas.
In the second embodiment, one exhaust valve 31 driven to be opened and closed by the two-stage cam 51 is used. Instead, two two-stage cams 51 are provided, and two exhaust valves 31 driven by the same opening and closing operation are used. Even if an exhaust valve is used, the same effect as that of the second embodiment can be obtained.
[0018]
In the first and second embodiments, as indicated by reference numeral E in FIG. 2 or reference numeral G2 in FIG. 5, the exhaust valve means opens the valve while keeping the minute lift t constant for a predetermined time from the start of the intake stroke. However, the exhaust valve means according to the present invention is not limited to such an opening mode. In other words, the exhaust valve means only needs to be set so as to open independently and before the opening of the intake valve means and maintain the minute lift amount for a predetermined time in the intake stroke. Therefore, as an example, the exhaust valve means may open the valve just before the end of the exhaust stroke as shown in FIG. 2 described above, and may keep the valve lift t constant during the intake stroke to keep the valve open. Alternatively, the configuration shown by reference numeral E ′ in FIG. 6 may be used instead of the configuration of reference numeral E in FIG. That is, in the form of reference symbol E ′ in FIG. 6, the shape is a gentle convex shape in which the constant minute lift amount t in FIG. 2 is the maximum lift amount. Alternatively, the valve may be opened with a small lift amount t at the start of the intake stroke, and then gradually closed. Further, the valve lift is increased within a range that does not exceed the safe lift at the time when the valve is opened from the start of the intake stroke, or the valve is closed once at the end of the exhaust stroke, and is again reduced below the safe lift during the intake stroke. The valve may be opened, and the opening and closing may be repeated a plurality of times during the intake stroke. Further, such various valve opening modes of the exhaust valve means are implemented over the entire period of the intake stroke thereafter, provided that a period during which only the exhaust valve means opens first from the start of the intake stroke. It may be done. Note that the safety lift amount is not constant because it is related to the ascending position of the piston, and changes accordingly when the piston starts to descend from the top dead center.
[0019]
Further, in the above-described first and second embodiments, the intake valve is opened after the exhaust valve is completely closed, but the present invention is not limited to this. That is, the intake valve means may be opened in any way as long as the exhaust valve means is opened alone during the intake stroke. Therefore, for example, the intake valve means may start the valve opening operation before the exhaust valve means is fully closed, and further, if the exhaust valve means opens and closes a plurality of times in the intake stroke, after the first valve opening is started. The intake valve means may also start opening so as to follow it. As described above, if there is a period during which the exhaust valve means is independently opened before the intake valve means during the intake stroke, the opening and closing relationship of the two means thereafter can be appropriately changed as necessary.
[0020]
Further, in the first and second embodiments, the valves that are opened and closed by the cams are used as the intake valve means and the exhaust valve means. Instead, various other types such as hydraulic and electromagnetic valve drive devices are used. May be used.
Further, in the above-described embodiment, natural gas is used as the fuel, but gas fuel such as city gas and propane gas, or fuel such as gasoline or light oil may be used instead.
[0021]
【The invention's effect】
As described above, according to the present invention, in the exhaust stroke and the intake stroke, the exhaust valve means that opens at a safe lift or less that does not interfere with the piston in the combustion chamber, and the exhaust valve means provided in the intake passage during the intake stroke. Since only the intake valve means that opens after only the valve is opened, the exhaust gas can be efficiently recirculated, and as a result, a compression end temperature sufficient for ignition can be obtained without using a heating device. .
[Brief description of the drawings]
FIG. 1 is a schematic plan view of the vicinity of a combustion chamber of a compression ignition engine according to Embodiment 1 of the present invention.
FIG. 2 is a view showing an opening and closing operation of a valve according to the first embodiment.
FIG. 3 is a schematic plan view of the vicinity of a combustion chamber according to a second embodiment.
FIG. 4 is a diagram showing a shape of a two-stage cam according to a second embodiment.
FIG. 5 is a diagram showing an opening and closing operation of a valve according to a second embodiment.
FIG. 6 is a diagram showing an opening and closing operation of a valve according to still another embodiment.
FIG. 7 is a diagram showing an opening and closing operation of a valve in a conventional compression ignition engine.
[Explanation of symbols]
1, 30 combustion chamber, 2 intake passage, 3, 33 exhaust passage, 10, 11 intake valve, 12 first exhaust valve, 13 second exhaust valve, 31 exhaust valve, 512 stage cam, 52 first peak, 53rd Two peaks, D, E, F, G1, G2 Timing lift.

Claims (6)

吸気通路及び排気通路が連通されると共に内部にピストンが往復運動可能に設けられた燃焼室と、
排気通路中に設けられ、排気行程で開弁して排気を行うと共に吸気行程で微小リフト量状態を所定時間維持して排気通路中の排気ガスを燃焼室内に還流させる排気バルブ手段と、
吸気通路中に設けられ、吸気行程で前記排気バルブ手段のみが微小リフト量状態を所定時間維持した後に開弁する吸気バルブ手段と
を備えることを特徴とする圧縮着火内燃機関。
A combustion chamber in which an intake passage and an exhaust passage are communicated and a piston is provided so as to be able to reciprocate therein;
Exhaust valve means provided in the exhaust passage to open and exhaust during the exhaust stroke and maintain a minute lift amount state in the intake stroke for a predetermined time to recirculate exhaust gas in the exhaust passage into the combustion chamber;
A compression ignition internal combustion engine comprising: an intake valve means provided in an intake passage, wherein only the exhaust valve means opens a minute lift amount state for a predetermined time during an intake stroke and then opens.
前記吸気バルブ手段は、吸気行程で前記排気バルブ手段が閉弁した後に開弁されることを特徴とする請求項1に記載の圧縮着火内燃機関。The compression ignition internal combustion engine according to claim 1, wherein the intake valve means is opened after the exhaust valve means closes during an intake stroke. 前記排気バルブ手段は2つの排気バルブを含み、第1排気バルブは排気行程中に開弁し、第2排気バルブは少なくとも吸気行程中に開弁状態となることを特徴とする請求項1または2に記載の圧縮着火内燃機関。The exhaust valve means includes two exhaust valves, a first exhaust valve is opened during an exhaust stroke, and a second exhaust valve is opened at least during an intake stroke. 3. A compression ignition internal combustion engine according to claim 1. 前記排気バルブ手段は少なくとも一つの排気バルブを含み、各排気バルブは対応の2段カムによって排気行程及び吸気行程の両行程で開弁状態となることを特徴とする請求項1または2に記載の圧縮着火内燃機関。3. The exhaust valve according to claim 1, wherein the exhaust valve means includes at least one exhaust valve, and each exhaust valve is opened in both an exhaust stroke and an intake stroke by a corresponding two-stage cam. Compression ignition internal combustion engine. 前記排気バルブ手段は、排気行程で開弁して排気を行うと共に吸気行程では略一定の微小リフト量を所定時間維持して排気通路中の排気ガスを燃焼室内に還流させることを特徴とする請求項1乃至4の何れか一項に記載の圧縮着火内燃機関。The exhaust valve means opens and exhausts in an exhaust stroke, and maintains an almost constant minute lift amount for a predetermined time in an intake stroke to recirculate exhaust gas in an exhaust passage into a combustion chamber. Item 5. A compression ignition internal combustion engine according to any one of Items 1 to 4. 吸気行程中に排気ガスを燃焼室内へ還流させる圧縮着火内燃機関における排気還流量の制御方法であって、
排気通路中に設けた排気バルブ手段を、排気行程で開弁することによって排気を行うと共に吸気行程で微小リフト量の開弁状態を所定時間維持することによって排気通路中の排気ガスを燃焼室内に還流させ、
吸気行程において、前記排気バルブ手段のみが微小リフト量の開弁状態を所定時間維持した後に、吸気通路中に設けた吸気バルブ手段を開弁させる、
ことを特徴とする圧縮着火内燃機関の排気還流量制御方法。
A method of controlling an exhaust gas recirculation amount in a compression ignition internal combustion engine that recirculates exhaust gas into a combustion chamber during an intake stroke,
The exhaust valve means provided in the exhaust passage is exhausted by opening it in the exhaust stroke and exhaust gas in the exhaust passage is kept in the combustion chamber for a predetermined time in the intake stroke by maintaining the valve open state with a small lift amount. Reflux,
In the intake stroke, only the exhaust valve means maintains the valve opening state of the minute lift amount for a predetermined time, and then opens the intake valve means provided in the intake passage.
An exhaust gas recirculation control method for a compression ignition internal combustion engine.
JP2003083656A 2003-03-25 2003-03-25 Compression ignition internal combustion engine and its exhaust circulation amount control method Pending JP2004293341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083656A JP2004293341A (en) 2003-03-25 2003-03-25 Compression ignition internal combustion engine and its exhaust circulation amount control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083656A JP2004293341A (en) 2003-03-25 2003-03-25 Compression ignition internal combustion engine and its exhaust circulation amount control method

Publications (1)

Publication Number Publication Date
JP2004293341A true JP2004293341A (en) 2004-10-21

Family

ID=33399065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083656A Pending JP2004293341A (en) 2003-03-25 2003-03-25 Compression ignition internal combustion engine and its exhaust circulation amount control method

Country Status (1)

Country Link
JP (1) JP2004293341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188949A (en) * 2011-03-09 2012-10-04 Mazda Motor Corp Gasoline engine
WO2012140751A1 (en) * 2011-04-13 2012-10-18 トヨタ自動車株式会社 Internal combustion engine control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188949A (en) * 2011-03-09 2012-10-04 Mazda Motor Corp Gasoline engine
WO2012140751A1 (en) * 2011-04-13 2012-10-18 トヨタ自動車株式会社 Internal combustion engine control apparatus
JP5126424B1 (en) * 2011-04-13 2013-01-23 トヨタ自動車株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4171000B2 (en) Multi-cylinder diesel engine with variable drive valve
CN101035975B (en) Method for mid load operation of auto-ignition combustion
JP4510354B2 (en) Method for controlling fuel injection in an internal combustion engine
CN102933825B (en) For the diesel motor of automobile, control gear and controlling method
WO2010116546A1 (en) Cam for lifting/lowering exhaust valve, 4-cycle engine equipped with supercharger, and method for controlling valve timing
US6932062B2 (en) Compression ignition type internal combustion engine
CN103534455B (en) A kind of explosive motor and the method for operation explosive motor
JP2005325818A (en) Operation controller for engine
JP2007177792A (en) Internal combustion engine equipped with compression ratio change mechanism and method for controlling internal combustion engine
US11035305B2 (en) 2-cycle engine with valve system and method for controlling the engine
US20190093571A1 (en) Engine control device
JP2004293341A (en) Compression ignition internal combustion engine and its exhaust circulation amount control method
JP2009174432A (en) Engine intake/exhaust control method and engine intake/exhaust control device
JP5794045B2 (en) Multi-cylinder engine
JP4407492B2 (en) 4-cycle gasoline engine
JP4407493B2 (en) 4-cycle gasoline engine intake and exhaust control system
JP6701868B2 (en) Engine warm-up device
JP4591300B2 (en) 4-cycle spark ignition engine
JP2006144711A (en) Intake and exhaust controller for four cycle gasoline engine
JP4449711B2 (en) 4-cycle gasoline engine intake and exhaust control system
JP4201395B2 (en) Combustion control device for internal combustion engine
JP2004270566A (en) Premixed compression self-ignition type internal combustion engine
JP4045743B2 (en) Control device for internal combustion engine
JPS5914602B2 (en) Internal combustion engine residual gas control device
WO2018047446A1 (en) Intake device for engine and engine operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421