JP2004292836A - Manganese addition method for converter - Google Patents

Manganese addition method for converter Download PDF

Info

Publication number
JP2004292836A
JP2004292836A JP2003082977A JP2003082977A JP2004292836A JP 2004292836 A JP2004292836 A JP 2004292836A JP 2003082977 A JP2003082977 A JP 2003082977A JP 2003082977 A JP2003082977 A JP 2003082977A JP 2004292836 A JP2004292836 A JP 2004292836A
Authority
JP
Japan
Prior art keywords
oxide
amount
blowing
containing ferromagnetic
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082977A
Other languages
Japanese (ja)
Other versions
JP3996536B2 (en
Inventor
Kiminori Hajika
公則 羽鹿
Koji Kasuya
康二 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003082977A priority Critical patent/JP3996536B2/en
Publication of JP2004292836A publication Critical patent/JP2004292836A/en
Application granted granted Critical
Publication of JP3996536B2 publication Critical patent/JP3996536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a useful Mn addition method capable of adjusting an amount of Mn at a high Mn yield without hindering refining operation even in the case of manufacturing of high Mn steel in performing refining under a small amount of slag in a converter. <P>SOLUTION: In performing refining in the converter, a Mn oxide is added to steel after the start of oxygen blowing and Mn-containing alloy iron is charged thereto after the addition of the Mn oxide. The Mn oxide is charged and then, the Mn-containing alloy iron is kept charged before oxygen is supplied at 8 Nm<SP>3</SP>/t and the blowing is preferably ended by supplying 2 to 10 Nm<SP>3</SP>/t oxygen after charging of the Mn-containing alloy iron. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、転炉におけるMn添加方法に関するものであり、高Mn鋼を製造する場合でも、少量スラグ下で行う精錬操業に支障をきたすことなく、高いMn歩留りで溶鋼中のMn量を確保することのできる、有用なMn添加方法に関するものである。
【0002】
【従来の技術】
転炉操業工程で溶銑にMnを添加する方法として、精錬後にFe−Mn系合金を添加する方法が挙げられる。しかし該Fe−Mn系合金は高価であり、かつFe−Mn系合金の一部は、吹錬時に酸化されてスラグ中のMnOとなるためMn歩留りが悪く経済的でない。
【0003】
そこで、該Fe−Mn系合金の代わりに酸化マンガンを主成分とする安価なMn鉱石を用いることが提案されている。特許文献1には、酸化Mn(実施例ではMn鉱石)を投入した場合のMn歩留りを高め、且つ高価なMn系合金鉄の使用を抑えること等を目的として、微粉状の酸化Mnを吹き込み、目標Mn値に対して、溶銑中のMn量を−0.50〜+0.25%の範囲内に調整することが示されている。
【0004】
また特許文献2には、精錬時に安価なMn鉱石を添加する際に、高融点であるMn鉱石の還元反応を促進させるべく、生石灰、石灰石、ホタル石の1種または2種以上を混合させた粉体を添加し、Mn鉱石の融点を低下させることが提案されている。更に特許文献3には、Mn鉱石を精錬時に添加する際に、転炉での脱燐および脱炭精錬を支障なく行いつつ高いMn歩留りを達成するため、コークスを所定量吹き込み、酸素ポテンシャルの高いスラグ−メタル界面近傍をコークス粉で還元することにより、Mn鉱石の還元を促進する技術が示されている。
【0005】
上記技術では、Mn鉱石の還元により溶銑中のMn量を確保する方法や、該Mn鉱石の還元反応の際に生じる問題の解決を図っている。しかしこの様にMn鉱石のみ使用して溶銑中のMn量を調整する場合、該Mn量を高めるべくMn鉱石の添加量を増加させると、スラグ量が増加してMn歩留りが低下する他、該スラグの増加によりフォーミング等が生じて精錬操業に支障をきたすため、高いMn歩留りで溶鋼中のMn量を効率よく高めるには更なる改善が求められる。
【0006】
【特許文献1】
特開昭61−190011号公報
【特許文献2】
特開平10−130711号公報
【特許文献3】
特開平10−158713号公報
【0007】
【発明が解決しようとする課題】
本発明は、この様な事情に鑑みてなされたものであって、その目的は、高Mn鋼を製造する場合においても、転炉での少量スラグ下で行う精錬操業に支障をきたすことなく、高いMn歩留りで溶鋼中のMn量を調整することのできる、有用なMn添加方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明に係る転炉におけるMn添加方法とは、吹錬開始後にMn酸化物を添加し、且つ該Mn酸化物の添加後にMn含有合金鉄を投入するところに特徴を有するものであり、特に、
(a)前記Mn酸化物を投入した後、酸素を8Nm/t(tは溶鋼1トンあたりを意味する。以下同じ)供給するまでの間に前記Mn含有合金鉄を投入し、かつ
(b)Mn含有合金鉄の投入後に酸素を2〜10Nm/t供給して吹錬を終了するのがよい。
【0009】
また、前記Mn酸化物の投入量は、Mn純分換算で、下記式(1)を満たすようにするのがよい。
【0010】
Mn酸化物の投入量(kg/t)=炉内スラグ量(kg/t)×1.29×BMnO …(1)
(但し、BMnOはスラグ中のMnO濃度の最適必要増加分(質量%)を示し、2〜15質量%の範囲内とする)
前記Mn酸化物としては、入手し易く安価であるMn鉱石を使用してもよく、また前記Mn含有合金鉄として、安価である低級品を用いてもよい。
【0011】
尚、前記「Mn歩留り」とは、吹錬において転炉に装入されるMn分のうち、吹止時の溶鋼中に歩留るMn分、即ち[溶鋼中のMn(kg/チャージ)]/[(添加Mn合金鉄+添加Mn含有合金鉄+溶銑+スクラップ)に含まれるMn(kg/チャージ)]×100(%)をいうものとする(以下、同じ)。
【0012】
【発明の実施の形態】
本発明者らは、少量スラグ下で行う転炉精錬で、Mn含有物を添加して溶鋼中のMn量を調整するに際し、比較的Mn濃度の高い鋼を製造する場合でも該操業に支障をきたすことなく、高Mn歩留りで溶鋼中のMn量を調整することのできる方法を確立すべく様々な角度から検討を行った。
【0013】
その結果、特に、
▲1▼従来のようにMn酸化物のみまたはMn含有合金鉄のみを使用するのではなく、酸素吹き込み開始後に(好ましくは吹錬中期以降に)Mn酸化物を予め投入してスラグ中のMnO量を確保した上で、Mn含有合金鉄を投入することが重要であること、
▲2▼Mn歩留りを飛躍的に高めるには、これらMn酸化物とMn含有合金鉄の投入時期としてそれぞれ最適なタイミングが存在すること、具体的には、目標とするMn濃度に応じてスラグ中のMnO濃度を適正範囲まで高めた時点で、Mn含有合金鉄を投入するのがよいこと、
▲3▼Mn酸化物は、所定量を投入するのがよいこと、および
▲4▼Mn酸化物としてMn鉱石を用いる場合には、粉末状のMn鉱石を用いるのが好ましいこと
を見出し上記本発明に想到した。以下、本発明で上記要件を規定した理由について詳述する。
【0014】
本発明者らは、上述の通り、Mn酸化物とMn含有合金鉄を併用し、吹錬開始後に(好ましくは吹錬中期以降に)Mn酸化物を予め投入して、溶鋼の目標Mn量と熱平衡状態にあるスラグ中のMnO量を確保した上でMn含有合金鉄を投入すれば、精錬操業に支障をきたすことなく高Mn鋼を高Mn歩留りで製造できるとの知見を得た。
【0015】
特にMn歩留りを飛躍的に高めるには、これらMn酸化物とMn含有合金鉄の投入時期としてそれぞれ最適なタイミングが存在し、Mn酸化物およびMn含有合金鉄は、下記の条件を満たす時期に投入するのがよいことがわかった。
【0016】
(1)Mn含有合金鉄は、前記Mn酸化物を投入した後、酸素を8Nm/t供給するまでの間に投入するのがよい。
【0017】
Mn酸化物を投入した後酸素を8Nm/t供給するまでの間にMn含有合金鉄を投入するのは、該Mn酸化物を投入してスラグ中のMnO濃度を予め高めることで、その後にMn含有合金鉄を投入したときに該Mn含有合金鉄中のMnが酸化物になるのを抑制するためである。
【0018】
Mn酸化物として微粉末状(粒径約15mm以下、好ましくは10mm以下)のものを使用する場合には、Mn酸化物の投入直後にMn含有合金鉄を投入しても差し支えない。該微粉末状のMn酸化物であれば、すぐに溶解してスラグ中のMnO濃度を高めることができるからである。しかし粒径約15mmを超えるMn酸化物を投入する場合には、Mn酸化物の投入後に酸素を2Nm/t以上吹き込み、該Mn酸化物を十分に溶融させてからMn含有合金鉄を投入するのがよい。
【0019】
一方、Mn酸化物の投入後、過度に長時間を経てからMn含有合金鉄を投入すると、Mn酸化物の投入に伴いスラグ中の酸素ポテンシャルが上昇し、それに応じて図1に示す様にスラグ中のT.Fe濃度(スラグ中のFeOおよびFe等鉄酸化物の合計のFe純分換算濃度)も上昇し、その結果Mn歩留りが低下するといった問題が生じる。この様な問題が生じないようにするには、Mn酸化物の投入後酸素を8Nm/t供給するまでの間に、Mn含有合金鉄を投入すればよいことが分かった。より好ましくは、Mn酸化物の投入後酸素を7Nm/t供給するまでの間にMn含有合金鉄を投入する。
【0020】
(2)またMn含有合金鉄を投入した後、吹錬終了までの酸素供給量は2〜10Nm/tの範囲とするのがよい。
【0021】
転炉精錬では、酸素を吹き込むことで脱炭処理が行われるが、Mn含有合金鉄を投入した後に、多量の酸素を供給すると、添加したMn含有合金鉄中のMnが酸化されてMnOとなりMn歩留りが低下するので好ましくない。
【0022】
従って、Mn歩留りの向上という観点からは、Mn含有合金鉄投入後の酸素供給時間を短くするのがよく、吹錬末期に投入するのがよい。また、スラグ中のMnOからMnへの還元反応は吸熱反応であるため、溶鋼温度が高温となる吹錬末期に該還元反応は優位となる。従って、この吹錬末期にMn含有合金鉄を投入すれば、Mnの酸化ロスも抑えられるので、この様な観点からも、Mn含有合金鉄を吹錬末期に投入するのが好ましい。いずれにしても本発明では、Mn含有合金鉄を溶鋼に投入後、吹錬終了までの酸素供給量を10Nm/t以下とするのがよい。Mn含有合金鉄の酸化を抑制して更にMn歩留りを高めるには、Mn含有合金鉄投入後、吹錬終了までの酸素供給量を8Nm/t以下とするのがより好ましい。
【0023】
しかし、Mn含有合金鉄投入後の吹錬時間が極端に短い(即ち、吹錬終了までの酸素供給量が少ない)と、次の様な問題が生じる。
【0024】
(i)吹錬終了間際には、転炉ダイナミックコントロール、即ち、吹錬中にサブランスでC濃度と溶鋼温度(T)を直接測定し、数秒毎にC濃度と溶鋼温度(T)を逐次計算表示して吹錬終了の判断が行われるが、この際、吹錬終了直前にMn含有合金鉄を添加すると、吹錬終了の判断基準であるC濃度と溶鋼温度(T)が目標設定値から外れ易くなる。
【0025】
(ii)Mn含有合金鉄を投入した後に吹錬を十分行うことによって、不純物であるCが脱炭処理され、水分が蒸発し、またTi等の不純物がスラグに捕捉されて除去される。
【0026】
しかし、吹錬終了直前にMn含有合金鉄を添加すると、Mn含有合金鉄中に含まれるこれらの不純物(C、HO、Ti等)が十分除去されず、溶鋼中に残存したままとなり、上述した様に吹錬終了時のC濃度が目標値から外れるといった不具合が生じる他、該不純物の除去処理を別途行う必要が生じてくる。例えば吹錬終了後に脱ガス工程等を設ける等の必要が生じ、連々鋳を実施する場合等に効率よく作業を進めることができない。
【0027】
(iii)Mn含有合金鉄が十分に攪拌・混合されない状態で吹錬を終了すると、添加したMn含有合金鉄の分散が不均一となって、成分バラツキ等が生じるおそれがある。
【0028】
従って、Mn含有合金鉄を投入した後は、少なくとも2Nm/tの酸素を供給して吹錬を行い、Mn含有合金鉄中の不純物の除去や攪拌等を行うのがよい。該不純物の除去等や攪拌を十分に行うには、Mn含有合金鉄を投入したのち3Nm/t以上の酸素を供給して吹錬を行うことがより好ましい。
【0029】
本発明では、この様な適正時期にMn酸化物およびMn含有合金鉄を投入することで、脱燐や脱炭等といった精錬操業に支障をきたすことなく高Mn歩留りで溶鋼中のMn量を確保することができる。
【0030】
図2は、Mn酸化物およびMn含有合金鉄のどちらも本発明で規定する時期に投入した場合(Mn酸化物の投入時期:精錬開始後,Mn含有合金鉄の投入時期:精錬中期以降)と、Mn含有合金鉄のみを規定の時期に投入し、Mn酸化物は精錬開始前に投入した場合(Mn酸化物の投入時期:精錬開始前,Mn含有合金鉄の投入時期:精錬中期以降)について、Mn含有合金鉄投入時のスラグ中のMnO濃度とMn歩留りとの関係を示している。この図2から、本発明で規定する時期にMn酸化物およびMn含有合金鉄を投入することで、高いMn歩留りを達成できることがわかる。
【0031】
Mn酸化物は、上記適正時期に投入することに加えて、Mn純分換算で下記式(1)を満たす量を投入するのがよい。
【0032】
Mn酸化物の投入量(kg/t)=炉内スラグ量(kg/t)×1.29×BMnO…(1)
(但し、BMnOはスラグ中のMnO濃度の最適必要増加分(%)を示し、2〜15%の範囲内とする)
上記Mn酸化物の投入量は、例えば次の様にして求めることができる。通常行う操業下での溶鋼中のMn濃度[Mn]が0.5質量%、溶鋼中のFe濃度(T.Fe)が8質量%、スラグ中のMnO濃度(MnO)が4質量%であり、目標値として溶鋼中のMn目標濃度[Mn]’を1.0質量%、溶鋼中のFe目標濃度(T.Fe)’を10質量%にしようとするとき、スラグ中のMnO目標濃度(MnO)’は、平衡状態の関係から求まる下記式(2)より10質量%となる。
【0033】
(MnO) ’=[(T.Fe)’/(T.Fe)}×{[Mn]’/ [Mn]}×(MnO) …(2)
従ってBMnO(スラグ中のMnO濃度の最適必要増加分)は、
MnO=(MnO)’−(MnO)=6(質量%)となる。
【0034】
よって、この場合のMn酸化物の投入量は、[炉内スラグ量(kg/t)×1.29×6] (kg/t)とするのが最適であることがわかる。尚、スラグ中のMnO濃度の最適必要増加分(質量%)は、この様に操業条件に応じて適宜設定することができるが、Mn酸化物を過剰に添加するとスラグが酸化性になりやすいので、Mn歩留りの低下の抑制を考慮すると2〜15質量%の範囲内とするのがよい。
【0035】
この様にMn酸化物を適正量投入して、スラグ中のMnO濃度を最適濃度にした状態でMn含有合金鉄を投入することによって、より高いMn歩留りを達成することができる。
【0036】
尚、Mn酸化物の投入量が上記式(1)で規定した量を下回る場合には、スラグ中のMnO濃度を、平衡時のMnO濃度まで十分に高めることができず、Mn含有合金鉄を投入したときに、該Mn含有合金鉄中のMnの酸化反応が進行し易くMn歩留りを高めることが難しい。好ましくは前記Mn酸化物を少なくとも2kg/t以上投入するのがよい。
【0037】
一方、Mn酸化物の投入量が上記式(1)で規定した量を上回る場合には、スラグ中のMnO量が過度に増加し、該MnO濃度の増加に伴い前記図1に示すようにスラグ中のT.Fe濃度(スラグ中のFe酸化物であるFeOとFeの合計中の鉄純分濃度)も増大しスラグが高酸化性となる。一旦、高酸化性のスラグが形成されると、該スラグを低酸化性に迅速に戻すのは、酸素を供給しつつ精錬する酸化精錬では非常に困難である。従ってこの様な状態になると、Mn歩留りが低下するばかりか溶鋼中のMn濃度を十分に高めることもできないので好ましくない。よって前記Mn酸化物の投入量は15kg/t以下とするのが好ましい。
【0038】
前記Mn酸化物としては、MnOを主成分とするMn鉱石を用いることができる他、Mn濃度の高い鋼種を溶製したときに生じるMnO濃度の高いスラグをリサイクルして使用することができる。
【0039】
尚、Mn酸化物としてMn鉱石を用いる場合には、粉砕された粉末状のMn鉱石(粒径約0.5〜5.0mm)が安価であり、かつ下記の様な問題点も生じないので好ましい。
【0040】
即ち、塊状のMn鉱石を使用すると、転炉上部から添加した時に大部分がスラグ層を突き破って溶鋼内に直接入り、下記化学式(3)に示す反応が溶鋼中で生じ、必要以上の脱炭が生じたり、スラグ中のMnO濃度を目標とするレベルまで上昇できず、引き続いて投入するMn含有合金鉄のMn歩留りを低下させることとなる。
【0041】
[C]+(MnO)⇔[Mn]+CO …(3)
{上記化学式(3)中、[C]は溶鋼中の炭素を示し、(MnO)はスラグ中のMnOを示し、[Mn]は溶鋼中のMnを示し、⇔は反応が平衡状態にあることを示す}
これに対し、粉末状のMn鉱石を転炉上部から添加すると、溶鋼まで到達せずスラグ中に留まるので、塊鉱石の場合より効率的にスラグ中のMnO濃度を高めることができる。
【0042】
Mn含有合金鉄については、特にその投入量を限定するものでなく、目標Mn値に併せて適量添加することができる。またMn含有合金鉄としては、Fe−Mn系合金を用いる他、鋼種に応じてMn−N等を用いることができ、本発明では、投入するMn含有合金鉄中の不純物も精錬時に十分除去できるので、該Mn含有合金鉄として、比較的不純物を多く含むFe−Mn系合金の低級品を使用しても差し支えない。
【0043】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0044】
<実施例1>
まず、本発明で定める如くMn酸化物とMn含有合金鉄を併用し、Mn酸化物を予め投入してスラグ中のMnO量を確保した上でMn含有合金鉄を投入する方法として、Mn酸化物としてMn鉱石を酸素供給積算量が31.3Nm/tの時期に投入後、2.4Nm/tの酸素を供給してから、Mn含有合金鉄としてFe−Mn系合金を投入し、該Fe−Mn系合金の投入後に5.6Nm/tの酸素を供給して吹錬を終了した。
【0045】
またMn酸化物としてMn鉱石のみ用いて溶鋼中のMn量を調整する従来法として、Mn鉱石を酸素供給積算量が5.3Nm/tの時期に投入後、34.0Nm/tの酸素を供給して吹錬を終了した。それぞれの方法について、投入するMn鉱石またはFe−Mn系合金量を変化させて、溶鋼中のMn濃度を調整したときのMn歩留りを求めた。いずれの方法もその他の操業条件は下記の通りとした。

Figure 2004292836
この様に夫々の方法でMn量を調整したときの、Mn投入量(投入したMn鉱石またはFe−Mn系合金量のMn純分換算量)とMn歩留りとの関係を図3に示す。
【0046】
この図3から、Mn酸化物のみ用いて溶鋼中Mn量を調整する場合には、Mn投入量を増加させるにつれてMn歩留りが低下するのに対し、本発明の方法によれば、Mn投入量に関係なく高いMn歩留りを達成できることがわかる。
【0047】
<実施例2>
本発明で規定する時期にMn含有合金鉄を投入した場合(本発明例)と、規定を外れる時期にMn含有合金鉄を投入した場合(比較例)でMn歩留りに相違が生じることを確認する実験を行った。実験では、Mn酸化物とMn含有合金鉄の投入を表1に示す時期に行った以外は、いずれの場合も前記実施例1と同様の操業条件で行い、それぞれ複数回操業を行った。そのときの各操業におけるMn歩留りの結果を図4に示す。
【0048】
【表1】
Figure 2004292836
【0049】
前記図4から、転炉において本発明で規定する時期にMnを添加した場合には、Mn歩留りが相対的に高くなっていることがわかる。
【0050】
<実施例3>
Mn酸化物とMn含有合金鉄の投入時期の関係がMn歩留りに及ぼす影響について調べた。
【0051】
操業条件は、Mn酸化物(Mn鉱石)の投入時からMn含有合金鉄(Fe−Mn系合金)の投入までの酸素供給量を1〜12Nm/tの範囲内で変化させ、Mn含有合金鉄投入後は酸素を6Nm/t供給して吹錬を終了した以外は、上記実施例1と同様の条件で操業を行った。この様にして操業したときの、Mn酸化物の投入時からMn含有合金鉄の投入までの酸素供給量とMn歩留りとの関係を図5に示す。
【0052】
前記図5から、Mn酸化物投入後の酸素供給量が8Nm/tを超えた時点でMn含有合金鉄を投入した場合には、Mn歩留りが低下しており、Mn含有合金鉄の投入は、前記Mn酸化物の投入後酸素を8Nm/t供給するまでの間に行うのがよいことがわかる。
【0053】
<実施例4>
Mn含有合金鉄を投入後の酸素供給量を変化させて、Mn歩留りおよび残存不純物量に与える影響を調べた。
【0054】
操業条件は、Mn含有合金鉄(Fe−Mn系合金)投入後の酸素供給量(Fe−Mn系合金投入後吹錬終了までの酸素供給量)を0〜12Nm/tの範囲で変化させ、Mn酸化物(Mn鉱石)の投入した後Mn含有合金鉄を投入するまでの酸素供給量を2〜6Nm/tとする以外は、上記実施例1と同様の条件で操業した。この様にして操業したときの、Mn含有合金鉄投入後吹錬終了までの酸素供給量とMn歩留りの関係を図6に示す。また、Mn含有合金鉄投入後吹錬終了までの酸素供給量と溶鋼中の残存不純物量との関係として、図7にMn含有合金鉄投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中のH(水素)濃度との関係を示し、図8にMn含有合金鉄投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中のC(炭素)濃度との関係を示す。
【0055】
図6から、Mn含有合金鉄を投入後に多量の酸素を供給すると、Mn歩留りが低下することが分かる。Mn歩留りを少なくとも75%確保するには、Mn含有合金鉄を投入後の酸素供給量を10Nm/t以下に抑える、換言すれば、酸素供給量が10Nm/tを超えないうちに吹錬操業を終了するのがよいことがわかる。また図7から、特に安価なMn含有合金鉄に多く含まれている水分を十分除去して溶鋼中のH濃度を低減するには、Mn含有合金鉄を投入後、吹錬終了までに少なくとも2Nm/t以上の酸素を供給して吹錬処理を行うのがよいことがわかる。
【0056】
また低C濃度の鋼種を製造する場合に、吹錬終了直前に投入するMn含有合金鉄に含まれるC量が多いと、吹錬終了時のC濃度が目標値より高くなるといった不具合が生じる。
【0057】
従って、図8に示す様に溶鋼中のC量を低減すべく、酸素を供給して吹錬処理を行うのがよいことがわかる。
【0058】
【発明の効果】
本発明は上記のように構成されており、本発明の方法で転炉にMnを添加すれば、高Mn鋼を製造する場合であっても脱炭や脱燐等といった精錬操業に支障をきたすことなく高Mn歩留りで溶鋼中のMn量を調整することができる。
【0059】
この様な方法を実施することで、Fe−Mn系合金等の高価なMn含有合金鉄を使用する場合であっても高いMn歩留りを達成することができる。また該Mn含有合金鉄として、C、HO等の不純物量の多いFe−Mn系合金等の低級品を使用した場合でも、脱ガス等の工程をあらためて設ける必要なく効率良くMn量を調整することができる。更に、Mn酸化物として安価なMn鉱石等を使用できるので経済的である。
【図面の簡単な説明】
【図1】スラグ中のMnO濃度とスラグ中のT.Fe濃度の関係を示したグラフである。
【図2】Mn含有合金鉄投入時のスラグ中のMnO濃度とMn歩留りとの関係を、Mn酸化物の投入時期別に示したグラフである。
【図3】本発明法または従来法で溶鋼中Mn量を調整した場合の、Mn投入量とMn歩留りの関係を示したグラフである。
【図4】実施例2における各条件で操業した場合のMn歩留りを示すグラフである。
【図5】Mn酸化物(Mn鉱石)投入後からMn含有合金鉄(Fe−Mn系合金)投入までの酸素供給量とMn歩留りとの関係を示したグラフである。
【図6】Mn含有合金鉄(Fe−Mn系合金)投入後吹錬終了までの酸素供給量とMn歩留りとの関係を示したグラフである。
【図7】Mn含有合金鉄(Fe−Mn系合金)投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中のH(水素)濃度との関係を示したグラフである。
【図8】Mn含有合金鉄(Fe−Mn系合金)投入後吹錬終了までの酸素供給量と吹錬終了時の溶鋼中のC(炭素)濃度との関係を示したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for adding Mn in a converter, and even when producing a high Mn steel, secures the Mn content in molten steel with a high Mn yield without hindering the refining operation performed under a small amount of slag. And a useful method of adding Mn.
[0002]
[Prior art]
As a method of adding Mn to hot metal in a converter operation process, a method of adding an Fe—Mn-based alloy after refining is exemplified. However, the Fe-Mn-based alloy is expensive, and a part of the Fe-Mn-based alloy is oxidized at the time of blowing to form MnO in the slag.
[0003]
Therefore, it has been proposed to use an inexpensive Mn ore containing manganese oxide as a main component instead of the Fe-Mn alloy. Patent Document 1 discloses that fine powdered Mn oxide is blown for the purpose of increasing the Mn yield when Mn oxide (Mn ore in the example) is charged and suppressing the use of expensive Mn-based ferroalloys. It is shown that the amount of Mn in the hot metal is adjusted within a range of −0.50 to + 0.25% with respect to the target Mn value.
[0004]
In addition, Patent Document 2 discloses that when inexpensive Mn ore is added during refining, one or more of quick lime, limestone, and fluorite are mixed in order to promote a reduction reaction of Mn ore having a high melting point. It has been proposed to add powder to lower the melting point of the Mn ore. Further, in Patent Document 3, when adding Mn ore at the time of refining, in order to achieve a high Mn yield while performing dephosphorization and decarburization refining in a converter without hindrance, a predetermined amount of coke is blown, and oxygen potential is high. A technique for promoting reduction of Mn ore by reducing the vicinity of a slag-metal interface with coke powder is disclosed.
[0005]
In the above-described technology, a method for securing the amount of Mn in the hot metal by reducing the Mn ore, and a solution to the problem that occurs during the reduction reaction of the Mn ore are attempted. However, when the amount of Mn in the hot metal is adjusted using only the Mn ore as described above, if the amount of the Mn ore added is increased to increase the Mn amount, the amount of slag increases, and the Mn yield decreases. Forming or the like occurs due to an increase in slag, which hinders the refining operation. Therefore, further improvement is required to efficiently increase the Mn content in molten steel with a high Mn yield.
[0006]
[Patent Document 1]
JP-A-61-190011 [Patent Document 2]
JP-A-10-130711 [Patent Document 3]
JP 10-158713 A
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, the purpose thereof, even when producing high Mn steel, without hindering the refining operation performed under a small amount of slag in the converter, An object of the present invention is to provide a useful Mn addition method capable of adjusting the amount of Mn in molten steel with a high Mn yield.
[0008]
[Means for Solving the Problems]
The Mn addition method in the converter according to the present invention is characterized in that a Mn oxide is added after the start of blowing, and a Mn-containing ferromagnetic iron is charged after the addition of the Mn oxide.
(A) After the Mn oxide is charged, the Mn-containing ferromagnetic iron is charged before oxygen is supplied at 8 Nm 3 / t (t means per ton of molten steel; the same applies hereinafter), and (b) It is preferable that oxygen is supplied at 2 to 10 Nm 3 / t after the addition of the Mn-containing ferromagnetic iron to terminate the blowing.
[0009]
Further, it is preferable that the input amount of the Mn oxide satisfy the following expression (1) in terms of Mn pure content.
[0010]
Input amount of Mn oxide (kg / t) = Amount of slag in furnace (kg / t) × 1.29 × B MnO (1)
(However, B MnO indicates the optimum necessary increase (% by mass) of the MnO concentration in the slag, and is in the range of 2 to 15% by mass.)
As the Mn oxide, an easily available and inexpensive Mn ore may be used, and as the Mn-containing ferromagnetic iron, an inexpensive low-grade product may be used.
[0011]
The “Mn yield” refers to the Mn content in the molten steel at the time of blowing off, of the Mn content charged into the converter during blowing, ie, [Mn in molten steel (kg / charge)]. / [(Mn (kg / charge)] contained in (added Mn alloy iron + added Mn-containing alloy iron + hot metal + scrap)] × 100 (%) (hereinafter the same).
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have found that in converter refining performed under a small amount of slag, when adjusting the amount of Mn in molten steel by adding a Mn-containing material, even in the case of producing a steel having a relatively high Mn concentration, the operation is hindered. Studies were conducted from various angles to establish a method capable of adjusting the amount of Mn in molten steel with a high Mn yield without causing a problem.
[0013]
As a result, in particular,
{Circle around (1)} Instead of using only Mn oxide or only Mn-containing ferromagnetic iron as in the conventional case, the amount of MnO in the slag is preliminarily charged after the start of oxygen blowing (preferably after the middle stage of blowing). It is important to supply Mn-containing ferromagnetic iron after securing
{Circle around (2)} In order to dramatically increase the Mn yield, there is an optimal timing for each of these Mn oxides and the Mn-containing ferromagnetic iron to be charged. When the MnO concentration is increased to an appropriate range, it is good to introduce the Mn-containing ferromagnetic iron,
(3) It has been found that a predetermined amount of the Mn oxide is preferably added, and (4) that when the Mn ore is used as the Mn oxide, it is preferable to use a powdery Mn ore. I thought. Hereinafter, the reason for defining the above requirements in the present invention will be described in detail.
[0014]
As described above, the present inventors use a combination of Mn oxide and Mn-containing ferromagnetic iron, and inject Mn oxide in advance after the start of blowing (preferably after the middle stage of blowing) to obtain a target Mn amount of molten steel. It has been found that if the amount of MnO in the slag in the thermal equilibrium state is secured and the Mn-containing ferromagnetic iron is charged, a high Mn steel can be produced with a high Mn yield without hindering the refining operation.
[0015]
In particular, in order to dramatically increase the Mn yield, there is an optimum timing for each of the Mn oxide and the Mn-containing ferromagnetic iron, and the Mn oxide and the Mn-containing ferromagnetic iron are supplied at a time satisfying the following conditions. It turned out to be good.
[0016]
(1) It is preferable that the Mn-containing ferromagnetic iron be charged after the Mn oxide is charged and before oxygen is supplied at 8 Nm 3 / t.
[0017]
The reason why the Mn-containing ferromagnetic iron is charged before the oxygen is supplied at 8 Nm 3 / t after the Mn oxide is charged is that the Mn oxide is charged to increase the MnO concentration in the slag in advance, and thereafter, This is because, when the Mn-containing ferromagnetic iron is introduced, Mn in the Mn-containing ferromagnetic iron is prevented from becoming an oxide.
[0018]
When a fine powder (particle size of about 15 mm or less, preferably 10 mm or less) is used as the Mn oxide, the Mn-containing ferromagnetic iron may be charged immediately after the Mn oxide is charged. This is because the fine powder of Mn oxide can be dissolved immediately to increase the MnO concentration in the slag. However, when the Mn oxide having a particle size of more than about 15 mm is charged, oxygen is blown at 2 Nm 3 / t or more after the Mn oxide is charged, and the Mn oxide is sufficiently melted before the Mn-containing ferromagnetic iron is charged. Is good.
[0019]
On the other hand, when the Mn-containing ferromagnetic iron is charged after an excessively long time after the addition of the Mn oxide, the oxygen potential in the slag increases with the addition of the Mn oxide, and accordingly, as shown in FIG. T. in The Fe concentration (the total concentration of iron oxides such as FeO and Fe 2 O 3 in the slag in terms of pure Fe content) also increases, and as a result, the Mn yield decreases. In order to prevent such a problem from occurring, it has been found that the Mn-containing ferromagnetic iron should be charged between the supply of Mn oxide and the supply of oxygen at 8 Nm 3 / t. More preferably, the Mn-containing ferromagnetic iron is charged after supplying the Mn oxide and before supplying 7 Nm 3 / t of oxygen.
[0020]
(2) Further, after the Mn-containing ferromagnetic iron is charged, the oxygen supply amount until the end of the blowing is preferably in the range of 2 to 10 Nm 3 / t.
[0021]
In the converter refining, decarburization treatment is performed by blowing oxygen.However, if a large amount of oxygen is supplied after charging the Mn-containing ferromagnetic iron, Mn in the added Mn-containing ferromagnetic iron is oxidized to MnO to form MnO. It is not preferable because the yield decreases.
[0022]
Therefore, from the viewpoint of improving the Mn yield, the oxygen supply time after the introduction of the Mn-containing ferromagnetic alloy is preferably shortened, and the oxygen is preferably introduced at the end of blowing. Further, since the reduction reaction from MnO to Mn in slag is an endothermic reaction, the reduction reaction becomes dominant at the end of blowing when the molten steel temperature becomes high. Therefore, if the Mn-containing ferromagnetic iron is charged at the end of the blowing, the oxidation loss of Mn can be suppressed, and from such a viewpoint, it is preferable to input the Mn-containing ferroalloy at the end of the blowing. In any case, in the present invention, it is preferable to set the oxygen supply amount to 10 Nm 3 / t or less after the addition of the Mn-containing ferromagnetic iron into the molten steel until the end of the blowing. In order to further suppress the oxidation of the Mn-containing ferromagnetic alloy and further increase the Mn yield, it is more preferable to set the oxygen supply amount after the introduction of the Mn-containing ferromagnetic alloy to the end of the blowing to be 8 Nm 3 / t or less.
[0023]
However, if the blowing time after the addition of the Mn-containing ferroalloys is extremely short (that is, the oxygen supply amount until the blowing is completed), the following problem occurs.
[0024]
(I) Immediately before the end of blowing, converter dynamic control, that is, the C concentration and the molten steel temperature (T) are directly measured by a sublance during the blowing, and the C concentration and the molten steel temperature (T) are sequentially calculated every few seconds. In this case, if the Mn-containing ferromagnetic iron is added immediately before the end of the blowing, the C concentration and the molten steel temperature (T) which are the criteria for the end of the blowing are determined from the target set values. It is easy to come off.
[0025]
(Ii) By sufficiently blowing after introducing the Mn-containing ferromagnetic iron, C, which is an impurity, is decarburized, moisture is evaporated, and impurities such as Ti are captured and removed by the slag.
[0026]
However, if the Mn-containing ferromagnetic iron is added immediately before the end of the blowing, these impurities (C, H 2 O, Ti, etc.) contained in the Mn-containing ferromagnetic iron are not sufficiently removed and remain in the molten steel. As described above, in addition to the disadvantage that the C concentration at the end of the blowing deviates from the target value, it is necessary to separately perform the impurity removal processing. For example, there is a need to provide a degassing step or the like after the end of blowing, so that it is not possible to efficiently perform the work when performing continuous casting.
[0027]
(Iii) If the blowing is terminated in a state where the Mn-containing ferroalloys are not sufficiently stirred and mixed, the dispersion of the added Mn-containing ferroalloys becomes non-uniform, and there is a possibility that component dispersion or the like may occur.
[0028]
Therefore, after charging the Mn-containing ferromagnetic iron, it is preferable to supply oxygen of at least 2 Nm 3 / t to perform blowing, thereby removing impurities in the Mn-containing ferromagnetic iron, stirring, and the like. In order to sufficiently remove the impurities and perform the stirring, it is more preferable to perform the blowing by supplying oxygen of 3 Nm 3 / t or more after charging the Mn-containing ferromagnetic iron.
[0029]
In the present invention, by introducing Mn oxide and Mn-containing ferromagnetic iron at such an appropriate time, the Mn content in molten steel is ensured at a high Mn yield without hindering refining operations such as dephosphorization and decarburization. can do.
[0030]
FIG. 2 shows the case where both the Mn oxide and the Mn-containing ferromagnetic iron are charged at the time specified in the present invention (the timing of charging the Mn oxide: after the refining starts, the timing of charging the Mn-containing ferromagnetic iron: after the middle of refining). , Mn-containing ferroalloys are charged only at the specified time, and Mn oxide is charged before refining starts (Mn oxide charging timing: before refining starts, Mn-containing ferromagnetic charging timing: after refining middle stage) 4 shows the relationship between the MnO concentration in the slag and the Mn yield when the Mn-containing ferromagnetic iron is charged. From FIG. 2, it is understood that a high Mn yield can be achieved by introducing the Mn oxide and the Mn-containing ferromagnetic iron at the time specified in the present invention.
[0031]
The Mn oxide is preferably added in an amount satisfying the following formula (1) in terms of Mn pure content in addition to the above-mentioned appropriate time.
[0032]
Input amount of Mn oxide (kg / t) = Amount of slag in furnace (kg / t) × 1.29 × B MnO (1)
(However, B MnO indicates the optimum necessary increase (%) of the MnO concentration in the slag, and is in the range of 2 to 15%.)
The input amount of the Mn oxide can be determined, for example, as follows. Under normal operation, the Mn concentration in molten steel [Mn] is 0.5% by mass, the Fe concentration in molten steel (T.Fe) is 8% by mass, and the MnO concentration in slag (MnO) is 4% by mass. When the target Mn concentration in molten steel [Mn] ′ is set to 1.0% by mass and the target Fe concentration (T.Fe) ′ in molten steel is set to 10% by mass as target values, the target MnO concentration in slag ( MnO) ′ is 10% by mass from the following equation (2) obtained from the relation of the equilibrium state.
[0033]
(MnO) ′ = [(T.Fe) ′ / (T.Fe)} × {[Mn] ′ / [Mn]} × (MnO) (2)
Therefore, B MnO (the optimum necessary increase of the MnO concentration in the slag) is
B MnO 2 = (MnO) ′ − (MnO) = 6 (% by mass)
[0034]
Therefore, in this case, it is understood that the optimal amount of the Mn oxide to be charged is [the amount of slag in the furnace (kg / t) × 1.29 × 6] (kg / t). The optimum necessary increase (% by mass) of the MnO concentration in the slag can be appropriately set in accordance with the operating conditions as described above. However, if the Mn oxide is excessively added, the slag tends to become oxidizable. , Mn In consideration of suppressing the decrease in the yield, the content is preferably in the range of 2 to 15% by mass.
[0035]
As described above, by introducing an appropriate amount of Mn oxide and introducing the Mn-containing ferromagnetic iron in a state where the MnO concentration in the slag is set to the optimum concentration, a higher Mn yield can be achieved.
[0036]
If the input amount of the Mn oxide is less than the amount specified by the above formula (1), the MnO concentration in the slag cannot be sufficiently increased to the MnO concentration at the time of equilibrium, and the Mn-containing ferromagnetic iron is removed. When charged, the oxidation reaction of Mn in the Mn-containing ferromagnetic alloy easily proceeds, and it is difficult to increase the Mn yield. Preferably, the Mn oxide is added at least 2 kg / t or more.
[0037]
On the other hand, when the input amount of the Mn oxide exceeds the amount specified by the above formula (1), the amount of MnO in the slag excessively increases, and the slag as shown in FIG. T. in The Fe concentration (the concentration of pure iron in the total of FeO and Fe 2 O 3 , which are Fe oxides in the slag) also increases, and the slag becomes highly oxidizable. Once a highly oxidizing slag is formed, it is very difficult to quickly return the slag to a low oxidizing property by oxidizing refining in which refining is performed while supplying oxygen. Therefore, such a state is not preferable because not only the Mn yield decreases but also the Mn concentration in the molten steel cannot be sufficiently increased. Therefore, the input amount of the Mn oxide is preferably 15 kg / t or less.
[0038]
As the Mn oxide, a Mn ore containing MnO as a main component can be used, and a slag having a high MnO concentration generated when a steel type having a high Mn concentration is produced can be recycled and used.
[0039]
When Mn ore is used as the Mn oxide, pulverized powdery Mn ore (particle size: about 0.5 to 5.0 mm) is inexpensive and does not cause the following problems. preferable.
[0040]
That is, when a massive Mn ore is used, when added from the upper part of the converter, most of the Mn ore breaks through the slag layer and directly enters the molten steel, and the reaction represented by the following chemical formula (3) occurs in the molten steel, and unnecessarily decarbonization occurs. Or the MnO concentration in the slag cannot be increased to a target level, and the Mn yield of the subsequently added Mn-containing ferromagnetic iron decreases.
[0041]
[C] + (MnO) ⇔ [Mn] + CO (3)
中 In the above chemical formula (3), [C] indicates carbon in molten steel, (MnO) indicates MnO in slag, [Mn] indicates Mn in molten steel, and ⇔ indicates that the reaction is in an equilibrium state. Indicates}
On the other hand, when powdered Mn ore is added from the upper part of the converter, it does not reach the molten steel but remains in the slag, so that the MnO concentration in the slag can be increased more efficiently than in the case of lump ore.
[0042]
There is no particular limitation on the amount of Mn-containing ferromagnetic iron, and an appropriate amount can be added in accordance with the target Mn value. Further, as the Mn-containing ferromagnetic iron, in addition to using an Fe-Mn-based alloy, Mn-N or the like can be used depending on the type of steel. In the present invention, impurities in the Mn-containing ferromagnetic iron to be fed can be sufficiently removed during refining. Therefore, a low-grade Fe-Mn alloy containing relatively many impurities may be used as the Mn-containing ferromagnetic iron.
[0043]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following Examples, and may be appropriately modified within a range that can be adapted to the purpose of the preceding and the following. The present invention can be implemented, and all of them are included in the technical scope of the present invention.
[0044]
<Example 1>
First, as a method of using Mn oxide and Mn-containing ferromagnetic iron in combination as defined in the present invention, adding Mn oxide in advance and securing the amount of MnO in the slag, and then introducing the Mn-containing ferromagnetic iron, After charging the Mn ore at a time when the integrated oxygen supply amount is 31.3 Nm 3 / t, supplying 2.4 Nm 3 / t of oxygen, and then charging a Fe—Mn alloy as the Mn-containing ferrous iron, After feeding the Fe—Mn alloy, 5.6 Nm 3 / t of oxygen was supplied to terminate the blowing.
[0045]
Further, as a conventional method of adjusting the amount of Mn in molten steel using only Mn ore as Mn oxide, after adding Mn ore at a time when the integrated oxygen supply amount is 5.3 Nm 3 / t, 34.0 Nm 3 / t of oxygen is supplied. To terminate blowing. For each method, the Mn yield when the Mn concentration in the molten steel was adjusted by changing the amount of Mn ore or Fe—Mn-based alloy to be charged was determined. Other operating conditions of each method were as follows.
Figure 2004292836
FIG. 3 shows the relationship between the amount of Mn input (the amount of Mn ore or Fe-Mn-based alloy input in terms of Mn pure content) and the Mn yield when the Mn amount is adjusted by each method.
[0046]
From FIG. 3, when the amount of Mn in molten steel is adjusted using only the Mn oxide, the Mn yield decreases as the amount of Mn is increased, but according to the method of the present invention, the amount of Mn is reduced. It can be seen that a high Mn yield can be achieved regardless of the above.
[0047]
<Example 2>
It is confirmed that there is a difference in the Mn yield between the case where the Mn-containing ferromagnetic iron is supplied at the time specified in the present invention (Example of the present invention) and the case where the Mn-containing ferromagnetic iron is supplied at a time outside the specified range (Comparative Example). An experiment was performed. In the experiment, the operation was performed a plurality of times under the same operating conditions as in Example 1 except that the Mn oxide and the Mn-containing ferromagnetic iron were charged at the times shown in Table 1. FIG. 4 shows the results of the Mn yield in each operation at that time.
[0048]
[Table 1]
Figure 2004292836
[0049]
From FIG. 4, it can be seen that when Mn is added at the time specified in the present invention in the converter, the Mn yield is relatively high.
[0050]
<Example 3>
The effect of the relationship between the Mn oxide and the timing of charging the Mn-containing ferromagnetic alloy on the Mn yield was investigated.
[0051]
The operating conditions were such that the amount of oxygen supplied from the time of charging the Mn oxide (Mn ore) to the time of charging the Mn-containing ferromagnetic iron (Fe-Mn alloy) was changed within a range of 1 to 12 Nm 3 / t, and the Mn-containing alloy was changed. The operation was carried out under the same conditions as in Example 1 except that the blowing was terminated by supplying 6 Nm 3 / t of oxygen after iron was charged. FIG. 5 shows the relationship between the oxygen supply amount and the Mn yield from the time of charging the Mn oxide to the time of charging the Mn-containing ferromagnetic iron when the operation was performed in this manner.
[0052]
According to FIG. 5, when the Mn-containing ferromagnetic iron is charged when the oxygen supply amount after the addition of the Mn oxide exceeds 8 Nm 3 / t, the Mn yield is reduced. It can be seen that it is better to carry out the process between the supply of the Mn oxide and the supply of oxygen at 8 Nm 3 / t.
[0053]
<Example 4>
The influence on the Mn yield and the amount of residual impurities was examined by changing the amount of oxygen supply after the addition of the Mn-containing ferromagnetic iron.
[0054]
The operating conditions are such that the oxygen supply amount after the introduction of the Mn-containing ferromagnetic iron (Fe—Mn-based alloy) (the oxygen supply amount after the introduction of the Fe—Mn-based alloy until the end of the blowing) is changed in the range of 0 to 12 Nm 3 / t. The operation was performed under the same conditions as in Example 1 except that the amount of oxygen supplied from the introduction of the Mn oxide (Mn ore) to the introduction of the Mn-containing ferromagnetic iron was 2 to 6 Nm 3 / t. FIG. 6 shows the relationship between the amount of oxygen supply and the Mn yield from the introduction of the Mn-containing ferroalloy to the end of blowing when the operation was performed in this manner. FIG. 7 shows the relationship between the amount of oxygen supply from the introduction of the Mn-containing ferromagnetic alloy to the end of the blowing and the amount of residual impurities in the molten steel. FIG. 8 shows the relationship between the H (hydrogen) concentration in the molten steel and the oxygen supply amount from the introduction of the Mn-containing ferroalloy to the end of the blowing and the C (carbon) concentration in the molten steel at the end of the blowing. Show.
[0055]
FIG. 6 shows that when a large amount of oxygen is supplied after the addition of the Mn-containing ferromagnetic iron, the Mn yield decreases. In order to secure the Mn yield of at least 75%, the oxygen supply after the introduction of the Mn-containing ferromagnetic alloy is suppressed to 10 Nm 3 / t or less, in other words, the blowing is performed before the oxygen supply exceeds 10 Nm 3 / t. It turns out that it is good to end the operation. Also, from FIG. 7, in order to sufficiently remove the moisture contained in the particularly inexpensive Mn-containing ferromagnetic alloy to reduce the H concentration in the molten steel, at least 2 Nm after the introduction of the Mn-containing ferromagnetic alloy and before the end of the blowing. It is found that it is preferable to perform the blowing process by supplying oxygen of 3 / t or more.
[0056]
Further, when producing a steel type having a low C concentration, if the amount of C contained in the Mn-containing ferromagnetic iron charged immediately before the end of the blowing is large, a problem occurs that the C concentration at the end of the blowing becomes higher than a target value.
[0057]
Therefore, as shown in FIG. 8, it is understood that it is better to supply oxygen to perform the blowing process in order to reduce the amount of C in the molten steel.
[0058]
【The invention's effect】
The present invention is configured as described above, and if Mn is added to a converter by the method of the present invention, even in the case of producing a high Mn steel, it hinders refining operations such as decarburization and dephosphorization. The Mn content in the molten steel can be adjusted with a high Mn yield without any increase.
[0059]
By performing such a method, a high Mn yield can be achieved even when an expensive Mn-containing ferromagnetic iron such as an Fe-Mn alloy is used. In addition, even when a low-grade product such as a Fe-Mn alloy having a large amount of impurities such as C and H 2 O is used as the Mn-containing ferromagnetic iron, the Mn content can be efficiently adjusted without having to newly provide a degassing process. can do. Further, it is economical because an inexpensive Mn ore or the like can be used as the Mn oxide.
[Brief description of the drawings]
FIG. 1 shows the MnO concentration in slag and the T.O. 4 is a graph showing a relationship between Fe concentrations.
FIG. 2 is a graph showing the relationship between the MnO concentration in the slag and the Mn yield when the Mn-containing ferroalloy is charged, according to the charging time of the Mn oxide.
FIG. 3 is a graph showing the relationship between Mn input and Mn yield when Mn content in molten steel is adjusted by the method of the present invention or the conventional method.
FIG. 4 is a graph showing the Mn yield when operating under various conditions in Example 2.
FIG. 5 is a graph showing the relationship between the oxygen supply amount and the Mn yield from the introduction of a Mn oxide (Mn ore) to the introduction of a Mn-containing ferrous alloy (Fe—Mn-based alloy).
FIG. 6 is a graph showing the relationship between the oxygen supply amount and the Mn yield from the introduction of Mn-containing ferromagnetic alloy (Fe—Mn alloy) to the end of blowing.
FIG. 7 is a graph showing the relationship between the oxygen supply amount from the introduction of Mn-containing ferromagnetic alloy (Fe-Mn alloy) to the end of blowing and the concentration of H (hydrogen) in molten steel at the end of blowing.
FIG. 8 is a graph showing the relationship between the oxygen supply amount from the introduction of Mn-containing ferromagnetic alloy (Fe-Mn alloy) to the end of blowing and the C (carbon) concentration in molten steel at the end of blowing.

Claims (4)

転炉で精錬を行うに際し、吹錬開始後にMn酸化物を添加し、且つ該Mn酸化物の添加後にMn含有合金鉄を投入することを特徴とする転炉におけるMn添加方法。A method for adding Mn in a converter, comprising adding a Mn oxide after the start of blowing, and adding a Mn-containing ferromagnetic iron after the addition of the Mn oxide when refining in a converter. 前記Mn酸化物を投入した後、酸素を8Nm/t(tは溶鋼1トンあたりを意味する。以下同じ)供給するまでの間に前記Mn含有合金鉄を投入し、かつ、該Mn含有合金鉄の投入後に酸素を2〜10Nm/t供給して吹錬を終了する請求項1に記載の転炉におけるMn添加方法。After the Mn oxide is charged, the Mn-containing ferromagnetic iron is charged until oxygen is supplied at a rate of 8 Nm 3 / t (t means per ton of molten steel; the same applies hereinafter). 2. The method for adding Mn in a converter according to claim 1, wherein after the introduction of iron, oxygen is supplied at 2 to 10 Nm 3 / t to terminate the blowing. 前記Mn酸化物の投入量を、Mn純分換算で下記式(1)を満たすようにする請求項1または2に記載の転炉におけるMn添加方法。
Mn酸化物の投入量(kg/t)=炉内スラグ量(kg/t)×1.29×BMnO …(1)
(但し、BMnOはスラグ中のMnO濃度の最適必要増加分(質量%)を示し、2〜15質量%の範囲内とする)
3. The method for adding Mn in a converter according to claim 1, wherein the input amount of the Mn oxide satisfies the following expression (1) in terms of Mn pure content.
Input amount of Mn oxide (kg / t) = Slag amount in furnace (kg / t) × 1.29 × B MnO (1)
(However, B MnO indicates the optimum necessary increase (% by mass) of the MnO concentration in the slag, and is in the range of 2 to 15% by mass.)
前記Mn酸化物として、Mn鉱石を使用する請求項1〜3のいずれかに記載の転炉におけるMn添加方法。The method for adding Mn in a converter according to any one of claims 1 to 3, wherein a Mn ore is used as the Mn oxide.
JP2003082977A 2003-03-25 2003-03-25 Method of adding Mn in converter Expired - Fee Related JP3996536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082977A JP3996536B2 (en) 2003-03-25 2003-03-25 Method of adding Mn in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082977A JP3996536B2 (en) 2003-03-25 2003-03-25 Method of adding Mn in converter

Publications (2)

Publication Number Publication Date
JP2004292836A true JP2004292836A (en) 2004-10-21
JP3996536B2 JP3996536B2 (en) 2007-10-24

Family

ID=33398590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082977A Expired - Fee Related JP3996536B2 (en) 2003-03-25 2003-03-25 Method of adding Mn in converter

Country Status (1)

Country Link
JP (1) JP3996536B2 (en)

Also Published As

Publication number Publication date
JP3996536B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US3169058A (en) Decarburization, deoxidation, and alloy addition
JPH11158526A (en) Production of high p slag
JP2006009146A (en) Method for refining molten iron
JP3869270B2 (en) Method for dechroming and denicking liquid slag
WO2018216660A1 (en) Method for manufacturing high manganese steel ingot
JP2004292836A (en) Manganese addition method for converter
JP4192503B2 (en) Manufacturing method of molten steel
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP2003049216A (en) Method for producing molten steel
JP3140256B2 (en) Slag reforming method
JP4184855B2 (en) Method for adjusting Cr content in molten steel
JP3797206B2 (en) Hot metal pretreatment method
JP2587286B2 (en) Steelmaking method
JP6691324B2 (en) Manufacturing method of low nitrogen steel
JP4430140B2 (en) Stainless steel melting method
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JP3283715B2 (en) Hot metal desiliconization method
RU2278169C2 (en) Method for production of chromium-manganese stainless steel
JP3673409B2 (en) Steel for high-strength ultrafine wire and method for producing the same
JPH0437137B2 (en)
JPH024938A (en) Manufacture of medium-carbon and low-carbon ferromanganese
JPH11158525A (en) Method for melting nickel-contining steel
JP2004161544A (en) Method of manufacturing raw material for phosphate fertilizer
JPH08109408A (en) Steelmaking by electric furnace
JPH10130711A (en) Turn down operation with high mn yield in converter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees