JP2005325818A - Operation controller for engine - Google Patents

Operation controller for engine Download PDF

Info

Publication number
JP2005325818A
JP2005325818A JP2004146782A JP2004146782A JP2005325818A JP 2005325818 A JP2005325818 A JP 2005325818A JP 2004146782 A JP2004146782 A JP 2004146782A JP 2004146782 A JP2004146782 A JP 2004146782A JP 2005325818 A JP2005325818 A JP 2005325818A
Authority
JP
Japan
Prior art keywords
engine
dead center
mode
intake valve
closing timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004146782A
Other languages
Japanese (ja)
Inventor
Koichi Hatamura
耕一 畑村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004146782A priority Critical patent/JP2005325818A/en
Publication of JP2005325818A publication Critical patent/JP2005325818A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation controller for an engine capable of increasing torque by suppressing occurrence of knocking and performing stable combustion by suppressing EGR gas amount to increase thermal efficiency. <P>SOLUTION: In this operation controller for the engine provided with a valve gear capable of changing and controlling at least intake valve opening time (IVO), intake valve closing time (IVC), and exhaust valve closing time (EVC) to operate the engine 1 by SI mode for starting combustion by spark ignition in accordance with operation regions a to i or HCCI mode for starting combustion by premixed compression self-ignition, valve overlap (OL) is controlled in such a way that it is large and its center is positioned in the vicinity of top dead center (TDC) in high load SI mode, and the intake valve closing time IVC is controlled to a position apart in the rear or front of bottom dead center (BDC). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エンジンの運転制御装置に関し、詳細には、予混合圧縮自己着火式エンジンにおける火花点火(SI)モード時のトルク低下、予混合圧縮自己着火(HCCI)モード時のEGRの必要以上の増加,着火遅れを回避できるようにしたものに関する。   The present invention relates to an engine operation control apparatus, and more particularly, to a torque reduction in a spark ignition (SI) mode in a premixed compression self-ignition engine, an EGR more than necessary in a premixed compression autoignition (HCCI) mode. It relates to the one that can avoid the increase and ignition delay.

予混合圧縮自己着火式エンジンは、通常のディーゼルエンジンが圧縮上死点付近で燃料を噴射供給するのに対し、燃焼室内に燃料を早期噴射して少なくもと圧縮上死点前までに燃料の供給を終了させる方式のエンジンである。即ち、予混合圧縮自己着火式エンジンでは、早期噴射された燃料と空気を予め十分に混合させて希薄混合状態とし、これをピストン圧縮によって自己着火させるように構成されている。この予混合圧縮自己着火式エンジンは、燃費の向上,NOx の低減の観点から注目されている(例えば特許文献1参照)。
特開2000−248985号公報
In a premixed compression self-ignition engine, a normal diesel engine injects and supplies fuel near the compression top dead center, whereas fuel is injected at an early stage into the combustion chamber at least before the compression top dead center. It is an engine of a system that terminates supply. That is, the premixed compression self-ignition engine is configured such that the fuel and air injected early are sufficiently mixed in advance to form a lean mixed state, and this is self-ignited by piston compression. This premixed compression self-ignition engine is attracting attention from the viewpoint of improving fuel consumption and reducing NOx (see, for example, Patent Document 1).
JP 2000-248985 A

この種の予混合圧縮自己着火式エンジンでは、HCCIモードでの燃焼を容易安定化するために、エンジンの圧縮比を高くし、あるいはEGRガス量を増大させることが行なわれている。   In this type of premixed compression self-ignition engine, in order to easily stabilize combustion in the HCCI mode, the compression ratio of the engine is increased or the EGR gas amount is increased.

しかしエンジンの圧縮比を高くしていくと、高負荷SIモードにおいてノッキングが発生し易いといった問題があり、結局ノッキングの制約からトルクが抑えられるといった問題がある。またHCCIモードにおいてEGRガス量を増加するとエンジンの熱効率が低下する、あるいは混合気温度の上昇により吸入される混合気量が減少し、結局HCCI運転領域が狭くなるという問題がある。   However, if the compression ratio of the engine is increased, there is a problem that knocking is likely to occur in the high load SI mode, and eventually there is a problem that torque can be suppressed due to knocking restrictions. Further, when the EGR gas amount is increased in the HCCI mode, there is a problem that the thermal efficiency of the engine is lowered, or the amount of the air-fuel mixture sucked is decreased due to the rise of the air-fuel mixture temperature, which eventually narrows the HCCI operation region.

本発明は上記従来の状況に鑑みてなされたものであり、ノッキングの発生を抑制してトルクを増大でき、またEGRガス量を抑えながら安定した燃焼が可能で熱効率を高めることができるエンジンの運転制御装置を提供することを課題としている。   The present invention has been made in view of the above-described conventional situation, and it is possible to increase the torque by suppressing the occurrence of knocking, and it is possible to increase the thermal efficiency by enabling stable combustion while suppressing the amount of EGR gas. It is an object to provide a control device.

請求項1の発明は、少なくとも吸気弁開時期(IVO), 吸気弁閉時期(IVC)及び排気弁閉時期(EVC)を可変制御可能な動弁系を備え、エンジンを、運転領域に応じて火花点火により燃焼が開始するSIモード、又は予混合圧縮自己着火により燃焼が開始するHCCIモードにより運転するエンジンの運転制御装置において、
高負荷SIモードでは、バルブオーバーラップ(OL)を、大きくかつその中心が上死点(TDC)近傍に位置するように制御し、吸気弁閉時期を、下死点(BDC)後又は前に離した位置に制御することを特徴としている。
The invention according to claim 1 includes a valve system capable of variably controlling at least an intake valve opening timing (IVO), an intake valve closing timing (IVC), and an exhaust valve closing timing (EVC). In an operation control device for an engine that operates in SI mode in which combustion starts by spark ignition or HCCI mode in which combustion starts by premixed compression self-ignition,
In the high load SI mode, the valve overlap (OL) is controlled to be large and the center thereof is positioned near the top dead center (TDC), and the intake valve closing timing is set after the bottom dead center (BDC) or before It is characterized by controlling to a separated position.

ここで本発明において、各弁の開時期,閉時期とは、それぞれカムのリフトカーブのランプ終わり点、ランプ始まり点を意味する。また、バルブオーバーラップとは、吸気弁及び排気弁の両方が開いている期間を意味する。   Here, in the present invention, the opening timing and closing timing of each valve mean the ramp end point and ramp start point of the cam lift curve, respectively. The valve overlap means a period in which both the intake valve and the exhaust valve are open.

また本発明において、バルブオーバーラップの大きさ,中心位置を上述のように制御するのは、掃気効果を高めるためであり、また吸気バルブ閉位置を上述のように制御するのは有効圧縮比を低下させ、吸気の温度上昇を回避するためである。   In the present invention, the size and center position of the valve overlap are controlled as described above to enhance the scavenging effect, and the intake valve closing position is controlled as described above to increase the effective compression ratio. This is to reduce the temperature of the intake air and avoid an increase in the intake air temperature.

具体的には、バルブオーバーラップの大きさは、クランク角度で20〜120°、より好ましくは20〜60°程度と通常のSIエンジンより大きい値に制御され、またその中心は上死点前20°〜上死点後10°の範囲に位置するようにに制御される。また吸気弁閉時期は、下死点後60〜100°又は下死点前20〜60°の範囲内に位置するように制御される。   Specifically, the valve overlap is controlled to a crank angle of 20 to 120 °, more preferably about 20 to 60 °, which is larger than a normal SI engine, and its center is 20 before top dead center. It is controlled so that it is located in the range of ° to 10 ° after top dead center. The intake valve closing timing is controlled to be within a range of 60 to 100 ° after bottom dead center or 20 to 60 ° before bottom dead center.

請求項2の発明は、請求項1と同様のエンジンの運転制御装置において、
中負荷HCCIモードでは、バルブオーバーラップを、小さくかつその中心が上死点後に離れて位置するように制御し、吸気バルブ閉時期を、下死点後近傍に位置するように制御することを特徴としている。
According to a second aspect of the present invention, in the engine operation control apparatus similar to the first aspect,
In the medium load HCCI mode, the valve overlap is controlled to be small and the center thereof is located away from the top dead center, and the intake valve closing timing is controlled to be located near the bottom dead center. It is said.

ここで本発明において、バルブオーバーラップの大きさ,中心位置を上述のように制御するのは、排気逆流による大量の内部EGRを行なうためであり、吸気バルブ閉位置を上述のように、吸入混合気量を増加するとともに有効圧縮比を高めて吸気の温度上昇を促進するためである。   Here, in the present invention, the size and the center position of the valve overlap are controlled as described above in order to perform a large amount of internal EGR by exhaust backflow, and the intake valve closed position is set to the intake mixing as described above. This is to increase the air volume and increase the effective compression ratio to promote the intake air temperature rise.

具体的には、バルブオーバーラップの大きさは、クランク角度で0〜20°程度で、実質的にゼロの大きさに制御され、またその中心が上死点後20〜90°の範囲に位置するようにに制御される。また吸気弁閉時期は、下死点後10〜30°に位置するように制御される。   Specifically, the size of the valve overlap is about 0 to 20 ° in crank angle, and is controlled to be substantially zero, and its center is located in the range of 20 to 90 ° after top dead center. To be controlled. The intake valve closing timing is controlled so as to be located at 10 to 30 ° after the bottom dead center.

請求項3の発明は、請求項1と同様のエンジンの運転制御装置において、低負荷HCCIモード又は低負荷SIモードでは、バルブオーバーラップを、マイナスに、かつその中心が上死点後に離れて位置するように制御し、吸気バルブ閉時期が、下死点後近傍に位置するよう制御することを特徴としている。   According to a third aspect of the present invention, in the engine operation control apparatus as in the first aspect, in the low load HCCI mode or the low load SI mode, the valve overlap is negative, and the center thereof is located away from the top dead center. The intake valve closing timing is controlled to be located in the vicinity after bottom dead center.

ここで本発明において、バルブオーバーラップの大きさ,その中心位置を上述のように制御するのは、排気弁閉を早めるとともに吸気弁開を遅らせることで、EGRガス量を減少させ、ポンプ損失でガス温度を上昇させ、もって着火時期を遅れないように保持するためである。   Here, in the present invention, the size of the valve overlap and the center position thereof are controlled as described above by reducing the EGR gas amount by delaying the opening of the exhaust valve and delaying the opening of the intake valve, thereby reducing the pump loss. This is because the gas temperature is raised so that the ignition timing is not delayed.

具体的には、バルブオーバーラップをマイナスとすべく負のオーバーラップは0〜60°に、その中心点は上死点後20〜90°に制御される。また吸気弁閉時期は下死点後10〜30°に制御される。しかし条件によっては、下死点前30°,下死点後60°に広げる場合がある。   Specifically, in order to make the valve overlap negative, the negative overlap is controlled to 0 to 60 °, and the center point is controlled to 20 to 90 ° after top dead center. The intake valve closing timing is controlled to 10 to 30 ° after bottom dead center. However, depending on conditions, it may be expanded to 30 ° before bottom dead center and 60 ° after bottom dead center.

請求項4の発明は、請求項1と同様のエンジンの運転制御装置において、
高負荷SIモードでは、バルブオーバーラップ(OL)を、大きくかつその中心が上死点(TDC)近傍に位置するように制御し、吸気弁閉時期を、下死点(BDC)後又は前に離した位置に制御し、
中負荷HCCIモードでは、バルブオーバーラップを、小さくかつその中心が上死点後に離れて位置するように制御し、吸気バルブ閉時期を、下死点後近傍に位置するように制御し、
低負荷HCCIモード又は低負荷SIモードでは、バルブオーバーラップを、マイナスに、かつその中心が上死点後に離れて位置するように制御し、吸気バルブ閉時期を、下死点後近傍に位置するよう制御することを特徴としている。
According to a fourth aspect of the present invention, there is provided an engine operation control apparatus similar to the first aspect,
In the high load SI mode, the valve overlap (OL) is controlled to be large and the center thereof is positioned near the top dead center (TDC), and the intake valve closing timing is set after the bottom dead center (BDC) or before Control to a separated position,
In the medium load HCCI mode, the valve overlap is controlled to be small and its center is located away from the top dead center, and the intake valve closing timing is controlled to be located near the bottom dead center,
In the low-load HCCI mode or the low-load SI mode, the valve overlap is controlled to be negative and the center thereof is located away from the top dead center, and the intake valve closing timing is located in the vicinity after the bottom dead center. It is characterized by controlling as follows.

請求項4におけるバルブオーバーラップの大きさ,中心位置、吸気弁開閉時期,排気弁閉時期等は請求項1〜3と同様である。   The size, center position, intake valve opening / closing timing, exhaust valve closing timing, etc. of the valve overlap in claim 4 are the same as in claims 1-3.

請求項1の発明によれば、高負荷SIモードでは、バルブオーバーラップが例えばクランク角度で20°以上と大きく制御され、かつその中心が上死点付近とされるので、効果的な掃気作用が得られ、燃焼室内の残留ガス量が減少し、混合気温度が低下する。また吸気バルブ閉時期が、早閉じ又は遅閉じによって下死点から離されるので、有効圧縮比が低下して圧縮温度が下がる。これらの点からノッキングが発生し難くなり、高負荷SIモードにおいてノッキングの制約からトルクが抑えられるといった問題はなくなり、結果的にエンジントルクを増大できる。   According to the first aspect of the present invention, in the high load SI mode, the valve overlap is largely controlled to be, for example, 20 ° or more in crank angle, and the center thereof is set to the vicinity of the top dead center. As a result, the amount of residual gas in the combustion chamber decreases and the mixture temperature decreases. Further, since the intake valve closing timing is separated from the bottom dead center by early closing or late closing, the effective compression ratio is lowered and the compression temperature is lowered. From these points, knocking hardly occurs, and there is no problem that the torque is suppressed due to the restriction of knocking in the high load SI mode. As a result, the engine torque can be increased.

請求項2の発明によれば、中負荷HCCIモードでは、バルブオーバーラップが、小さくかつその中心が上死点後に離れて位置するように制御されるので、排気逆流による内部EGRが行なわれ、HCCI着火に必要なEGRガスが導入される。また吸気バルブ閉時期が、下死点後近傍に位置するように制御されるので、有効圧縮比が高くなり、通常圧縮比のHCCIエンジンより少ないEGRガス量でHCCI運転を行なうことができる。   According to the second aspect of the present invention, in the medium load HCCI mode, the valve overlap is controlled to be small and the center thereof is located away from the top dead center, so that the internal EGR by the exhaust backflow is performed, and the HCCI EGR gas necessary for ignition is introduced. Further, since the intake valve closing timing is controlled to be located in the vicinity after bottom dead center, the effective compression ratio becomes high, and the HCCI operation can be performed with a smaller EGR gas amount than the HCCI engine having the normal compression ratio.

請求項3の発明によれば、低負荷HCCIモード又は低負荷SIモードでは、バルブオーバーラップが、マイナスに、かつその中心が上死点後に離れて位置するように制御され、吸気バルブ閉時期が、下死点後近傍に位置するよう制御される。   According to the invention of claim 3, in the low load HCCI mode or the low load SI mode, the valve overlap is controlled to be negative and the center thereof is located away from the top dead center. It is controlled to be located near the bottom dead center.

燃料が少なくA/Fがリーンになる低負荷域では、着火を適切な位置に保つためにはEGRでガス温度を高めることが行なわれる。しかしこのようにするとG/F(ここでG=EGRガス+新気を意味する)がリーンになり過ぎて燃焼しない領域が増加してHCが増える。   In the low load region where the fuel is low and the A / F is lean, the gas temperature is increased by EGR in order to keep the ignition at an appropriate position. However, if this is done, the G / F (G = EGR gas + means fresh air) becomes too lean and the non-burning region increases, resulting in an increase in HC.

そこで本発明では、バルブオーバーラップをマイナスにして排気弁閉時期を早め、もってEGR量を減少し、また吸気バルブ開時期を遅らせることで吸気弁の絞り効果によって新気量を減少した。さらに吸気弁開時期を遅くしてマイナスオーバーラップとすることで、シリンダ内に負圧を作ってポンプ損失を増加し、もってガス温度を上昇させ、これにより着火時期の遅れが生じないようにしている。   Therefore, in the present invention, the valve overlap is made negative, the exhaust valve closing timing is advanced, the EGR amount is decreased, and the intake valve opening timing is delayed to reduce the fresh air amount by the throttle effect of the intake valve. Furthermore, by delaying the opening timing of the intake valve and creating a negative overlap, a negative pressure is created in the cylinder to increase the pump loss, thereby increasing the gas temperature, so that the ignition timing is not delayed. Yes.

また有効圧縮比を高めるために吸気弁閉時期を下死点後近傍にしたが、着火時期に余裕がある場合は、下死点近傍から離すことで効果的に新気量を減少できる。G/Fを小さくして行けば、G/Fが20〜25で火花点火が可能になり、無負荷やアイドルのSIモードにつなぐことができる。   Further, in order to increase the effective compression ratio, the intake valve closing timing is set near the bottom dead center. However, if there is a margin in the ignition timing, the fresh air amount can be effectively reduced by moving away from the vicinity of the bottom dead center. If the G / F is reduced, spark ignition is possible with a G / F of 20 to 25, and it is possible to connect to an unloaded or idle SI mode.

請求項4の発明によれば、請求項1,2,3に記載の構成を備えているので、上記と同様の作用効果が得られる。   According to the fourth aspect of the invention, since the configuration according to the first, second, and third aspects is provided, the same effect as described above can be obtained.

以下本発明の実施形態を添付図面に沿って説明する。図1〜図6は本発明の一実施形態によるガソリンエンジンの運転制御装置を説明すための図である。図1,図2はガソリンエンジンの運転制御装置のブロック構成図,図3,図5はエンジンの運転領域を概念的に示す運転領域概念図、図4は吸気バルブ,排気バルブのオーバーラップ,開閉時期を模式的に示す図、図6はオーバーラップ選定用マップである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIGS. 1-6 is a figure for demonstrating the operation control apparatus of the gasoline engine by one Embodiment of this invention. 1 and 2 are block configuration diagrams of an operation control device for a gasoline engine, FIGS. 3 and 5 are operation region conceptual diagrams conceptually showing an engine operation region, and FIG. 4 is an overlap and opening / closing of intake valves and exhaust valves. FIG. 6 is a diagram schematically showing the time, and FIG. 6 is an overlap selection map.

図において、1は4サイクルガソリンエンジンである。このエンジン1は、圧縮比ε=12〜16に設定され、燃焼室1a内に点火用火花を飛ばすための点火プラグ2と、該燃焼室1a内に燃料を直接噴射供給する燃料噴射弁3と、上記燃焼室1aに配置された吸気弁の開閉時期及び排気弁の位相を可変制御する可変動弁機構4とを備えている。   In the figure, 1 is a 4-cycle gasoline engine. The engine 1 is set to a compression ratio ε = 12 to 16, and includes an ignition plug 2 for letting an ignition spark fly into the combustion chamber 1a, and a fuel injection valve 3 that directly injects fuel into the combustion chamber 1a. And a variable valve mechanism 4 that variably controls the opening / closing timing of the intake valve and the phase of the exhaust valve disposed in the combustion chamber 1a.

また上記エンジン1の吸気系6には、リショルム型の過給機7と、過給される吸気を冷却してエンジン1に供給するための吸気冷却器(インタクーラ)8が介在されている。また排気系9には三元触媒9aが介在されている。上記過給機7は、吐出容量を任意に制御可能タイプのものであり、1回転当たりの吸入空気量を制御できる。   The intake system 6 of the engine 1 is provided with a Rishorum type supercharger 7 and an intake air cooler (intercooler) 8 for cooling the supercharged intake air and supplying it to the engine 1. A three-way catalyst 9a is interposed in the exhaust system 9. The supercharger 7 is of a type that can arbitrarily control the discharge capacity, and can control the intake air amount per one rotation.

さらにまた上記エンジン1は、エンジン制御シテム10及び過給圧制御システム11備えている。上記エンジン制御システム10は、上記燃料噴射弁3による燃料噴射時期,噴射期間の制御、上記可変動弁機構4による吸気,排気バルブの開閉時期の制御、さらに上記点火プラグ2による点火時期の制御を実行する。また上記過給圧制御システム11は、上記過給機7による過給圧の制御を実行する。   The engine 1 further includes an engine control system 10 and a supercharging pressure control system 11. The engine control system 10 controls the fuel injection timing and injection period by the fuel injection valve 3, controls the intake and exhaust valve opening / closing timing by the variable valve mechanism 4, and controls the ignition timing by the spark plug 2. Execute. The supercharging pressure control system 11 executes supercharging pressure control by the supercharger 7.

本実施形態エンジン1は、燃焼室1a内に燃料噴射弁3により燃料を噴射供給するとともに点火プラグ2により火花を飛ばすことによって燃焼を開始させる火花点火(SI)モードと、燃料噴射弁3により燃料を噴射供給し、ピストン圧縮により自己着火させる予混合圧縮自己着火(HCCI)モードとを有する。上記エンジン制御システム10は、上記エンジン1を、図3に示す運転領域に応じて上記何れかのモードに適宜切り替えて運転する。   The engine 1 of the present embodiment has a spark ignition (SI) mode in which fuel is injected and supplied into the combustion chamber 1 a by the fuel injection valve 3 and sparks are blown by the spark plug 2. And a premixed compression self-ignition (HCCI) mode for self-ignition by piston compression. The engine control system 10 operates the engine 1 by appropriately switching to any one of the modes according to the operation region shown in FIG.

本実施形態のエンジン運転領域は、概念的に、例えば図3に示すように分割されている。具体的には、エンジンへの負荷が、低負荷,中負荷,高負荷に3分割され、エンジン回転速度が、低速,中速,高速に3分割され、これらの組み合わせによりエンジン運転領域が決定される。図5は本実施形態エンジンにおけるエンジン運転領域をより具体的に表したものである。なお、本発明のエンジン運転領域は上記図3,図5の例に限定されないのは言うまでもない。   The engine operation region of the present embodiment is conceptually divided as shown in FIG. 3, for example. Specifically, the load on the engine is divided into three parts, a low load, a medium load, and a high load, and the engine rotation speed is divided into three parts, a low speed, a medium speed, and a high speed. The FIG. 5 shows the engine operation region in the engine of the present embodiment more specifically. Needless to say, the engine operating range of the present invention is not limited to the examples shown in FIGS.

本実施形態エンジン1は、基本的に、高回転・高負荷時(図3の運転領域a,b,c,f,i)には火花点火燃焼(SI)モードで燃焼し、低中回転・低中負荷時(図3の運転域d,e,g,h)には予混合圧縮自己着火(HCCI)モードで燃焼する。なお、低回転・低負荷時(図3の運転領域g)では上記SIモードが採用されることもある。   The engine 1 of this embodiment basically combusts in the spark ignition combustion (SI) mode at the time of high rotation and high load (operation regions a, b, c, f, and i in FIG. 3). At low and medium loads (operation regions d, e, g, and h in FIG. 3), combustion is performed in a premixed compression auto-ignition (HCCI) mode. Note that the SI mode may be employed at the time of low rotation and low load (operation region g in FIG. 3).

そして本実施形態では、各運転モードに応じて、バルブオーバーラップ(OL)の大きさ及びその中心位置、吸気バルブの開時期(IVO),閉時期(IVC)、及び排気バルブの閉時期(EVC)が以下詳述するように制御される。なお、排気バルブの開時期は閉時期と平行して変化する。また上記バルブオーバーラップや各バルブの開閉時期はクランク角度で制御される。   In the present embodiment, the size and central position of the valve overlap (OL), the intake valve opening timing (IVO), the closing timing (IVC), and the exhaust valve closing timing (EVC) according to each operation mode. ) Is controlled as detailed below. The opening timing of the exhaust valve changes in parallel with the closing timing. The valve overlap and the opening / closing timing of each valve are controlled by the crank angle.

〔高負荷時(図3の運転領域a,b,c,図5(a) 参照)SIモード〕
(i) 図4(a)に示すように、バルブオーバーラップ(OL)は、大きく、かつその中心が上死点近傍に位置するように制御される。具体的には、上記OLは、大きさが例えばクランク角度で50°に制御され、かつその中心が上死点前10°に位置するように設定される。
[At high load (see operation areas a, b, c in FIG. 3 and FIG. 5 (a)) SI mode]
(i) As shown in FIG. 4A, the valve overlap (OL) is controlled to be large and the center thereof is located near the top dead center. Specifically, the OL is set such that the size is controlled to, for example, 50 ° as a crank angle, and the center thereof is located at 10 ° before the top dead center.

上記バルブオーバーラップの大きさと位置の制御は、マップに基づいて行なわれる。より具体的には、例えば高い掃気効果が得られるオーバーラップ量をエンジン回転速度及びエンジン負荷をバロメータとして予め求めたオーバーラップ量選定マップ(図6参照)、に基づいて制御される。   Control of the size and position of the valve overlap is performed based on a map. More specifically, for example, the overlap amount that provides a high scavenging effect is controlled based on an overlap amount selection map (see FIG. 6) obtained in advance using the engine speed and the engine load as a barometer.

(ii)また吸気バルブの閉時期(IVC)は、下死点前又は後に離して設定される。具体的には、下死点前40°又は下死点後80°に設定される。 (ii) The intake valve closing timing (IVC) is set before or after bottom dead center. Specifically, it is set to 40 ° before the bottom dead center or 80 ° after the bottom dead center.

上記吸気バルブの閉時期の制御も、マップに基づいて行なわれる。ただし、ノッキングが検出された場合は、点火リタードと協調して(サイクル毎は点火時期による)下死点から遠ざかる方に移動させる。過給機としてリショルムコンプレッサを使用していれば、吸気バルブの閉時期を変えても吸入空気量はほとんど変化しないため、エンジン負荷(トルク)は変化しない。   The closing timing of the intake valve is also controlled based on the map. However, when knocking is detected, it is moved away from the bottom dead center in cooperation with the ignition retard (each cycle depends on the ignition timing). If a Rishorum compressor is used as a turbocharger, the engine load (torque) does not change because the intake air amount hardly changes even if the intake valve closing timing is changed.

燃料は吸気行程噴射として、均一混合気で吸気冷却効果を活用してノッキングを防止する。なお吸気管内に燃料を噴射することも可能である。   Fuel is used as intake stroke injection to prevent knocking by utilizing the intake air cooling effect with a uniform mixture. It is also possible to inject fuel into the intake pipe.

高負荷時SIモードにおいて、上記(i) (ii)のように制御するのは以下の理由による。   In the high load SI mode, the control as in the above (i) and (ii) is performed for the following reason.

予混合圧縮自己着火(HCCI)モードで燃焼し易くするためには圧縮比を高く設定するのが有効である。しかし圧縮比を高くとると、通常のバルブタイミングでは、高負荷SIモードにおいてノッキングの制約からトルクが抑えられてしまう。   In order to facilitate combustion in the premixed compression self-ignition (HCCI) mode, it is effective to set the compression ratio high. However, if the compression ratio is increased, the torque is suppressed due to knocking restrictions in the high load SI mode at normal valve timing.

これに対して本実施形態では、バルブオーバーラップが大きく設定され、かつその中心位置が上死点付近にくるように設定されている。そして吸気圧力は、過給機7により背圧より高く設定されている。そのため効果的な掃気作用が得られ、残留ガス量が低下して混合気温度が下がる。その結果、圧縮比を高めながらノッキングの発生を抑制できる。なお、同じ吸入空気量を得るための必要な過給圧が低下する。   In contrast, in the present embodiment, the valve overlap is set to be large and the center position is set to be near the top dead center. The intake pressure is set higher than the back pressure by the supercharger 7. Therefore, an effective scavenging action is obtained, the residual gas amount is reduced, and the mixture temperature is lowered. As a result, the occurrence of knocking can be suppressed while increasing the compression ratio. In addition, the supercharging pressure required to obtain the same intake air amount decreases.

また本実施形態では、吸気バルブの閉時期は、下死点前40°,又は下死点後80°に設定されている。このように吸気バルブが早閉じ又は遅閉じによって下死点から離れた位置に設定されているので、有効圧縮比が低下して圧縮温度が下がる。その結果、圧縮比を高めながら、吸気の圧縮温度の点からもノッキングが起こりにくくなっている。ただし、同じ吸入空気量を得るための必要な過給圧は増加する。   In this embodiment, the closing timing of the intake valve is set to 40 ° before the bottom dead center or 80 ° after the bottom dead center. Thus, since the intake valve is set at a position away from the bottom dead center by early closing or late closing, the effective compression ratio is lowered and the compression temperature is lowered. As a result, knocking is less likely to occur in terms of the compression temperature of the intake air while increasing the compression ratio. However, the supercharging pressure required to obtain the same intake air amount increases.

このように、オーバーラップを50°以上と大きくした点と、吸気弁を早閉じ又は遅閉じした点とを効果的に組み合わせることにより、圧縮比12の場合は過給することにより自然吸気(NA)エンジンの1.5倍程度のトルクが得られる。また圧縮比を16程度に高めてもNAエンジン並かそれ以上のトルクを得ることができる。これらの作用効果を有効に組み合わせて利用することで、圧縮比12の場合は過給エンジンとしてNAの1.5倍程度のトルクが得られる。圧縮比16に高めてもNA並かそれ以上のトルクを得ることができる。   In this way, by effectively combining the point where the overlap is increased to 50 ° or more and the point where the intake valve is closed early or late, natural intake (NA) is achieved by supercharging when the compression ratio is 12. ) A torque about 1.5 times that of the engine can be obtained. Further, even if the compression ratio is increased to about 16, a torque equivalent to or higher than that of the NA engine can be obtained. By effectively combining these functions and effects, a torque about 1.5 times NA can be obtained as a supercharged engine when the compression ratio is 12. Even when the compression ratio is increased to 16, a torque equal to or higher than NA can be obtained.

〔中負荷(図3の運転領域d,e, 図5(b) 参照)過給及び自然吸気HCCIモード〕
(i) 図4(b)に示すように、バルブオーバーラップは、小さく設定され、かつその中心が上死点後に離れて位置するように制御される。具体的には、上記バルブオーバーラップは、例えばクランク角度で10°に制御され、その中心は上死点後60°に制御される。
[Medium load (see operation areas d, e, Fig. 5 (b) in Fig. 3) Supercharging and natural intake HCCI mode]
(i) As shown in FIG. 4 (b), the valve overlap is set to be small and controlled so that its center is located away from the top dead center. Specifically, the valve overlap is controlled to, for example, a crank angle of 10 °, and its center is controlled to 60 ° after top dead center.

(ii)また吸気弁閉時期(IVC)は下死点後かつ近傍に、具体的には下死点後20°に設定される。 (ii) The intake valve closing timing (IVC) is set after and near the bottom dead center, specifically, 20 ° after the bottom dead center.

(iii) 本実施形態エンジンの圧縮比は12〜16程度に設定され、また可変容量機械式過給機を用いてNOx が発生しないG/F(G=新気+EGR)になるように必要な量の空気が供給される。 (iii) The compression ratio of the engine of the present embodiment is set to about 12 to 16, and it is necessary to use a variable capacity mechanical supercharger so as to be G / F (G = fresh air + EGR) that does not generate NOx. A quantity of air is supplied.

本実施形態エンジン1では、適切な着火時期が得られるEGR量になるように排気バルブ閉時期がマップ制御され、またその状態でNOx を発生しないG/F(=25)になる過給量に過給機をマップ制御する。また燃焼状態を検出して、適切な着火時期となるように排気弁閉時期がF/B制御される。なお、排気弁閉時期を進角させると着火時期は遅角する)。   In the engine 1 of the present embodiment, the exhaust valve closing timing is map-controlled so as to obtain an EGR amount at which an appropriate ignition timing is obtained, and in this state, the supercharging amount becomes G / F (= 25) that does not generate NOx. Map control of the turbocharger. Further, the combustion state is detected, and the exhaust valve closing timing is F / B controlled so that the appropriate ignition timing is reached. If the exhaust valve closing timing is advanced, the ignition timing is retarded).

ここで燃料噴射においては、排気逆流中と吸気中の両方に燃料噴射することによりG/Fを均一化して、局部的なリッチゾーンでのNOxの発生を防止できる。この場合に排気逆流中に噴射する燃料量と、吸気中に噴射する燃料量の割合を変えることにより着火時期をサイクル毎に制御できる。例えば、排気逆流中への噴射量を増加させると着火時期は進角する。また吸気中に噴射する分については吸気管内に燃料を噴射供給することも可能である。   Here, in fuel injection, G / F can be made uniform by injecting fuel into both exhaust backflow and intake air, thereby preventing the generation of NOx in a local rich zone. In this case, the ignition timing can be controlled for each cycle by changing the ratio of the amount of fuel injected during exhaust backflow and the amount of fuel injected during intake. For example, if the injection amount into the exhaust backflow is increased, the ignition timing is advanced. It is also possible to inject and supply fuel into the intake pipe for the amount injected during intake.

バルブオーバーラップが10°と小さく設定されており、かつその中心が上死点後に離して設定されているので、吸気管圧力に関わらず、また過給していても、していなくても排気逆流による大量の内部EGRが行なわれる。吸気バルブ閉時は、下死点後かつ近傍に設定されているので、吸入混合気量が増大し、有効圧縮比が高くなっている。   The valve overlap is set as small as 10 ° and the center is set apart from the top dead center, so it is exhausted regardless of the intake pipe pressure, whether it is supercharged or not. A large amount of internal EGR by backflow is performed. When the intake valve is closed, it is set after and near the bottom dead center, so that the amount of intake air-fuel mixture increases and the effective compression ratio becomes high.

このように従来の火花点火エンジンより圧縮比が高く設定され、吸気弁閉時期が下死点付近に設定されているので、有効圧縮比を高くとることができ、通常圧縮比のHCCIエンジンより少ないEGR量でHCCI運転を行なうことができる。この場合、吸気冷却器8をバイパスすることにより吸気温度を高めると更に効果的である。また同一G/Fでは、EGRが少ない方が比熱比が高いためサイクルの効率が高まる。   Thus, since the compression ratio is set higher than that of the conventional spark ignition engine and the intake valve closing timing is set near the bottom dead center, the effective compression ratio can be made high, and it is less than the HCCI engine of the normal compression ratio. HCCI operation can be performed with the EGR amount. In this case, it is more effective to increase the intake air temperature by bypassing the intake air cooler 8. In the same G / F, the smaller the EGR, the higher the specific heat ratio, so that the cycle efficiency increases.

また排気バルブ閉時期を上死点後として自着火に必要なEGRを排気ポートから逆流させて導入する。バルブオーバーラップは、基本的にゼロするが、実際には低リフトにおけるポンプ損失があるので、少しプラスの値とするのがよい。排気ポートで少し冷却されたEGRになるので、ノッキング防止効果も期待できる。   In addition, EGR necessary for self-ignition is introduced by making the exhaust valve close timing after top dead center by flowing backward from the exhaust port. The valve overlap is basically zero, but in practice there is a pump loss at low lift, so it should be a little positive. Since it becomes EGR cooled a little at the exhaust port, the knocking prevention effect can also be expected.

過給しない状態においても、比較的高い負荷までNOx が発生しないG/F(25以上)を保つことができるが、過給することで新気とEGRの合計量を増加できるので、さらに高負荷までNOx の発生しないG/F(25以上)を保つことができ、NOx の極めて少ないHCCI運転が可能である。可変容量リショルムコンプレッサの使用により、低圧過給時にも高効率な過給ができる。また負荷の低い領域では、機械式過給機は空転又はクラッチによりその駆動を停止して自然吸気状態とし、上記のバルブタイミング制御を行なう。   G / F (25 or more) that does not generate NOx can be maintained up to a relatively high load even in a state where there is no supercharging. However, the total amount of fresh air and EGR can be increased by supercharging. G / F (25 or more) without generating NOx can be maintained until HCCI operation with very little NOx is possible. The use of a variable capacity risholm compressor enables highly efficient supercharging even at low pressure supercharging. Further, in the low load region, the mechanical supercharger stops driving by idling or a clutch to be in a natural intake state, and performs the above valve timing control.

〔低負荷(図3の運転領域g,h,図5(c) 参照)の自然吸気HCCI(又はSI)モード〕
(i) 機械式過給機は空転又はクラッチによりその駆動を停止し、吸気弁開時期を上死点から離して遅開きとし、そのポンプ損失で混合気温度を高める。
[Natural intake HCCI (or SI) mode with low load (see operation areas g and h in FIG. 3, see FIG. 5 (c))]
(i) The mechanical supercharger stops its operation by idling or clutch, and the intake valve opening timing is separated from the top dead center so as to open slowly, and the mixture temperature is raised by the pump loss.

(ii)また図4(c)に示すように、排気弁閉時期を上死点後、例えば30°として比較的少量のEGRを導入する。また吸気弁開時期を上死点後、例えば60°として吸気量を減少させるとともにポンプ損失を増加する。 (ii) Further, as shown in FIG. 4C, a relatively small amount of EGR is introduced by setting the exhaust valve closing timing to, for example, 30 ° after top dead center. Further, the intake valve opening timing is set to 60 ° after the top dead center, for example, to reduce the intake air amount and increase the pump loss.

(iii) また吸気弁閉時期は下死点後近傍とする。G/Fがリーンになり過ぎる場合やSIモードでは空気量を減少するために、吸気弁閉時期を下死点から離す。 (iii) The intake valve closing timing is near the bottom dead center. When the G / F becomes too lean or in the SI mode, the intake valve closing timing is moved away from the bottom dead center in order to reduce the air amount.

負荷の低下とともに吸気弁開時期を遅らせ(マイナスOL)、着火時期が遅れないようにする。着火時期が早すぎる場合は排気弁閉時期を早くして調整する。吸気バルブ開時期を遅らせるとポンプ損失が増え、排気弁閉時期を遅くするとサイクル効率が低下するので、最適な組み合わせをマップで設定したうえで、吸気弁開時期と排気弁閉時期を使って着火時期をF/B制御する。   As the load decreases, the intake valve opening timing is delayed (minus OL) so that the ignition timing is not delayed. If the ignition timing is too early, adjust the exhaust valve closing timing earlier. If the intake valve opening timing is delayed, pump loss increases, and if the exhaust valve closing timing is delayed, the cycle efficiency decreases, so the optimal combination is set on the map and ignition is performed using the intake valve opening timing and exhaust valve closing timing. F / B control the timing.

G/Fがリーンになり過ぎる場合は吸気弁閉時期を早く(又は遅く)して新気量を減少する。   If G / F becomes too lean, the intake valve closing timing is advanced (or delayed) to reduce the amount of fresh air.

燃料の噴射供給においては、排気逆流中に噴射する燃料量と吸気中に噴射する燃料量との比率を変えることで着火時期をサイクル毎に制御できる。例えば排気逆流中への噴射量を増加させると着火時期は進角する。一方、NOx は増えるが圧縮行程中に燃料を噴射することで成層化して着火時期を早めることも可能である。   In the fuel injection supply, the ignition timing can be controlled for each cycle by changing the ratio of the amount of fuel injected during the exhaust backflow and the amount of fuel injected during intake. For example, when the injection amount into the exhaust backflow is increased, the ignition timing is advanced. On the other hand, although NOx increases, it is also possible to stratify by injecting fuel during the compression stroke and to advance the ignition timing.

燃料が少なくA/Fがリーンになる低負荷域では、着火を適切な位置に保つためにはEGRで温度を高める必要がある。しかしこのようにするとG/Fがリーンになり過ぎて燃焼しない領域が増加してHCが増える。そのため排気バルブ閉時期を早めてEGR量を減少し、吸気弁開時期を遅らせて吸気弁開度を減少することで新気量を減少する。吸気バルブ開時期を遅くしてマイナスオーバーラップとすることで、シリンダ内に負圧を作ってポンプ損失を増加してガス温度を上昇させ、着火時期を遅れないように保持できる。   In a low load region where the fuel is low and the A / F is lean, it is necessary to increase the temperature by EGR in order to keep the ignition at an appropriate position. However, if this is done, the G / F becomes too lean and the region where combustion does not occur increases and HC increases. Therefore, the fresh air amount is decreased by reducing the EGR amount by advancing the exhaust valve closing timing and delaying the intake valve opening timing to decrease the intake valve opening degree. By delaying the opening timing of the intake valve and setting it to minus overlap, it is possible to create a negative pressure in the cylinder, increase the pump loss and raise the gas temperature, and keep the ignition timing without delay.

また吸気バルブ閉時期を下死点後の位置から離すことで効果的に新気を減少できる。G/Fを小さくして行けば、G/Fが20〜25で火花点火が可能になり、無負荷やアイドルのSIモードにつなぐことができる。   Moreover, the fresh air can be effectively reduced by separating the intake valve closing timing from the position after the bottom dead center. If the G / F is reduced, spark ignition is possible with a G / F of 20 to 25, and it is possible to connect to an unloaded or idle SI mode.

本発明の一実施形態によるエンジンの運転制御装置の基本構成図である。1 is a basic configuration diagram of an engine operation control apparatus according to an embodiment of the present invention. 上記エンジンの運転制御装置のシステム構成図である。It is a system block diagram of the said engine operation control apparatus. 上記エンジンの運転制御装置の運転領域を示す概念図である。It is a conceptual diagram which shows the operation area | region of the said operation control apparatus of an engine. 上記エンジンの運転制御装置のオーバーラップ,バルブ開閉時期を示す模式図である。It is a schematic diagram which shows the overlap of the said operation control apparatus of an engine, and a valve opening / closing timing. 上記エンジンの運転制御装置の運転領域を示す概念図である。It is a conceptual diagram which shows the operation area | region of the said operation control apparatus of an engine. 上記運転制御におけるオーバーラップ選定マップである。It is an overlap selection map in the said operation control.

符号の説明Explanation of symbols

1 エンジン
4 動弁系
a〜i 運転領域
OL バルブオーバーラップ
BDC 下死点
TDC 上死点
IVC 吸気弁閉時期
IVO 吸気弁開時期
EVC 排気弁閉時期
1 Engine 4 Valve system a to i Operating region OL Valve overlap BDC Bottom dead center TDC Top dead center IVC Intake valve closing timing IVO Intake valve opening timing EVC Exhaust valve closing timing

Claims (4)

少なくとも吸気弁開時期(IVO), 吸気弁閉時期(IVC)及び排気弁閉時期(EVC)を可変制御可能な動弁系を備え、エンジンを、運転領域に応じて火花点火により燃焼が開始するSIモード、又は予混合圧縮自己着火により燃焼が開始するHCCIモードにより運転するエンジンの運転制御装置において、
高負荷SIモードでは、バルブオーバーラップ(OL)を、大きくかつその中心が上死点(TDC)近傍に位置するように制御し、吸気弁閉時期を、下死点(BDC)後又は前に離した位置に制御することを特徴とするエンジンの運転制御装置。
A valve system capable of variably controlling at least intake valve opening timing (IVO), intake valve closing timing (IVC), and exhaust valve closing timing (EVC) is provided, and combustion of the engine is started by spark ignition according to the operation region. In an engine operation control device that operates in SI mode or HCCI mode in which combustion starts by premixed compression self-ignition,
In the high load SI mode, the valve overlap (OL) is controlled to be large and the center thereof is positioned near the top dead center (TDC), and the intake valve closing timing is set after the bottom dead center (BDC) or before An engine operation control device characterized by controlling to a separated position.
少なくとも吸気弁開時期(IVO), 吸気弁閉時期(IVC)及び排気弁閉時期(EVC)を可変制御可能な動弁系を備え、エンジンを、運転領域に応じて火花点火により燃焼が開始するSIモード、又は予混合圧縮自己着火により燃焼が開始するHCCIモードにより運転するエンジンの運転制御装置において、
中負荷HCCIモードでは、バルブオーバーラップを、小さくかつその中心が上死点後に離れて位置するように制御し、吸気バルブ閉時期を、下死点後近傍に位置するように制御することを特徴とするエンジンの運転制御装置。
A valve system capable of variably controlling at least intake valve opening timing (IVO), intake valve closing timing (IVC), and exhaust valve closing timing (EVC) is provided, and combustion of the engine is started by spark ignition according to the operation region. In an engine operation control device that operates in SI mode or HCCI mode in which combustion starts by premixed compression self-ignition,
In the medium load HCCI mode, the valve overlap is controlled to be small and the center thereof is located away from the top dead center, and the intake valve closing timing is controlled to be located near the bottom dead center. An engine operation control device.
少なくとも吸気弁開時期(IVO), 吸気弁閉時期(IVC)及び排気弁閉時期(EVC)を可変制御可能な動弁系とを備え、エンジンを、運転領域に応じて火花点火により燃焼が開始するSIモード、又は予混合圧縮自己着火により燃焼が開始するHCCIモードにより運転するエンジンの運転制御装置において、
低負荷HCCIモード又は低負荷SIモードでは、バルブオーバーラップを、マイナスに、かつその中心が上死点後に離れて位置するように制御し、吸気バルブ閉時期を、下死点後近傍に位置するよう制御することを特徴とするエンジンの運転制御装置。
It has at least an intake valve opening timing (IVO), an intake valve closing timing (IVC), and a valve system that can variably control the exhaust valve closing timing (EVC), and the engine starts combustion by spark ignition according to the operating region. In an operation control device for an engine that operates in the SI mode or the HCCI mode in which combustion starts by premixed compression self-ignition,
In the low-load HCCI mode or the low-load SI mode, the valve overlap is controlled to be negative and the center thereof is located away from the top dead center, and the intake valve closing timing is located in the vicinity after the bottom dead center. An engine operation control apparatus characterized by controlling the engine.
少なくとも吸気弁開時期(IVO), 吸気弁閉時期(IVC)及び排気弁閉時期(EVC)を可変制御可能な動弁系を備え、エンジンを、運転領域に応じて火花点火により燃焼が開始するSIモード、又は予混合圧縮自己着火により燃焼が開始するHCCIモードにより運転するエンジンの運転制御装置において、
高負荷SIモードでは、バルブオーバーラップ(OL)を、大きくかつその中心が上死点(TDC)近傍に位置するように制御し、吸気弁閉時期を、下死点(BDC)後又は前に離した位置に制御し
中負荷HCCIモードでは、バルブオーバーラップを、小さくかつその中心が上死点後に離れて位置するように制御し、吸気バルブ閉時期を、下死点後近傍に位置するように制御し
低負荷HCCIモード又は低負荷SIモードでは、バルブオーバーラップを、マイナスに、かつその中心が上死点後に離れて位置するように制御し、吸気バルブ閉時期を、下死点後近傍に位置するよう制御することを特徴とするエンジンの運転制御装置。
A valve system capable of variably controlling at least intake valve opening timing (IVO), intake valve closing timing (IVC), and exhaust valve closing timing (EVC) is provided, and combustion of the engine is started by spark ignition according to the operation region. In an engine operation control device that operates in SI mode or HCCI mode in which combustion starts by premixed compression self-ignition,
In the high load SI mode, the valve overlap (OL) is controlled to be large and the center thereof is positioned near the top dead center (TDC), and the intake valve closing timing is set after the bottom dead center (BDC) or before In the middle load HCCI mode, the valve overlap is controlled to be small and the center of the valve overlaps after the top dead center, and the intake valve closing timing is located near the bottom dead center. In the low load HCCI mode or low load SI mode, the valve overlap is controlled to be negative and the center of the valve overlaps after the top dead center, and the intake valve closing timing is near the bottom dead center. An operation control device for an engine, characterized by being controlled to be located at
JP2004146782A 2004-05-17 2004-05-17 Operation controller for engine Withdrawn JP2005325818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146782A JP2005325818A (en) 2004-05-17 2004-05-17 Operation controller for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146782A JP2005325818A (en) 2004-05-17 2004-05-17 Operation controller for engine

Publications (1)

Publication Number Publication Date
JP2005325818A true JP2005325818A (en) 2005-11-24

Family

ID=35472345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146782A Withdrawn JP2005325818A (en) 2004-05-17 2004-05-17 Operation controller for engine

Country Status (1)

Country Link
JP (1) JP2005325818A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835159A1 (en) * 2006-03-15 2007-09-19 Ford Global Technologies, LLC A method for an internal combustion engine, and an internal combustion engine
JP2009203820A (en) * 2008-02-26 2009-09-10 Mazda Motor Corp Control method of internal combustion engine and control system of internal combustion engine
WO2009114443A2 (en) * 2008-03-11 2009-09-17 Gm Global Technology Operations, Inc. Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
WO2009114444A2 (en) * 2008-03-11 2009-09-17 Gm Global Technology Operations, Inc. Control strategy for transitioning among combustion modes in an internal combustion engine
CN101858267A (en) * 2009-03-31 2010-10-13 马自达汽车株式会社 Supercharged direct-injection engine
JP2010236457A (en) * 2009-03-31 2010-10-21 Osaka Gas Co Ltd Engine
CN102135040A (en) * 2010-01-27 2011-07-27 马自达汽车株式会社 Control method and control apparatus of a supercharged engine
WO2011128997A1 (en) * 2010-04-14 2011-10-20 トヨタ自動車株式会社 Intake and exhaust system for internal combustion engine
US8150597B2 (en) 2008-02-26 2012-04-03 Mazda Motor Corporation Method and system for controlling an internal combustion engine
JP2012072728A (en) * 2010-09-29 2012-04-12 Mazda Motor Corp Combustion control device of gasoline engine
JP2012072729A (en) * 2010-09-29 2012-04-12 Mazda Motor Corp Device for controlling combustion of gasoline engine
JP2012246777A (en) * 2011-05-25 2012-12-13 Mazda Motor Corp Spark ignition engine with supercharger
JP2014173526A (en) * 2013-03-11 2014-09-22 Mazda Motor Corp Compression self-ignition type engine
JP2015098802A (en) * 2013-11-18 2015-05-28 マツダ株式会社 Control device for compression ignition type engine
JP2015098801A (en) * 2013-11-18 2015-05-28 マツダ株式会社 Control device for compression ignition type engine
JP2017504749A (en) * 2013-12-13 2017-02-09 周向▲進▼ZHOU, Xiangjin Combustion control method that mixes homogeneous compression ignition and diffusion compression ignition with low octane gasoline
WO2018096589A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device of compression autoignition engine
WO2018096585A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device of compression autoignition engine
JP2019039393A (en) * 2017-08-25 2019-03-14 マツダ株式会社 Engine with supercharging system
US10982616B2 (en) 2017-08-25 2021-04-20 Mazda Motor Corporation Premixed compression ignition type engine with supercharging system
CN113944524A (en) * 2020-07-17 2022-01-18 深圳臻宇新能源动力科技有限公司 Valve gear of engine, control method of valve gear and vehicle

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835159A1 (en) * 2006-03-15 2007-09-19 Ford Global Technologies, LLC A method for an internal combustion engine, and an internal combustion engine
US8150597B2 (en) 2008-02-26 2012-04-03 Mazda Motor Corporation Method and system for controlling an internal combustion engine
JP2009203820A (en) * 2008-02-26 2009-09-10 Mazda Motor Corp Control method of internal combustion engine and control system of internal combustion engine
CN102027217A (en) * 2008-03-11 2011-04-20 通用汽车环球科技运作公司 Control strategy for transitioning among combustion modes in an internal combustion engine
US8036807B2 (en) 2008-03-11 2011-10-11 GM Global Technology Operations LLC Control strategy for transitioning among combustion modes in an internal combustion engine
WO2009114443A3 (en) * 2008-03-11 2009-12-10 Gm Global Technology Operations, Inc. Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
CN102027218B (en) * 2008-03-11 2013-03-27 通用汽车环球科技运作公司 Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
WO2009114443A2 (en) * 2008-03-11 2009-09-17 Gm Global Technology Operations, Inc. Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
WO2009114444A3 (en) * 2008-03-11 2009-12-10 Gm Global Technology Operations, Inc. Control strategy for transitioning among combustion modes in an internal combustion engine
WO2009114444A2 (en) * 2008-03-11 2009-09-17 Gm Global Technology Operations, Inc. Control strategy for transitioning among combustion modes in an internal combustion engine
CN102027217B (en) * 2008-03-11 2013-06-19 通用汽车环球科技运作公司 Control strategy for transitioning among combustion modes in an internal combustion engine
US7963268B2 (en) 2008-03-11 2011-06-21 GM Global Technology Operations LLC Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
JP2010236457A (en) * 2009-03-31 2010-10-21 Osaka Gas Co Ltd Engine
US20110067679A1 (en) * 2009-03-31 2011-03-24 Mazda Motor Corporation Supercharged direct-injection engine
JP2010236429A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Direct-injection engine with supercharger
US8468823B2 (en) 2009-03-31 2013-06-25 Mazda Motor Corporation Supercharged direct-injection engine
CN101858267A (en) * 2009-03-31 2010-10-13 马自达汽车株式会社 Supercharged direct-injection engine
JP2011153553A (en) * 2010-01-27 2011-08-11 Mazda Motor Corp Method and apparatus for controlling engine with supercharger
CN102135040A (en) * 2010-01-27 2011-07-27 马自达汽车株式会社 Control method and control apparatus of a supercharged engine
CN102135040B (en) * 2010-01-27 2015-07-29 马自达汽车株式会社 Controlling method with supercharged engine and control gear
WO2011128997A1 (en) * 2010-04-14 2011-10-20 トヨタ自動車株式会社 Intake and exhaust system for internal combustion engine
JP2012072729A (en) * 2010-09-29 2012-04-12 Mazda Motor Corp Device for controlling combustion of gasoline engine
JP2012072728A (en) * 2010-09-29 2012-04-12 Mazda Motor Corp Combustion control device of gasoline engine
JP2012246777A (en) * 2011-05-25 2012-12-13 Mazda Motor Corp Spark ignition engine with supercharger
JP2014173526A (en) * 2013-03-11 2014-09-22 Mazda Motor Corp Compression self-ignition type engine
JP2015098802A (en) * 2013-11-18 2015-05-28 マツダ株式会社 Control device for compression ignition type engine
JP2015098801A (en) * 2013-11-18 2015-05-28 マツダ株式会社 Control device for compression ignition type engine
JP2017504749A (en) * 2013-12-13 2017-02-09 周向▲進▼ZHOU, Xiangjin Combustion control method that mixes homogeneous compression ignition and diffusion compression ignition with low octane gasoline
WO2018096585A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device of compression autoignition engine
WO2018096747A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control apparatus for engine
WO2018096589A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device of compression autoignition engine
WO2018096744A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control apparatus for engine
JPWO2018096744A1 (en) * 2016-11-22 2018-12-27 マツダ株式会社 Engine control device
US10502147B2 (en) 2016-11-22 2019-12-10 Mazda Motor Corporation Control apparatus for engine
US10641188B2 (en) 2016-11-22 2020-05-05 Mazda Motor Corporation Control apparatus for engine
JP2019039393A (en) * 2017-08-25 2019-03-14 マツダ株式会社 Engine with supercharging system
US10982616B2 (en) 2017-08-25 2021-04-20 Mazda Motor Corporation Premixed compression ignition type engine with supercharging system
CN113944524A (en) * 2020-07-17 2022-01-18 深圳臻宇新能源动力科技有限公司 Valve gear of engine, control method of valve gear and vehicle

Similar Documents

Publication Publication Date Title
US8459021B2 (en) Method and apparatus for controlling supercharged engine
JP7077768B2 (en) Compression ignition engine controller
JP2005325818A (en) Operation controller for engine
US7275514B2 (en) Method of HCCI and SI combustion control for a direct injection internal combustion engine
JP5915472B2 (en) Spark ignition direct injection engine
US8783227B2 (en) Engine control method and apparatus
JP7077769B2 (en) Compression ignition engine controller
US9650984B2 (en) Control system for gasoline engine
EP2264303B1 (en) Control method and device of engine and corresponding engine
US10704523B2 (en) Control system of compression-ignition engine
JP2010537102A (en) Multi-mode 2-stroke / 4-stroke internal combustion engine
JP2010236496A (en) Method and device for controlling internal combustion engine
JP7167831B2 (en) Compression ignition engine controller
JP2011214477A (en) Engine control device
JP2013113175A (en) Control device of spark ignition type gasoline engine
JP2011153562A (en) Control device of spark ignition engine
JP3800020B2 (en) Compression self-ignition engine
JP3629879B2 (en) Compression ignition internal combustion engine
JP2010144558A (en) Control method and control device for engine
JP2010236497A (en) Method and device for controlling internal combustion engine
JP5907013B2 (en) Spark ignition direct injection engine
JP2000073803A (en) Cylinder injection gasoline engine
JP5552869B2 (en) Engine control device
EP2976515B1 (en) System and method for control of a transition between si and hcci combustion modes
JP2004263633A (en) Knocking restraining device for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807