JP2004292597A - Polyamide-imide resin composition - Google Patents

Polyamide-imide resin composition Download PDF

Info

Publication number
JP2004292597A
JP2004292597A JP2003086255A JP2003086255A JP2004292597A JP 2004292597 A JP2004292597 A JP 2004292597A JP 2003086255 A JP2003086255 A JP 2003086255A JP 2003086255 A JP2003086255 A JP 2003086255A JP 2004292597 A JP2004292597 A JP 2004292597A
Authority
JP
Japan
Prior art keywords
weight
parts
graphite
polyamide
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086255A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagano
啓 永野
Katsumi Akaike
克美 赤池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003086255A priority Critical patent/JP2004292597A/en
Publication of JP2004292597A publication Critical patent/JP2004292597A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material which is suitable for components of OA equipment and electronic equipment, having a stable surface resistivity in a semiconducting region, and is excellent in mechanical characteristics and dimensional characteristics. <P>SOLUTION: This polyamide-imide resin composition is obtained by blending (A) a polyamide-imide resin, (B) carbon fibers, (C) glass fibers and/or glass beads, and (D) graphite, wherein the content of the resin (A), the total contents of the carbon fibers (B) and the constituent (C), and the content of the graphite (D) are 50-80 pts.wt., 50-20 pts.wt., and 1-10 pts.wt. respectively based on 100 pts.wt. total contents of the constituents (A), (B) and (C) and wherein the constituent (B) accounts for 30-70 wt.% of 100 wt.% total of the constituent (B) and the constituent (C). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、安定した半導電特性を有するポリアミドイミド樹脂組成物に関するものである。
【0002】
【従来の技術】
近年、OA機器や電子機器等の高付加価値化が進んでおり、その製造工程においては温度をはじめとした環境が厳しさを増している。このような傾向に伴い、部品としての特性としては、優れた耐熱性、機械的強度や寸法特性を有すると同時に、単なる導電性ではなく半導電性領域の電気特性を有することが求められるケースが増加している。一般に半導電性領域は、表面抵抗率で10〜1010Ω/sq.の範囲を指し、上記した多くの問題点を改善するための一例として、特許文献1には、ポリアミドイミド樹脂に導電性カーボンブラック、天然鱗状黒鉛およびカルシウム、マグネシウム、バリウムの炭酸塩、硫酸塩、リン酸塩、珪酸塩あるいはタルク、マイカから選ばれる1種類以上の無機充填剤を配合することにより、帯電防止性を有するとともに、射出成形時の流動性、寸法安定性および機械的強度を有する帯電防止性樹脂組成物が得られることが記載されている。しかしながら、前記特許文献1に記載されている樹脂組成物は、機械物性、寸法安定性が未だ不十分であった。
【0003】
一方目的は異なるが、軟質金属との摩擦摩耗特性向上を課題とするポリアミドイミド樹脂に炭素繊維ならびに黒鉛を配合した樹脂組成物やポリアミドイミド樹脂に繊維状充填材を配合した組成物が特許文献2、3に開示されている。しかしながら特許文献2に記載の樹脂組成物は摩擦摩耗特性向上を目的とした組成物であるため、半導電領域の安定した表面抵抗率ならびに十分高い機械特性および寸法特性を同時に発現できるものではなく、また、特許文献3に記載の樹脂組成物は半導電領域の安定した表面抵抗率を発現することが困難である。
【0004】
【特許文献1】
特公平7−37570号公報(第1−2頁)
【特許文献2】
特開平8−48887号公報(第2頁)
【特許文献3】
特許第3289796号公報(第2頁)
【0005】
【発明が解決しようとする課題】
そこで本発明は、安定した半導電特性を有すると同時に機械強度および寸法特性に優れたポリアミドイミド樹脂組成物を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記の課題を解決すべく検討した結果、ポリアミドイミド樹脂をマトリクス樹脂として、導電性付与物質として炭素繊維ならびに黒鉛を選択し、ガラス繊維および/またはガラスビーズを特定量で配合することにより、安定した半導電特性を有しながらも強度低下が非常に少なく、かつ寸法特性や吸水特性に優れる組成物が得られることを見出し、本発明に到達した。
【0007】
即ち本発明は、
(1)(A)ポリアミドイミド樹脂、(B)炭素繊維、(C)ガラス繊維および/またはガラスビーズならびに(D)黒鉛を配合してなり、(A)、(B)、(C)成分の合計を100重量部としたときに、(A)成分が50〜80重量部、(B)成分および(C)成分の合計50〜20重量部、(D)成分が1〜10重量部であり、且つ(B)および(C)成分の合計100重量%中、(B)成分の割合が30〜70重量%であるポリアミドイミド樹脂組成物、
(2)前記炭素繊維の形状がミルドタイプである前記(1)記載のポリアミドイミド樹脂組成物、
(3)前記ガラス繊維の形状がミルドタイプである前記(1)記載のポリアミドイミド樹脂組成物、および
(4)前記黒鉛が天然鱗状黒鉛である前記(1)記載のポリアミドイミド樹脂組成物を提供するものである。
【0008】
【発明の実施の形態】
本発明の(A)成分として使用するポリアミドイミド樹脂としては、下記構造単位で表されるユニットからなるポリマが挙げられる。
【0009】
【化1】

Figure 2004292597
【0010】
(但し、Rは下記式(イ)〜(ヘ)の群から選ばれる基を示す。なお、mとnは各構造単位の存在比率を示し、そのモル比(m/n)は0.01〜100であり、好ましくは0.1〜90である。
【0011】
【化2】
Figure 2004292597
【0012】
上記式において、R1は−Hおよび/または−CH3を表わし、Xは
【0013】
【化3】
Figure 2004292597
【0014】
から選ばれる一種以上の基を、Arは上記式中(イ)、(ロ)、(ハ)から選ばれる一種以上の基を示し、aは1〜25であり、bは1〜100である。)
なかでも上記式中、Rが(イ)、(ニ)、(ヘ)から選ばれる基であることが好ましく、特にRが(イ)の基であり、Rが−Hである場合が好ましい。
【0015】
本発明で用いるポリアミドイミド樹脂の溶液対数粘度は0.3〜0.7dl/gであることが好ましい。特に溶液対数粘度が0.35〜0.65dl/gの範囲にある場合、成形時の流動性および成形収縮率低減が確保される点で好ましい。なお、上記溶液対数粘度はポリアミドイミド樹脂0.25gをN−メチル−2−ピロリドン50mlに溶解させた後、30℃において測定されるものである。
【0016】
上記ポリアミドイミド樹脂としては、市販のものから適宜選択して用いることも可能である。
【0017】
本発明においては、所望される表面抵抗率ならびに寸法安定性の確保の観点から、(B)炭素繊維と(C)ガラス繊維および/またはガラスビーズとを併用することが必要である。
【0018】
本発明で使用する(B)炭素繊維としては、PAN系、ピッチ系いずれも用いることができるが、繊維強度と弾性率の点からPAN系であることが好ましい。
【0019】
本発明で使用する炭素繊維の形状としては、ミルドやチョップドあるいはロービングなどが挙げられるが、樹脂溶融体の流動性と樹脂組成物中における分散性の向上の点からミルドであることが好ましい。また同様の理由で平均繊維長は50〜200μmであることが好ましく、75〜180μmであることが好ましい。また繊維径は10〜18μmであることが好ましい。なお、本発明において平均繊維長は、顕微鏡観察により任意の1000本について測定した数平均繊維長である。
【0020】
次に本発明において(C)成分として使用するガラス繊維の形状は樹脂溶融体の流動性と樹脂組成物中の分散性の向上の点からミルドタイプが好ましい。また樹脂溶融体の流動性と機械強度のバランスの点から平均繊維長は3〜40μmであることが好ましく、特に10〜30μmであることが好ましい。繊維径についても同様の理由により7〜15μmであることが好ましい。
【0021】
またガラスビーズの平均粒径としては10〜50μmであることが好ましく、20〜40μmであることがより好ましい。なお、上記平均粒径は顕微鏡観察により任意の1000個について測定した数平均粒径である。
【0022】
上記ガラス繊維およびガラスビーズは併用することも可能である。
【0023】
上記の(B)炭素繊維ならびに(C)ガラス繊維および/またはガラスビーズの添加量の合計は、優れた寸法安定性と、造粒あるいは成形工程における樹脂組成物の溶融粘度上昇の抑制を確保する観点から、(A)、(B)および(C)成分の合計100重量部に対し、50〜20重量部であることが必要であり、好ましくは35〜25重量部である。
【0024】
上記(B)および(C)成分の合計100重量%中における炭素繊維の割合は、樹脂組成物への安定した半導電性付与の観点から30〜70重量%であることが必要であり、好ましくは35〜65重量%である。
【0025】
次に本発明において使用する(D)黒鉛について説明する。一般に黒鉛はコークス、タール、ピッチなどを高温で黒鉛化処理した人造黒鉛と天然黒鉛に大別され、さらに天然黒鉛は産地により鱗状黒鉛と土状黒鉛に分類される。本発明においては、所望する帯電防止性を付与するための配合量が少量で済み、組成物の機械強度を損なうことを最小限に抑制できる点で天然鱗状黒鉛を用いることが好ましい。
【0026】
(D)黒鉛の添加量は、所望される表面抵抗率範囲と寸法安定性の保持の観点から(A)、(B)および(C)成分の合計100重量部に対し1〜10重量部であり、好ましくは3〜7重量部である。
【0027】
本発明においては、(A)ポリアミドイミド樹脂、(B)炭素繊維、(C)ガラス繊維および/またはガラスビーズおよび(D)黒鉛を上記の配合比率で全て併用することが必須であり、その中の一つでも欠落しては機械強度、寸法精度、表面抵抗率を同時に確保することは困難である。
【0028】
本発明においては、樹脂組成物の成形時の流動性向上を目的として、上記成分に加えて本発明の効果を損なわない範囲でフッ素樹脂を配合しても良い。かかるフッ素樹脂としては、粉末形状や繊維径状のものが挙げられるが、その中でも成分原料中における分散性の観点から、平均粒径1〜10μmの粉末形状のものが好ましく用いられる。フッ素樹脂の配合量は、(A)、(B)および(C)成分の合計100重量部に対し、0.1〜5重量部であることが好ましく、0.1〜3重量部であることがより好ましい。なお、上記平均粒径はレーザー分散法を用いて測定した粒度分布の数平均として算出されたものである。
【0029】
さらに本発明においては、本発明の効果を損なわない限りにおいて、上記成分の他に充填材、熱安定剤を添加配合することが可能である。この追加され得る充填材としては特に限定しないが、耐熱性に優れた繊維材料や固体微粉末が機械特性ならびに寸法特性の維持の点から有効である。繊維材料としては、チタン酸カリウムウィスカー等の耐熱・耐久性に優れたものが用いられる。スチール繊維や黄銅繊維などの金属繊維は、表面抵抗を大きく下げる可能性があるため添加には注意が必要である。また、固体微粉末としては、二硫化モリブデン、二硫化タングステン、窒化ホウ素、マグネタイト粉末等が用いられる。
【0030】
本発明のポリアミドイミド樹脂組成物は、ポリアミドイミド樹脂、炭素繊維、ガラス繊維、黒鉛および必要に応じ他の任意成分を押出機などを用いて溶融混練することにより製造することができる。上記溶融混練には通常の方法、例えばヘンシェルミキサーでのドライブレンド後、2軸押出機で連続的に混練押出してペレットに成形する方法が採用できる。
【0031】
かくして得られる本発明のポリアミドイミド樹脂組成物は、射出成形、押出し成形などの方法により成形することが可能である。
【0032】
【実施例】
以下、本発明のポリアミドイミド樹脂組成物の物性と性能を詳細に説明するが、本発明はこれら実施例の記載に限定されるものではない。
なお、実施例における製造・物性測定は次の方法によって実施した。
【0033】
(1)ポリアミドイミド樹脂粉末の作製
本発明に用いたポリアミドイミド樹脂は、N,N−ジメチルアセトアミドを重合溶媒とする酸クロリド法低温溶液重合法にで合成した。以下に詳細を示す。N,N−ジメチルアセトアミド(DMAC)65リットルにジアミノジフェニルエーテル(DDE)12kgおよびメタフェニレンジアミン(MPDA)2.0kgを溶解し、氷浴で冷却しながら、粉末状の無水トリメリット酸モノクロリド(TMAC)15kgを内温が30℃を超えないような速度で添加した。TMACを全て添加した後、無水トリメリット酸(TMA)1.7kgを添加し、30℃で2時間撹拌保持した。粘調となった重合液をカッターミキサーに張った100リットルの水中に投入し、高速撹拌することによりスラリー状にポリマを析出させた。得られたスラリーを遠心分離機で脱水処理した。脱水後のケークを60℃の水200リットルを用いて洗浄し、再度遠心分離機で脱水処理した。得られたケークを熱風乾燥機を用いて、220℃/5時間の条件で乾燥し、粉末状ポリマを得た。同様の操作を繰り返し、以下に記載の実施例に供した。
【0034】
(2)ポリアミドイミド樹脂の溶液対数粘度
ポリアミドイミド樹脂粉末0.25gをN−メチル−2−ピロリドン50mlに溶解させた後、30℃において溶液対数粘度測定した。
【0035】
(3)試験片の射出成形
75t射出成形機(SG−75・S、住友重機械工業(株)製)を用いシリンダ温度:350℃、金型温度:220℃、射出速度:50%、射出圧力:充填下限圧力+10%(1000〜1500kg/cm)の条件により、引張強度試験用1号ダンベル(厚み3mm)、曲げ弾性率測定試験片(130mm×12.4mm×3mm)、吸水率、線膨張率ならびに表面抵抗率測定用試験片(30mm×30mm×3mm)の成形ならびにスパイラルフロー長(断面;6.5mm幅、×高さ;3.5mmの半円形状)の測定を実施した。
【0036】
(4)機械特性の測定
引張強度:ASTM D638に従い測定した。
曲げ弾性率:ASTM D790に従い測定した。
線膨張率:ASTM D696に従い測定した。
吸水特性:ASTM D570に従い、23℃の水中に24時間浸漬した後の重量変化率を測定した。
【0037】
(5)表面抵抗率の測定:超絶縁計(東亜電波工業(株)SM10E)を用いて、(3)で述べた試験片について印加電圧100Vの条件にて表面抵抗率測定した。測定は7回実施し、バラツキ範囲を求めるとともにその平均値を算出した。
【0038】
実施例1
ポリアミドイミド樹脂として上記(1)で作製したポリアミドイミド樹脂粉末(溶液対数粘度0.47dl/g)を68重量部、炭素繊維(東レ(株)製”MLD−1000”;ミルドタイプ、平均繊維長150μm)20重量部、ガラス繊維(日東紡績(株)製”PF−E−301”;ミルドタイプ平均繊維長25μm)12重量部、天然鱗状黒鉛(日本黒鉛(株)製“CP”)4重量部をヘンシェルミキサーを用いてドライブレンドした後、45m/m直径2軸押出機(池貝鐵工(株)PCM−45)を用い、シリンダ設定温度350℃、スクリュー回転数150rpmで溶融混練し、ホットカットにてペレットを得た。このペレットを射出成形し、物性を評価した。得られた組成物は表1に示すように、機械特性、寸法特性、吸水特性に優れており、電気特性も半導電性領域内であり、成形流動性も実用上問題ないものであった。なお、配合に供した炭素繊維およびガラス繊維の平均繊維長は、顕微鏡観察により100本を測定した数平均繊維長である。
【0039】
実施例2
実施例1における配合量を炭素繊維14重量部、ガラス繊維18重量部、黒鉛6重量部に変更し、実施例1と同様に混練押出し、成形、評価した。成形、評価した。得られた組成物は表1に示すように、機械特性、寸法特性、吸水特性に優れており、表面抵抗率も半導電性領域内であり、成形流動性も実用上問題ないものであった。
【0040】
実施例3
実施例1における配合量を炭素繊維16重量部、ガラス繊維16重量部、黒鉛5重量部に変更し、実施例1と同様に混練押出し、ペレットを得た。これを用いて実施例1と同様に成形、評価した。得られた組成物は表1に示すように、機械特性、寸法特性、吸水特性に優れ、表面抵抗率も半導電性領域を十分満足し、成形流動性も実用上問題ないものであった。
【0041】
実施例4
実施例3における成分原料をガラス繊維から同量のガラスビーズ(ポッターズ・バロティーニ(株)製”EGB731B2”、平均粒径25μm)に変更して、実施例1と同様に混練押出し、ペレットを得た。これを用いて実施例1と同様に成形、評価した。得られた組成物は表1に示すように、機械特性、寸法特性、吸水特性に優れ、表面抵抗率も半導電性領域を十分満足し、成形流動性も実用上問題ないものであった。なお、平均粒径は顕微鏡観察により算出した数平均である。
【0042】
実施例5
実施例1における配合量をポリアミドイミド樹脂58重量部、ガラス繊維22重量部に変更し、更にフッ素樹脂(ダイキン工業(株)製”ルブロン”L−5、平均粒径6μm)2重量部を追加し、実施例1と同様に混練押出し、成形、評価した。得られた組成物は表1に示すように、機械特性は実用上問題ないレベルを満足しており、寸法特性、吸水特性に優れ、表面抵抗率も半導電性領域を十分満足し、成形流動性も実用上問題ないものであった。上記平均粒径はレーザー分散法を用いて測定した粒度分布から算出した数平均である。
【0043】
実施例6
実施例5における配合量を炭素繊維16重量部、ガラス繊維26重量部、黒鉛5重量部に変更し、実施例1と同様に混練押出し、成形、評価した。得られた組成物は表1に示すように、機械特性は実用上問題ないレベルを満足しており、寸法特性、吸水特性に優れ、表面抵抗率も半導電性領域を十分満足し、成形流動性も実用上問題ないものであった。
【0044】
実施例7
実施例1における配合量をポリアミドイミド樹脂74重量部、炭素繊維16重量部、ガラス繊維10重量部、黒鉛5重量部に変更し、更にフッ素樹脂(ダイキン工業(株)製”ルブロン”L−5、平均粒径6μm)2重量部を追加し、実施例1と同様に押出し、成形、評価した。得られた組成物は表1に示すように、機械特性、に優れ、寸法特性および吸水特性は実用上問題ないレベルを満足しており、表面抵抗率も半導電性領域を十分満足し、成形流動性も実用上問題ないものであった。
【0045】
実施例8
実施例7における配合量を炭素繊維14重量部、ガラス繊維12重量部に変更し、実施例1と同様に押出し、成形、評価した。得られた組成物は表1に示すように、機械特性に優れ、寸法特性、吸水特性は実用上問題ないレベルを満足しており、表面抵抗率も半導電性領域内であり、成形流動性も実用上問題ないものであった。
【0046】
比較例1
実施例1における配合量を炭素繊維24重量部、ガラス繊維8重量部、黒鉛5重量部に変更し、実施例1と同様に混練押出し、成形、評価した。得られた組成物は表2に示すように、機械特性、寸法特性および吸水特性には優れるものの、表面抵抗率が導電性領域まで低下した。
【0047】
比較例2
比較例1において、炭素繊維9重量部、ガラス繊維23重量部に変更し、実施例1と同様に混練押出し、成形、評価した。得られた組成物は表2に示すように、機械特性、寸法特性および吸水特性は実用上問題ないレベルであるものの、表面抵抗率は半導電性領域を超え、満足できるものではなかった。
【0048】
比較例3
比較例1において、炭素繊維を東レ(株)製チョップドファイバー”T010−003”(平均繊維長3mm)に変更し、黒鉛配合量を3重量部に変更し、更にフッ素樹脂(ダイキン工業(株)製”ルブロン”L−5、平均粒径6μm)2重量部を追加し、実施例1と同様に混練押出したところ、溶融物の粘度上昇が起こり、押出機ダイホール詰まりが発生し、造粒出来なかった。
【0049】
比較例4
比較例2において、ガラス繊維を日東紡績(株)製”PF−40E−401”(平均繊維長45μm)に変更し、黒鉛配合量を3重量部に変更し、更にフッ素樹脂(ダイキン工業(株)製”ルブロン”L−5、平均粒径6μm)2重量部を追加し、実施例1と同様に混練押出したところ、溶融物の粘度上昇が起こり、押出機ダイホール詰まりが発生し、造粒出来なかった。
【0050】
比較例5
実施例1における配合量をポリアミドイミド樹脂84重量部、炭素繊維16重量部、ガラス繊維0重量部、黒鉛5重量部に変更し、更にフッ素樹脂(ダイキン工業(株)製”ルブロン”L−5、平均粒径6μm)2重量部を追加し、実施例1と同様に混練押出し、成形、評価した。得られた組成物は表2に示すように、機械特性や吸水特性、表面抵抗率は問題ないものの、熱膨張率の増加が見られたため、成形材料としては不十分なものであった。
【0051】
比較例6
比較例5における配合量をポリアミドイミド樹脂76重量部、炭素繊維24重量部に変更し、実施例1と同様に混練押出し、成形、評価した。得られた組成物は表2に示すように、機械特性、寸法特性、吸水特性には優れるものの、表面抵抗率が導電性領域まで低下した。
【0052】
比較例7
実施例1における配合量をポリアミドイミド樹脂100重量部、炭素繊維0重量部、ガラス繊維0重量部、黒鉛25重量部に変更し、更にフッ素樹脂(ダイキン工業(株)製”ルブロン”L−5、平均粒径6μm)2重量部を追加し、実施例1と同様に混練押出し、成形、評価した。得られた組成物は表2に示すように、寸法特性、吸水特性、表面抵抗率は問題ないものの、機械強度の大幅な低下が見られ、成形材料としては不十分なものであった。
【0053】
比較例8
実施例1における配合量をポリアミドイミド樹脂48重量部、炭素繊維21重量部、ガラス繊維31重量部、黒鉛3重量部に変更し、更にフッ素樹脂(ダイキン工業(株)製”ルブロン”L−5、平均粒径6μm)2重量部を追加し、実施例1と同様に混練押出ししたところ、溶融物の粘度上昇が起こり、押出機ダイホール詰まりが発生し、造粒出来なかった。
【0054】
【表1】
Figure 2004292597
【0055】
【表2】
Figure 2004292597
【0056】
【発明の効果】
本発明により、高い機械的強度と寸法安定性を持ちながら、安定した半導電性領域の表面抵抗率も併せ持つ、OA機器や電子機器の部品に適したポリアミドイミド樹脂組成物を提供することが出来た。なお、上記部品の成形については本発明における効果を失わない限りにおいて、射出成形/押出し成形など、その方法を限定するものではない。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyamide-imide resin composition having stable semiconductive properties.
[0002]
[Prior art]
2. Description of the Related Art In recent years, OA equipment, electronic equipment, and the like have been increasing in added value, and in the manufacturing process, the environment including temperature has become increasingly severe. Along with such a trend, there are cases where components are required to have excellent heat resistance, mechanical strength and dimensional characteristics, and at the same time to have not only mere conductivity but also electrical characteristics of a semiconductive region. It has increased. Generally, the semiconductive region has a surface resistivity of 10 6 to 10 10 Ω / sq. As an example for improving many of the problems described above, Patent Document 1 discloses that a conductive carbon black, a natural scale graphite and calcium, magnesium, barium carbonate, sulfate, and polyamideimide resin are used. By blending one or more inorganic fillers selected from phosphates, silicates, talc, and mica, it has antistatic properties and also has fluidity, dimensional stability and mechanical strength during injection molding. It is described that a protective resin composition can be obtained. However, the resin composition described in Patent Document 1 is still insufficient in mechanical properties and dimensional stability.
[0003]
On the other hand, although the purpose is different, a resin composition in which carbon fiber and graphite are blended in a polyamideimide resin and a composition in which a fibrous filler is blended in a polyamideimide resin, which is intended to improve friction and wear characteristics with a soft metal, are disclosed in Patent Document 2. , 3. However, since the resin composition described in Patent Document 2 is a composition for the purpose of improving friction and wear characteristics, it cannot simultaneously exhibit stable surface resistivity of a semiconductive region and sufficiently high mechanical and dimensional characteristics. Further, it is difficult for the resin composition described in Patent Document 3 to exhibit a stable surface resistivity in a semiconductive region.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 7-37570 (page 1-2)
[Patent Document 2]
JP-A-8-48887 (page 2)
[Patent Document 3]
Japanese Patent No. 3289796 (page 2)
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a polyamide-imide resin composition having stable semiconducting characteristics and excellent mechanical strength and dimensional characteristics.
[0006]
[Means for Solving the Problems]
As a result of studying to solve the above-mentioned problems, a polyamideimide resin was used as a matrix resin, carbon fibers and graphite were selected as conductivity-imparting substances, and glass fibers and / or glass beads were blended in a specific amount, thereby stabilizing the stability. The present inventors have found that a composition having very small strength reduction while having semiconductive properties, and excellent in dimensional properties and water absorption properties can be obtained, and arrived at the present invention.
[0007]
That is, the present invention
(1) A mixture of (A) polyamide-imide resin, (B) carbon fiber, (C) glass fiber and / or glass beads, and (D) graphite, wherein components (A), (B), and (C) When the total is 100 parts by weight, the component (A) is 50 to 80 parts by weight, the total of the components (B) and (C) is 50 to 20 parts by weight, and the component (D) is 1 to 10 parts by weight. And a polyamideimide resin composition in which the proportion of the component (B) is 30 to 70% by weight based on a total of 100% by weight of the components (B) and (C),
(2) The polyamide-imide resin composition according to (1), wherein the shape of the carbon fiber is a milled type.
(3) The polyamide-imide resin composition according to (1), wherein the shape of the glass fiber is a milled type, and (4) the polyamide-imide resin composition according to (1), wherein the graphite is natural scaly graphite. Is what you do.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the polyamide-imide resin used as the component (A) of the present invention include a polymer composed of units represented by the following structural units.
[0009]
Embedded image
Figure 2004292597
[0010]
(However, R represents a group selected from the groups of the following formulas (a) to (f). Here, m and n indicate the abundance ratio of each structural unit, and the molar ratio (m / n) is 0.01 To 100, preferably 0.1 to 90.
[0011]
Embedded image
Figure 2004292597
[0012]
In the above formula, R1 represents -H and / or -CH3, and X represents
Embedded image
Figure 2004292597
[0014]
And Ar represents one or more groups selected from (A), (B) and (C) in the above formula, a is 1 to 25, and b is 1 to 100 . )
Among them, in the above formula, R is preferably a group selected from (A), (D), and (F), and particularly preferably, R is a group of (A) and R 1 is -H. .
[0015]
The solution logarithmic viscosity of the polyamideimide resin used in the present invention is preferably 0.3 to 0.7 dl / g. Particularly, when the solution logarithmic viscosity is in the range of 0.35 to 0.65 dl / g, it is preferable in that the fluidity during molding and the reduction in molding shrinkage are secured. The solution logarithmic viscosity is measured at 30 ° C. after dissolving 0.25 g of a polyamideimide resin in 50 ml of N-methyl-2-pyrrolidone.
[0016]
As the above-mentioned polyamideimide resin, it is also possible to appropriately select and use a commercially available polyamideimide resin.
[0017]
In the present invention, it is necessary to use (B) carbon fiber and (C) glass fiber and / or glass beads in combination from the viewpoint of securing desired surface resistivity and dimensional stability.
[0018]
As the (B) carbon fiber used in the present invention, any of a PAN-based carbon fiber and a pitch-based carbon fiber can be used, but a PAN-based carbon fiber is preferable from the viewpoint of fiber strength and elastic modulus.
[0019]
Examples of the shape of the carbon fiber used in the present invention include milled, chopped, and roving, but milled is preferable from the viewpoint of improving the fluidity of the resin melt and the dispersibility in the resin composition. For the same reason, the average fiber length is preferably from 50 to 200 μm, and more preferably from 75 to 180 μm. The fiber diameter is preferably from 10 to 18 μm. In the present invention, the average fiber length is a number average fiber length measured for an arbitrary 1,000 fibers by microscopic observation.
[0020]
Next, the shape of the glass fiber used as the component (C) in the present invention is preferably a milled type from the viewpoint of improving the fluidity of the resin melt and the dispersibility in the resin composition. The average fiber length is preferably from 3 to 40 μm, and more preferably from 10 to 30 μm, from the viewpoint of the balance between the fluidity of the resin melt and the mechanical strength. The fiber diameter is preferably 7 to 15 μm for the same reason.
[0021]
Further, the average particle size of the glass beads is preferably from 10 to 50 μm, more preferably from 20 to 40 μm. In addition, the said average particle diameter is a number average particle diameter measured about arbitrary 1000 pieces by microscope observation.
[0022]
The above glass fibers and glass beads can be used in combination.
[0023]
The total amount of (B) carbon fibers and (C) glass fibers and / or glass beads added ensures excellent dimensional stability and suppression of an increase in the melt viscosity of the resin composition in the granulation or molding step. From the viewpoint, it is necessary that the amount is 50 to 20 parts by weight, preferably 35 to 25 parts by weight, based on 100 parts by weight of the total of the components (A), (B) and (C).
[0024]
The proportion of the carbon fibers in the total of 100% by weight of the components (B) and (C) needs to be 30 to 70% by weight from the viewpoint of imparting stable semiconductivity to the resin composition. Is 35 to 65% by weight.
[0025]
Next, (D) graphite used in the present invention will be described. In general, graphite is roughly classified into artificial graphite and natural graphite obtained by graphitizing coke, tar, pitch, and the like at a high temperature. Natural graphite is further classified into scaly graphite and earthy graphite depending on the place of production. In the present invention, it is preferable to use natural scaly graphite in that a small amount of the compound for imparting a desired antistatic property is required, and deterioration of the mechanical strength of the composition can be minimized.
[0026]
(D) The amount of graphite to be added is 1 to 10 parts by weight based on 100 parts by weight of the total of the components (A), (B) and (C) from the viewpoint of maintaining the desired surface resistivity range and dimensional stability. And preferably 3 to 7 parts by weight.
[0027]
In the present invention, it is essential that (A) a polyamideimide resin, (B) carbon fiber, (C) glass fiber and / or glass beads, and (D) graphite are all used together in the above-mentioned mixing ratio. It is difficult to secure mechanical strength, dimensional accuracy, and surface resistivity at the same time if any one of them is missing.
[0028]
In the present invention, for the purpose of improving the fluidity during molding of the resin composition, a fluorine resin may be blended in addition to the above components in a range that does not impair the effects of the present invention. Examples of such a fluororesin include those having a powder shape or a fiber diameter, and among them, a powder having an average particle diameter of 1 to 10 μm is preferably used from the viewpoint of dispersibility in the component raw materials. The compounding amount of the fluororesin is preferably 0.1 to 5 parts by weight, and preferably 0.1 to 3 parts by weight based on 100 parts by weight of the total of the components (A), (B) and (C). Is more preferred. The average particle size is calculated as the number average of the particle size distribution measured using a laser dispersion method.
[0029]
Further, in the present invention, as long as the effects of the present invention are not impaired, it is possible to add and blend a filler and a heat stabilizer in addition to the above components. The filler that can be added is not particularly limited, but a fiber material or a solid fine powder having excellent heat resistance is effective from the viewpoint of maintaining mechanical properties and dimensional properties. As the fiber material, a material having excellent heat resistance and durability such as potassium titanate whisker is used. Care must be taken when adding metal fibers such as steel fibers and brass fibers because they may significantly reduce the surface resistance. Further, as the solid fine powder, molybdenum disulfide, tungsten disulfide, boron nitride, magnetite powder and the like are used.
[0030]
The polyamide-imide resin composition of the present invention can be produced by melt-kneading a polyamide-imide resin, carbon fiber, glass fiber, graphite and other optional components as necessary using an extruder or the like. For the above-mentioned melt-kneading, a usual method, for example, a method of dry-blending with a Henschel mixer, followed by continuous kneading and extrusion with a twin-screw extruder to form pellets can be adopted.
[0031]
The polyamide-imide resin composition of the present invention thus obtained can be molded by a method such as injection molding and extrusion molding.
[0032]
【Example】
Hereinafter, the physical properties and performance of the polyamide-imide resin composition of the present invention will be described in detail, but the present invention is not limited to the description of these examples.
The production and measurement of physical properties in the examples were performed by the following methods.
[0033]
(1) Preparation of Polyamideimide Resin Powder The polyamideimide resin used in the present invention was synthesized by an acid chloride method and a low-temperature solution polymerization method using N, N-dimethylacetamide as a polymerization solvent. Details are shown below. In 65 liters of N, N-dimethylacetamide (DMAC), 12 kg of diaminodiphenyl ether (DDE) and 2.0 kg of metaphenylenediamine (MPDA) are dissolved, and while cooling in an ice bath, powdery trimellitic anhydride monochloride (TMAC) is dissolved. ) 15 kg were added at such a rate that the internal temperature did not exceed 30 ° C. After all TMAC was added, 1.7 kg of trimellitic anhydride (TMA) was added, and the mixture was stirred and maintained at 30 ° C. for 2 hours. The viscous polymer solution was poured into 100 liters of water stretched over a cutter mixer, and stirred at a high speed to precipitate a polymer in a slurry state. The obtained slurry was dehydrated by a centrifuge. The cake after dehydration was washed with 200 liters of water at 60 ° C., and dehydrated again by a centrifuge. The obtained cake was dried using a hot air drier at 220 ° C./5 hours to obtain a powdery polymer. The same operation was repeated, and provided for the examples described below.
[0034]
(2) Solution Logarithmic Viscosity of Polyamideimide Resin After dissolving 0.25 g of polyamideimide resin powder in 50 ml of N-methyl-2-pyrrolidone, solution logarithmic viscosity was measured at 30 ° C.
[0035]
(3) Injection molding of test piece Using a 75t injection molding machine (SG-75.S, manufactured by Sumitomo Heavy Industries, Ltd.), cylinder temperature: 350 ° C., mold temperature: 220 ° C., injection speed: 50%, injection Pressure: No. 1 dumbbell for tensile strength test (thickness 3 mm), flexural modulus measurement test piece (130 mm × 12.4 mm × 3 mm), water absorption rate, under the condition of filling lower limit pressure + 10% (1000 to 1500 kg / cm 2 ) A test piece (30 mm × 30 mm × 3 mm) for measuring the linear expansion coefficient and the surface resistivity and the measurement of a spiral flow length (a semicircular shape having a cross section of 6.5 mm width and height × 3.5 mm) were performed.
[0036]
(4) Measurement of mechanical properties Tensile strength: Measured according to ASTM D638.
Flexural modulus: measured according to ASTM D790.
Linear expansion coefficient: Measured according to ASTM D696.
Water absorption properties: According to ASTM D570, the rate of weight change after immersion in water at 23 ° C. for 24 hours was measured.
[0037]
(5) Measurement of surface resistivity: The surface resistivity of the test piece described in (3) was measured under the condition of an applied voltage of 100 V using a super-insulation meter (SM10E, Toa Denpa Kogyo KK). The measurement was carried out seven times, the variation range was determined, and the average value was calculated.
[0038]
Example 1
68 parts by weight of the polyamideimide resin powder (solution logarithmic viscosity 0.47 dl / g) prepared in (1) above as a polyamideimide resin, carbon fiber (“MLD-1000” manufactured by Toray Industries, Inc .; milled type, average fiber length) 150 μm) 20 parts by weight, 12 parts by weight of glass fiber (“PF-E-301” manufactured by Nitto Boseki Co., Ltd .; average fiber length of milled type 25 μm), 4 parts by weight of natural scaly graphite (“CP” manufactured by Nippon Graphite Co., Ltd.) Part was dry-blended using a Henschel mixer, and then melt-kneaded at a cylinder setting temperature of 350 ° C. and a screw rotation speed of 150 rpm using a 45 m / m diameter twin-screw extruder (PCM-45, Ikegai Iron Works Co., Ltd.). Pellets were obtained by cutting. The pellets were injection molded, and the physical properties were evaluated. As shown in Table 1, the obtained composition was excellent in mechanical properties, dimensional properties, and water absorption properties, the electrical properties were also in the semiconductive region, and the molding fluidity had no practical problem. The average fiber length of the carbon fiber and the glass fiber used for blending is a number average fiber length obtained by measuring 100 fibers by microscopic observation.
[0039]
Example 2
The blending amount in Example 1 was changed to 14 parts by weight of carbon fiber, 18 parts by weight of glass fiber, and 6 parts by weight of graphite, and kneaded, extruded, molded and evaluated in the same manner as in Example 1. Molding and evaluation. As shown in Table 1, the obtained composition was excellent in mechanical properties, dimensional properties, and water absorption properties, the surface resistivity was within the semiconductive region, and the molding fluidity had no practical problem. .
[0040]
Example 3
The blending amount in Example 1 was changed to 16 parts by weight of carbon fiber, 16 parts by weight of glass fiber, and 5 parts by weight of graphite, and kneaded and extruded in the same manner as in Example 1 to obtain pellets. Using this, molding and evaluation were performed in the same manner as in Example 1. As shown in Table 1, the obtained composition was excellent in mechanical properties, dimensional properties, and water absorption properties, sufficiently satisfied the surface resistivity and the semiconductive region, and had no practical problem in molding fluidity.
[0041]
Example 4
The component raw material in Example 3 was changed from glass fiber to the same amount of glass beads (“EGB731B2” manufactured by Potters Barotini Co., Ltd., average particle size 25 μm), and kneaded and extruded in the same manner as in Example 1 to obtain pellets. Was. Using this, molding and evaluation were performed in the same manner as in Example 1. As shown in Table 1, the obtained composition was excellent in mechanical properties, dimensional properties, and water absorption properties, sufficiently satisfied the surface resistivity and the semiconductive region, and had no practical problem in molding fluidity. The average particle size is a number average calculated by observation with a microscope.
[0042]
Example 5
The blending amount in Example 1 was changed to 58 parts by weight of a polyamideimide resin and 22 parts by weight of glass fiber, and 2 parts by weight of a fluororesin ("Lubron" L-5, manufactured by Daikin Industries, Ltd., average particle size: 6 μm) was further added. Then, kneading, extrusion, molding and evaluation were performed in the same manner as in Example 1. As shown in Table 1, the obtained composition satisfies mechanical properties at a level that does not cause any problem in practical use, has excellent dimensional properties and water absorption properties, has a sufficient surface resistivity in a semiconductive region, and has a sufficient molding flow rate. There was no practical problem. The average particle size is a number average calculated from a particle size distribution measured using a laser dispersion method.
[0043]
Example 6
The compounding amount in Example 5 was changed to 16 parts by weight of carbon fiber, 26 parts by weight of glass fiber, and 5 parts by weight of graphite, and kneaded, extruded, molded and evaluated in the same manner as in Example 1. As shown in Table 1, the obtained composition satisfies mechanical properties at a level that does not cause any problem in practical use, has excellent dimensional properties and water absorption properties, has a sufficient surface resistivity in a semiconductive region, and has a sufficient molding flow rate. There was no practical problem.
[0044]
Example 7
The blending amount in Example 1 was changed to 74 parts by weight of polyamide-imide resin, 16 parts by weight of carbon fiber, 10 parts by weight of glass fiber, and 5 parts by weight of graphite, and further, a fluororesin ("Lubron" L-5 manufactured by Daikin Industries, Ltd.) , An average particle size of 6 μm), and extruded, molded and evaluated in the same manner as in Example 1. As shown in Table 1, the obtained composition has excellent mechanical properties, dimensional properties and water absorption properties that satisfy practically acceptable levels, and the surface resistivity sufficiently satisfies the semiconductive region. The fluidity was also practically acceptable.
[0045]
Example 8
Extrusion, molding, and evaluation were performed in the same manner as in Example 1 except that the blending amount in Example 7 was changed to 14 parts by weight of carbon fiber and 12 parts by weight of glass fiber. As shown in Table 1, the obtained composition has excellent mechanical properties, dimensional properties and water absorption properties satisfying practically acceptable levels, surface resistivity within the semiconductive region, and molding fluidity. Had no practical problem.
[0046]
Comparative Example 1
The blending amount in Example 1 was changed to 24 parts by weight of carbon fiber, 8 parts by weight of glass fiber, and 5 parts by weight of graphite, and kneaded, extruded, molded and evaluated in the same manner as in Example 1. As shown in Table 2, the obtained composition had excellent mechanical properties, dimensional properties, and water absorption properties, but the surface resistivity was reduced to the conductive region.
[0047]
Comparative Example 2
In Comparative Example 1, the mixture was changed to 9 parts by weight of carbon fiber and 23 parts by weight of glass fiber, and kneaded, extruded, molded and evaluated in the same manner as in Example 1. As shown in Table 2, the obtained composition had mechanical properties, dimensional properties, and water absorption properties at practically acceptable levels, but the surface resistivity exceeded the semiconductive region and was not satisfactory.
[0048]
Comparative Example 3
In Comparative Example 1, the carbon fiber was changed to chopped fiber "T010-003" (average fiber length: 3 mm) manufactured by Toray Industries, Inc., the amount of graphite was changed to 3 parts by weight, and a fluororesin (Daikin Industries, Ltd.) (Rublon L-5, average particle size 6 μm), and 2 parts by weight were added and kneaded and extruded in the same manner as in Example 1. As a result, the viscosity of the melt increased, clogging of the die hole of the extruder occurred, and granulation was completed. Did not.
[0049]
Comparative Example 4
In Comparative Example 2, the glass fiber was changed to “PF-40E-401” (average fiber length: 45 μm) manufactured by Nitto Boseki Co., Ltd., the amount of graphite was changed to 3 parts by weight, and a fluorine resin (Daikin Industries, Ltd.) Addition of 2 parts by weight of "Rublon" L-5, average particle size of 6 μm) and kneading and extrusion in the same manner as in Example 1 resulted in an increase in viscosity of the melt, clogging of the die hole of the extruder, and granulation. I could not do it.
[0050]
Comparative Example 5
The compounding amount in Example 1 was changed to 84 parts by weight of polyamide-imide resin, 16 parts by weight of carbon fiber, 0 parts by weight of glass fiber, and 5 parts by weight of graphite, and further, a fluororesin ("Lubron" L-5 manufactured by Daikin Industries, Ltd.) , An average particle size of 6 μm), and kneaded, extruded, molded and evaluated in the same manner as in Example 1. As shown in Table 2, the obtained composition was satisfactory in mechanical properties, water absorption properties, and surface resistivity, but was insufficient as a molding material due to an increase in the coefficient of thermal expansion.
[0051]
Comparative Example 6
The compounding amount in Comparative Example 5 was changed to 76 parts by weight of the polyamideimide resin and 24 parts by weight of carbon fiber, and kneaded, extruded, molded and evaluated in the same manner as in Example 1. As shown in Table 2, the obtained composition had excellent mechanical properties, dimensional properties, and water absorption properties, but the surface resistivity was reduced to the conductive region.
[0052]
Comparative Example 7
The compounding amount in Example 1 was changed to 100 parts by weight of a polyamideimide resin, 0 parts by weight of carbon fibers, 0 parts by weight of glass fibers, and 25 parts by weight of graphite. Further, a fluororesin ("Lubron" L-5 manufactured by Daikin Industries, Ltd.) was used. , An average particle size of 6 μm), and kneaded, extruded, molded and evaluated in the same manner as in Example 1. As shown in Table 2, the obtained composition had no problem in dimensional characteristics, water absorption characteristics, and surface resistivity, but showed a significant decrease in mechanical strength and was insufficient as a molding material.
[0053]
Comparative Example 8
The compounding amount in Example 1 was changed to 48 parts by weight of a polyamideimide resin, 21 parts by weight of carbon fibers, 31 parts by weight of glass fibers, and 3 parts by weight of graphite, and further, a fluororesin ("Lubron" L-5 manufactured by Daikin Industries, Ltd.) 2 parts by weight (average particle size: 6 μm) were added, and the mixture was kneaded and extruded in the same manner as in Example 1. As a result, the viscosity of the melt increased, and the die hole in the extruder was clogged, and granulation could not be performed.
[0054]
[Table 1]
Figure 2004292597
[0055]
[Table 2]
Figure 2004292597
[0056]
【The invention's effect】
According to the present invention, it is possible to provide a polyamide-imide resin composition suitable for OA equipment and electronic equipment parts, which has high mechanical strength and dimensional stability and also has a stable surface resistivity in a semiconductive region. Was. The method of molding the above-mentioned parts is not limited, such as injection molding / extrusion molding, as long as the effects of the present invention are not lost.

Claims (4)

(A)ポリアミドイミド樹脂、(B)炭素繊維、(C)ガラス繊維および/またはガラスビーズならびに(D)黒鉛を配合してなり、(A)、(B)、(C)成分の合計を100重量部としたときに、(A)成分が50〜80重量部、(B)および(C)成分の合計が50〜20重量部、(D)成分が1〜10重量部であり、且つ(B)および(C)成分の合計100重量%中(B)成分の割合が30〜70重量%であるポリアミドイミド樹脂組成物。It comprises (A) a polyamideimide resin, (B) carbon fiber, (C) glass fiber and / or glass beads, and (D) graphite, and the total of components (A), (B) and (C) is 100. In terms of parts by weight, the component (A) is 50 to 80 parts by weight, the total of the components (B) and (C) is 50 to 20 parts by weight, the component (D) is 1 to 10 parts by weight, and ( A polyamide-imide resin composition wherein the proportion of the component (B) is 30 to 70% by weight in a total of 100% by weight of the components (B) and (C). 前記炭素繊維の形状がミルドタイプである請求項1に記載のポリアミドイミド樹脂組成物。The polyamide-imide resin composition according to claim 1, wherein the shape of the carbon fiber is a milled type. 前記ガラス繊維の形状がミルドタイプである請求項1に記載のポリアミドイミド樹脂組成物。The polyamide-imide resin composition according to claim 1, wherein the shape of the glass fiber is a milled type. 前記黒鉛が天然鱗状黒鉛である請求項1に記載のポリアミドイミド樹脂組成物。The polyamide-imide resin composition according to claim 1, wherein the graphite is natural scale-like graphite.
JP2003086255A 2003-03-26 2003-03-26 Polyamide-imide resin composition Pending JP2004292597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086255A JP2004292597A (en) 2003-03-26 2003-03-26 Polyamide-imide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086255A JP2004292597A (en) 2003-03-26 2003-03-26 Polyamide-imide resin composition

Publications (1)

Publication Number Publication Date
JP2004292597A true JP2004292597A (en) 2004-10-21

Family

ID=33400964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086255A Pending JP2004292597A (en) 2003-03-26 2003-03-26 Polyamide-imide resin composition

Country Status (1)

Country Link
JP (1) JP2004292597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128251A1 (en) * 2012-03-02 2013-09-06 Sabic Innovative Plastics Ip B.V. Injection moldable esd compounds having low tribo-charge background

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128251A1 (en) * 2012-03-02 2013-09-06 Sabic Innovative Plastics Ip B.V. Injection moldable esd compounds having low tribo-charge background

Similar Documents

Publication Publication Date Title
JP2012500317A (en) Thermoplastic resin composition having excellent electrical conductivity, wear resistance and high heat resistance
Zhan et al. Electrical, thermal, and mechanical properties of polyarylene ether nitriles/graphite nanosheets nanocomposites prepared by masterbatch route
JP2009263476A (en) Highly heat conductive resin composition
JP2010001402A (en) High thermal conductivity resin molded article
JP2005325345A (en) Composite material composition and its manufacturing method
JP2023500518A (en) Blends of polyaryletherketone copolymers
KR101355472B1 (en) High thermal conductive resin composition
JP2008150485A (en) Fiber-reinforced resin composition for molding and fiber-reinforced resin molded article
JPH0586982B2 (en)
JP2005171242A5 (en)
JPS58176242A (en) Resin composition
KR101380841B1 (en) Method for preparing the molded parts of heat resistant and thermally conductive polymer compositions and the molded parts of heat resistant and thermally conductive polymer compositions prepared by the same method
JP2004149564A (en) Resin composition
JP2004292597A (en) Polyamide-imide resin composition
JPH05255520A (en) Production of sliding member
JP2006181776A (en) Molding fiber-reinforced flame-retardant resin mixture and molded product
JP2007106959A (en) Polyamide resin composition
JP2008074992A (en) Carbon fiber reinforced thermoplastic resin composition and molded product
JP3978841B2 (en) Conductive sliding member composition
JP3859966B2 (en) Semiconductive resin composition and molded article
JPH0737570B2 (en) Antistatic resin composition
JPH10265671A (en) Polyarylene sulfide resin composition
JPS63297457A (en) Polyether aromatic ketone polymer composition
JPH06256654A (en) Polyarylene sulfide resin composition
JP2006097005A (en) Electrically conductive resin composition and method for producing the same